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Abstract

Exposure of a secret key is a significant threat in practice. As a notion of security
against key exposure, Dodis et al. advocated key-insulated security, and proposed concrete
key-insulated encryption (KIE) schemes in which secret keys are periodically updated by
using a physically “insulated” helper key. For significantly reducing possibility of exposure
of the helper key, Hanaoka et al. further proposed the notion of parallel KIE (PKIE)
in which multiple helper keys are used in alternate shifts. They also pointed out that
in contrast to the case of the standard KIE, PKIE cannot be straightforwardly obtained
from identity-based encryption (IBE). In this paper, we first discuss that previous security
models for PKIE are somewhat weak, and thus re-formalize stronger security models for
PKIE. Then we clarify that PKIE can be generically constructed (even in the strenghthened
security models) by using a new primitive which we call one-time forward secure public
key encryption (OTFS-PKE) and show that it is possible to construct OTFS-PKE from
arbitrary IBE or hierarchical IBE (without degenerating into IBE). By using our method,
we can obtain various new PKIE schemes which yield desirable properties. For example, we
can construct first PKIE schemes from lattice or quadratic residuosity problems (without
using bilinear maps), and PKIE with short ciphertexts and cheaper computational cost for
both encryption and decryption. Interestingly, the resulting schemes can be viewed as the
partial solutions to the open problem left by Libert, Quisquarter and Yung in PKC’07.

Keywords: key exposure, parallel key-insulated encryption, one-time forward secure public
key encryption, identity-based encryption.

1 Introduction

Background. Nowadays, there is a growing tendency for cryptographic systems to be deployed
on inexpensive, lightweight and mobile devices. In such a situation, a secret key is more casually
and frequently used, and thus, both damage and possibility of key exposure increase significantly.

Key-insulated cryptography, introduced by Dodis, Katz, Xu and Yung [21], is a useful tech-
nique to mitigate the potential damage caused by key exposure. In a key-insulated encryption
(KIE) scheme, the lifetime of the system is divided into discrete periods, and the pubic key
remains fixed throughout the lifetime. Each user keeps two kinds of secrets which are called
user secret key and helper key. The user secret key is used for decrypting ciphertexts, and the
helper key is used for updating the user secret key. Since the user secret key is periodically
updated (without changing the public key), its exposure compromises only security during its
corresponding time period, and security of other time periods (including past ones) are still
maintained. Furthermore, the helper key is stored in a dedicated device named helper, which
is kept isolated from the network except when it is used for updating the user secret key, and
thus we can assume that possibility of its exposure is very low.

∗A preliminary version of this paper will be presented at Seventh Conference on Security and Cryptography
for Networks (SCN 2010) [28].
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The key-insulation paradigm is an effective solution to the key exposure problem. However,
we also notice that it is not easy to simultaneously handle (1) reducing damage by exposure of the
user secret key, and (2) reducing possibility of exposure of the helper key. Namely, if we update
the user secret key more frequently, then exposure of the user secret key compromises security
for only a shorter time period. But, this also increases frequency of the helper’s connection
to insecure environments, and hence increases the risk of helper key exposure. We note that
exposure of the helper key may compromise security of all time periods.

To address the above problem, Hanaoka, Hanaoka, and Imai [26] introduced the concept of
parallel key-insulated encryption (PKIE), where two (or more) distinct helpers are alternately
used to update the user secret keys. As indicated in [26], PKIE allows frequent updating of
the user secret key, and at the same time reduces the risk of the helper key exposure. Namely,
assuming that in some time period, the user secret key is updated by using one of two helper keys,
next updating procedure cannot be carried out without using the other helper key. Therefore,
even if one of helper keys is exposed, its damage is still very limited.

Based on Boneh-Franklin identity-based encryption (IBE) scheme [8], Hanaoka et al. [26] also
proposed a concrete PKIE scheme (referred to as HHI scheme) in the random oracle model [5].
Later, based on Boneh-Boyen IBE scheme [6], Libert, Quisquater and Yung [36] further proposed
another PKIE scheme (referred to as LQY scheme) without using random oracles.

Libert et al. also pointed out an important fact that in contrast to the standard KIE, it
is not straightforward to construct PKIE from IBE. Actually, it has not been known if it is
possible to generically construct PKIE from any IBE or not, and therefore, we cannot flexibly
design PKIE schemes according to individual system requirement.

Our Results. In this paper, we first discuss that previous security models for PKIE are
somewhat weak, and thus re-formalize stronger security models for PKIE. Next, we show that
it is possible to generically construct a PKIE scheme (even in the strengthened security models)
from an arbitrary IBE scheme, and give various useful instantiations. Specifically, we first
introduce a new primitive named one-time forward secure public key encryption (OTFS-PKE),
and then present a generic construction of PKIE from OTFS-PKE. Furthermore, we present two
generic constructions of OTFS-PKE: one is from standard IBE, and the other is from two-level
hierarchical identity-based encryption (2-HIBE). We note that IBE can be trivially obtained
from 2-HIBE, but our generalization based on OTFS-PKE yields more flexibility which results
in a wider range of applications.

First examples of instantiations of our generic construction are PKIE schemes from various
assumptions. Namely, by converting lattice-based IBE schemes [16, 24, 37] into OTSF-PKE
schemes, we immediately have PKIE schemes based on difficulty of lattice problems. These
schemes can be considered as the first “post-quantum” PKIE schemes. Similarly, based on the
quadratic-residuosity-based IBE schemes [9, 17], we can easily construct PKIE schemes from
the same underlying assumptions. These are the first PKIE schemes from a factoring-related
problem. We stress that all previously known PKIE schemes depend on pairings, and thus the
above schemes can also be the first PKIE schemes without pairings.

Second examples are PKIE schemes with better efficiency in comparison to existing schemes
(e.g. [36]) in some aspects. For instance, based on Boneh-Boyen IBE [6], we can construct a
new PKIE scheme with shorter ciphertexts and cheaper computational cost for encryption and
decryption. For another instance, based on Boneh-Boyen-Goh HIBE [7], we can also construct
a new PKIE scheme which yields cheaper computation for helpers. This scheme is useful when
helpers are computationally weak devices (e.g. smart cards). Surprisingly, when our Boneh-
Boyen-based scheme is extended to support multiple helpers, its public key size, ciphertext
size, encryption cost and decryption cost are all constant and independent with the number of
helpers. This scheme can be viewed as a (partial) solution to the open question left by Libert
et al. in PKC’07.

Related Works. In their seminal paper, Dodis, Katz, Xu and Yung [21] presented generic con-
structions as well as direct constructions of KIE schemes. Bellare and Palacio [4] proposed a new
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KIE scheme based on Boneh-Franklin IBE scheme, and they also presented the generic construc-
tion of (non-strong key-insulated) KIE from IBE. We remark that these generic constructions
cannot be applied to PKIE systems. Hanaoka et al. [27] studied KIE in the unconditional
settings, and proposed a dynamic and mutual KIE scheme.

Phan et al. [38] generalized the notion of PKIE and introduced a new paradigm called
key-insulated public key encryption with auxiliary helper. Weng et al. [43] extended PKIE to
identity-based scenarios, and proposed an identity-based PKIE scheme without random oracles.
However, the efficiency of their scheme also degrades with the number of helpers. Hanaoka et
al. [29] introduced the paradigm of hierarchial key-insulation, and presented the constructions
of identity-based hierarchial KIE. Weng et al. [44] introduced the notion of threshold key-
insulation, and proposed an identity-based threshold KIE scheme.

There exist some other related techniques to deal with the key exposure problem. Forward
secure cryptography [1, 3, 12, 14, 32, 35] can ensure that, exposure of the current key does not
render usages of previous keys insecure, but security of the future periods is lost. Intrusion-
resilient cryptography [18, 19, 31] strengths the key-insulated security in the sense that, the
system remains secure even after arbitrarily many compromises of both helper key and user
secret keys, as long as the compromises are not simultaneous.

2 Preliminaries

2.1 Notations

For a bit flg ∈ {0, 1}, flg denotes 1− flg. For a finite set S, x
$← S means choosing an element

x from S with a uniform distribution. For a string x, |x| denotes its bit-length. We use
A(x, y, · · · ) to denote that A is an algorithm with the input (x, y, · · · ), and use z ← A(x, y, · · · )
to denote the running of A(x, y, · · · ) with the output z. For AO1,O2,···(x, y, · · · ), it means
that A is an algorithm with the input (x, y, · · · ) and can access to oracles O1,O2, · · · . By z ←
AO1,O2,···(x, y, · · · ), we denote the running of AO1,O2,···(x, y, · · · ) with the output z. Throughout
this paper, we use M to denote the message space of the encryption schemes. A function
F : N→ [0, 1] is said to be negligible if for all c ∈ N there exists a kc ∈ N such that F (k) < k−c

for all k > kc.

2.2 Public Key Encryption

A public key encryption (PKE) scheme PKE = (KGen,Enc,Dec) consists of three algorithms:
The key generation algorithm (pk, sk) ← KGen(λ), taking as input a security parameter λ,
outputs a public/secret key pair (pk, sk). The encryption algorithm C ← Enc(pk,M), on input
a public key pk and a message M ∈ M, outputs a ciphertext C. The decryption algorithm
M ← Dec(sk, C), on input a cipertext C and the secret key sk, outputs a plaintext M (or “⊥”
if C is invalid).

Next, we review the definition of semantic security [25] for PKE, i.e. IND-ATK [2, 22, 40]
where ATK ∈ {CPA,CCA}. Let B be an adversary running in two stages find and guess.
Consider the following experiment:

ExpIND-ATK
B,PKE (λ):

[
(pk, sk)← KeyGen(λ); (M0,M1)← BOd(·)

find (pk); δ
$← {0, 1};

C∗ ← Enc(pk,Mδ); δ
′ ← BOd(·)

guess(C∗, pk); return 1 if δ = δ′, or 0 otherwise
]
,

where Od(·) is a decryption oracle which for given C returns M ← Dec(sk, C) if ATK = CCA,
or “⊥” if ATK = CPA. It is required that |M0| = |M1|, and B cannot issue the query Od(C

∗).
We define A’s advantage as AdvIND-ATK

B,PKE (λ) =
∣∣Pr[ExpIND-ATK

B,PKE (λ) = 1]− 1
2

∣∣ .
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Definition 1 We say that a PKE scheme is IND-CCA (resp. IND-CPA) secure, if there exists
no probabilistic polynomial time (PPT) adversary B who has advantage AdvIND-CCA

B,PKE (λ) (resp.

AdvIND-CPA
B,PKE (λ)).

2.3 Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is a generalization of IBE that mirrors an or-
ganizational hierarchy. An HIBE scheme HIBE = (Setup,Extract,Enc,Dec) consists of four
algorithms: The setup algorithm (param,msk) ← Setup(λ, l), run by the private key gener-
ator (PKG), on input a security parameter λ and the maximum hierarchy depth l, outputs
the public parameters param and the master secret key msk. The key extraction algorithm
skID ← Extract(param, skID|k−1

, ID), on input param, an identity ID = (ID1, · · · , IDk) of depth

k ≤ l, and the secret key skID|k−1
of the parent identity ID|k−1 = (ID1, · · · , IDk−1), outputs the

secret key skID for ID. The encryption algorithm C ← Enc(param, ID,M), on input param, a
message M ∈ M and an identity ID with a depth equal or less than l, outputs a ciphertext C.
The decryption algorithm m ← Dec(skID, C), on input a secret key skID and a ciphertext C,
outputs a plaintext M (or “⊥” if C is invalid).

Note that when the maximal hierarchy depth in HIBE degenerates to a single level, it yields
an IBE system. For IBE, we use Setup(λ) instead of Setup(λ, l) to denote its setup algorithm.
Next, we review the definition of semantic security for HIBE/IBE, i.e. IND-ID-ATK where
ATK = {CPA,CCA}. For an adversary A, we consider the following experiment:

ExpIND-ID-ATK
A,HIBE/IBE (λ):

[
(param,msk)← Setup(λ, l); (M0,M1, ID

∗)← AOext(·),Od(·,·)
find (param); δ

$← {0, 1};
C∗ ← Enc(param, ID∗,Mδ); δ

′ ← AOext(·),Od(·,·)
guess (param,C∗); return 1 if δ = δ′ or 0 otherwise

]
,

whereOext(·) is a key extraction oracle which for given ID returns skID ← Extract(param,msk, ID),
and Od(·, ·) is a decryption oracle which for given (ID, C) returns M ← Dec(skID, C) if ATK =
CCA, or “⊥” if ATK = CPA. It is required that |M0| = |M1|, A cannot submit ID∗ nor a prefix
of ID∗ to oracle Oext, and A cannot submit (ID∗, C∗) to oracle Od. We define A’s advantage as

AdvIND-ID-ATK
A,HIBE/IBE (λ) =

∣∣∣Pr[ExpIND-ID-ATK
A,HIBE/IBE (λ) = 1]− 1

2

∣∣∣ .
Definition 2 An HIBE/IBE scheme is said to be IND-ID-CCA (resp. IND-ID-CPA) secure,
if there exits no PPT adversary A who has non-negligible advantage AdvIND-ID-CCA

A,HIBE/IBE (λ) (resp.

AdvIND-ID-CPA
A,HIBE/IBE (λ)).

Remark 1. Canetti, Halevi, and Katz [14] defined a weaker notion of security for HIBE/IBE
(i.e., IND-sID-CCA, IND-sID-CPA), in which the adversary must declare the identity ID∗ he in-
tends to attack before seeing the public parameters of the system.

2.4 Parallel Key-Insulated Encryption

In this subsection, we first review the definition of PKIE systems as defined in [26, 36], with
slight notational differences. Then, we further re-formalize the security model for PKIE which
is stronger than previous one [26,36].

