Privacy-Preserving Sharing of Sensitive Information
is (Really) Practical

Emiliano De Cristofaro, Yanbin Lu, Gene Tsudik
University of California, Irvine

Abstract

The need for controlled sharing of sensitive informationws in many realistic everyday sce-
narios, ranging from critical (e.g., national security)nondane (e.g., social networks). A typical
scenario involves two parties, at least one of which seekgesoformation from the other. The
latter is either willing, or compelled, to share informatioThis poses two challenges: (1) how to
enable this type of sharing such that parties learn no (oinmait) information beyond what they are
entitled to, and (2) how to do so efficiently, in real-worldaptical terms. The first challenge has
been addressed by prior work that yielded cryptographturtiggies, such as Private Set Intersection
(PSI) protocols. However, such tools have only very regeldicome efficient enough for actual
deployment.

In this paper, we show how some cryptographic privacy tepes are implemented in a real
working system, called PSST: Privacy-preserving Sharinemsitive information Toolkit. PSST
functions as grivacy shield that protects parties from disclosing their respectivesiee infor-
mation. The design and deployment of PSST prompts a numbeewfand interesting practical
challenges, which we address in this paper. We describe ¢imel iof services offered by PSST and
present experimental results that attest to the pradiiaaiithe attained privacy features.

1 Introduction

In today'’s increasingly digital world, entities (companies, agencies, atididluals) are often con-
fronted with a dilemma regarding information privacy. On one hand, theg tee&eep sensitive data
confidential. On the other hand, they might be either motivated or forcedate slome of that data.
There are several scenarios where this dilemma is impossible to resolves (aldeast) one party
sacrifices some privacy. Consider the following examples:

Airline Safety. Department of Homeland Security (DHS) checks whether any passengech flight
from/to the United States must be denied boarding or disembarkation, basssVenal secret lists,
including: theNo Fly List [54], the Terrorist Watch List [27], and theSecondary Security Screening
Sdlection List [56]. Today, airlines surrender their entire passenger manifests tq ig&her with a
large amount of sensitive information, such as credit card numbers Bdgides its obvious privacy
implications, thismodus operandi poses liability issues with regard to (mostly) innocent passengers’
data and concerns about possible dateﬂlokieally, DHS would obtain information pertainirogly to
passengers on one of those lists, without disclosing any information to timesir

Social Networking. A social network user (Alice) wants to find out whether there are anyr aihers
nearby with whom she has friends, interests or group memberships in cqmwitbaut relying on
a third-party provider, e.g., Facebook. Some of this information might be semsitive, e.g., reveal
Alice’s medical issues or sexual orientation. Today, users like Alice whale to broadcast their
information in order to discover a nearby match, thus compromising privaereas, they might be
willing to disclose sensitive information only to users witmatching profile.

1See[[16] for a litany of recent incidents where large amounts sensiteeveere lost or mishandled by government agencies.

Healthcare. A health insurance company needs to retrieve information about an inGliestt) from
other parties, such as other insurance carriers or hospitals. The &ttetprovide any information on
other patients and the former cannot disclose the identity of the target client.

Law Enforcement. An investigative agency (e.g., the FBI) needs to obtain electronic informakiont
a suspect from other agencies, e.g., local police, the military, the DMVRBe dr the suspect’'s em-
ployer. In many cases, it is dangerous (or simply forbidden) for thet&Blisclose the subject of the
investigation. For its part, the other party cannot disclose its entire datmddtust the FBI to only
extract desired information. Furthermore, FBI requests might need toekmughorized by some ap-
propriate authorization authority (e.g., a federal judge). This way, tHec&B only obtain information
related to authorized requests.

Other examples include recent developmentsalfaborative denial-of-service attacks identifica-
tion [3] and botnet detection [43].

1.1 Roadmap & Contributions

Motivated by the above examples, this paper presents the design and imigleomeof the Privacy-
preserving Sharing of Sensitive information Toolkit (PSST). PSSTtions as aprivacy shield that
protects parties from disclosing more than the required minimum of their riégpeensitive informa-
tion. Our “roadmap” for the design of PSST is as follows:

1. We introduce the concept of privacy-preserving sharing ofitemnformation and identify its
privacy requirements and system assumptions. We then examine techioigBesate Set Inter-
section (PSI) and argue that they are well-suited as the basic building dlazk system. We
also discuss why other related cryptographic primitives do not meet effigisystem, or privacy
criteria.

2. We explore several PSI flavors, corresponding to differerttlpros and scenarios and we moti-
vate the need for a comprehensive toolkit that provide®au of privacy-preserving operations
targeted to sharing sensitive information. We inclogémal implementations of most prominent
PSI protocols, selecting those best-suited for different scenarios.

3. Next, we look at a realistic large-scale scenario that captures aagjeteess of information shar-
ing and mimics the operation of database querying. In the process of agfiR&irprotocols, we
discuss a number of encountered challenges. We then present amgbdise design of the PSST
toolkit, which demonstrates, via real working code running on a commomiaaedsoftware plat-
form, that protecting privacy in sharing sensitive information is both ptessibd practical.

Contributions. This paper makes several contributions. First, we show that PSl is theapyrstpriate
and efficient building block for privacy-preserving sharing of $resinformation. We then identify
a number of challenges in extending PSI to large-scale database app$icatich as handling multi-
sets, data pointers, high communication overhead as well as liability issueslly,Fme design an
architecture that allows privacy-preserving interactions (similar to dagadpaerying), while overcoming
above challenges and achieving negligible overhead compared to ardtégaQL-based database
interface.

Toolkit. Our research was paralleled by an implementation effort that yielded thesopece PSST
tooIkitE PSST provides users and application developers with several notalbleefe It includes
optimized implementations of several prominent PSI protocols. Since they achievevbamdiffer-
ent privacy properties (along different overhead and underlyasgimptions), our toolkit allows users
to select the PSI technique best-suited to the specific application. Finally, p®%ides a versatile
privacy-preserving querying system, that combines efficiency,ilitgaland provably-secure privacy
guarantees for both querier and database server.

2PSST toolkit source is availableat t p: /7 code. googl e. con p/ psst - t ool Ki t /1

http://code.google.com/p/psst-toolkit/

Paper Organization. Sectior[2 overviews state-of-the-art PSI protocols, presents praefmitions,
and motivates choosing PSI as the main building block. Then, sédtion Efounshe efficient imple-
mentation (and benchmarking) of PSI protocols. Next, Se€lion 4 discasses challenges stemming
from adapting PSI protocols to realistic scenarios, and presents thensgsthitecture aimed at over-
coming these challenges. Sectidn 5 summarizes our contribution and canulitde laundry-list of
future work items. AppendiXJA presents the details of all PSI protocolsideresd in the paper.

2 Preliminaries

Since the PSST toolkit builds upon PSI protocols, we now review reledimitions, privacy prop-
erties, and discuss several related primitives that motivate the choice a$B8r main building block.

2.1 Private Set Intersection (PSI)

The term “Private Set Intersection” has been used to denote a familyptographic protocols
providing different privacy flavors, rather than a single primitive. W&idguish among the following
variants:

e Plain PS. Two parties compute the intersection of their private sets such that nothireymete
other than the intersection itself and, perhaps, the size of the respestisve\§e also call this
variantmutual PSI.

e One-way PS. Only one party (client) learns the intersection, while the other party (Sdeans
nothing beyond the size of client set. Assuming that no party aborts thecprgicematurely,
mutual PSI can be trivially obtained via two executions of one-way PSI.dmdht of this paper,
we focus on the one-way variant and henceRSeto meanone-way PSl.

e Pd with Data Transfer (PS-DT). If the server has data associated with each element in its set, this
data must be transferred to the client whenever the corresponding ¢lisnirethe intersection.
This variant (introduced in [22]) is appropriate in many realistic scenanibere the server holds
a set of records (as opposed to a simple list of items).

e Authorized PS (APS). One assumption implicit in all PSI protocols is that parties do not manip-
ulate their input set§.In other words, initial inputs are assumed to be somehow valid. APSI [22]
relaxes this assumption by ensuring that client inpatitiorized by an appropriate authorization
authority (denoted a€A). Thus, unless the client holds an authorization (typically, in the form
of a digital signature), it does not learn whether the corresponding isjiuthe set intersection.

At the same time, the server does not learn whether client input is authorzederification is
performed obliviously.

e Authorized PS-DT (APSI-DT). Similar to its PSI counterpart, APSI-DT can be defined from APSI
by adding data transfer for each element in the intersection.

In the rest of the paper, we focus on APSI-DT and PSI-DT, as treegeameral and appeal to many realis-
tic application settings. Looking back at Sectidn 1, Healthcare and Airlinetysakamples correspond
to PSI-DT. Whereas, the Law Enforcement example is better suited fo-BP$.e., the FBI requests
must be pre-authorized by a COLHI).

We now formally define PSI-DT and APSI-DT. Our current notation is-egfflanatory; a more
formal version is in AppendixA.