Formally, a PKIE scheme consists of the following algorithms:

• KeyGen(λ): The key generation algorithm, on input a security parameter λ, outputs a
public key pk, an initial user secret key usk0 and two helper keys (mst1,mst0). Here usk0
is kept by the user, while mst1 and mst0 are kept by the first and the second helper
respectively. We write (pk, usk0, (mst1,mst0))← KeyGen(λ).

• ∆-Gen(t,mstt mod 2): The helper key-update algorithm is run by the helpers at the be-
ginning of each period. On input a period index t and the corresponding helper key
mstt mod 2, it outputs an update key hskt for period t. We write hskt ← ∆-Gen(t,mstt mod 2).
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• Update(t, uskt−1, hskt): The user key-update algorithm is run by the user at the beginning
of each period. Taking as input a period index t, the user secret key uskt−1 for period
t − 1 and the update key hskt, it returns the user secret key uskt for period t. We write
uskt ← Update(t, uskt−1, hskt).

• Enc(pk, t,m): The encryption algorithm takes as input the public key pk, a period index
t and a message m ∈M. It outputs a ciphertext CT. We write CT← Enc(pk, t,m).

• Dec(uskt, CT): The decryption algorithm takes as input a ciphertext CT under period index
t, and the matching user secret key uskt. It outputs a plaintext m (or “⊥” if CT is invalid).
We write m← Dec(uskt, CT).

Key-insulated security. This security notion captures the intuition that, if an adversary does
not compromise the helper, exposure of the user secret keys for some periods does not affect
other periods; furthermore, if a single helper is broken into while a given period t is exposed,
only one other period adjacent to t is exposed (recall that even strong key-insulated KIE schemes
collapse in this scenario). We refer to this security as IND-KI-ATK where ATK ∈ {CCA,CPA}.
For an adversary A, we consider the following experiment:

ExpIND-KI-ATK
A,PKIE (λ):

[
(pk, usk0, (mst1,mst0))← KeyGen(λ); (m0,m1, t

∗)← AOu(·),Oh(·),Od(·,·)
find (pk);

β
$← {0, 1};CT∗ ← Enc(pk, t∗,mβ); β

′ ← AOu(·),Oh(·),Od(·,·)
guess (pk, CT∗); return 1 if β = β′ or 0 otherwise

]
,

where Ou(·) is a user secret key oracle which for given a period index t returns the user secret
key uskt, Oh(·) is a helper key oracle which for given an index i ∈ {0, 1} returns the helper
key msti, and Od(·, ·) is a decryption oracle which for given (t, CT) returns m ← Dec(uskt, CT)
if ATK = CCA, or “⊥” if ATK = CPA. It is mandated that |m0| = |m1| and the following
requirements are satisfied:

(1). A cannot issue the user secret key query Ou(t
∗);

(2). A cannot issue both queries Ou(t
∗ − 1) and Oh(t

∗ mod 2);

(3). A cannot issue both the helper key queries Oh(1) and Oh(0);

(4). if ATK = CCA, A cannot issue the decryption query Od(t
∗, CT∗).

We define A’s advantage as AdvIND-KI-ATK
A,PKIE (λ) =

∣∣Pr[ExpIND-KI-ATK
A,PKIE (λ) = 1]− 1

2

∣∣ .
Remark 2. This experiment considers two kinds of adversaries: Type I attackers who do not
corrupt helpers during the simulation. In contrast, Type II adversaries corrupt exactly one
helper without corrupting a user secret key that would trivially expose the target period t∗.

Remark 3. In the previous security model for PKIE [26, 36], it is additionally required that
the adversary cannot issue both queries Ou(t

∗ + 1) and Oh((t
∗ + 1) mod 2). We also notice

that, in previous PKIE schemes [26, 36], the adversary is able to derive uskt∗ if she corrupts
both uskt∗+1 and mst(t∗+1) mod 2. However, according to the definition of PKIE, corruption of
uskt∗+1 and mst(t∗+1) mod 2 does not inherently mean the exposure of uskt∗ . So, in our security
model, we do not impose this restriction on the adversary. As can be seen later, in our PKIE
schemes, it is impossible for the adversary to derive uskt∗ even if she corrupts both uskt∗+1 and
mst(t∗+1) mod 2.

Definition 3 A PKIE scheme is said to be IND-KI-CCA (resp. IND-KI-CPA) secure, if there ex-
ists no PPT adversary A who has non-negligible advantage AdvIND-KI-CCA

A,PKIE (λ) (resp. AdvIND-KI-CPA
A,PKIE (λ)).

Strong key-insulated security. Key-insulated security can be further enhanced to cover the
compromise of both helper keys. To define this security notion, we first define the notion of
strong-IND-KI-ATK security, where ATK ∈ {CCA,CPA}. For an adversary A, we consider the
following experiment:

5



Expstrong-IND-KI-ATK
A,PKIE (λ):

[
(pk, usk0, (mst1,mst0))← KeyGen(λ); (m0,m1, t

∗)← AOd(·,·)
find (pk,mst1,mst0);

β
$← {0, 1};CT∗ ← Enc(pk, t∗,mβ); β

′ ← AOd(·,·)
guess (pk,mst1,mst0, CT

∗); return 1 if β = β′ or 0 otherwise
]
,

where Od(·, ·) is the same as in experiment ExpIND-KI-ATK
A,PKIE (λ). It is mandated that |m0| = |m1|,

and if ATK = CCA then A cannot issue the decryption query Od(t
∗, CT∗). We define A’s

advantage as Advstrong-IND-KI-ATK
A,PKIE (λ) =

∣∣∣Pr[Expstrong-IND-KI-ATK
A,PKIE (λ) = 1]− 1

2

∣∣∣ .
Definition 4 We say that a PKIE scheme is strong-IND-KI-CCA (resp. strong-IND-KI-CPA)

secure, if there is no PPT adversary A who has non-negligible advantage Advstrong-IND-KI-CCA
A,PKIE (λ)

(resp. Advstrong-IND-KI-CPA
A,PKIE (λ)).

Definition 5 We say that a PKIE scheme is strongly key-insulated secure under chosen-ciphertext
attack (resp. chosen-plaintext attack), if it is both IND-KI-CCA secure (resp. IND-KI-CPA se-
cure) and strong-IND-KI-CCA secure (resp. strong-IND-KI-CPA secure).

2.5 Bilinear Pairings and Related Complexity Assumptions

In this subsection, we review the definition of bilinear pairings and some related complexity
assumptions on which the security of our concrete PKIE schemes are based.

Let G and GT be two cyclic multiplicative groups with the same prime order p. A bilinear
pairing is a map e : G×G→ GT with the following properties:

• Bilinearity: ∀g1, g2 ∈ G,∀a, b ∈ Z∗
p, we have e(ga1 , g

b
2) = e(g1, g2)

ab;

• Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) ̸= 1;

• Computability: There exists an efficient algorithm to compute e(g1, g2) for ∀g1, g2 ∈ G.

Definition 6 The decisional bilinear Diffie-Hellman (DBDH) problem in groups (G,GT ) is,

given a tuple (g, ga, gb, gc, Z) ∈ G4 × GT with unknown a, b, c
$← Z∗

p, to decide whether Z =

e(g, g)abc. A polynomial time algorithm B has advantage ϵ in solving the DBDH problem in
groups (G,GT ), if∣∣∣Pr[B(g, ga, gb, gc, Z = e(g, g)abc) = 1

]
− Pr

[
B(g, ga, gb, gc, Z = e(g, g)d) = 1

]∣∣∣ ≥ ϵ,

where the probability is taken over the random choices of a, b, c, d in Z∗
p, the random choice of g

in G, and the random bits consumed by B.
We say that the DBDH assumption holds in groups (G,GT ), if there exists no polynomial

time algorithm B that has non-negligible advantage in solving the DBDH problem in (G,GT ).

Definition 7 The ℓ decisional bilinear Diffie-Hellman exponentiation (ℓ-DBDHE) assumption

in groups (G,GT ) is, given a tuple (g, h, ga, · · · , gaℓ , gaℓ+2
, · · · , ga2ℓ , Z) ∈ G2ℓ+1 × GT with un-

known a
$← Z∗

p, to decide whether Z = e(g, h)a
ℓ+1

. A polynomial time algorithm B has advantage
ϵ in solving the ℓ-DBDHE problem in groups (G,GT ), if∣∣∣Pr[B(g, h, ga, · · · , gaℓ , gaℓ+2

, · · · , ga2ℓ , Z = e(g, h)a
ℓ+1

) = 1
]

− Pr
[
B(g, h, ga, · · · , gaℓ , gaℓ+2

, · · · , ga2ℓ , Z = e(g, g)b) = 1
]∣∣∣ ≥ ϵ,

where the probability is taken over the random choices of a, b in Z∗
p, the random choices of g

and h in G, and the random bits consumed by B.
We say that the ℓ-DBDHE assumption holds in groups (G,GT ), if there exists no polynomial

algorithm B that has non-negligible advantage in solving the ℓ-DBDHE problem in (G,GT ).
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3 Generic Construction of Parallel Key-Insulated Encryption

In this section, we first explain the difficulties in generic constructions of PKIE. Then we
introduce a new primitive named one-time forward secure public key encryption (OTFS-PKE).
Based on this new primitive, we present a generic construction of PKIE.

3.1 Difficulties in Generic Constructions of PKIE

In [21], Dodis et al. showed that an IBE scheme can be converted to a KIE scheme, by viewing
the period index as an “identity” and having the PKG as the helper. However, Hanaoka et
al. [26] pointed out that it is non-trivial to construct a PKIE scheme from IBE systems.

To illustrate the difficulties, two important facts should first be kept in mind: On the one
hand, according to the definition of PKIE, only one (not both) of the helper keys are used
to update the user secret key in each period. On the other hand, the user secret key should
simultaneously contain the update keys generated by mst0 and mst1; otherwise, the compromise
of a single helper and some periods will harm other periods.

Next, let’s review a unsuccessful solution which was previously discussed by Libert et al. [36].
To construct a PKIE scheme by combining two IBE schemes, this solution uses the two PKGs to
alternatively act as the helpers for even and odd periods, taking the period indices as identities.
For example, a user secret key for an even period index t consists of uskt = (skt−1, skt), where
skt−1 is the secret key generated by the first PKG in the previous period for identity “t−1”, and
skt is the secret key generated by the second PKG in current period for identity “t”. At first
glance, such a solution appears to be feasible. Unfortunately, this is not necessary true, since the
user secret key for period t will be exposed by corrupting periods t−1 and t+1. More specifically,
uskt = (skt−1, skt) can be derived by combining skt−1, picked from uskt−1 = (skt−2, skt−1), and
skt, picked from uskt+1 = (skt, skt+1).

The insecurity of the above solution lies in the fact that, the two components generated
by distinct PKGs can be individually extracted from the user secret keys, which enables the
adversary to assemble another user secret key. Based on this observation, Libert et al. [36]
pointed out an intuitive relation between secure PKIE and a category of IBE systems whose
key extraction algorithm can be viewed as a signature supporting aggregation. Now, the user
secret key of the resulting PKIE scheme is the aggregation of two components generated by
distinct helpers, so that the individual component cannot be extracted. In fact, both HHI
scheme [26] and LQY scheme [36] follow this intuition. However, both HHI scheme and LQY
scheme are only concrete, and the aggregation property is not generally satisfied in all IBE
systems, e.g. [6, 9, 17, 23, 42]. Furthermore, both HHI scheme and LQY scheme cannot satisfy
our strengthened security notion, since the adversary is able to derive the user secret key uskt if
she corrupts both uskt+1 and mstj . For example, in HHI scheme, the user secret key for period
t is defined to be uskt = H(t − 1)mstjH(t)msti , where j = (t − 1) mod 2 and i = t mod 2. If
the adversary corrupts uskt+1 = H(t)mstiH(t + 1)mstj and mstj , then she can derive the user

secret key for period t by computing uskt = uskt+1 · H(t−1)mstj

H(t+1)mstj
= H(t− 1)mstjH(t)msti . Thus the

above intuition cannot be utilized to generic construction of PKIE from any IBE systems, and
we must find a different way.

3.2 A New Primitive: One-Time Forward Secure Public Key Encryption

To present our generic construction of PKIE, we first introduce a new primitive named one-time
forward secure public key encryption (OTFS-PKE). Like forward secure public key encryption
[14, 32], the lifetime of OTFS-PKE is divided into distinct time periods, and the public key
remains fixed throughout the lifetime. However, unlike forward secure public key encryption,
the secret key in OTFS-PKE can only be evolved once (this is the reason why we use the
terminology “one-time” to name this primitive), and then it needs to be regenerated. For
convenience, we shall use a bit flg ∈ {0, 1} to identify whether a secret key of a given period
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can be evolved or not. Concretely, in the beginning of a period t where t mod 2 = flg, the user
regenerates a new secret key dt (refer to it as an evolvable secret key), which can be further
evolved in the next period t + 1. While for a period index t where t mod 2 = flg, the secret
key dt is evolved from the previous secret key, and cannot be further evolved (refer to it as an
evolved secret key). Formally, an OTFS-PKE scheme consists of the following algorithms:

• Setup(λ, flg): The setup algorithm takes as input a security parameter λ and a bit flg ∈
{0, 1}. It returns a public key PK and a master key MK. We write (PK,MK) ←
Setup(λ, flg). (Without loss of generality, we assume flg is included in PK.)

• KeyGen(PK,MK, t): The key generation algorithm takes as input PK, MK and a period
index t where t mod 2 = flg. It outputs an evolvable secret key dt for period t. We write
dt ← KeyGen(PK,MK, t).

• Upd(PK, t, dt−1): The key update algorithm takes as input PK, a period index t where
t mod 2 = flg, and the evolvable secret key dt−1 of the previous period. It returns the
evolved secret key dt for period t. We write dt ← Upd(PK, t, dt−1).

• Enc(PK, t,M): The encryption algorithm takes as input PK, a period index t and a
message M ∈ M. It returns a ciphertext C (or “⊥” if C is invalid). We write C ←
Enc(PK, t,M).

• Dec(dt, C): The decryption algorithm takes as input the secret key dt and a ciphertext C.
It returns a message M (or “⊥” if C is invalid). We write M ← Dec(dt, C).

The correctness of OTFS-PKE means that, for any M ∈ M and any periods t1 (where t1
mod 2 = flg) and t2 (where t2 mod 2 = flg), it holds that

Dec(KeyGen(PK,MK, t1),Enc(PK, t1,M)) = M,

Dec(Upd(PK, t2,KeyGen(PK,MK, t2 − 1)),Enc(PK, t2,M)) = M.

Roughly speaking, the security requirements for an OTFS-PKE scheme should capture the
following intuitions: For a period t∗ where t∗ mod 2 = flg, exposure of the secret key dt∗ does
not affect any other period (in particular, it is impossible for an adversary to derive the previous
secret key dt∗−1); while exposure of the secret key of period t∗ where t∗ mod 2 = flg should
merely affect periods t∗ and t∗ + 1. Next, we begin to define the formal semantic security for
OTFS-PKE, and we refer to it as IND-FS-ATK where ATK = {CCA,CPA}. For an adversary B,
we consider the following experiment:

ExpIND-FS-ATK
B,OTFS-PKE (λ):

[
flg← B(λ);(PK,MK)← Setup(λ, flg); (M0,M1, t

∗)← BOke(·),Od(·,·)
find (PK);

θ
$← {0, 1};C∗ ← Enc(PK, t∗,Mθ); θ

′ ← BOke(·),Od(·,·)
guess (PK,C∗); return 1 if θ = θ′ or 0 otherwise

]
,

where Oke(·) is a key-exposure oracle which on input index t returns dt ← KeyGen(PK,MK, t)
if t mod 2 = flg or dt ← Upd(PK, t,KeyGen(PK,MK, t − 1)) if t mod 2 = flg, and Od(·, ·)
is a decryption oracle which on input (t, C) returns m ← Dec(dt, C) if ATK = CCA, or “⊥”
if ATK = CPA. It is mandated that |M0| = |M1|, and the following requirements should be
satisfied:

(1). B cannot issue the key-exposure query Oke(t
∗);

(2). If t∗ mod 2 = flg, B cannot issue the key-exposure query Oke(t
∗ − 1);

(3). If ATK = CCA, B cannot issue the decryption query Od(t
∗, C∗).

We define B’s advantage as AdvIND-FS-ATK
B,OTFS-PKE (λ) =

∣∣Pr[ExpIND-FS-ATK
B,OTFS-PKE (λ) = 1]− 1

2

∣∣ .
Definition 8 We say that an OTFS-PKE scheme is IND-FS-CCA (resp. IND-FS-CPA) secure,
if there exists no PPT adversary B who has non-negligible advantage AdvIND-FS-CCA

B,OTFS-PKE (λ) (resp.

AdvIND-FS-CPA
B,OTFS-PKE (λ)).
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3.3 Generic Construction of PKIE from OTFS-PKE

In this section, we first show how to generically construct a chosen-plaintext secure PKIE scheme
from OTFS-PKE and PKE. Then we discuss how to achieve the chosen-ciphertext security.

3.3.1 CPA-Secure Construction

Basic Idea. We first explain how to use two OTFS-PKE schemes to construct a PKIE scheme
with (non-strong) key-insulated security. The basic idea of our construction is as follows. We
use two OTFS-PKE schemes: OTFS-PKE1 with flg = 1 and OTFS-PKE0 with flg = 0. The master
key MK1 (resp. MK0) in OTFS-PKE1 (resp. OTFS-PKE0) acts as the helper key mst1 (resp.
mst0) for the resulting PKIE scheme. In a given period t (let i = t mod 2 and j = (t − 1)
mod 2), the user secret key is of the form uskt = (dj,t, di,t), where di,t is an evolvable secret key
directly generated by msti, and dj,t is an evolved secret key evolved from dj,t−1, which is directly
generated by mstj in the previous period. In the next period t+1, the helper key mstj generates
a new evolvable secret key dj,t+1, while di,t evolves into an evolved secret key di,t+1. And hence
the user secret key for period t + 1 is uskt+1 = (di,t+1, dj,t+1). Due to the “forward security”
of the OTFS-PKE scheme, it is impossible to derive di,t from di,t+1, thus it implies that: (1)
unlike the unsuccessful solution mentioned in Section 3.1, even if both uskt−1 = (di,t−1, dj,t−1)
and uskt+1 = (di,t+1, dj,t+1) are corrupted, uskt = (dj,t, di,t) are still unexposed; (2) unlike HHI
scheme and LQY scheme, even if the adversary corrupts uskt+1 = (di,t+1, dj,t+1) and mstj , it is
still impossible to derive uskt = (dj,t, di,t).

The above resulting PKIE scheme cannot achieve the strong key-insulated security, since
the corruption of both helper keys means all the periods will be exposed. To achieve the strong
key-insulated security, we use an additional PKE scheme. Suppose the secret key of the PKE
scheme is sk, then the user secret key for period t is of the form uskt = (sk, dj,t, di,t). Now, even
if both of the helper keys are corrupted, the security of all the periods are still ensured, since
sk is unknown to the adversary. The detailed construction is shown in Figure 1.

KeyGen(λ): Given a security parameter λ,

1. choose a PKE scheme PKE and two OTFS-PKE schemes OTFS-PKE1 and OTFS-PKE0,
2. run (pk, sk)← PKE.KGen(λ) ,(PK1,MK1)← OTFS-PKE1.Setup(λ, 1) and (PK0,MK0)← OTFS-PKE0.Setup(λ, 0),
3. run d1,−1 ← OTFS-PKE1.KeyGen(PK1,MK1,−1), d1,0 ← OTFS-PKE1.Upd(PK1, 0, d1,−1) and

d0,0 ← OTFS-PKE0.KeyGen(PK0,MK0, 0),
4. output pk = (pk, PK1, PK0), usk0 = (sk, d1,0, d0,0),mst1 = MK1 and mst0 = MK0.

∆-Gen(t,mstt mod 2): To generate the update key hskt
with the matching helper key mstt mod 2,

1. let i = t mod 2,

2. run di,t ← OTFS-PKEi.KeyGen(PKi,msti, t),

3. output the update key for period t as hskt = di,t.

Update(t, uskt−1, hskt): In period t, to update the user
secret key from uskt−1 to uskt,

1. let i = t mod 2 and j = (t− 1) mod 2,

2. parse uskt−1 as (sk, di,t−1, dj,t−1) and hskt as di,t,

3. run dj,t ← OTFS-PKEj .Upd(PKj , t, dj,t−1),

4. return uskt = (sk, dj,t, di,t).

Enc(pk, t,m): In period t, to encrypt a message m
under public key pk,

1. let i = t mod 2 and j = (t− 1) mod 2,

2. pick M ′,M ′
j

$←M, and set M ′
i = m⊕M ′

j ⊕M ′,

3. run C ← PKE.Enc(pk,M ′),
Cj ← OTFS-PKEj .Enc(PKj , t,M

′
j),

Ci ← OTFS-PKEi.Enc(PKi, t,M
′
i),

4. return CT = (C,Cj , Ci).

Dec(CT, uskt): To decrypt a ciphertext CT with the
matching user secret key uskt,

1. let i = t mod 2 and j = (t− 1) mod 2,

2. parse CT as (C,Cj , Ci) and uskt as (sk, dj,t, di,t),

3. run M ′ ← PKE.Dec(sk, C),
M ′

j ← OTFS-PKEj .Dec(dj,t, Cj),
M ′

i ← OTFS-PKEi.Dec(di,t, Ci),

4. return m = M ′ ⊕M ′
j ⊕M ′

i .

Figure 1: Generic Construction of PKIE from OTFS-PKE and PKE

Remark 4. In the above construction, we assume that the PKE scheme and the OTFS-PKE
schemes have the same message space. Otherwise, we can use proper encoding functions or the
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standard KEM/DEM framework to satisfy this requirement.

Theorem 1 The above PKIE scheme is strongly key-insulated secure under chosen-plaintext at-
tack, if the underlying PKE scheme is IND-CPA-secure and the underlying OTFS-PKE schemes
are IND-FS-CPA-secure.

Theorem 1 follows directly from the following Lemmas 1 and 2.

Lemma 1 The above PKIE scheme is IND-KI-CPA secure, if the OTFS-PKE schemes OTFS-PKE1
and OTFS-PKE0 are IND-FS-CPA secure.

Proof. Given a t-time adversary A who can break the IND-KI-CPA security of our generic
PKIE scheme with advantage ϵ, we indicate that we can construct a (t+ quτku)-time adversary
B that can break the IND-FS-CPA-security of the OTFS-PKE schemes with advantage ϵ/8, where
τku denotes the running time of algorithms KeyGen and Upd in the OTFS-PKE schemes, and qu
denote the number of oracle Ou queries. Here B act as two principals: on the one hand, he is
the challenger for adversary A in the experiment ExpIND-KI-CPA

A,PKIE ; on the other hand, he is the

adversary in the experiment ExpIND-FS-CPA
B,OTFS-PKE .

As explained in Remark 2, two kinds of adversaries should be distinguished. So, before

starting the simulation, B first tosses a coin COIN $← {0, 1} to guess which kind of adversary
A will be. If COIN = 0, it expects to face a Type I adversary. If COIN = 1, it forecasts a
Type II adversary.

If COIN = 0, below shows how B acts as the challenger and provides the simulations for A in
the experiment ExpIND-KI-CPA

A,PKIE , with the help of his challenger in the experiment ExpIND-FS-CPA
B,OTFS-PKE :

Init Stage. B first picks a random bit c
$← {0, 1} to guess t∗ mod 2 = c, where t∗ is the target

period index output by A later. In the following, B will challenge with the OTFS-PKE
scheme OTFS-PKEc with flg = c, and then B is given the public key PKc. B chooses a PKE
scheme PKE and another OTFS-PKE scheme OTFS-PKEc, where c denotes 1 − c. Then
B runs (PKc,MKc) ← OTFS-PKEc.Setup(λ, c) and (pk, sk) ← PKE.KeyGen(λ). Finally, B
gives pk, PKc and PKc as the public key pk to A, and keeps sk and MKc to himself.

Find Stage. In this stage, A issues a series of queries, and B responds as follows:

• User secret key oracle Ou(t): B responds to this query as follows:

1. Issue a key-exposure query Oke(t) to his challenger, and then is given the secret
key dc,t.

2. If t mod 2 = c, run dc,t ← OTFS-PKEc.KeyGen(PKc,MKc, t), and return uskt =
(sk, dc,t, dc,t) to A.

3. Otherwise, first run dc,t−1 ← OTFS-PKEc.KeyGen(PKc,MKc, t−1), and then run
dc,t ← OTFS-PKEc.Upd(PKc, t, dc,t−1). Return uskt = (sk, dc,t, dc,t) to A.

• Helper key query Oh(i) with i ∈ {0, 1}: B outputs a random bit and aborts, since
it means that B guessed the wrong COIN .

Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and two
equal-length plaintexts m0,m1 ∈M on which it wishes to be challenged. If t∗ mod 2 = c,
B outputs a random bit and aborts, since it means that B guessed the wrong c. Otherwise,
B performs the following steps:

1. Randomly choose M ′,M ′
c ∈ M, and set Mc,0 = m0 ⊕M ′ ⊕M ′

c and Mc,1 = m1 ⊕
M ′ ⊕M ′

c.

2. Submit (Mc,0,Mc,1) and t∗ to his challenger, and then is given the corresponding
challenge ciphertext C∗

c .
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3. Compute Cc ← OTFS-PKEc.Enc(PKc, t
∗,M ′

c) and C ← PKE.Enc(pk,M ′).

4. Finally, return CT∗ = (C,Cc, C
∗
c ) to A.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. Then B simply outputs θ′ = β′ as his guess for
his experiment ExpIND-FS-CPA

B,OTFS-PKE .

If COIN = 1, B provides the simulation for A as follows:

Init Stage. B first picks a random bit b
$← {0, 1} to guess that A will corrupt the helper

key mstb, where b denotes 1 − b. In the following, B will challenge with the OTFS-PKE
scheme OTFS-PKEb with flg = b, and then B is given the public key PKb. B chooses another
OTFS-PKE system OTFS-PKEb as well as a PKE system PKE, and runs (PKb,MKb) ←
OTFS-PKEb.Setup(λ, b) and (pk, sk)← PKE.KeyGen(λ). Then, B gives pk, PKb and PKb as
the public key pk to A, and keeps sk and MKb to himself.

Find Stage. In this stage, A issues a series of queries, and B responds as follows:

• User secret key oracle Ou(t): B responds to this query for A as follows:

1. Issue a key-exposure query Oke(t) to his challenger, and then is given the secret
key db,t.

2. If t mod 2 = b, run db,t ← OTFS-PKEb.KeyGen(PKb,MKb, t), and return uskt =

(sk, db,t, db,t) to A.
3. Otherwise, first run db,t−1 ← OTFS-PKEb.KeyGen(PKb,MKb, t − 1), and then

db,t ← OTFS-PKEb.Upd(PKb, t, db,t−1). Return uskt = (sk, db,t, db,t) to A.
• Helper key query Oh(i) with i ∈ {0, 1}: If i = b, B outputs a random bit and aborts.

Otherwise, B returns msti = MKb to A.

Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts m0,m1 ∈ M on which it wishes to be challenged. Then B
performs the following steps:

1. Randomly choose M ′,M ′
b
∈ M, and set Mb,0 = m0 ⊕M ′ ⊕M ′

b
and Mb,1 = m1 ⊕

M ′ ⊕M ′
b
.

2. Submit (Mb,0,Mb,1) and t∗ to his challenger, and then is given the corresponding
challenge ciphertext C∗

b .

3. Compute Cb ← OTFS-PKEb.Enc(PKb, t
∗,M ′

b
) and C ← PKE.Enc(pk,M ′).