Definition 1 Private Set Intersection with Data Transfer (PSI-DT) [22]: a protocol involving Server,
on input of a set of w items, each with associated data record, S = {(s1,datay), -, (Sw,datay)},
and Client, on input of a set of v items, C = {c1,--- , ¢, }. Itresultsin Client outputting {(s;, data;) €
S|3e; €Csit.cy = s}

3Note that such an assumption occurs not only in presence of hortestiinus but also arbitrarily malicious adversaries.
“However, the Social Networking example best matches mutual/plain PSI.

Definition 2 Authorized Private Set Intersection (APSI-DT) [22] a protocol between Server, on
input of a set of w items. S = {(s1,datay), -, (Sw,datay)}, and Client, on input of a set of
v items with associated authorizations, C = {(c1,0) -+, (cy,00)}. It results in Client outputting
{(sj,data;) € S| 3(e;,0:) € Cs.t.c; = s AVrfyy (04, ¢;) = 1}, (where pk is the authority's public
key).

2.2 Desired Properties

Based on our discussion in Sectionl2.1, PSI (in its several flavors)ckess privacy issues outlined
in Sectior[1. In Sectiop] 3, we show that recent work on PSI has yieldedigal solutions, with linear
computation and communication complexities and inexpensive cryptogramratioms.

We now discuss desired privacy properties. We assume that all intergotigur in the presence of
anHonest-but-Curious adversary. Specifically, we assume that parties always faithfully follmiopol
specifications and do not misrepresent any information related to their irggts,size and content.
However, during or after protocol execution, any party might attempt tr iaflditional information
about the other party’s input.

Desired properties are as follows:

e Correctness. At the end of the interaction, Client outputs all items in the set intersection, along
with associated data records, as specified in the definitions above.

e Client Privacy. Server learns no information about Client input, except its size.

e Server Privacy. Client learns no information about any Server input thatis NOT in the intBose
of their respective sets, except the size&of

e Server Privacy (with Authorization). Client learns no information about any Server input that is
NOT in the intersection of their respective sets, where Clien(3etdntains only items authorized
by the authorization authority.

e Forward Security (with Authorization). Client cannot violate Server privacy for any past interac-
tions, using any authorizations obtained at a later time.

e Client Unlinkability. Server cannot determine whether any two interactions with Client are related
i.e., executed on the same inputs.

e Server Unlinkability. Client cannot determine whether any two interactions with Server are re-
lated, i.e., executed on the same inputs.

While privacy requirements are intuitive, forward security and unlinkability are more suRti@ethe-
less, they are needed in several scenarios. Consider forwanitg@tthe context of authorized Client
inputs. Suppose that an FBI agent engages in an interaction withoutdgimgyized for a given “sus-
pect”: Server privacy prevents the agent from accessing anynation on the suspect. Later, the agent
obtains authorization. Unless forward security is guaranteed, the agenise the authorization to
recover the suspect’s file from the previous interaafiddnlinkability, beyond keeping from noticing
changes in parties’ inputs, minimizes possibility of privacy leaks. Unless itasamteed, if inputs of
one interaction are leaked, then all linked inputs would be leaked.

2.3 Related Primitives

Several cryptographic primitives provide privacy properties coniparta those in Sectidn 2.1. Be-
low, we discuss related primitives and motivate the choice of PSI-DT and-BFSs our building
block.

Secure Two-Party Computation. Two parties, with respective inputsandy, respectively can use Se-
cure Two-Party Computation (2PC) to privately compute the value of a pubigtibn f at point(x, y).

SOur definition of forward security is not to be confused by forwardeeg i.e., preventing tird-party adversary corrupting
Server from learning data encrypted prior to corruption.

Both parties learrf (x, y) and nothing else. A general procedure for 2PC of any function egpteas

a Boolean circuit is due to Yao [67]. Although one could implement PSI-DT @RE, this technique
would incur impractical computation and communication complexities — at leastajiads pointed
out in [30,[41].

Oblivious Transfer (OT). Introduced by Rabin [48], OT involves a sender withsecret messages
and a receiver with one indeX The receiver wants to retrieve thigh among sender's messages.
The sender does not learn which message is retrieved, and the rdeaives no other message. OT
privacy requirements resemble those of PSI-DT. However, in PSidpUts are items (e.g., keywords),
whereas, in OT, the receiver needs to know (and input) an existing #nedaxunrealistic assumption for
the applications we have in mind.

Private Information Retrieval (PIR). PIR [18] allows a client to retrieve an item from a server (public)
database without revealing which item it is retrieving, with the additional reqment that communi-
cation overhead must be strictly lower th@xin) (if » is the database size). Note that, in PIR, privacy
of server’s database is not protected — the client may receive itemsfselobeyond those requested.
Symmetric PIR (SPIR) [32] additionally offers server privacy, thuseghg OT with communication
overhead lower tha®(n). However, similar to OT, a symmetric PIR client needs to know and input the
index of the desired item in server’s database. An extension to keyiased retrieval is Keyword-PIR
(KPIR) [17]. However, it is still focused on minimizing bandwidth, rathentlogtimizing computation
and protecting server privacy. Thus, it incurs significantly higher agatfpnal overhead, as well as
multiple rounds of PIR executions. We discuss PIR further in Secfidn 3.2.

Private Keyword Search [29]. This primitive is akin to a special case of PSI-DT, where Client inputis a
singleton and Server input is a multi-set. Similarly, Oblivious Keyword Se@#8) [44] allows Client
to search fow different keywords. We discuss how to handle multi-sets using PSI-DEdti@14.

Searchable Encryption. The problem of APSI-DT could be solved usiRgblic-key Encryption with
Keyword Search (PEKS) [9] (or, similarly, searchable encrypted lags [55]), baselB&10]. A sender
can use a PEKS scheme to append encryptions of keywords (items) yptedldata records. Whereas,
a receiver can “test” a keyword (and obtain associated data) only ifsiaheorresponding trapdoor,
i.e., an authorization. Consequently, (1) the sender learns nothing edosiner’s trapdoors, and (2)
the receiver learns nothing about keywords not matching its searthisis the intuition of the work
in [13], which shows a modified PEKS construct: it additionally hides restikeywords from the
authority and offers security against malicious adversaries in the sthnuadel. Nonetheless, PEKS
Test algorithm requires the receiver to test each trapdoor against eanfptttkeyword it receives,
thus incurringguadratic computational overhead. Furthermore,/[13] is built atop the relativelgresipe
Boyen-Waters IBE schemé [11]. Finally, searchable encryption hes beidied in symmetric key
settings[[53]: users outsource encrypted data at an untrusted aadsprivately search over it. This is
substantially different from our goals.

3 Implementing Efficient PSI-s

In this Section, we turn to efficient instantiation of several PSI-DT and IAPSprotocols and
compare their performance via experimental results. In the processsovatiempt to identify possible
obstacles to practical use and discuss possible improvements and optimizations

Note that, for readability’s sake, details of the considered protocolsefegrdd to AppendikA.
The evaluation presented below is necessary for our goal of cotisgracpractical and usable toolkit.
However, those not interested in performance details may wish to skip to Sdotitthout much loss
of continuity.

One important variable in our discussion is authorization of Client input. IRtbea the main dif-
ference between PSI-DT and APSI-DT is that, in the latter, Client input beuatithorized.

Another variable is Server-sigee-distribution, i.e., whether Server can pre-process its inputs inde-
pendent from Client inputs. If so, pre-processing can be donknefland the results can be transferred

to Client (or published, for many clients) only once. Server-side preioligion is also a mandatory
feature of so-calleddaptive protocols[14], as it is needed to let Servesmmit to its input.

However, pre-distribution is incompatible with Server unlinkability (between caasecutive pre-
distributions), since Server input is fixed during that period. MorgoveAPSI protocols, forward
security can not be guaranteed: Client that obtains authorizaftersnteracting with the Server can
still extract theprevious intersection given the transcript of prior interaction. Therefore, tenarios
where Server input changes often and/or unlinkability is desired, pistedthout pre-distribution are
appropriate. Whereas, if Server input is (mostly) static and bandwidtthead is critical, protocols
with pre-distribution are preferred.

Candidate Protocols. We discuss efficient implementation of several (A)PSI-DT protocols Agee
pendix(A for details), and compare their performance and privacygpties:

w/o Pre-Distribution w/ Pre-Distribution
PSI-DT FNPO4 ([30]), JLO9 ([39]), JL10 ([40]),
DT10-1 (Fig.3in[22]) DT10-2 (Fig.4 in[22])
APSI-DT | DT10-APSI (Fig.2 inl[22]) | IBE-APSI (Fig.5 in[21])

Table 1: PSI-DT and APSI-DT protocols included in the PSS3lkit

3.1 Experimental Analysis

Each protocol was implemented in C++ using GMP (ver. 5.071) [28] and RBE (0.57) [42]
libraries. All benchmarks were collected on a Ubuntu 9.10 desktop platfdgtinintel Core i7-920
(2.66MHz and 8MB cache) and 6GB RAM.