4. If t∗ mod 2 = b then return CT∗ = (C,Cb, C
∗
b ) to A; otherwise return CT∗ =

(C,C∗
b , Cb) to A.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. Then B simply outputs θ′ = β′ as his guess for
his experiment ExpIND-FS-CPA

B,OTFS-PKE .

Analysis: The simulations provided for A are perfect, unless the following events happens:

E1: a helper key query Oh(i) was issued when COIN = 0
E2: the helper key query Oh(b) was issued when COIN = 1
E3: the user secret key query Ou(t

∗ − 1) was issued when t∗ mod 2 = c and COIN = 0

To analyze the above events, we alternately consider the following events:
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H1: B successfully guesses the kind of attack produced by A
H2: B successfully guesses the value of t∗ mod 2 when COIN = 0
H3: B luckily predicts which helper’s key is exposed when COIN = 1

Clearly, we have Pr[H1] = Pr[H2] = Pr[H3] = 1/2. Also, we have H1 ∧ H2 ∧ H3 ⇒
¬E1 ∧ ¬E2 ∧ ¬E3. The conjunction of events H1,H2 and H3 is readily seen to occur with
probability greater than 1/8, and hence B’s advantage is greater than ϵ/8. It is also clear that
B’s running time is bounded by t+ quτku. Thus the proof of Lemma 1 is concluded. ⊔⊓

Lemma 2 The above PKIE scheme is strong-IND-KI-CPA secure, if the PKE scheme PKE is
IND-CPA secure.

Proof. Suppose that there exists a t-time adversary A that breaks the strong-IND-KI-CPA
security of our generic PKIE scheme with advantage ϵ, then we can make use of A to construct
a t-time adversary B that can break the IND-CPA-security of the PKE scheme PKE with the
same advantage. Given the public key pk of the PKE scheme PKE, B acts as the challenger and
provides the simulations for A in the experiment Expstrong-IND-KI-CPA

A,PKIE as below:

Init Stage. B first chooses two OTFS-PKE schemes OTFS-PKE1 and OTFS-PKE0, and runs
(PK1,MK1)← OTFS-PKE1.Setup(λ, 1) and (PK0,MK0)← OTFS-PKE0.Setup(λ, 0). Then,
B gives the public key pk = (pk, PK1, PK0) as well as the two helper keys mst1 = MK1

and mst0 = MK0 to A.
Challenge. A outputs a target period index t∗ and two equal-length plaintexts m0,m1 ∈ M.

B performs the following steps:

1. B randomly chooses two equal-length messages M ′
0,M

′
1 ∈ M, and defines M0 =

m0 ⊕M ′
0 ⊕M ′

1 and M1 = m1 ⊕M ′
0 ⊕M ′

1.

2. B submits (M0,M1) and t∗ to his challenger, and then is given the corresponding
challenge ciphertext C∗.

3. B computes C1 ← OTFS-PKE1.Enc(PK1, t
∗,M ′

1) and C0 ← OTFS-PKE0.Enc(PK0, t
∗,M ′

0).

4. If t∗ mod 2 = 1, then B returns CT∗ = (C∗, C0, C1) to A; else returns CT∗ =
(C∗, C1, C0) to A.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. Then B simply outputs δ′ = β′ as his guess for
his experiment ExpIND-FS-CPA

B,OTFS-PKE .

Clearly, the simulations provided for A are perfect. It is also clear that B’s advantage is ϵ,
and his running time is bounded by t. ⊔⊓

3.3.2 Chosen-ciphertext Security

In our generic PKIE scheme, the algorithm Enc is a multiple encryption, and only achieves
the chosen-plaintext security. Using Dodis et al.’s technique [20], we can readily achieve the
chosen-ciphertext security for our scheme. Since this is straightforward, we here do not provide
the detailed construction.

3.4 Generic Constructions of OTFS-PKE

In this section, we first show that OTFS-PKE can be generically constructed from any IBE
scheme. Furthermore, we point out that it is also possible to directly construct OTFS-PKE
from any 2-HIBE without degenerating into IBE.
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3.4.1 Construction of OTFS-PKE from IBE

In this subsection, we demonstrate a generic construction of OTFS-PKE from arbitrary IBE.
Our basic idea is as follows. We set the public parameter param and the master secret

key msk in the IBE scheme as the public key PK and the master key MK in the OTFS-PKE
scheme, respectively. In period t where t = flg, the evolvable secret key is dt = (skt, skt+1),
which consists of two secret keys for identities “t” and “t + 1”. Encryption is only carried
under identity “t”, and hence the decryption only involves skt while skt+1 is merely used for
evolution. That is, in the next period, the secret key evolves to be dt+1 = skt+1, where skt has
been deleted. Observe that from dt+1 = skt+1, it is impossible to derive the decryption key skt
in the previous secret key. Therefore, the security of period t is still ensured even if the period
t + 1 is exposed. Recall that this is exactly the requirement for a secure OTFS-PKE scheme.
Detailed construction is presented in Figure 2.

Setup(λ, flg): Given a security parameter λ and a bit flg ∈ {0, 1},
1. run (param,msk)← IBE.Setup(λ), and return PK = (param, flg) and MK = msk.

KeyGen(PK,MK, t): To generate an evolvable secret
key for period t (where t mod 2 = flg),

1. run skt ← IBE.Extract(PK,MK, t),
skt+1 ← IBE.Extract(PK,MK, t+ 1),

2. return dt = (skt, skt+1).

Upd(PK, t, dt−1): In period t where t mod 2 = flg, to
generate an evolved secret key for period t,

1. parse dt−1 as (skt−1, skt),

2. return dt = skt.

Enc(PK, t,m): In period t, to encrypt a message m
under public key PK,

1. run C ← IBE.Enc(PK, t,m),

2. return the ciphertext C.

Dec(dt, C): To decrypt a ciphertext C using secret key dt,

1. parse dt as dt = skt (if t mod 2 = flg)
or dt = (skt, skt+1) (if t mod 2 = flg),

2. return m← IBE.Dec(skt, C).

Figure 2: Generic Construction of OTFS-PKE from IBE

Theorem 2 The above OTFS-PKE scheme is IND-FS-ATK secure, if the underlying IBE scheme
IBE is IND-ID-ATK secure, where ATK ∈ {CPA,CCA}.

Proof. Suppose that there exists a t-time adversary B who can break the IND-FS-ATK-security
of our IBE-based generic OTFS-PKE scheme, then we can make use of B to construct a t-
time adversary A who can break the IND-ID-ATK-security of the IBE scheme with the same
advantage. A provides the simulations for B as follows:

Init Stage. B first commits to a bit flg ∈ {0, 1}. Then A obtains the public parameter param
from his challenger, and forwards PK = (param, flg) to B.

Find Stage. In this stage, B issues a series of queries, and A responds as follows:

• Key-exposure oracle Oke(t): To answer this query, two cases should be distinguished:

– t = flg: A issues an extraction query Oext(t) and Oext(t+1) to his challenger, and
then is given the secret keys skt and skt+1 for identities t and t+1 respectively.
Then A forwards dt = (skt, skt+1) to B.

– t = flg: A issues an extraction query Oext(t), and obtains the secret key skt.
Then A forwards dt = skt to B.

If ATK = CCA, A is additionally allowed to issue the following decryption queries.
• Decryption query Od(t, C): Taking t as an identity, A submits (t, C) to his challenger

as a decryption query, and then forwards the result to B.

Challenge. Once B decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts M0,M1 ∈ M. A submits t∗ and (M0,M1) to his challenger,
and then obtains a challenge ciphertext C∗, which is then forwarded to B.
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Guess stage. B continues to adaptively issue additional queries as in find stage, and A also
responds as in find stage. Note that, if ATK = CCA, B is not allowed to issue the decryption
query Od(t

∗, C∗).

Output. Finally, B outputs a guess θ′ ∈ {0, 1}. Then A simply outputs δ′ = θ′ as his guess for
his experiment ExpIND-ID-ATK

A,IBE .

Clearly, the simulations provided for B are perfect, and A has the same advantage as B
within the same time bound. Thus it completes the proof of Theorem 2. ⊔⊓

3.4.2 Construction of OTFS-PKE from 2-HIBE

It is well known that forward secure public key encryption can be obtained by using HIBE [14].
Therefore, our next direction for designing OTFS-PKE is to directly use HIBE as a building
block. Since in the previous approach, we can also construct OTFS-PKE from standard IBE (see
Sec. 3.4.1), one might think that our HIBE-based construction is not necessary. However, due
to the difference between these two approaches, there are concrete OTFS-PKE schemes with
interesting properties which cannot be obtained without using our HIBE-based construction
(see Sec. 4.2.2). Thus, we consider that HIBE-based construction is worth discussing despite
of existence of IBE-based one.

Our basic idea is as follows. For a given 2-HIBE scheme, we have its public parameter
param and the master secret key msk as the public key PK and the master key MK for the
OTFS-PKE scheme, respectively. In the beginning of a period t (where t mod 2 = flg), taking
the index t as a one-level identity, we use the master secret key msk to generate a secret key
skt, which is viewed as an evolvable secret key for period t. In the next period t+1, we use skt
to generate a secret key sk(t,t+1) for the two-level offspring identity “(t, t + 1)”. Here sk(t,t+1)

is viewed as an evolved secret key for period t + 1. Note that according to the property of
HIBE, from sk(t,t+1), it is impossible to derive the pervious secret key skt. This is exactly the
requirement for a secure OTFS-PKE scheme. The encryption and decryption algorithms can
be accordingly designed. Figure 3 gives our construction:

Setup(λ, flg): Given a security parameter λ and a bit flg ∈ {0, 1},
1. run (param,msk)← HIBE.Setup(λ, 2), and return PK = (param, flg) and MK = msk.

KeyGen(PK,MK, t): To generate an evolvable secret
key for period t where t mod 2 = flg,

1. run skt ← HIBE.Extract(PK,MK, t),

2. return dt = skt.

Upd(PK, t, dt−1): In period t where t mod 2 = flg, to
generate an evolved secret key for period t,

1. run sk(t−1,t) ← HIBE.Extract(PK, dt−1, (t− 1, t)),

2. return dt = sk(t−1,t).

Enc(PK, t,m): In period t, to encrypt a message m
under public key PK,

1. if t mod 2 = flg, run C ← HIBE.Enc(PK, t,M);
else run C ← HIBE.Enc(PK, (t− 1, t),M),

2. return the ciphertext C.

Dec(dt, C): To decrypt a ciphertext C using the secret
key dt,

1. compute M ← HIBE.Dec(dt, C),

2. return M .

Figure 3: Generic Construction of OTFS-PKE from 2-HIBE

Remark 5. The above 2-HIBE scheme is assumed to have a property that, the intermediate
nodes’ keys can be used not only for key derivation but also for decryption. Such a property is
shared by most of the existing HIBE schemes. We notice that Horwitz and Lynn [30] defined
another model for HIBE where the intermediate nodes’ keys are only used for key derivation.
Note that, by appending a dummy identity (e.g., “0 · · · 0”) to a one-level (intermediate) identity,
our generic construction can be easily modified to be compatible with this model. Concretely, if
one wants to encrypt a message to the one-level identity “t”, he encrypts it under the two-level
identity “(t, 0 · · · 0)”. The decryption can be done by first deriving the secret key sk(t,0···0) from
skt, and then using it to decrypt the ciphertext.
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Theorem 3 The above OTFS-PKE scheme is IND-FS-ATK secure, if the underlying HIBE
scheme HIBE is IND-ID-ATK secure, where ATK ∈ {CPA,CCA}.

Proof. Suppose that there exists a t-time adversary B who can break the IND-FS-ATK-security
of our HIBE-based generic OTFS-PKE scheme with advantage ϵ, then we can make use of B
to construct a t-time adversary A who can break the IND-ID-ATK-security of the HIBE scheme
with the same advantage. A provides the simulations for B as below:

Init Stage. B first commits to a bit flg ∈ {0, 1}. Then A obtains the public parameter param
from his challenger, and forwards PK = (param, flg) to B.

Find Stage. In this stage, B issues a series of queries, and A responds as follows:

• Key-exposure oracle Oke(t): To answer this query, two cases should be distinguished:

– t = flg: A issues an extraction query Oext(t) to his challenger, and then is given
the secret key skt for identity t. A simply forwards dt = skt to B.

– t = flg: A issues an extraction query Oext((t− 1, t)), and obtains the secret key
sk(t−1,t) for the two-level identity (t− 1, t). Then A returns dt = sk(t−1,t) to B.

If ATK = CCA, A is additionally allowed to issue the following decryption queries.
• Decryption queryOd(t, C): Taking t as an identity, A submits (t, C) to his decryption

oracle in the experiment ExpIND-ID-ATK
A,HIBE , and then forwards the result to B.

Challenge. Once B decides that guess stage is over, he outputs a target period index t∗ and two
equal-length plaintexts M0,M1 ∈M. A prepares the challenge ciphertext for B according
to two cases:

• t∗ = flg: A submits the identity t∗ and (M0,M1) to his challenger, and obtains a
challenge ciphertext C∗, which is then forwarded to B.

• t∗ = flg: A submits the two-level identity (t∗− 1, t∗) and (M0,M1) to his challenger,
and obtains a challenge ciphertext C∗, which is then forwarded to B.

Guess stage. B continues to adaptively issue additional queries as in find stage, and A also
responds as in find stage. Note that, if ATK = CCA, B is not allowed to issue the decryption
query Od(t

∗, C∗).

Output. Finally, B outputs a guess θ′ ∈ {0, 1}. Then A simply outputs δ′ = θ′ as his guess for
the experiment ExpIND-ID-ATK

A,HIBE .

Obviously, the simulations provided for B are perfect. Hence it is clear that A has the same
advantage as B, and his running time is bounded by t. Thus Theorem 3 is proved. ⊔⊓

4 Instantiations of Our Generic Constructions

Previous section indicates that PKIE schemes can be generically constructed from IBE or 2-
HIBE. Thus, from existing IBE and HIBE schemes with specific properties, we can construct
PKIE schemes with a variety of features which previous PKIE schemes cannot have. In this
section, we show such instantiations. There are mainly two kinds of instantiations: (1) con-
structions from various assumptions, and (2) constructions with better efficiency in certain
aspects.

4.1 Instantiations from Various Assumptions

As mentioned above, by using our generic construction, a PKIE scheme can be immediately
obtained from arbitrary IBE. This means that if there exists an IBE scheme which is provably
secure under some mathematical assumption, then there also exists a PKIE scheme under the
same assumption.
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For example, based on the lattice-based IBE schemes [16, 24, 37], we can construct PKIE
schemes by assuming only difficulty of certain types of lattice problems, e.g. the learning with
error problem [41]. These are considered as the first “post-quantum” PKIE schemes.

Furthermore, based on the quadratic-residuosity-based IBE schemes [9,17], we can construct
PKIE schemes under the decisional quadratic residuosity assumption. These are considered as
the first PKIE schemes based on the factoring problem.

4.2 Efficient Instantiations from Pairings

For example, our IBE-based construction from Boneh-Boyen IBE [6] yields shorter ciphertexts
and cheaper cost for encryption and decryption. Furthermore, our HIBE-based construction
from Boneh-Boyen-Goh HIBE [7] yields cheaper cost for ∆-Gen algorithm, and this is useful
when a helper is a cheap device, e.g. a smart card. It should be also noticed that in terms of
computational cost for ∆-Gen, our Boneh-Boyen-Goh-based scheme is more efficient than both
the LQY scheme and our Boneh-Boyen-based scheme, and this implies that our HIBE-based
generic construction is still useful despite of existence of our IBE-based generic construction.

We remark that, in this subsection, we shall only present the CPA-secure instantiations,
since their CCA-security can be achieved by applying the generic techniques in [10, 15] or the
direct technique in [11].

In the rest of this paper, we shall use the bilinear groups (G,GT ) with prime order p ≥ 2λ,
where λ is the security parameter, and there exists a bilinear map e : G×G→ GT .

4.2.1 Efficient Instantiation from Boneh-Boyen IBE

LQY scheme is based on Boneh-Boyen IBE scheme [6] which is reviewed in Figure 4. Interest-
ingly, when our IBE-based generic construction is instantiated with Boneh-Boyen IBE scheme,
we can make use of its algebraic property to obtain a PKIE scheme more efficient than LQY
scheme.

Setup(λ):

1. pick α
$← Z∗

p, g, g2, h
$← G, and set g1 = gα,

2. output param = (g, g1, g2, h) and msk = gα2 .

Extract(param,msk, ID):

1. pick r
$← Z∗

p,

2. output skID = (aID, bID) =
(
msk · (gID1 h)r, gr

)
.

Enc(param, ID,m):

1. pick s
$← Z∗

p,

2. compute C1 = e(g1, g2)
s ·m,C2 = gs and C3 = (gID1 h)s,

3. return C = (C1, C2, C3).

Dec(skID, C):

1. parse C as (C1, C2, C3) and skID as (aID, bID),

2. return m← C1 · e(C3, bID)

e(C2, aID)
.

Figure 4: Boneh-Boyen IBE scheme [6]

Our concrete PKIE scheme consists of two Boneh-Boyen IBE systems, which share the
same the public parameters g, g2 and h. The master secret keys of the two systems are mst1 =
gα1
2 and mst0 = gα0

2 respectively, which act as the two helper keys for the PKIE scheme and
alternately update the user secret keys. It is worth noting that, Boneh-Boyen IBE system
has a distinguished aggregation property, i.e., a product of secret keys for the same ID under
different master keys also works as the secret key for that ID under another master key (which
is the product of these underlying master keys). Based on this observation, we product the
parameters (i.e., gα1 and gα0) of the two systems into a single g1 = gα1+α0 (this parameter
will be further changed, which will be clear later). Also, two secret keys for the same identity
are aggregated into a single one. For example, in the initial user secret key usk0, the secret

key
(
mst1 · (gH(0)

1 h)r1,0 , gr1,0
)
, generated by the master secret key mst1 for identity “0”, and

the secret key
(
mst0 · (gH(0)

1 h)r0,0 , gr0,0
)
, generated by mst0 for identity “0”, are integrated into

(a0,0, b0,0) =
(
mst1mst0 ·(gH(0)

1 h)r1,0+r0,0 , gr1,0+r0,0
)
. Note also that, we do not use a PKE scheme
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to achieve the strong key-insulated security. Instead, an element g′ = gα
′

2 is included in the user
secret key, and the public parameter g1 is accordingly changed to be g1 = gα

′+α1+α0 . Now, even
if an adversary corrupts both the helper keys, security of all the periods are still ensured, since
g′ is unknown to the adversary. Figure 5 gives our detailed construction:

KeyGen(λ): Given a security parameter λ,

1. pick α′, α0, α1
$← Z∗

p, g, g2, h
$← G, and set g′ = gα

′
2 , g1 = gα

′+α0+α1 , mst1 = gα1
2 and mst0 = gα0

2 ,
2. pick a target collision-resistant hash function H : Z→ Z∗

p,

3. pick r1,0, r0,0, r0,1
$← Z∗

p,

4. set (a0,0, b0,0) =
(
mst1mst0 · (gH(0)

1 h)r1,0+r0,0 , gr1,0+r0,0
)
, (a0,1, b0,1) =

(
mst0 · (gH(1)

1 h)r0,1 , gr0,1
)
,

5. return pk = (g, g1, g2, h), usk0 = (g′, (a0,0, b0,0), (a0,1, b0,1)) and (mst1,mst0).

∆-Gen(t,mstt mod 2): To generate the update key hskt
with the matching helper key mstt mod 2,

1. let i = t mod 2,

2. pick ri,t, ri,t+1
$← Z∗

p,

3. set (âi,t, b̂i,t) =
(
msti · (gH(t)

1 h)ri,t , gri,t
)
and

(âi,t+1, b̂i,t+1) =
(
msti · (gH(t+1)

1 h)ri,t+1 , gri,t+1
)
,

4. return hskt = ((âi,t, b̂i,t), (âi,t+1, b̂i,t+1)).

Update(t, uskt−1, hskt): In period t, to update the user secret
key from uskt−1 to uskt,

1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse uskt−1 as (g′, (aj,t−1, bj,t−1), (aj,t, bj,t)), and hskt

as ((âi,t, b̂i,t), (âi,t+1, b̂i,t+1))

3. set ai,t = aj,t · âi,t, bi,t = bj,t · b̂i,t, ai,t+1 = âi,t+1 and

bi,t+1 = b̂i,t+1,
4. return uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1)).

Enc(pk, t,m): In period t, to encrypt a messagem ∈ GT

under public key pk,

1. pick s
$← Z∗

p, and compute C1 = e(g1, g2)
s · m,

C2 = gs, C3 = (g
H(t)
1 h)s,

2. return CT = (C1, C2, C3).

Dec(uskt, CT): To decrypt a ciphertext CT with user secret
key uskt,

1. let i = t mod 2,
2. parse uskt as (g′, (ai,t, bi,t), (ai,t+1, bi,t+1)), and CT as

(C1, C2, C3),

3. return m← C1 · e(C3, bi,t)

e (C2, g′ · ai,t)
.

Figure 5: Our Concrete PKIE Scheme Based on Boneh-Boyen IBE

Theorem 4 The above Boneh-Boyen-based PKIE scheme is strongly key-insulated secure under
chosen-plaintext attack, assuming the DBDH assumption holds in groups (G,GT ).

Theorem 4 follows directly from the following Lemmas 3 and 4.

Lemma 3 The Boneh-Boyen-based PKIE scheme presented in Figure 5 is IND-KI-CPA secure,
assuming the DBDH assumption holds in groups (G,GT ).

Proof. Given a polynomial time adversary A who can break the IND-KI-CPA security of
our Boneh-Boyen-based PKIE scheme with advantage ϵ, we indicate that we can construct a
polynomial time algorithm B that can break the DBDH assumption in groups (G,GT ) with
advantage ϵ

4N , where N denotes the total number of periods.

Given a DBDH instance (g, ga, gb, gc, Z) ∈ G4 × GT with unknown a, b, c
$← Z∗

p, B’s goal is
to decide whether Z = e(g, g)abc. B first tosses a coin COIN $← {0, 1} to guess which kind of
adversary A will be. If COIN = 0, it expects to face a Type I adversary, while for COIN = 1,

it forecasts a Type II adversary. B also chooses an index ℓ
$← {1, · · · , N} as a guess for the

target time period to be attacked by A.

For COIN = 0, B acts as the challenger and provides the simulations for A in the experiment
ExpIND-KI-CPA

A,PKIE as follows:

Init Stage. Let i∗ = ℓ mod 2 and j∗ = (ℓ − 1) mod 2. B picks α′, αj∗ , µ
$← Z∗

p, and defines

g2 = gb, g′ = gα
′

2 , g1 = gα
′+αj∗ga and h = g

−H(ℓ)
1 gµ. Then B gives pk = (g, g1, g2, h) to A.

Note that the helper keys are implicitly msti∗ = gab and mstj∗ = g
αj∗
2 .

Find Stage. In this stage, A issues a series of queries, and B responds as follows:
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• User secret key oracleOu(t): If t = ℓ, B outputs a random bit and aborts. Otherwise,
let i = t mod 2, j = (t− 1) mod 2, and B responds to this query according to the
following two cases:

– If i = i∗: Pick r′i,t, rj,t, r
′
i,t+1

$← Z∗
p, and returns uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1))

to A, where

ai,t = (gb)
−(α′+ µ

H(t)−H(ℓ)
)
(
g
H(t)
1 h

)r′i,t+rj,t
, bi,t = (gb)

−1
H(t)−H(ℓ) gr

′
i,t+rj,t , (1)

ai,t+1 = (gb)
−(α′+αj+

µ
H(t+1)−H(ℓ)

)
(
g
H(t+1)
1 h

)r′i,t+1
, bi,t+1 = (gb)

−1
H(t+1)−H(ℓ) gr

′
i,t+1 .(2)

Observe that the above uskt has the correct form, since letting ri,t =
−b

H(t)−H(ℓ) +

r′i,t and ri,t+1 =
−b

H(t+1)−H(ℓ) + r′i,t+1, we have

ai,t = (gb)
−(α′+ µ

H(t)−H(ℓ)
)
(
g
H(t)
1 h

)r′i,t+rj,t

= gabg−ab(gb)αj · (gb)−(α′+αj+
µ

H(t)−H(ℓ)
)
(
g
H(t)
1 h

)r′i,t+rj,t

= gabg−abg
αj

2 · (g
(α′+αj)(H(t)−H(ℓ))gµ)

−b
H(t)−H(ℓ)

(
g
H(t)
1 h

)r′i,t+rj,t

= gabg
αj

2

(
(gα

′+αjga)H(t)−H(ℓ)gµ
) −b

H(t)−H(ℓ)
(
g
H(t)
1 h

)r′i,t+rj,t

= gabg
αj

2

(
g
H(t)
1 · (g−H(ℓ)

1 gµ)
) −b

H(t)−H(ℓ)
(
g
H(t)
1 h

)r′i,t+rj,t

= mstimstj
(
g
H(t)
1 h

) −b
H(t)−H(ℓ)

+r′i,t+rj,t

= mstimstj
(
g
H(t)
1 h

)ri,t+rj,t
,

bi,t = (gb)
−1

H(t)−H(ℓ) gr
′
i,t+rj,t = g

−b
H(t)−H(ℓ)

+r′i,t+rj,t = gri,t+rj,t ,

ai,t+1 = (gb)
−(α′+αj+

µ
H(t+1)−H(ℓ)

) · (gH(t+1)
1 h)r

′
i,t+1

= gabg−ab · (g(α′+αj)(H(t+1)−H(ℓ))gµ)
−b

H(t+1)−H(ℓ) · (gH(t+1)
1 h)r

′
i,t+1

= gab ·
(
(gα

′+αjga)H(t+1)−H(ℓ)gµ
) −b

H(t+1)−H(ℓ) · (gH(t+1)
1 h)r

′
i,t+1

= gab ·
(
g
H(t+1)
1 g

−H(ℓ)
1 gµ

) −b
H(t+1)−H(ℓ) · (gH(t+1)

1 h)r
′
i,t+1

= gab ·
(
g
H(t+1)
1 h

) −b
H(t+1)−H(ℓ)

+r′i,t+1

= msti ·
(
g
H(t+1)
1 h

)ri,t+1

,

bi,t+1 = (gb)
−1

H(t+1)−H(ℓ) gr
′
i,t+1 = g

−b
H(t+1)−H(ℓ)

+r′i,t+1 = gri,t+1 .

– If j = i∗: Pick ri,t, r
′
j,t, ri,t+1

$← Z∗
p, and returns uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1))

to A, where

ai,t = (gb)
−(α′+ µ

H(t)−H(ℓ)
) · (gH(t)

1 h)ri,t+r′j,t , bi,t = (gb)
−1

H(t)−H(ℓ) gri,t+r′j,t , (3)

ai,t+1 = gαi
2 (g

H(t+1)
1 h)ri,t+1 , bi,t+1 = gri,t+1 . (4)

Letting rj,t =
−b

H(t)−H(ℓ) + r′j,t, we can similarly see that the above uskt has the

correct form as required.