Evaluation Methods and Assumptions. For protocols supporting data transfer, data associated with
each Server element can be arbitrarily long. Also, performance of sootwcpls is dominated by each
element’s data size, rather than set size. For a fair comparison, we airpttoecéhe intrinsic cost
of each protocol. To this end, we employ the following strategy to eliminate dateeffiects: First,
in all protocols, we encrypt each element’s data with a distinct random symrikeyr and consider
these keys as the new associated data. Assuming that a different kigctedat each interaction, this
technique does not violate Server unlinkability. This way, our evaluaticaitigdr all schemes, in that
the computation cost of each protocol is measured based upon the sadrlefigth key, regardless of
data size. We set symmetric key sizel 83 bits.

Besides the basic cost (incurred by all protocols) to transfer a kely, @atocol execution involves
additional overhead of symmetric en-/de-cryption of records. Figustithates this overhead for vari-
able data sizes, using RCO4 [50] and AES-CBC [20] with 128-bit keyseskonate the total cost of a
protocol, we just need to combine this overhead with the basic cost of eztclepl and add data transfer
delay for all Server encrypted data.

We further assume that Client does not perform any pre-computatiofe ®&rver performs as
much pre-computation on its input as possible. This reflects the reality whierg @put is (usually)
determined in real time, while Server input is pre-determined. Figure 2 stimvpre-computation
overhead for each protocol.

In the following, we only consider on-line computation overhead. Figuresd4 show Client
online computation overhead in terms of Client and Server input sizesatasgy. Figure$ls andl 6
show Server online computation overhead in terms of Client and Servdrsizg respectively.

Figure§¥ anfl8 present protocol bandwidth complexity in terms of ClienBangkr input sizes. For
protocols with pre-distribution, bandwidth consumption (since it is perforafieline) does not include
pre-distribution overhead. Note that, in these figures, we sometimes usanieensarker for different
protocols to indicate that these protocols share the same value. Clientimgut(er Server input size
w) is fixed atb, 000 in figures where x-axis refers to Server (or Client) input size.

Finally, in all experiments, we use a 1024-bit RSA modulus, a 1024-bit egetiap modulus and
a 160-bit subgroup order. All test results are averaged t@@rindependent runs. All protocols are

120

128-bit RC4 —6—
128-bit AES CBC r+-¥¢--=

100 X"

10000 ¢

8ot x 1000 |

60 e
100 t

Time (ms)

=
o

DT10-APSI «=3es
IBE-APSI =4

0 1 2 3 4 5 6 7 8 9 10 0 2000 4000 6000 8000 10000
Data size (MB) Server Set Size (w)

Server Precomputation Time (ms)

Figure 1: Symmetric key en-/de-cryption performance. Figure 2: Server pre-computation overhead.

FNPO4 —6—

. DT10-1 - @

FNPOZ —6— DT10-2 o
DT10-1 --@-- JL10
DT10-2 - JLO9 -- k-

DT10-APSI «=3es
IBE-APSI -

JL10 -fd

DT10-APS| -
IBE-APSI -+

10000

10000 1000 |

1000 } __________________

100
100 |

=
o

Client Online Computation Time (ms)

=
o
T

Client Online Computation Time (ms)

1
0 2000 4000 6000 8000 10000

1 1 1 1 1 .
0 2000 4000 6000 8000 10000 Server Set Size (w)
Client Set Size (v)

Figure 4: Client online computation w.r.t. Server set
Figure 3: Client online computation w.r.t. Client set size. size.

instantiated under the assumptionHisnest-but-Curious (HbC) adversaries and in tliRandom Oracle
Model (ROM), as discussed in Sectibn2.2.

PSI-DT without pre-distribution. Here we compare FNP0O4 with DT10-1. Figufégl3-8 show that
that FNPO4 is much costlier than DT10-1 in terms of Client and Server onlimpettion as well

as bandwidth consumption. For each Client set size, DT10-1 Client ea@riiaries from 460ms to
4400ms, while FNP04 Server overhead ranges between 1300ms &hisd-or each Server set size,
DT10-1's Server overhead is below 1,300ms, while FNP04 Serveheadrexceeds 15,000ms.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and DT10-2 as PSI-DT with pre-
distribution. Recall that all protocols are instantiated in the HbC model, thud<z&kdre not included
for JLO9 and JL10. Figurés[3-8 show that DT10-2 has a overheadsttmo orders of magnitude lower
than JLO9 and JL10 in terms of Client online computation. In fact, DT10-2\megotwo Client mul-
tiplications for each Client item, while JLO9 performs two heavy homomorphicadipes and JL10

— two exponentiations. JL10 Server online computation overhead invol&§-bit exponentiations,
while DT10-2’s Server overhead involve®RSA group exponentiations, that can be speeded up by using
the Chinese Remainder Theorem. As a result, DT10-2 almost doubles &énidy nline computation
overhead. If we sum up Server and Client online computation overBE-2 remains the cheapest,
while JLO9 is the most expensive. In terms of bandwidth consumption, (2Tartd JL10 are almost the
same, while JLO9 is more expensive.

APSI-DT without pre-distribution. The only protocol we evaluate for APSI-DT without data pre-
distribution is DT10-APSI. FigurglB}6 illustrates that Client overhead isrdeted only by Client
set size, whereas, Server overhead is determined by both Client aret Set sizes. Note that mea-
surements obtained for APSI-DT naturally mirror those of DT10-1, asdhadr simply adds Client

é 100000 é
- < 100000 }
£ 1S
i= 10000 [
c < 10000 |
o o X
& 1000 } g
2 3 1000 | A
g g
100 |
ﬁ 2 100 ¢ FNPO4 —6— |]
£ £ DT10-1 ----@---
= = DT10-2
S S o 5
§ DT10-APS| -=-e § DT10-APS| X~
g 1)) |_IBE-APSI -4 o 1)) |_IBE-APSI -
N 0 2000 4000 6000 8000 10000 0 0 2000 4000 6000 8000 10000
Client Set Size (v) Server Set Size (w)

Figure 5:Server online computation w.r.t. Client set size. Figure 6:Server online computation w.r.t. Server set size.

1 t[FNPO4 ——

DT10-1

DT10-2 -
L JLI1O -

12 JLO9

DT10-APSI -

14 |[FNPO4 —6—
DT10-1 oo
DT10-2 oo
L JL10 -
12 JL09 -
DT10-APS| et
IBE-APSI| -~ M-

= o ©
T T T

Bandwidth Consumption (MB)
Bandwidth Consumption (MB)

0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Client Set Size (v) Server Set Size (w)

Figure 7:Bandwidth consumption w.r.t. Client set size. Figure 8:Bandwidth consumption w.r.t. Server set size.

authorization feature.

APSI-DT with pre-distribution. The only protocol we evaluate for APSI-DT with data pre-distribution
is IBE-APSI. However, it does not provide forward security. Noe#dhs, it is included in the evaluation,
as we later show how to overcome this issue (see Selciion 4.2.1). Eiglire®@v4 that Client side
overhead increases linearly with Client set size and does not depeBereer set size. In fact, Client
only needs to compute pairing operations. Recall that, in IBE-APSI, Server needs to compuiaga
operations for each item, independent of Client input. Moreover, siresetbperations can be pre-
computed, Server-side overhead and bandwidth consumption are nlegkgilshown in FigurﬁE@S.

During pre-computation, Server needs to comput@airing and exponentiations, which makes
pre-computation relatively expensive. If Server unlinkability is desifstyer would need to repeat,
for every interaction, the operations otherwise performed only duriegcpmputation. As a result,
if we sum up the overhead derived from Figuké$l4, 6 [@nd 2, we se®WER-APSI achieves better
performance; also, it is the only protocol providing forward security.

One party small set caseFinally, we compare online computation costs and show the trend with small
Client or Server set size. Our goal is to address scenarios whepadg®nly has a single input. Talble 2
shows Client and Server overhead for different protocols whererggiirty’s input is a singleton. We
observe that the result in the table agrees with our conclusions fromeSiGES.

Summary. Based on the above experimental results, our toolkit includes sevécamf PSI-DT and
APSI-DT implementations, each targeting a distinct setting. In particular, EXTis0best-suited for
PSI-DT with unlinkability, and DT10-2 — for (linkable) PSI-DT with pre-dibution. DT10-APSI is
geared for APSI-DT with unlinkability and forward security. Where&E4APSI is best for for the
more efficient case APSI-DT with pre-distributiBn.

bIn these figures, y-values for IBE-APSI are all 0 which is out of thapscof the y-axis.
"This is, however, linkable and not forward secure.

Online Computation Overhead (ms)
Protocols v=1, w=10,000 v=10,000, w=1 v=1, w=1
Client Server Client Server Client | Server

FNPO04 1,556.3 | 19,450.4| 12,627.1 65.1 1.2 2.3
DT10-1 0.3 22.7 3,140.8 | 1,376.6 0.3 0.1
DT10-2 0 0.3 52.6 2,787.7 0 0.3
JLO9 7.6 3.3 77,622.6 | 32,373.4 7.6 3.2
JL10 1.1 0.2 11,2709 | 1,415.7 1.1 0.2

IBE-APSI 1.4 0 14,142.3 0 1.4 0
DT10-APSI 1.9 26.8 18,646.5| 9,162.3 2.2 2.1

Table 2: On-line computation overhead (in ms)

We claim that careful and optimized implementations of (A)PSI protocols indlidehe PSST
toolkit represent an independent contribution. This is because, praurtwork, it has been generally
believed that PSI protocols are impractical. For example, [3] reports thsurezaent o213 seconds
to run FNPO4[[3D] PSI over 100-item sets on a 3GHz Intel machine. ltrastnour implementation
completes the same task well beld@0) seconds even for 1000-item sets (on a similar machine).