• Helper key query Oh(i) with i ∈ {0, 1}: B outputs a random bit and aborts, since
it means that B guessed the wrong COIN .
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Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts m0,m1 ∈ GT on which it wishes to be challenged. If t∗ ̸= ℓ, B
outputs a random bit and aborts. Otherwise, B picks β

$← {0, 1}, and gives the challenge
ciphertext CT∗ = (C∗

1 , C
∗
2 , C

∗
3 ) = (Z · e(gc, gb)α′+αj∗ ·mβ , g

c, (gc)µ) to A.
Observe that, if Z = e(g, g)abc, the above challenge ciphertext has the correct form as
required, since

C∗
1 = Z · e(gc, gb)α′+αj∗ ·mβ = e(g, g)abc · e(gα′+αj∗ , gb)c ·mβ

= e(gα
′+αj∗ga, gb)c ·mβ = e(g1, g2)

c ·mβ ,

C∗
3 = (gc)µ = (gµ)c =

(
g
H(ℓ)
1 g

−H(ℓ)
1 gµ

)c
=

(
g
H(ℓ)
1 h

)c
=

(
g
H(t∗)
1 h

)c

On the other hand, when Z is uniform and independent in GT , the challenge ciphertext
CT∗ is independent of β in the adversary’s view.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.

If COIN = 1, B provides the simulation for A as follows:

Init Stage. B first picks a random bit ν
$← {0, 1} to guess that A will corrupt the helper key

mstν , where ν denotes 1 − ν. B picks α′, αν , µ
$← Z∗

p, and defines g2 = gb, g′ = gα
′

2 , g1 =

gα
′+ανga and h = g

−H(ℓ)
1 gµ. Then B gives pk = (g, g1, g2, h) to A. Note that the helper

keys are implicitly mstν = gab and mstν = g
αj∗
2 , where mstν is unknown to B.

Find Stage. In this stage, A issues a series of queries, and B responds as follows:

• User secret key oracle Ou(t): B outputs a random bit and aborts if t = ℓ or (t =
ℓ − 1) ∧ (ν = ℓ mod 2). Otherwise, let i = t mod 2, j = (t − 1) mod 2, and B
responds to this query according to the following two cases:

– If i = ν: Pick r′i,t, rj,t, r
′
i,t+1

$← Z∗
p, and returns uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1))

to A, where ai,t, bi,t, ai,t+1 and bi,t+1 are generated as in Eqs. (1) and (2).

– If i = ν: Pick ri,t, r
′
j,t, ri,t+1

$← Z∗
p, and returns uskt = (g′, (ai,t, bi,t), (ai,t+1, bi,t+1))

to A, where ai,t, bi,t, ai,t+1 and bi,t+1 are generated as in Eqs. (3) and (4).

• Helper key query Oh(i) with i ∈ {0, 1}: If i = ν, B outputs a random bit and aborts.
Otherwise, B returns mstν to A.

Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts m0,m1 ∈ GT on which it wishes to be challenged. If t∗ ̸= ℓ, B
outputs a random bit and aborts. Otherwise, B picks β

$← {0, 1}, and gives the challenge
ciphertext CT∗ = (C∗

1 , C
∗
2 , C

∗
3 ) = (Z ·e(gc, gb)α′+αν ·mβ, g

c, (gc)µ) to A. It can also verified
that, if Z = e(g, g)abc the challenge ciphertext CT∗ has the correct form as required, and
when Z is uniform and independent in GT , the challenge ciphertext CT

∗ is independent of
β in the adversary’s view.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.
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Analysis: The simulations provided for A are perfect, unless the following events happens:

E1: a helper key query Oh(i) was issued when COIN = 0;
E2: the helper key query Oh(ν) was issued when COIN = 1;
E3: the user secret key query Ou(ℓ) was issued when COIN = 0;
E4: the user secret key query Ou(t) was issued such that t = ℓ or (t = ℓ − 1) ∧ (ν = ℓ
mod 2) when COIN = 1;

To analyze the above events, we alternately consider the following events:

H1: B successfully guesses ℓ = t∗;
H2: B successfully guesses the kind of attack produced by A;
H3: B luckily predicts which helper’s key is exposed when COIN = 1

Clearly, we have Pr[H1] = 1/N , Pr[H2] = 1/2 and Pr[H3] = 1/2. Also, we have
H1 ⇒ ¬E3, H2 ⇒ ¬E1,H2 ∧ H3 ⇒ ¬E4 and H3 ⇒ ¬E2. The conjunction of events H1,H2

and H3 is readily seen to occur with probability greater than 1/4N , and hence B’s advantage
is greater than ϵ/4N . It is also clear that B’s running time is polynomially bounded. Thus the
proof of Lemma 3 is concluded. ⊔⊓

Lemma 4 The Boneh-Boyen-based PKIE scheme presented in Figure 5 is strong-IND-KI-CPA
secure, assuming the DBDH assumption holds in groups (G,GT ).

Proof. Given a polynomial time adversary A who can break the strong-IND-KI-CPA security
of our Boneh-Boyen-based PKIE scheme with advantage ϵ, we indicate that we can construct
a polynomial time algorithm B that can break the DBDH assumption in groups (G,GT ) with
advantage ϵ/N , where N denotes the total number of periods.

Given a DBDH instance (g, ga, gb, gc, Z) ∈ G4 × GT with unknown a, b, c
$← Z∗

p, B’s goal is
to decide whether Z = e(g, g)abc. B acts as the challenger and provides the simulations for A
in the experiment Expstrong-IND-KI-CPA

A,PKIE as follows:

Init Stage. B first chooses an index ℓ
$← {1, · · · , N} as a guess for the target time period

to be attacked by A. Next, B picks α0, α1, µ
$← Z∗

p, and defines g1 = gagα0+α1 , g2 = gb,

h = g
−H(ℓ)
1 gµ, mst1 = gα1

2 and mst0 = gα0
2 . Finally, B gives pk = (g, g1, g2, h) and

(mst1,mst0) to A. Note that g′ is implicitly set to be g′ = gab which is unknown to B.
Challenge. A outputs a target period index t∗ and two equal-length plaintexts m0,m1 ∈ GT

on which it wishes to be challenged. If t∗ ̸= ℓ, B outputs a random bit and aborts.

Otherwise, B picks β
$← {0, 1}, and gives the challenge ciphertext CT∗ = (C∗

1 , C
∗
2 , C

∗
3 ) =

(Z · e(gb, gc)α0+α1 · mβ , g
c, (gc)µ) to A. It is readily to see that, if Z = e(g, g)abc the

above challenge ciphertext has the correct form as required, and when Z is uniform and
independent in GT , the challenge ciphertext CT∗ is independent of β in the adversary’s
view.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.

Analysis: The simulations provided for A are perfect, if B correctly guesses ℓ = t∗, whose
probability is obviously 1/N . Thus B’s advantage against the DBDH assumption is at least
ϵ/N . It is also clear that B’s running time is polynomially bounded. Thus the proof of Lemma
4 is concluded. ⊔⊓

Remark 6. Like LQY scheme, since our PKIE scheme are based on the selective-ID secure
Boneh-Boyen IBE scheme, the security bound of our scheme will be degraded by a factor of
the total number of periods. Recently, Lewko and Waters [34] proposed a fully scheme (H)IBE
scheme with short ciphertexts. Based on Lewko-Waters IBE, our scheme can avoid this security
degradation.
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4.2.2 Efficient Instantiation from Boneh-Boyen-Goh 2-HIBE

Based on Boneh-Boyen-Goh two-level HIBE scheme [7] which is reviewed in Figure 6, we here
present an HIBE-based instantiation of PKIE scheme. The detailed scheme is given in Figure
7. Our scheme consists of two HIBE systems. To improve the efficiency, we do not use the PKE
scheme to achieve the strong key-insulated security, instead, we introduce an element g′ = gα

′
2

into the user secret key. In addition, we further shorten the public key, by sharing the public
parameters (g, g2, f) and integrating the parameters (gα

′
, gα1 , gα0) into a single gα

′+α1+α0 . The
resulting PKIE scheme is comparable with LQY scheme: the same public key size, ciphertext
size, encryption cost and decryption cost, only with slight longer user secret keys and heavier
cost for user key-updates.

Setup(λ):

1. pick α
$← Z∗

p, g, g2, f, h
$← G, and set g1 = gα,

2. output param = (g, g1, g2, f, h) and msk = gα2 .

Extract(param,msk, ID1):

1. pick r
$← Z∗

p,

2. set aID1 = msk · (gID1
1 h)r, bID1 = gr and cID1 = f r,

3. output skID1 = (aID1 , bID1 , cID1).

or Extract(param, skID1 , ID = (ID1, ID2)):

1. parse skID1 as (aID1 , bID1 , cID1),

2. pick r′
$← Z∗

p,

3. set aID = aID1 ·c
ID2
ID1
·(gID1

1 f ID2h)r
′
and bID = bID1 ·gr

′
,

4. output skID = (aID, bID).

Enc(param, ID,m):

1. pick s
$← Z∗

p, and set C1 = e(g1, g2)
s ·m,C2 = gs,

2. if ID is a 2-level identity (ID1, ID2), then set
C3 = (gID1

1 f ID2h)s; else set C3 = (gID1 h)s,
3. return C = (C1, C2, C3).

Dec(skID, C):

1. parse C as (C1, C2, C3)
2. parse skID as (aID, bID) or (aID, bID, cID),

3. return m← C1 · e(C3, bID)

e(C2, aID)
.

Figure 6: Boneh-Boyen-Goh 2-HIBE Scheme [7]

KeyGen(λ): Given a security parameter λ,

1. pick a collision-resistant hash function H : Z→ Z∗
p,

2. pick g, g2, f, h0, h1
$← G and α0, α1, α

′ $← Z∗
p, and set g1 = gα

′+α0+α1 , g′ = gα
′

2 , mst1 = gα1
2 , mst0 = gα0

2 ,

3. pick r1,0, r0,0
$← Z∗

p, and set (a1,0, b1,0) =
(
mst1 · (gH(−1)

1 fH(0)h1)
r1,0 , gr1,0

)
and

(a0,0, b0,0, c0,0) =
(
mst0 · (gH(0)

1 h0)
r0,0 , gr0,0 , f r0,0

)
,

4. return pk = (g, g1, g2, f, h0, h1), usk0 = (g′, (a1,0, b1,0), (a0,0, b0,0, c0,0)), mst1 and mst0.

∆-Gen(t,mstt mod 2): To generate the update key hskt
with the matching helper key mstt mod 2,

1. let i = t mod 2,

2. pick ri,t
$← Z∗

p,

3. set (ai,t, bi,t, ci,t) =
(
msti · (gH(t)

1 hi)
ri,t , gri,t , f ri,t

)
,

4. return hskt = (ai,t, bi,t, ci,t).

Update(t, uskt−1, hskt): In period t, to update the user
secret key from uskt−1 to uskt,

1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse hskt as (ai,t, bi,t, ci,t), and uskt−1 as

(g′, (ai,t−1, bi,t−1), (aj,t−1, bj,t−1, cj,t−1)),

3. pick rj,t
$← Z∗

p,

4. set aj,t = aj,t−1 · cH(t)
j,t−1 · (g

H(t−1)
1 fH(t)hj)

rj,t and
bj,t = bj,t−1 · grj,t ,

5. return uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)).

Enc(pk, t,m): In period t, to encrypt a message m
under public key pk,

1. let i = t mod 2 and j = (t− 1) mod 2,

2. pick s
$← Z∗

p, and set C1 = e(g1, g2)
s ·m, C2 = gs,

C3 = (g
H(t−1)
1 fH(t)hj)

s and C4 = (g
H(t)
1 hi)

s,
3. return CT = (C1, C2, C3, C4).

Dec(uskt, CT): To decrypt a ciphertext CT with user
secret key uskt,

1. let i = t mod 2 and j = (t− 1) mod 2,
2. parse CT as (C1, C2, C3, C4), and uskt as

(g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)),

3. return m← C1 · e(bj,t, C3) · e(bi,t, C4)

e (C2, g′aj,tai,t)
.

Figure 7: Our Concrete PKIE Scheme Based on Boneh-Boyen-Goh 2-HIBE

Theorem 5 The above Boneh-Boyen-Goh-based PKIE scheme is strongly key-insulated secure
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under chosen-plaintext attack, assuming the 2-DBDHE assumption holds in groups (G,GT ).

Theorem 5 follows directly from the following Lemmas 5 and 6.

Lemma 5 The Boneh-Boyen-Goh-based PKIE scheme presented in Figure 7 is IND-KI-CPA
secure, assuming the 2-DBDHE assumption holds in groups (G,GT ).

Proof. Given a polynomial time adversary A who can break the IND-KI-CPA security of our
Boneh-Boyen-Goh-based PKIE scheme with advantage ϵ, we indicate that we can construct a
polynomial time algorithm B that can break the 2-DBDHE assumption in groups (G,GT ) with
advantage ϵ

4N , where N denotes the total number of periods.

Given a 2-DBDHE instance (g, h, ga, ga
2
, ga

4
, Z) ∈ G5×GT with unknown a

$← Z∗
p, B’s goal

is to decide whether Z = e(g, h)a
3
. B first tosses a coin COIN $← {0, 1} to guess which kind of

adversary A will be. If COIN = 0, it expects to face a Type I adversary, while for COIN = 1,

it forecasts a Type II adversary. B also chooses an index ℓ
$← {1, · · · , N} as a guess for the

target time period to be attacked by A.

For COIN = 0, B acts as the challenger and provides the simulations for A in the experiment
ExpIND-KI-CPA

A,PKIE as follows:

Init Stage. Let i∗ = ℓ mod 2 and j∗ = (ℓ − 1) mod 2. B picks α′, αj∗ , γ, θ, ωi∗ , ωj∗
$← Z∗

p,

and defines g1 = gα
′+αj∗ga, g2 = ga

2
gγ , g′ = gα

′
2 , f = ga

2
gθ, hi∗ = g

−H(ℓ)
1 gωi∗ , hj∗ =

g
−H(ℓ−1)
1 f−H(ℓ)gωj∗ . Then B gives pk = (g, g1, g2, f, h0, h1) to A. Note that the helper

keys are implicitly msti∗ = ga
3
ga·γ and mstj∗ = g

αj∗
2 . Here msti∗ is unknown to B.