3.2 Comparison with PIR

In the experiments above, we benchmarked different (A)PSI-DT potganeasuring the total time
needed by Client to identify the elements in the intersection and the associatatesyc key (later
used to decrypt corresponding data reccﬁi&)ﬂditionally, however, one should also take into account
the time needed by Server to transailtencrypted data records to Client. For this reason, one common
criticism to PSI-s has often been related to such a communication overheadtiast to PIR protocols,
which are known for minimizing bandwidth complexity. Recall, however, thgtofly Symmetric PIR-s
would also provide Server privacy beyond hiding Client interests, 2naithin PIR, Client would need
to know and input the index of requested items, whereas, in PSI-DT, Qfieats can be arbitrary set
elements. Despite these distinctions, we nonetheless argue thratripatational overhead introduced
by PIR-s is high enough that, in reality, we are better off transferringrtieeeencrypted database.

To support our claim, we benchmark Gentry and Ramzan PIR profodpltft (to the best of our
knowledge) achieves the best communication complexity,8ogn) for a database with records.
Figure[9 compares the computation time needed by the PIR implementation (i.e., ve¢ ifclnde
data transmission time) and tte#al time needed by each (A)PSI-DT protocol to execute both off- and
on-line operations, plus the time to transmit the entire Server database dgebd tink. Comparison
is made at different Server set sizes. Each element’s data recordtcs [setLMB; this represents a
reasonably average record size. Our results show that even aPi&sts appreciably more expensive
than transferring the entire “encrypted” database, plus computation tinteddxy any PSI protocol
discussed above. Indeed, this concurs with recent resultslin [52].

JLO9

DT10-APSI
100000 |~ \ge-pPsI

10000

Time (s

1000
100 |

10

1

0 2000 4000 6000 8000 10000
Server Set Size (w)

Figure 9: Comparison to GR-PIR.

8Recall thatServer privacy guarantees that Client can only decrypt records associated to itemssiet héersection.

4 Large-Scale Privacy-preserving Sharing of Sensitive Information

We now turn to a more realistic scenario that mimics simple database querying@ndes a more
general class of information sharing. Specifically, we assume thatrSeaiatains a large database —
DB that containse records withm attributes(attry, - - - , attry,). We denoteD B = {(R;)}}_,. Each
recordR; = {val;;};",, whereval;, is R;'s value for attributezttr;. Client inputs are assumed to be
in the form of simple SQL queries, such as Eq. 1.

“SELECT * FROM DB WHEREdattr* = val*” 1)

After the interaction, Client gets all records InB, whereattr* = val™ and nothing else. Whereas,
Server learns nothing abouttr* or val*. We assume that the database schema (format) is known to
Client. Furthermore, without loss of generality, we assume that all retivilolies are searchable. Later
on, we discuss a simple extension to disjunctive queries.

Since security and privacy requirements are basically unaltered frase #ttated in Sectidn 2.2, we
do not repeat them here.

In the rest of this section, we identify and discuss some challenges ams issaught about by
realizing (A)PSI-DT protocols in the context of large-scale databagkcations mentioned above. We
then present a general design that overcomes these problems aneésdlath efficiency and practi-
cality without sacrificing privacy. Specifically, our approach is aimedrhbitrarily large Server-side
databases and arbitrarily frequent Client queries. We also demonsieateal running code, that our
system achieves performance comparable to an optimized MySQL DBMSwaéveprivacy-preserving
indexing enabled on each attribute.

4.1 Strawman Approach: Problems and Challenges

One nadve way implementing privacy-preserving sharing of sensitive informatiadharaforemen-
tioned large-scale database-like setting is to extend (A)PSI-DT implementationsding to the fol-
lowing strawman approach:

For each record, consider the hash of every (attribute,value)qiéig (val; ;) as a set element, and
R; — as associated data. Server “set” then becomes:

S = {(H((attr;,valj;), Rj) h1<i<m1<j<w

Client poses an SQL query (similar to that in Efj. 1). Thus, Client “set” isadlgta singleton:C =
{H (attr*,val*)} optionally accompanied by a signatureover H (attr*,val*) in case authorized in-
puts are enforced. Then, Client and Server engage in a PSI-DTI{BPSnteraction and, at the end,
Client obtains all records matching its query. However, this simple appittasta number of privacy
and performance issues, as can be seen from prior work,[e.g., [2].

Challenge 1: Multi-Sets. By our definitions, PSI-DT and APSI-DT do not support multi-sets. How-
ever, most realistic database settings include duplicate values. AlthoughHPsimeotocols (e.g.| [41])
support multi-sets, their performance is not promising as they involve gtiadverhead. However, in
other more efficient protocols (e.g., DT10-1), tags computed over the Gaitng val; ;) are identical.
Since the entire encrypted database (including all tags) is transferrdib i, €he latter learns all pat-
terns and distribution frequencies. This is problematic, since actual vedueke often inferred from
their frequencie.

Challenge 2: Data Pointers.To enable querying by any attribute, ea€h must be copied (and sepa-
rately encrypted)n times, once for each attribute. For protocols with pre-distribution, high Céiefet-
storage overhead would result. For protocols without pre-distributigh, tendwidth overhead would

For example, consider a large database where one attribute reflegtioyemblood type”. Since blood type frequencies are
well-known for general population, tag distribution for this attribute woukkesially reveal the plaintext. This is equivalent
to deterministic encryption.

10

be incurred. This issue can be addressed by encrypting Baghth a uniqgue symmetric key; and
then usingk; (instead ofR;) as data associated wiffi(attr;, val;;). Although this would reduce stor-
age/bandwidth overhead, it would also prompts an additional privacg:idauwrder to use the key —
instead of the actual record — as “data”, a pointer to the encrypteddrémoidisk or in memory) would
have to be stored alongside each tag. This would let Client determine whatadagspond to different
attributes of the same record. This (potential) privacy leak is aggravgtéuelprevious issue (multi-
sets), since, given two encrypted records, Client can establish their iiynilased on the number of
tags they have in common. For example, a malicious Client could test how mangseshare exactly
two attributes.

Challenge 3: Bandwidth. If Server database is large and/or records contain large bulk datwluih
overhead may become prohibitively high. For all protocols discusseddbad despite their seemingly
low linear bandwidth complexity), the entire encrypted database must bdetmausto Client. For
protocols without pre-distribution, this has to be déerecach query. For protocols with pre-distribution,
the bulk transfer can be done once, at the start (as long as the dagas@die). Thus, if the database is
very large, the delay experienced by Client would be commensurately drighef first query (with pre-
distribution) or for each query (without it). Furthermore, in some scesabandwidth is very limited
or costly, e.g., Client running on mobile devices.

Challenge 4: Liability. Transfer of the entire encrypted database to Client also prompts the mroble
of long-term data safety and associated liability. An encryption schemédeved strong today might
gradually weaken in the long term. Consequently, it is not too far-fetchadagine that Client might

be able to decrypt the database, e.g., 10 or 20 years later. Howetgesethaitivity might not dissipate
over time. For example, suppose that a low-level DoD employee is only allmasstess to unclassified
data. By gaining access to the encrypted database containing top ssearand patiently waiting for
the encryption scheme to “age”, the employee might obtain still-classified seriafiormation.

Aforementioned challenges do not arise in all settings discussed in Sectigechll the Social Net-
working and Airline safety examples: they do not exhibit problems with badtthwconsumption or
long-term liability: the former — because a list of friends (or a passengeifest) is unlikely to be
very long, and the latter — because, years into the future, neither frieahes nor airline passengers
represent sensitive information. In contrast, the Healthcare and Lawdement examples prompt both
long-term liability and bandwidth consumption issues. (A database of Clientipatigoolice records
can be very large and data privacy is a long-term concern).

4.2 PSST Design

We now discuss the design of the PSST toolkit. First, we describe our sgsthitecture with addi-
tional privacy requirements. Next, we show a methodology for adaptifigRADT protocols to support
database encryption and query lookup. Then, we discuss challengeslaieved privacy. Finally, we
compare the performance of PSST to that of base-line MySQL. Our notatiefiected in TablE]3.

attr; thelth attribute in the database schema
R; the jth record in the database table
val; g the value inR; corresponding tattr,
kj the key used to encryi;
er; encryption ofR;
tk;, a token evaluated overttr, val; ;
ctrj | the number of imes wheneul;s ;, = val;;, V5" <=j
tagj atag forattr;, val;
k; . key used to encrypt;
k’}'z key used to encrypt indei
ek; encryption of keyk;
eind; encryption of index

Table 3: Notation

11

CLIENT SERVER

attn | attn, e attr,,|
@ < @) s val ;(val 15| == |val;,|R,;
% val ylval 55| ««+ |valy,|R,
) m!
=f 1 1 !
@ h.'“-i? val | val 5 val .| R,
s
iz
Gl
N 45 DB
g
=
Y

ISOLATED BOX

Figure 10: New system architecture with the introductiohsofated Box.

4.2.1 Architecture

As shown in Figuré 0, our system architecture involves three partiemtC8erver and a stand-
alone third party, calledisolated Box (IB). IB is a stand-alone entity in possession of the encrypted
database and a lookup table (denoted by LTable), transferred froverSdn order to pose an SQL
query, Client first interacts with Server to obtaitioken while not revealing the content of the query.
From this token, it derives a set of tags and sends these tags to IBethats all matching records.
(Again, this does not disclose the query target). Note that Server, dhefetnansferring the entire
encrypted database to Client, transfers it (off-line) to IB.

Our IB-powered system relies on (A)PSI-DT protoceish pre-distribution. Indeed, all four chal-
lenges listed in Sectidn 4.1 can be solved using such protocols within thelBestare. Furthermore,
such protocols achieve better on-line communication and computation oderhea

PSST addresses privacy concerns mainly using a novel encryptiomamsm, while it requires
minimal trust in IB. Note that the use of stand-alone semi-trusted parties to@npavacy dates back
to Beaver’s initial intuition ofCommodity-based Cryptography [4]. Other examples are the solutions
in [12] and [23]. The former introduces an oblivious third party to leteeobliviously compare two
numbers (e.g., to solve the millionaire’s problém|[57]), whereas, the latesy th® same intuition to
solve the scalar product problem. More recent techniques, using sestadrparties in the context of
privacy-preserving database applications, lare([49, 19], disdUstr in Section 4]3.

Trust Assumptions. We assume that IB does not collude with either Server or Client. (Howexer,
discuss the consequences of collusions in Setfion/4.2.6). Also, we asimastence of a private and
authentic channel between Client and Server, as well as between Gl ae.g., using SSL/TLS.

Finally, note that IB can be realized as a piece of secure hardware idstall&erver premises, as
long as Server does not learn what IB reads from storage (i.e., wbaitds) and transfers to Client.
(Architecture for this kind of secure hardware has been proposgdire[1]).

4.2.2 Database Encryption with counters

The procedure used for database encryption is presented in Algs tolinposed of two phases: (1)
record-level and (2)lookup-table encryption. Record-level encryption is relatively trivial; it is shown
in lines 1-6. First, Server shuffles record locations in the databasen, Thgads eachiz; up to the
maximum size of all records, picks a random symmetric kegnd encrypts; aser; = Ency; (R;).
Lookup-table (LTable) encryption, shown in lines 8-14, refers toygimn of attribute name and value
pairs. It enables efficient lookup and record decryption.

We use (A)PSI-DT protocols with pre-distribution (discussed abovephdiviously” compute a
function, whose inputis a Client set element — specifically, the concatarwdtattribute and value. Here

12

Algorithm 1. Database Encryption

1 Shuffle{R;}1<j<w;
2 mazlen < max length among alR;;
3 for1<j<wdo

4 PadR; to maxlen;

5 kj — {0,1}'%%;

6 erj «— Ency, (R;);

7 for1 <! <mdo

8 tk;, —Token attr;,val;,);
9 tagjyl — H,y (tijHCtTj,l);
10 k;gl — Hz(tkj,lHCt’r’j,l);

11 k', — Hs(thk;||ctrs);

12 ekji — Ency (kj);

13 eindj; — Encyr (5);

14 LTable;; < (tagj,ek;,eind;j);
15 end

16 end

17 ShuffleLTable with respect tgj andl;
18 EDB « {LTable, {er;}1i<j<w};
19 Off-line transferEDB to IB.

we useToken to denote the result of this function computation. When creating LTableeSeomputes
tk;; = Token(attr;,val;;) for all combinations ofi and! (line 8). For example, in encrypting database
in DT10-2, Server computes an RSA signattitg; = H (attry, valﬂ)d and, in IBE-based APSI-DT, it
computesk;; = e(Q, H(attr;,val;;))*. (See AppendikA for protocol details.)

We usectr;; to denote the index of duplicate value for thth attribute. In other wordsir;; is the
counter of times whereal; ; = val;;,¥j’" <= j. For example, the third occurrence of value “Smith”
for attribute “Last Name” will havetr;; = 3.

Next, Server computesg;; = Hi(tk;ul|ctrj), k) = Ha(thjul|ctry,) andk?, = Hs(tkl|ctrs),
where Hy, Ho, H3 are different hash functions (lines 9-11). In practice, we can implerfig(itn),
Hy(m), Hsz(m) using SHA-1[[24] as: SHA-1L||m), SHA-1(2||m), SHA-1(3||m), and so on.

Note thattag;, is later used as lookup tag during Client qud«}/l is used for encrypting symmetric
key k;. k7, is used for encrypting the index d;.

Next, Server computesk;; = Enck/ (K5) andemd]l = Encku (7) (lines 12-13). It then inserts

eachtag;,, ek;; andeind;,; into LTabIe (Ilne 14), which |s{tag]l,ek]l,emdjl}1<j<w 1<i<m- Next,
Server shufﬂes LTable (I|ne 17). The resulting encrypted dataldasd;, is made up of LTable and
{er;}i, (line 18). Finally, Server transfers EDB (off-line) to IB.

4.2.3 Query lookup

Query lookup procedure is described in Alg. 2 (see also Figure 10).ntGlimduces a simple SQL
query, i.e. “SELECT * FROM DB WHEREittr* = val* LIMIT t". For ease of exposition, we
assume that Client only wants to retrieve fitshatching records. (In the next section, we describe
how to cope with the case wheris omitted from Client query.) In step (1), Client runs any (A)PSI-
DT with pre-distribution over a singleton set wifljattr*, val*)} as its input and obliviously evaluates
tk* = Tokenattr*, val*) with Server. In step (2), Client sets a countéom 1 to ¢, and computes a set
of tags{tag] = H,(tk*||i)}1<i<: and a set of index decrypting keys! = Hs(tk*||i)}1<i<:. Next,
Client sendqtag;, k' }1<i<: to IB. For each € [1,¢], IB searches fotag; in LTable in step (3). If there
is no result, IB putsL in response set. If a tupleéag;, ek;, eind; ;) is found wheréag;; = tag;, IB
decryptseind;; and recovers indexX by runningDecy (ek;;). IB then putser; andek;;, which equal

to er! andek;, to the response set. In step (4), Server returns the respor{sé:setr; }1<;<; to Client.

In step (5), Client computes a set of decrypting kéys = Ho(tk*||i)}1<i<¢. For eachi € [1,¢], it
obtains decryption key; = Decy (ek), and decryptsr; by R; = Decy, (er).

13

Algorithm 2 Query Lookup
Step 1: Client anonymously evaluatés = Token(attr®,val®);
Step 2: Client send&tag; = Hi(tk*|||i), ki = Hs(tk*|||é) }1<i<: t0 1B;
Step 3: IB computes:
for1 <i<tdo

find LTable; ,
such thatag;,; = tag;
ek; — ek;,
j' = Decy(eind;,;)
er; «— erj/l

end

Step 4: IB transfer§ek;, er; }1<i<: to Client.
Step 5: Client computes:
for1 <i<tdo
K, = Ha(th"||i)
ki = Decy (ek;)
R, = Dec;; (ery)
end

4.2.4 Optimizations

If tis too large (i.e., there are fewer thamatching records) or it is simply omitted from the query,
computing all theag! andk! at once in step 3 might be time consuming or impossible. Note that Client
can retrieve records one by one from IB by gradually incrementingteourn each round. Thus, a
possible solution is to let Client compute only oftgy” and k!’ each time and pipe-line computation
of tagy,, andkj_; with the retrieval ofek; ander; (step 4-5). The query terminates when either
responses at are (is) received. This way, overhead incurred in step 3 amounts to ¢atigouof only
one tag and one key. Furthermore, Client does not need to estimate howagamnd keys to compute
in step 3.

We can further optimize the computationedf; ; andeind,; (steps 12—13 in Ald.]1). Since we use a
counter as part of the input to compute, (respectivelyk’;), eachk’; (respectivelyk?) is distinct for
anyj,l. Bothk’, andk’, are 160-bit values, whilg; is 128 bits ang is clearly smaller. Hence, we can
use one-time-pad-like encryption (i€k;; = k%, & k; andeind;; = k7, © j) to speed up computation.
In Alg. 2, Decyy (eind;,;) becomes:) & eind;; and Decy, (ek;) changes té; & ek

4.2.5 Challenges Revisited

We now show how the proposed architecture addresses challengesseidén Section 4. 1.
Multi-sets. The counter used during database encryption makesteagh(resp.ek;;, eind; ;) distinct
in LTable, thus hiding plaintext patterns.
Data Pointers. Storingeind;;, instead ofj, in LTable prevents Server from revealing the relationship
between an entr{.Table;; and its associated record;.
Bandwidth Overhead. Once Server transfers its database (off-line) to IB, the latter sendstlurge
records that match the query back to Client, instead of the entire encryguttbde.