Find Stage. In this stage, A issues a series of queries, and B responds as follows:

• User secret key oracleOu(t): If t = ℓ, B outputs a random bit and aborts. Otherwise,
letting i = t mod 2 and j = (t − 1) mod 2, B responds to this query according to
the following two cases:

– If i = i∗: Pick r′i,t, rj,t
$← Z∗

p, and returns uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)) to
A, where

aj,t = mstj ·
(
g
H(t−1)
1 fH(t)hj

)rj,t
, bj,t = grj,t , (5)

ai,t = ga·γ ·
(
ga

2
)−(α′+αj+

ωi
H(t)−H(ℓ)

)
·
(
g
H(t)
1 hi

)r′i,t
, bi,t =

(
ga

2
) −1

H(t)−H(ℓ)
gr

′
i,t ,(6)

ci,t =
(
ga

4
) −1

H(t)−H(ℓ)
(
ga

2
)r′i,t−

θ
H(t)−H(ℓ)

gθ·r
′
i,t . (7)

Observe that the above uskt has the correct form, since if let ri,t =
−a2

H(t)−H(ℓ)+r′i,t,
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we have

ai,t = ga·γ ·
(
ga

2
)−(α′+αj+

ωi
H(t)−H(ℓ)

)
·
(
g
H(t)
1 hi

)r′i,t

= ga·γ ·
(
g−a2

)α′+αj
(
ga

2
) −ωi

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= ga
3
g−a3ga·γ ·

(
g−a2

)α′+αj
(
ga

2
) −ωi

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= ga
3
ga·γ · (gα′+αjga)−a2

(
ga

2
) −ωi

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= ga
3
ga·γg−a2

1 (gωi)
−a2

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= ga
3
ga·γ ·

(
g
H(t)−H(ℓ)
1 gωi

) −a2

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= ga
3
ga·γ ·

(
g
H(t)
1 g

−H(ℓ)
1 gωi

) −a2

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

=
(
ga

2
gγ

)a
·
(
g
H(t)
1 hi

) −a2

H(t)−H(ℓ) ·
(
g
H(t)
1 hi

)r′i,t

= gαi
2 ·

(
g
H(t)
1 hi

) −a2

H(t)−H(ℓ)
+r′i,t

= msti ·
(
g
H(t)
1 hi

)ri,t
,

bi,t =
(
ga

2
) −1

H(t)−H(ℓ)
gr

′
i,t = g

−a2

H(t)−H(ℓ)
+r′i,t = gri,t ,

ci,t =
(
ga

4
) −1

H(t)−H(ℓ)
(
ga

2
)r′i,t−

θ
H(t)−H(ℓ)

gθ·r
′
i,t

=
(
ga

2
) −a2

H(t)−H(ℓ)
(
ga

2
)r′i,t

(gθ)
−a2

H(t)−H(ℓ)
+r′i,t

=
(
ga

2
) −a2

H(t)−H(ℓ)
+r′i,t

(gθ)
−a2

H(t)−H(ℓ)
+r′i,t =

(
ga

2
gθ
) −a2

H(t)−H(ℓ)
+r′i,t

= f ri,t .

– If j = i∗: Pick ri,t, r
′
j,t

$← Z∗
p, and returns uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)) to

A, where

aj,t = (ga)
γ−θ−

(α′+αi)(H(t−1)−H(ℓ))+ωj
H(t)

(
ga

2
)H(ℓ)−H(t−1)

H(t)
(
g
H(t−1)
1 fH(t)hj

)r′j,t
, (8)

bj,t = (ga)
−1
H(t) gr

′
j,t , (9)

ai,t = msti ·
(
g
H(t)
1 hi

)ri,t
, bi,t = gri,t , ci,t = f ri,t . (10)

Letting rj,t =
−a
H(t) + r′j,t, we can see that the above uskt has the correct form as
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required, since

aj,t = (ga)
γ−θ−

(α′+αi)(H(t−1)−H(ℓ))+ωj
H(t) ·

(
ga

2
)H(ℓ)−H(t−1)

H(t)
(
g
H(t−1)
1 fH(t)hj

)r′j,t

= (ga)γ−θ ·
(
g(α

′+αi)(H(t−1)−H(ℓ))+ωj (ga)H(t−1)−H(ℓ)
) −a

H(t)
(
g
H(t−1)
1 fH(t)hj

)r′j,t

= ga
3
g−a3(ga)γ−θ ·

(
(gα

′+αiga)H(t−1)−H(ℓ)gωj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

= ga
3
ga·γ

(
ga

2
gθ
)−a
·
(
g
H(t−1)−H(ℓ)
1 gωj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

= ga
3
ga·γf−a ·

(
g
H(t−1)−H(ℓ)
1 gωj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

= ga
3
ga·γ ·

(
g
H(t−1)−H(ℓ)
1 fH(t)gωj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

=
(
ga

2
gγ

)a
·
(
g
H(t−1)
1 fH(t)g

−H(ℓ)
1 gωj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

=
(
ga

2
gγ

)a
·
(
g
H(t−1)
1 fH(t)hj

) −a
H(t)

(
g
H(t−1)
1 fH(t)hj

)r′j,t

=
(
ga

2
gγ

)a
·
(
g
H(t−1)
1 fH(t)hj

) −a
H(t)

+r′j,t

= mstj ·
(
g
H(t−1)
1 fH(t)hj

)rj,t
,

bj,t = (ga)
−1
H(t) gr

′
j,t = g

−a
H(t)

+r′j,t = grj,t .

• Helper key query Oh(i) with i ∈ {0, 1}: B outputs a random bit and aborts, since
it means that B guessed the wrong COIN .

Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts m0,m1 ∈ GT on which it wishes to be challenged. If t∗ ̸= ℓ, B
outputs a random bit and aborts. Otherwise, B picks β

$← {0, 1}, and gives the challenge
ciphertext CT∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ) to A, where

C∗
1 = Z · e

(
h, (ga)γ(ga

2
gγ)α

′+αj∗
)
·mβ , C∗

2 = h, C∗
3 = hωj∗ , C∗

4 = hωi∗ .

Observe that, if Z = e(g, h)a
3
, the above challenge ciphertext has the correct form as

required, since letting h = gc, we have

C∗
1 = Z · e

(
h, (ga)γ(ga

2
gγ)α

′+αj∗
)
·mβ

= e(g, gc)a
3 · e

(
gc, (ga)γ(ga

2
gγ)α

′+αj∗
)
·mβ

= e(ga, ga
2
)c · e(gc, (ga)γ) · e(gc, (ga2gγ)α′+αj∗ ) ·mβ

= e(ga, ga
2
)c · e(ga, gγ)c · e(gα′+αj∗ , ga

2
gγ)c ·mβ

= e(ga, ga
2
gγ)c · e(gα′+αj∗ , ga

2
gγ)c ·mβ

= e(gagα
′+αj∗ , ga

2
gγ)c ·mβ

= e(g1, g2)
c ·mβ ,

C∗
2 = h = gc,

C∗
3 = hωj∗ = (gωj∗ )c =

(
g
H(ℓ−1)
1 fH(ℓ)g

−H(ℓ−1)
1 f−H(ℓ)gωj∗

)c
=

(
g
H(t∗−1)
1 fH(t∗)hj∗

)c
,

C∗
4 = hωi∗ = (gωi∗ )c =

(
g
H(ℓ)
1 g

−H(ℓ)
1 gωi∗

)c
=

(
g
H(ℓ)
1 hi∗

)c
==

(
g
H(t∗)
1 hi∗

)c
.
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On the other hand, when Z is uniform and independent in GT , the challenge ciphertext
CT∗ is independent of β in the adversary’s view.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.

If COIN = 1, B provides the simulation for A as follows:

Init Stage. B first picks a random bit ν
$← {0, 1} to guess that A will corrupt the helper

key mstν , where ν denotes 1 − ν. B picks α′, αν , γ, θ, ω0, ω1
$← Z∗

p, and defines g1 =

gα
′+ανga, g2 = ga

2
gγ , g′ = gα

′
2 , f = ga

2
gθ. If ν = ℓ mod 2, B defines hν = g

−H(ℓ)
1 gων and

hν = g
−H(ℓ−1)
1 f−H(ℓ)gων . Otherwise, B defines hν = g

−H(ℓ)
1 gων and hν = g

−H(ℓ−1)
1 f−H(ℓ)gων .

Then B gives pk = (g, g1, g2, f, h0, h1) to A. Note that the helper keys are implicitly

mstν = ga
3
ga·γ and mstν = gαν

2 , where mstν is unknown to B.
Find Stage. In this stage, A issues a series of queries, and B responds as follows:

• User secret key oracle Ou(t): B outputs a random bit and aborts if t = ℓ or (t =
ℓ − 1) ∧ (ν = ℓ mod 2). Otherwise, let i = t mod 2, j = (t − 1) mod 2, and B
responds to this query according to the following two cases:

– Case i = ν: Pick r′i,t, rj,t
$← Z∗

p. If ν = ℓ mod 2, generate uskt for A as in Eqs.
(5)-(7). Otherwise, generate uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)) for A as below:

aj,t = mstj ·
(
g
H(t−1)
1 fH(t)hj

)rj,t
, bj,t = grj,t ,

ai,t = ga·γ ·
(
ga

2
)−(α′+αj+

ωi−H(ℓ)θ

H(t)−H(ℓ−1)
)
·
(
gα

4
)− H(ℓ)

H(t)−H(ℓ−1) ·
(
g
H(t)
1 hi

)r′i,t
,

bi,t =
(
ga

2
) −1

H(t)−H(ℓ−1)
gr

′
i,t , ci,t =

(
ga

4
) −1

H(t)−H(ℓ−1)
(
ga

2
)r′i,t−

θ
H(t)−H(ℓ−1)

gθ·r
′
i,t .

Letting ri,t = −a2

H(t)−H(ℓ−1) + r′i,t, it is readily to see that the above user secret

keys uskt have the correct form as required.

– Case j = ν: Pick ri,t, r
′
j,t

$← Z∗
p. If ν = ℓ mod 2, generate uskt for A as in Eqs.

(8)-(10). Otherwise, generate uskt = (g′, (aj,t, bj,t), (ai,t, bi,t, ci,t)) for A as below:

aj,t = (ga)
γ−θ−

(α′+αi)(H(t−1)−H(ℓ−1))+ωj
H(t)−H(ℓ)

(
ga

2
)H(ℓ−1)−H(t−1)

H(t)−H(ℓ)
(
g
H(t−1)
1 fH(t)hj

)r′j,t
,

bj,t = (ga)
−1

H(t)−H(ℓ) gr
′
j,t ,

ai,t = msti ·
(
g
H(t)
1 hi

)ri,t
, bi,t = gri,t , ci,t = f ri,t .

Letting ri,t =
−a

H(t)−H(ℓ) + r′i,t, it is readily to see that the above user secret keys

uskt have the correct form as required.

• Helper key query Oh(i) with i ∈ {0, 1}: If i = ν, B outputs a random bit and aborts.
Otherwise, B returns mstν to A.

Challenge. Once A decides that guess stage is over, he outputs a target period index t∗ and
two equal-length plaintexts m0,m1 ∈ GT on which it wishes to be challenged. If t∗ ̸= ℓ,

B outputs a random bit and aborts. Otherwise, B picks β
$← {0, 1}, and defines C∗

1 =

Z · e
(
h, (ga)γ(ga

2
gγ)α

′+αν

)
· mβ , C

∗
2 = h. If v = ℓ mod 2, B defines C∗

3 = hων and
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C∗
4 = hων ; otherwise, B defines C∗

3 = hων and C∗
4 = hων . Finally, B gives the challenge

ciphertext CT∗ = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) to A. It is readily to see that, if Z = e(g, h)a

3
, the

above challenge ciphertext CT∗ has the correct form as required, and when Z is uniform
and independent in GT , the challenge ciphertext CT

∗ is independent of β in the adversary’s
view.

Guess stage. A continues to adaptively issue additional queries as in find stage, and B also
responds as in find stage.

Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.

This completes the descriptions of the simulation. Similarly to the analysis in Lemma 3, we
can see that B’s advantage against the 2-DBDHE assumption is at least ϵ/4N , and it is also
clear that B’s running time is polynomially bounded. Thus the proof of Lemma 5 is concluded.

⊔⊓

Next, we prove the strong-IND-KI-CPA-security for our Boneh-Boyen-Goh-based PKIE scheme
under the the DBDH assumption. Note that it is easy to see that, if the 2-DBDHE assumption
holds in groups (G,GT ), the DBDH assumption certainly holds.

Lemma 6 The Boneh-Boyen-Goh-based PKIE scheme presented in Figure 7 is strong-IND-KI-CPA
secure, assuming the DBDH assumption holds in groups (G,GT ).

Proof. Given a polynomial time adversary A who can break the strong-IND-KI-CPA security of
our Boneh-Boyen-Goh-based PKIE scheme with advantage ϵ, we indicate that we can construct
a polynomial time algorithm B that can break the DBDH assumption in groups (G,GT ) with
advantage ϵ/N , where N denotes the total number of periods.

Given a DBDH instance (g, ga, gb, gc, Z) ∈ G4 × GT with unknown a, b, c
$← Z∗

p, B’s goal is
to decide whether Z = e(g, g)abc. B acts as the challenger and provides the simulations for A
in the experiment Expstrong-IND-KI-CPA

A,PKIE as follows:

Init Stage. B first chooses an index ℓ
$← {1, · · · , N} as a guess for the target time period to be

attacked by A. Let i∗ = ℓ mod 2 and j∗ = (ℓ−1) mod 2. Next, B picks α0, α1, µ0, µ1
$←

Z∗
p, and defines g1 = gagα0+α1 , g2 = gb, hi∗ = g

−H(ℓ)
1 gµi∗ , hj∗ = g

−H(ℓ−1)
1 fH(ℓ)gµj∗ ,

mst1 = gα1
2 and mst0 = gα0

2 . Finally, B gives pk = (g, g1, g2, f, h0, h1) and (mst1,mst0) to
A. Note that g′ is implicitly set to be g′ = gab which is unknown to B.