Liability. Since IB assumes the role of the custodian of the encrypted database,o@lienbtains the
result of its queries.

4.2.6 Addressing Privacy

The introduction of IB and the use of counter mode in database encryptisides additional
privacy properties. We use the tetnansaction to mean a complete query procedure from the time a
SQL query is issued, until the last response from IB is receivedeteval is defined as the receipt
of a single response record during a transaction. We claim that, if Cligfarpes only one query
transaction, as in Alg]2, 1B can link alhg;'s values in step 3 to the sartwtr, val) pair. This poses the

14

same risk as discussed in the “multi-set” challenge. However, as mentionedtiar$4.2.b, the counter
allows Client to retrieve matching records one by one. Therefore, Clanthoose to add a random
delay between two subsequent retrievals in a single transaction. If thibutisin of additional delays
is indistinguishable from time gaps between two transactions, IB can not teliffeeence between two
continuous retrievals within one transaction from two distinct transactiossa iesult, IB cannot infer
whether two continuously retrieved records share the Sartte, val) pair and the distribution of the
attribute value remains hidden.

We also note that the introduction of IB does not violate Client or Serveagyi Client privacy
is preserved because Client obliviously computes a token which is noekbéry Server. IB does not
learn Client interest, since Client input to I1Bug) is statistically indistinguishable from a random value.
Server privacy is preserved because Client does not gain anyiefdranation by interacting with IB.
Finally, IB only has the encrypted database and learns no plaintext.

Limitations. We acknowledge that PSST has certain limitations. Over time, as it serves ey

IB gradually learns the relationship between tags and encrypted rettoaigih pointers associated
with each tag. This issue can be mitigated by letting Server periodically rggaribe database. Next,
if Server and IB collude, Client privacy is lost, since IB leatng that Client seeks, and Server learns
an (attr,val) pair eachtag is related to. On the other hand, if Client and IB collude, the liability of
encrypted database possession by Client becomes a problem onceRgally, Server unlinkability

is guaranteed only as far as Client. Server unlinkability as far as IB isuaragteed, since IB learns
about all changes in Server database.

Finally, PSST currently supports only equality and disjunctive SQL quetiefact, the latter are
implemented by treating each equality condition inside an “OR” clause as atepgaery and removing
duplicate responses. Whereas, supporting conjunctive queries vemplate treating all combinations
of (attr,val) pairs as Server set elements. Thus, set size would become exponetgigh#nof the
number of attributes. This remains a challenge for future work.

4.2.7 Comparison to MySQL

0.1 17 1.24

MySQL —e— DT10-2 v.s. MySQL —e— DT10-2 v.s. MySQL —e—
DT10-2 -erotree IBE-APSI v.5. MySQL === 1.22 F, IBE-APSI v.5. MySQL --rt-ee
0.08 | LIBE-APSI e 16 ™
1.2 A
15
@ 006 3 g 118
[} s 2 14 " 2 116
£ o = =
- = =
——eo— o —o— O — 9 13 L
0.02 " 112
L2y S T 11 |
0 11 1.08
1 10 100 1000 10000 100000 1 10 100 1000 10000 100K 1M 10M 100M
Response Set Size Response Set Size Record Size (B)

(a) Index lookup speed comparison. (b) Comparison to MySQL w.r.t. (c) Comparison to MySQL w.r.t. record
response set size. size.

Figure 11: Comparison to MySq|l

In Sectior 3.1, we have shown that DT10-2 and IBE-APSI are the miisieet PSI-DT and APSI-
DT protocols with pre-distribution, respectively. Therefore, we implentbteh protocols as the build-
ing blocks of PSST. We run both IB and Server on an Intel Harpertogyme with two Xeon E5420
CPUs (2.5 GHz) and2G B RAM. Client runs on a laptop with Intel Core 2 Duo CPU (2.2 GHz) and
4G B RAM. Client is connected to IB and Server via Gigabit ethernet. The ds¢alas 45 searchable
attributes and 00, 000 records. All records have the same size, which we vary during expetsme
We compare our results against a MySQL setup for the same database \eitimmdnabled for each
attribute. MySQL is running on the same machine as Server. Note that eadhiseaveraged over ten
independent tests.

15

First, we comparendex lookup time, defined as the time between SQL query issuance and the
receipt of the first response from IB. We select a set of SQL quénegsreturn 0, 1, 10, 100, 1000,
10000 ¢-10%) responses, respectively and fix each record siz@@¢B. Figure[11(d) shows index
lookup time for DT10-2, IBE-APSI and MySQL in terms of the responsesgmt. Both DT10-2 and
IBE-APSI incur almost the same overhead for and are 1.5 times more éxg#mn MySQL. We also
measures index lookup time in terms of general record size. Since the mesuigilar to the previous
experiment, we omit them here.

Next, we test the impact of response set sizeéatal query time, defined as the time between SQL
query issuance and the arrival of the last response from IB. F[glfle) shows the time for Client
to complete a query for a specific response set size divided by the time bgkbtySQL. Results
gradually converge ta.1 for increasing response set sizes. This is because of the extra delaseth
by cryptographic operations (as part of oblivious function evaluati@ig amortized by subsequent
data lookup and decryption.

Last, we test the impact of record size on total query time. We fix respaisaze at 100 and
vary each record size betwwen 100KB and 100MB. Fifure 1.1(c) stibe/ratio between DT10-2 and
MySQL, IBE-APSI and MySQL, respectively. Again, results graduatipverge tal.1 with increasing
of record size which occurs because the overhead of symmetric rdeorgption becomes dominant
with growing record size.

In summary, both index lookup time and total query time of our implementation arhystegs than
double their respective counterparts in MySQL.

4.3 Related Privacy-Preserving Database Systems

Privacy-preserving database querying has been considered mwmik. Although prior results
support more complex query types (not just equality and disjunctiveeg)ethey exhibit certain limita-
tions, such as: (1) high computation overhead and no protection of datdbta, e.g.[@@, (2) lack of
provable privacy guarantees, e.q../[33,[37, 8], or (3) requirefoeseveral independent trusted parties,
e.g., [49 o[

Some recent work focused on automating and speeding up secure tiw@g@aputation tools[7,
[36,[47]. On one hand, such solutions meet more theoretically-soundtgeeguirements (e.g., do
not require the random oracle model or assume arbitrarily malicious adlies=xs On the other hand,
they result into much lower efficiency (several orders of magnitude)ceSihese solutions address
different problems and scenarios (and because of space limitationg)ns&ler a detailed discussion
and comparison with our toolkit to be out of the scope of this paper.

5 Conclusions & Future Work

In this paper, our goal was to drag some useful and efficient prpaeserving tools out of their
cryptographic “closet” and demonstrate that privacy-preservindrghaf sensitive information is prac-
tical today. Indeed, we have shown that some recent Private Set Intersectlorigees are efficient
enough to serve as a basis for real-world large-scale systems. Wanmagenented a simple database-
like system that allows Client, armed with one or more (optionally authorized}lsetements or key-
words, to search over Server database, such that no extra infornatliearned by either party. In
the course of designing and implementing our toolkit, we encountered (aindsseéd) a number of in-
teresting issues that led to specific architectural choices. As confirmexidagyimental evaluation, our

1%0lumofin and Goldberd [45] construct a privacy mechanism for Kaybased PIR (KPIR[17]) and provide a transition
from block-based PIR to SQL-enabled PIR. However, similar to KRIR#scurs high (several order of magnitudes) compu-
tational complexity, and allows clients to obtain other bits of database datar@élye query result).

HChow, et al.[[I9] propose a two-party query computation model oigtrilllited databases that involves three entities: a
randomizer, a computing engine, and a query front-end. Local emsste queries are randomized by each database and
aggregate results are de-randomized at the front-end.

16

PSST toolkit offers anenu of privacy-preserving services at reasonable additional costiogdase-line
MySQL implementation.

Much remains to be done: First, PSST does not currently support adivjenfAND) queries across
multiple attributes. This is not difficult to do haely, however, the overhead is likely to be quite high
(exponential in the number of attributes). Second, some on-going wddevi®SI protocols that hide
the size of Client input (set). We intend to incorporate them into PSST. Fimadlplan to explore ways
to support “fuzzy” querying, i.e., where Client input represents nomnalized data.

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovege Joins. INICDE’ 06, 2009.

[2] R. Agrawal, A. Evfimievski, and R. Srikant. Informatioharing across private databasesSIGMOD’ 03,
2003.

[3] B. Applebaum, H. Ringberg, M. Freedman, M. Caesar, ariReXford. Collaborative, privacy-preserving
data aggregation at scale. RETS 10.

[4] D. Beaver. Commodity-based cryptography. 9FOC’ 97, pages 446-455, 1997.

[5] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. ygaskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credential€ripto’ 09, 2009.

[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Sentarikhe one-more-RSA-inversion problems and
the security of Chaum’s blind signature schermurnal of Cryptology, 16(3):185-215, 2008.

[7] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a systfor secure multi-party computation. In
CCS 08, 2008.

[8] E. Bertino, J. Byun, and N. Li. Privacy-preserving daaé systems-oundations of Security Analysis and
Design, 2005.

[9] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persi&ulic key encryption with keyword search. In
Eurocrypt’ 04, 2004.

[10] D.Boneh and M. K. Franklin. Identity-based encryptfoom the weil pairing.S AM Journal of Computing,
32(3):586-615, 2003.

[11] X. Boyen and B. Waters. Anonymous Hierarchical IdgaBiased Encryption (Without Random Oracles).
In Crypto’ 06, pages 290-307, 2006.

[12] C. Cachin. Efficient private bidding and auctions withablivious third party. I"CCS 99, 1999.

[13] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. @amd Anonymous ldentity-Based Encryption and
Authorised Private Searches on Public Key Encrypted Dat&KIC' 09, 2009.

[14] J. Camenisch, G. Neven, and A. Shelat. Simulatabletadapblivious transfer. IrEurocrypt’ 07, pages
573-590, 2007.

[15] J. Camenisch and G. M. Zaverucha. Private intersedafarertified sets. IrFinancial Cryptography’ 09,
2009.

[16] Caslon Analytics. Consumer Data Lossesi p: / / www. casl on. com au/ dat al ossnot e. ht mi
[17] B. Chor, N. Gilboa, and M. Naor. Private informationrieval by keywords Manuscript, 1998.

[18] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. vate information retrieval.Journal of the ACM
(JACM), 45(6):965-981, 1998.

[19] S. Chow, J. Lee, and L. Subramanian. Two-party compartanodel for privacy-preserving queries over
distributed databaseBIDSS 09, 2009.

[20] J. Daeman and V. Rijmen. AES proposal: Rijndael. 1999.

[21] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Beipreserving policy-based information transfer.
In PETS 09, pages 164-184, 20009.

17

http://www.caslon.com.au/datalossnote.htm

[22] E. De Cristofaro and G. Tsudik. Practical private seeiisection protocols with linear complexity. In
Financial Cryptography and Data Security’ 10, pages 143-159, 2010.

[23] W. Du and Z. Zhan. A practical approach to solve secur#ifparty computation problems. INSPW 02,
2002.

[24] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SH2002.

[25] T. ElGamal. A public key cryptosystem and a signatutteesee based on discrete logarithnhSEE Trans-
actions on Information Theory, 31(4):469-472, 1985.

[26] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting paisy breaches in privacy preserving data mining. In
PODS 03.

[27] Federal Bureau of Investigation. Terrorist Screer@amnter.
http://ww. fbi.gov/terrorinfo/counterrorisnitsc. htm

[28] Free Software Foundation. The GNU MP Bignum Libreny.t p: // gnpli b. org/.

[29] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Kesdheearch and oblivious pseudorandom functions.
In TCC' 05, pages 303-324, 2005.

[30] M. Freedman, K. Nissim, and B. Pinkas. Efficient privatatching and set intersection. Hurocrypt’ 04,
pages 1-19.

[31] C. Gentry and Z. Ramzan. Single-database privatenmétion retrieval with constant communication rate.
In ICALP’05.

[32] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Reating data privacy in private information retrieval
schemes. IBTOC’ 98, 1998.

[33] H. Hacigimus, B. lyer, C. Li, and S. Mehrotra. Executing SQL over epted data in the database-service-
provider model. ISSGMOD’ 02, 2002.

[34] C. Hazay and Y. Lindell. Efficient protocols for set irdection and pattern matching with security against
malicious and covert adversaries.TE8C' 08, pages 155-175, 2008.

[35] C. Hazay and K. Nissim. Efficient Set Operations in thesence of Malicious Adversaries. RKC' 10,
2010.

[36] W. Henecka, S. Kgl, A.-R. Sadeghi, T. Schneider, andeéhvgnberg. TASTY: Tool for Automating Secure
Two-partY computations. I€CS 10 (to appear), 2010.

[37] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-presagvindex for range queries. MLDB’'04, pages
720-731, 2004.

[38] B.Huberman, M. Franklin, and T. Hogg. Enhancing privand trust in electronic communities. HCC’ 09,
1999.

[39] S. Jarecki and X. Liu. Efficient Oblivious PseudorandBanction with Applications to Adaptive OT and
Secure Computation of Set Intersection.TleC’' 09, pages 577-594, 2009.

[40] S. Jarecki and X. Liu. Fast secure computation of sergction. IrSCN’ 10 (to appear), 2010.
[41] L. Kissner and D. Song. Privacy-preserving set opereti INCRYPTO’ 05, pages 241-257, 2005.
[42] B. Lynn. PBC: The Pairing-Based Cryptography Libreing.t p: 7/ crypt o. st anf or d. edu/ pbc/|

[43] S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. BatiddotGrep: Finding Bots with Structured Graph
Analysis. InUsenix Security’ 10, 2010.

[44] W. Ogata and K. Kurosawa. Oblivious keyword seardsurnal of Complexity, 20(2-3):356—371, 2004.
[45] F. Olumofin and I. Goldberg. Privacy-preserving queiser relational databases. PETS 10, 2010.
[46] P. Paillier. Public-key cryptosystems based on coritpakegree residuosity classes.Huarocrypt’' 99, 1999.

[47] B. Pinkas, T. Schneider, N. Smart, and S. Williams. $edwo-party computation is practical. HKsi-
acrypt’ 09, 2009.

[48] M. Rabin. How to exchange secrets by oblivious transfé&-81, Harvard Aiken Computation Lab, 1981.

18

http://www.fbi.gov/terrorinfo/counterrorism/tsc.htm
http://gmplib.org/
http://crypto.stanford.edu/pbc/

[49] M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure agmous database search. QCSW, pages
115-126, 2009.

[50] R. Rivest. The RC4 Encryption AlgorithnRSA Data Security Inc., 1992.

[51] Sherri Davidoff. What Does DHS Know About You?
http://philosecurity.org/ 2009/ 09/ 07/ what - does- dhs- know about - youl

[52] R. Sion. On the computational practicality of privatéormation retrieval. IINDSS 07, 2007.
[53] D. Song, D. Wagner, and A. Perrig. Practical technicfoesearches on encrypted data.S%P’ 00, 2000.

[54] Transport Security Administration. Secure Flight:eTiNo-Fly” list.
http://wwv. t sa. gov/ approach/ secure flight.shtm

[55] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Bogdan encrypted and searchable audit log. In
NDSS 04, 2004.

[56] Wikipedia, The Free Encyclopedia. Secondary Sec@iyeening Selection.
http://en.w Ki pedi a. org/w ki / Secondary_Security Screeni ng_Sel ection

[57] A.Yao. Protocols for secure computations.HOCS 82, pages 160—164, 1982.

Appendix

A State-of-the-art PSI-s

In the following, we thoroughly review state-of-the-art PSI protocols.di¢cuss both the protocols
implemented in the PSST toolkit, and those not included. During our discusssoalso motivate our
choices of PSI protocols providing the best combination of privacyajuaes and efficiency. We focus
on constructs providindata transfer (see Sectiofn 211). We assume honest-but-curious adversaries.

Notation. We now introduce some terminology. We US&c(-) andDecy(-) to denote symmetric key
encryption and decryption (under kéy, respectively. Public key encryption and decryption — under
keyspk and sk — are denoted by, (-) and Eq(-) !, respectively. Theny = Sign,, (M) denotes a
digital signature computed over a messageising the secret kesk. OperatiorVrfy,; (o, M) returnsl

or 0 indicating whether is a valid signature oiM/. Z3,; refers to a composite-order RSA group, where
N is the RSA modulus. We usg; to denote a cyclic group with a subgroup of orgewherep and

q are large primes, anglp — 1. We useH (-), Hi(-), Ha(-), H3(-) to denote different hash functions.
Finally, we assume Client and Server set sizesapdw, respectively.

A.1 PSI-DT without Pre-distribution

FNPO4. Freedman et all [30] usablivious polynomial evaluation (OPE) to implement PSI. Their ap-
proach can be slightly modified to support PSI-DT. The modified protoat¢reoted with FNP04 —
works as follows: Client first setups an additively homomorphic encrystitveme, such as Paillieér [46],
with key pair (pk., sk.). Client defines a polynomigi(y) = [1_;(y — ¢i) = >+, a;y’ Whose roots
are its inputs. It encrypts each coefficientunder its public keyk. and sends encrypted coefficients
{Encyr.(a;)}¥_, to Server. Since the encryption is homomorphic, Server can evaliratef (s;)) for
eachs; € S without the support from Client. Then Server retuf@&nc(r;- f(s;)+s;), Enc(rj-f(s;)+
dataj))}_, to the Client where; andr’; are fresh random numbers for each inpu$irClient, for each
returned pair(e;, e,), decryptse; by computinge’ = Decgy, (e;). Then ifd € C, the Client continues
to decrypte, and gets the associated data. Otherwise, Client only gets some randorandlmoves
onto the next returned pair. In order to speed up the performanced4-blh use modified EIGamal
encryption [25] instead of Palillier. Specifically, Client ugésinstead ofz; as the input to the EIGamal
encryption. And when it decrypts, it recovers;® . Client can still decide whethet € C by comparing
¢¢ 10 g%, Ve; € C. Interms of data, Server can choose a randomgkeyand uses it to symmetrically
encryptdata;. Then Server sendg Enc(r; - f(s;) + s;), Enc(r; - f(s5) + kj), Enc 1, (dataj))}i_q

19

http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you
http://www.tsa.gov/approach/secure_flight.shtm
http://en.wikipedia.org/wiki/Secondary_Security_Screening_Selection

to Client. If Client can recovey”s, it can also decrypiata;. Using balanced bucket allocation to speed
up operations, Client overhead is dominatedly + w) |¢|-bit mod p exponentiations (in EIGamal).
Whereas, Server overhead is dominatediw log log v) |¢|-bit modp exponentiations. Also, note that
a recent result i [35] presents an improved construction of FNP wifRGWM in the malicious model,
with similar asymptotic overhead but more expensive underlying cryptbgraperations.