Challenge. A outputs a target period index t∗ and two equal-length plaintexts m0,m1 ∈ GT

on which it wishes to be challenged. If t∗ ̸= ℓ, B outputs a random bit and aborts.

Otherwise, B picks β
$← {0, 1}, and gives the challenge ciphertext CT∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ) =

(Z · e(gc, gb)α0+α1 ·mβ , g
c, (gc)µj∗ , (gc)µi∗ ) to A.

Observe that, if Z = e(g, g)abc the above challenge ciphertext has the correct form as
required, since

C∗
1 = Z · e(gc, gb)α0+α1 ·mβ = e(g, g)abc · e(gα0+α1 , gb)c ·mβ

= e(ga, gb)c · e(gα0+α1 , gb)c ·mβ = e(gagα0+α1 , gb)c ·mβ = e(g1, g2)
c ·mβ ,

C∗
2 = gc,

C∗
3 = (gc)µj∗ = (gµj∗ )c = (g

H(ℓ−1)
1 fH(ℓ)g

−H(ℓ−1)
1 f−H(ℓ)gµj∗ )c = (g

H(t∗−1)
1 fH(t∗)hj∗)

c,

C∗
4 = (gc)µi∗ = (gµi∗ )c = (g

H(ℓ)
1 g

−H(ℓ)
1 gµi∗ )c = (g

H(t∗)
1 hi∗)

c.

On the other hand, when Z is uniform and independent in GT , the challenge ciphertext
CT∗ is independent of β in the adversary’s view.
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Output. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1; otherwise, B
outputs 0.

Analysis: The simulations provided for A are perfect, if B correctly guesses ℓ = t∗, whose
probability is obviously at least 1/N . Thus B’s advantage against the DBDH assumption is at
least ϵ/N . It is also clear that B’s running time is polynomially bounded. Thus the proof of
Lemma 6 is concluded. ⊔⊓

4.3 Extension: PKIE Scheme with n helpers

In this section, we discuss how to extend our concrete PKIE scheme to obtain a PKIE scheme
with n helpers (n-PKIE for short). In such a scheme, these n helpers are alternately used to
update the user secret key. For example, in period t, the helper with helper key mstt mod n is
used to update the user secret key from uskt−1 to uskt. While in the next period t + 1, the
helper key mst(t+1) mod n will be used to update user secret key from uskt to uskt+1. Similarly
to PKIE systems, key-insulated security for an n-PKIE system captures the intuition that, even
if up to n − 1 helpers are broken into while a given period t is exposed, only one other period
adjacent to t is exposed. Furthermore, the strong key-insulated security ensures that, even if
the n helpers are simultaneously corrupted, all the periods are still secure. Formal definitions
and security notions for n-PKIE is given in Appendix A.

Our PKIE scheme presented in Figure 5 can be naturally extended to an n-PKIE scheme as
presented in Figure 8. We here explain the meanings of the subscripts used in the scheme. For
the random numbers ri,k used in algorithms KeyGen and ∆-Gen, its subscript k corresponds to
the time period index, and i corresponds to the index of the helper key msti. The subscripts in
(ai,t, bi,t) and (âi,t, b̂i,t) have the similar meanings.

Since the n-PKIE Scheme in Figure 8 is a natural extension of the Boneh-Boyen-based PKIE
scheme presented in Figure 5, its strong key-insulated security under chosen-plaintext attack
can be proved under the DBDH assumption in a similar way as Theorem 4. Thus we here omit
the detailed proofs.

KeyGen(λ): Given a security parameter λ,

1. pick g, g2, h
$← G and α′, α0, · · · , αn−1

$← Z∗
p, and set g′ = gα

′
2 , g1 = gα

′+
∑n−1

i=0 αi ,
2. set msti = gαi

2 for i = 0 to n− 1,
3. pick a collision-resistant hash function H : Z→ Z∗

p,
4. for k = 0 to n− 1,

compute a0,k =
( n−1∏
i=k

msti
)
·
(
g
H(k)
1 h

)n−1∑
i=k

ri,k
and b0,k = g

n−1∑
i=k

ri,k
, where ri,k

$← Z∗
p for i = k, · · · , n− 1,

5. return pk = (g, g1, g2, h), usk0 = (g′, (a0,0, b0,0), · · · , (a0,n−1, b0,n−1)) and (mst0, · · · ,mstn−1).

∆-Gen(t,mstt mod n): To generate the update key hskt
with the matching helper key mstt mod n,

1. let i = t mod n,
2. for k = t to t+ n− 1

pick ri,k
$← Z∗

p,

set âi,k = msti ·
(
g
H(k)
1 h

)ri,k , b̂i,k = gri,k ,

3. return hskt = ((âi,t, b̂i,t), · · · , (âi,t+n−1, b̂i,t+n−1)).

Update(t, uskt−1, hskt): In period t, to update the user secret
key from uskt−1 to uskt,

1. let i = t mod n and j = (t− 1) mod n
2. parse uskt−1 as (g

′, (aj,t−1, bj,t−1), · · · , (aj,t+n−2, bj,t+n−2)),

3. parse hskt as ((âi,t, b̂i,t), · · · , (âi,t+n−1, b̂i,t+n−1)),
4. for k = t to t+ n− 2

set ai,k = aj,k · âi,k, and bi,k = bj,k · b̂i,k.

5. set ai,t+n−1 = âi,t+n−1 and bi,t+n−1 = b̂i,t+n−1

6. return uskt = (g′, (ai,t, bi,t), · · · , (ai,t+n−1, bi,t+n−1)).

Enc(pk, t,m): In period t, to encrypt a message m
under public key pk,

1. pick s
$← Z∗

p, and compute C1 = e(g1, g2)
s · m,

C2 = gs, C3 = (g
H(t)
1 h)s,

2. return CT = (C1, C2, C3).

Dec(uskt, CT): To decrypt a ciphertext CT with the matching
user secret key uskt,

1. parse CT as (C1, C2, C3),
2. parse uskt as (g

′, (ai,t, bi,t), · · · , (ai,t+n−1, bi,t+n−1)),

3. return m← C1 · e(C3, bi,t)

e (C2, g′ · ai,t)
.

Figure 8: n-PKIE Scheme Based on Boneh-Boyen IBE
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4.4 Comparisons

In this section, we compare the efficiency of LQY scheme (which is the currently known best
scheme in the standard model) and our proposed PKIE schemes in terms of communication
overhead and computational cost. In Table 1, |G| and |GT | denote the bit-length of an element
in group G and GT respectively, tr, tm, tT and tp denote the computational cost of one regular
exponentiation in G, one multi-exponentiation [39] in G, one regular exponentiation in GT

and one pairing in (G,GT ) respectively, and “without-RO” denotes that the security is proved
without random oracles. We note that tm is approximately equal to 1.2tr due to the Pippenger
algorithm [39].

LQY PKIE [36] BB-based PKIE BBG-based PKIE LQY n-PKIE [36] BB-based n-PKIE

public key 6|G| 4|G| 6|G| (2n+ 2)|G| 4|G|
user secret key 3|G| 5|G| 6|G| (n+ 1)|G| (2n+ 1)|G|

ciphertext 3|G|+ 1|GT | 2|G|+ 1|GT | 3|G|+ 1|GT | (n+1)|G|+1|GT | 2|G|+ 1|GT |
∆-Gen 2tm + 1tr 2tm + 2tr 1tm + 2tr 2tm + 1tr ntm + ntr
Enc 2tm + 1tr + 1tT 1tm + 1tr + 1tT 2tm + 1tr + 1tT ntm + 1tr + 1tT 1tm + 1tr + 1tT
Dec 3tp 2tp 3tp (n+ 1)tp 2tp

without RO? X X X X X
strong security? × X X × X

Table 1: Comparisons between our concrete schemes and LQY schemes [36]

As indicated in Table 1, our proposed schemes are secure in the strengthened security model,
while LQY scheme is only secure in the weak model. Our Boneh-Boyen-based scheme is superior
to other schemes in many aspects (except for size of user secret key and computational cost for
∆-Gen). In terms of computational cost for ∆-Gen, our Boneh-Boyen-Goh-based PKIE scheme is
superior to other schemes, and it is suitable for environments where helpers are computationally
weak. LQY scheme is superior to others in terms of size of user secret key. In summary, we have
three different PKIE schemes with different advantages, and one can choose an appropriate one
from them according to each situation.

As to the extended schemes with n helpers, the advantage of our Boneh-Boyen-based n-PKIE
scheme over (the n-PKIE version of) LQY scheme becomes more obvious. The public key size,
ciphertext size, encryption cost and decryption cost in the n-PKIE version of LQY scheme grows
linearly with the number n of helpers, while ours are independent of the number of helpers.
Honestly, we admit that our scheme still has the following limitations: the computation cost
in algorithm ∆-Gen is linear with the number of helpers, and its user secret key size is about
twice of LQY scheme. It would be an interesting open problem to construct a PKIE scheme
with constant public key size, ciphertext size, encryption cost and decryption cost, and yet with
shorter user secret key and lower computational cost for algorithm ∆-Gen.
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A Parallel Key-Insulated Encryption with n Helpers

Similarly to standard PKIE, a parallel key-insulated encryption scheme with n helpers consists
of five algorithms, i.e., (KeyGen,∆-Gen,Update,Enc,Dec), where the last three algorithms are
the same as those in standard PKIE, and the first two algorithms are specified as follows:

• KeyGen(λ): The key generation algorithm, on input a security parameter λ, outputs a
public key pk, an initial user secret key usk0 and n helper keys (mst0 · · · ,mstn−1). We
write (pk, usk0, (mst0 · · · ,mstn−1))← KeyGen(λ).
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• ∆-Gen(t,mstt mod n): The helper key-update algorithm, on input a period index t and the
corresponding helper key mstt mod n, it outputs an update key hskt for period t. We write
hskt ← ∆-Gen(t,mstt mod n).

The key-insulated security for an n-PKIE scheme should capture the intuition that, even if
up to n − 1 helpers are broken into while a given period t is exposed, only one other period
adjacent to t is exposed. We refer to this security as IND-nKI-ATK where ATK ∈ {CCA,CPA}.
For an adversary A, we consider the following experiment:

ExpIND-nKI-ATK
A,n-PKIE (λ):

[
(pk, usk0, (mst0, · · · ,mstn−1))← KeyGen(λ); (m0,m1, t

∗)← AOu(·),Oh(·),Od(·,·)
find (pk);

β
$← {0, 1}, CT∗ ← Enc(pk, t∗,mβ); β

′ ← AOu(·),Oh(·),Od(·,·)
guess (pk, CT∗); return 1 if β = β′ or 0 otherwise

]
,

where Ou(·) and Od are the same as in experiment ExpIND-KI-ATK
A,PKIE (λ), and Oh(·) is a helper key

oracle which for given an index i ∈ {0, 1, · · · , n− 1} returns the helper key hski. It is mandated
that |m0| = |m1|, and the following requirements should be simultaneously satisfied:

(1). A cannot issue the user secret key query Ou(t
∗);

(2). A cannot issue both queries Ou(t
∗ − 1) and Oh(t

∗ mod n);

(3). A cannot issue both queries Ou(t
∗ + 1) and Oh((t

∗ + 1) mod n);

(4). A cannot corrupt all of the n helpers;

(5). If ATK = CCA, A cannot issue the decryption query Od(t
∗, CT∗).

We define A’s advantage as AdvIND-KI-ATK
A,n-PKIE (λ) =

∣∣Pr[ExpIND-nKI-ATK
A,PKIE (λ) = 1]− 1

2

∣∣ .
Definition 9 We say that an n-PKIE scheme is IND-nKI-CCA (resp. IND-nKI-CPA) secure, if
there exists no PPT adversary A who has non-negligible advantage AdvIND-nKI-CCA

A,PKIE (λ) (resp.

AdvIND-nKI-CPA
A,PKIE (λ)).

The strong key-insulated security for an n-PKIE scheme should further ensure that, break-
ing into all of the n helpers does not help the adversary as long as he does not additionally
obtain any user secret keys for any periods. To define this security notion, we first define the
strong-IND-nKI-ATK-security, where ATK ∈ {CCA,CPA}. For an adversary A, we consider the
following experiment:

Expstrong-IND-nKI-ATK
A,n-PKIE (λ):

[
(pk, usk0, (mst0, · · · ,mstn−1))← KeyGen(λ);

(m0,m1, t
∗)← AOd(·,·)

find (pk,mst0, · · · ,mstn−1);β
$← {0, 1}; CT∗ ← Enc(pk, t∗,mβ);

β′ ← AOd(·,·)
guess (pk,mst0, · · · ,mstn−1, CT

∗); return 1 if β = β′ or 0 otherwise]

where Od(·, ·) is the same as in experiment ExpIND-nKI-ATK
A,n-PKIE (λ). It is mandated that |m0| = |m1|,

and if ATK = CCA then A cannot issue the decryption query Od(t
∗, CT∗). We define A’s

advantage as Advstrong-IND-nKI-ATK
A,n-PKIE (λ) =

∣∣∣Pr[Expstrong-IND-nKI-ATK
A,n-PKIE (λ) = 1]− 1

2

∣∣∣ .
Definition 10 We say that an n-PKIE scheme is strong-IND-nKI-CCA (resp. strong-IND-nKI-CPA)

secure, if there exists no PPT adversary A who has non-negligible advantage Advstrong-IND-nKI-CCA
A,n-PKIE (λ)

(resp. Advstrong-IND-nKI-CPA
A,n-PKIE (λ)).

Definition 11 We say that an n-PKIE scheme is strongly key-insulated secure under chosen-
ciphertext attack (resp. chosen-plaintext attack), if it is both IND-nKI-CCA secure (resp. IND-nKI-CPA
secure) and strong-IND-nKI-CCA secure (resp. strong-IND-nKI-CPA secure).
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