KSO05. Kissner and Sond [41] also use oblivious polynomial evaluation to carisérwariety of set
operations. However, their solution is designed for mutual intersectionnad-set that may contain
duplicate elements, and it is unclear how to adapt it to transfer associdtedAlso, their technique
incurs quadratic@(vw)) computation (but linear communication) overhead. As we will use a differen
method to handle multi-sets (see Seclion 4.2.1) and we only consider oneSihayePprefer FNP04 as

a PSI-DT solution based on OPE.

DT10-1 De Cristofaro and Tsudik present an unlinkable PSI-DT protocol (Biop [22]) with linear
computation and communication complexities. This protocol, denoted as DTdgedgtes as follows:
The setup phase yields primgsindg, s.t.¢|p — 1, and a generatay of the subgroup. In the following,
we assume computation done madFirst, Client sends to Serve¥ = [([];_, H(c;)) - g*] where
R, is randomly selected frorid,. Also, for eachi, Client sends); = [([[,.; H(c1)) - g™, where

the R..;'s are random irZ,. Server picks a randoiR; in Z, and replies withZ = g'ts andy; = yiRS
(for everyy; it received). Also, for each item;, it computesk,.; = (X/H(s;))%:, and sends thtag
t; = H1(Ks,) with the associated data record encrypted uder Hy (K,). Client, for each of its
elements, computes..; = v/ - ZHe . 7—Rei gnd the tag, = Hy(K.;). Only if ¢; is in the intersection
(i.e., there exists an element = ¢;), Client finds a pair of matching tads),¢;). Besides learning
the elements intersection, Client can decrypt associated data recordg Hy ({<..;). Client overhead
amounts ta)(v) |g|-bit modulop exponentiations and multiplications and Server overheélist w)
|g|-bit modulop exponentiations. Communication complexity is linead v + w).

As a result, we consider FNP and DT10-1 protocols in the context of-&udimorized) PSI-DT
without pre-distribution. (We discuss pre-distribution optimizations below). Notettieste protocols
also provide the optional requirements of Server and Client unlinkability.

A.2 PSI-DT with Pre-distribution

JL09. Jarecki and Liu[39] (following the idea i [34]) give a PSI based dtivious PRF (OPRF)[29].

We denote this protocol as JL09. Recall that an OPRF [29] is a two-partyqnl that securely computes

a pseudorandom functiofy(-), on keyk contributed by the Server and inputcontributed by Client,
such that Server learns nothing abauthile Client learnsfy (). The main idea is the following: First,

for every items; € S, the Server publishes; = fi(s;). Then, Client, for every item; € C, obtains

w, = fi(c;) by running the secure computation of the OPRF with Server, so that Skvgsmot learn
Client input, and Client learns that € C N S if there existsy; s.t. v, = u;. JLO9 incursO(w + v)
Server exponentiations, aide{v) Client exponentiations. Note that in our implementations we use the
improved OPRF construction presented_in [5].

JL10. Another recent work by Jarecki and Liu_[40] (denoted as JL103rkyes an idea similar to
the OPRF, namely the newly-introducPBdrallel Oblivious Unpredictable Function (POUF), fx(x) =
(H(z)* mod p), in the Random Oracle Model secure under @m@e-More-Gap-DH assumption in
ROM [6]. During pre-distribution, Server publishes = H (fi(s;)) = Hi(H(x)), for eachs; € S.
Associated data is encrypted under keys obtaindd#g;(s;)). Then, Client obtaingj,(c;) as follows.
Client picks a random exponeatand sendg; = H(c;)“ to Server, that replies with = y*, so that
Client recoversfy(z) = 2'/*. Beingu, = Hi(fx(c:)), Client learns that; € C N S if there exists
u; s.t. u, = u; and may also decrypt the corresponding data. Note that this solution reseting
set intersection protocols previously given byl[26, 38]. The computalttiocomplexity of this protocol
amounts ta)(v) on-line exponentiations for both Server and Client, as Server carrpecegs (off-line)
its O(w) exponentiations. Note that random exponents can all be taken frongeosph e.g., they can
160-bit long, similar to DT10-1.

20

DT10-2. In Fig. 4 of [22], De Cristofaro and Tsudik present a PSI-DT (secunder the One-More-RSA
assumption[6]), based on blind-RSA signatures. We denote this pratitboDT10-2. It achieves the
same computational complexity as JL10, but (1) Server computes RSA siegmétly., 1024-bit exps),
and (2) Client workload is reduced to only multiplications if the RSA public keyis chosen short
enough (e.ge = 3).

In summary, we consider JL09, JL10 and DT10-2 in the context of PISWwidh pre-distribution.
Note that, although faster than protocols without pre-distribution, theseqmis do not achieve Server
unlinkability.

A.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig. 2 of [22], De Cristofaro and Tsudik also present an APSI-IXhibéque mirroring
the PSI-DT discussed above (i.e., DT10-1). We denote this protocol 48-BPSlI. It works as follows:
Client first obtains authorization from the court for its elementwhere an authorization corresponds
to an RSA-signatures; = H(c;)?. Then, Client sends Servef = (TLiZ; 04) - g®] for a randomR,..
Then, for each element, it sendsy; = [([], ,; 1) -gfte1], where theR...;'s are additional random values.
Server picks a random valuBy, and replies withZ = g°%s, y/ = yfRS (for each received;). Also, for
each element;, she compute&;; = (X¢/H(s;))", and sends thiag t; = H'(K.;) and the asso-
ciated data record encrypted under the key= H"(K.;). Client, for each of its elements, computes
K.; =y, Zfe . 7= Rei and the tag) = H'(K,;). Client can find a pair of matching td¢}, ¢;) only

if ¢; is in the intersection and; is a valid signature on;, Besides learning the elements in the intersec-
tion, Client can decrypt associated data records. The computatioreaekidO (v) exponentiations for
Client whileO(v + w) for Server.

CZ09. Camenisch and Zaverucha [15] provide mutual set intersection with catitficon both parties’
input. The proposed protocol builds upon oblivious polynomial evaluaimhhas quadratic computa-
tion and communication overhead. Also, it does not provide data transfer.

As aresult, we consider the DT10-APSI protocol in the context of ABBixithout pre-distribution.
Note that DT10-APSI also provides Server and Client unlinkability, as agelbrward security.

A.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 3 ofi[21] presents a protocol based on Bonahifin Identity-based
Encryption [10], which can be adapted to APSI-DT. We denote this pobts IBE-APSI. Note that
such a construct is described in the context of a different primitive vaByiPreserving Information
Transfer (PPIT). However, it can be trivially converted to APSI-B&€ [22]). First, the authorization
authority (acting as the IBE PKG) generates a prim@vo groupsG, G, of orderg, a bilinear mag: :

G1 x G1 — Go. Arandoms € Z, is selected as a secret master key. Then, a random genErat@i

is chosen, and) is set such thaf) = s - P. (P, Q) are public parameters. Client obtains authorization
for an element; as an IBE secret key; = s - H(¢;). In the pre-distribution phase, Server first selects
arandomz € G, and then, for eachs;, data;), publisheqt;, e;) wheret; = Hy(e(Q, H(s;))?) and

e; is the IBE encryption oflata; under identifiers;. Then, Server gives Clien® = =P and Client
computest; = Hi(e(R,0;)). For anyt;, s.t. t; = t;, Client can decrypt;. The protocol can be
speeded up by encrypting under symmetric keyi,(e(Q, H(s;))*). Remark that IBE-APSI has two
drawbacks compared to APSI-DT: it provides neither Server unlinkalpidityforward security.

21

	Introduction
	Roadmap & Contributions

	Preliminaries
	Private Set Intersection (PSI)
	Desired Properties
	Related Primitives

	Implementing Efficient PSI-s
	Experimental Analysis
	Comparison with PIR

	Large-Scale Privacy-preserving Sharing of Sensitive Information
	Strawman Approach: Problems and Challenges
	PSST Design
	Architecture
	Database Encryption with counters
	Query lookup
	Optimizations
	Challenges Revisited
	Addressing Privacy
	Comparison to MySQL

	Related Privacy-Preserving Database Systems

	Conclusions & Future Work
	State-of-the-art PSI-s
	PSI-DT without Pre-distribution
	PSI-DT with Pre-distribution
	APSI-DT without Pre-distribution
	APSI-DT with Pre-distribution

