
Privacy-Preserving Sharing of Sensitive Information
is (Really) Practical

Emiliano De Cristofaro, Yanbin Lu, Gene Tsudik
University of California, Irvine

Abstract

The need for controlled sharing of sensitive information occurs in many realistic everyday sce-
narios, ranging from critical (e.g., national security) tomundane (e.g., social networks). A typical
scenario involves two parties, at least one of which seeks some information from the other. The
latter is either willing, or compelled, to share information. This poses two challenges: (1) how to
enable this type of sharing such that parties learn no (or minimal) information beyond what they are
entitled to, and (2) how to do so efficiently, in real-world practical terms. The first challenge has
been addressed by prior work that yielded cryptographic techniques, such as Private Set Intersection
(PSI) protocols. However, such tools have only very recently become efficient enough for actual
deployment.

In this paper, we show how some cryptographic privacy techniques are implemented in a real
working system, called PSST: Privacy-preserving Sharing of Sensitive information Toolkit. PSST
functions as aprivacy shield that protects parties from disclosing their respective sensitive infor-
mation. The design and deployment of PSST prompts a number ofnew and interesting practical
challenges, which we address in this paper. We describe the menu of services offered by PSST and
present experimental results that attest to the practicality of the attained privacy features.

1 Introduction

In today’s increasingly digital world, entities (companies, agencies, and individuals) are often con-
fronted with a dilemma regarding information privacy. On one hand, they need to keep sensitive data
confidential. On the other hand, they might be either motivated or forced to share some of that data.
There are several scenarios where this dilemma is impossible to resolve, unless (at least) one party
sacrifices some privacy. Consider the following examples:

Airline Safety. Department of Homeland Security (DHS) checks whether any passengeron each flight
from/to the United States must be denied boarding or disembarkation, based onseveral secret lists,
including: theNo Fly List [54], the Terrorist Watch List [27], and theSecondary Security Screening
Selection List [56]. Today, airlines surrender their entire passenger manifests to DHS, together with a
large amount of sensitive information, such as credit card numbers [51]. Besides its obvious privacy
implications, thismodus operandi poses liability issues with regard to (mostly) innocent passengers’
data and concerns about possible data loss1. Ideally, DHS would obtain information pertainingonly to
passengers on one of those lists, without disclosing any information to the airlines.

Social Networking. A social network user (Alice) wants to find out whether there are any other users
nearby with whom she has friends, interests or group memberships in common, without relying on
a third-party provider, e.g., Facebook. Some of this information might be very sensitive, e.g., reveal
Alice’s medical issues or sexual orientation. Today, users like Alice wouldhave to broadcast their
information in order to discover a nearby match, thus compromising privacy.Whereas, they might be
willing to disclose sensitive information only to users with amatching profile.

1See [16] for a litany of recent incidents where large amounts sensitive data were lost or mishandled by government agencies.

1

Healthcare. A health insurance company needs to retrieve information about an insured(client) from
other parties, such as other insurance carriers or hospitals. The latter cannot provide any information on
other patients and the former cannot disclose the identity of the target client.

Law Enforcement. An investigative agency (e.g., the FBI) needs to obtain electronic informationabout
a suspect from other agencies, e.g., local police, the military, the DMV, the IRS, or the suspect’s em-
ployer. In many cases, it is dangerous (or simply forbidden) for the FBIto disclose the subject of the
investigation. For its part, the other party cannot disclose its entire data-setand trust the FBI to only
extract desired information. Furthermore, FBI requests might need to be pre-authorized by some ap-
propriate authorization authority (e.g., a federal judge). This way, the FBI can only obtain information
related to authorized requests.

Other examples include recent developments incollaborative denial-of-service attacks identifica-
tion [3] and botnet detection [43].

1.1 Roadmap & Contributions

Motivated by the above examples, this paper presents the design and implementation of the Privacy-
preserving Sharing of Sensitive information Toolkit (PSST). PSST functions as aprivacy shield that
protects parties from disclosing more than the required minimum of their respective sensitive informa-
tion. Our “roadmap” for the design of PSST is as follows:

1. We introduce the concept of privacy-preserving sharing of sensitive information and identify its
privacy requirements and system assumptions. We then examine techniquesfor Private Set Inter-
section (PSI) and argue that they are well-suited as the basic building blockof our system. We
also discuss why other related cryptographic primitives do not meet efficiency, system, or privacy
criteria.

2. We explore several PSI flavors, corresponding to different problems and scenarios and we moti-
vate the need for a comprehensive toolkit that provides amenu of privacy-preserving operations
targeted to sharing sensitive information. We includeoptimal implementations of most prominent
PSI protocols, selecting those best-suited for different scenarios.

3. Next, we look at a realistic large-scale scenario that captures a general class of information shar-
ing and mimics the operation of database querying. In the process of adapting PSI protocols, we
discuss a number of encountered challenges. We then present and discuss the design of the PSST
toolkit, which demonstrates, via real working code running on a common hardware/software plat-
form, that protecting privacy in sharing sensitive information is both possible and practical.

Contributions. This paper makes several contributions. First, we show that PSI is the mostappropriate
and efficient building block for privacy-preserving sharing of sensitive information. We then identify
a number of challenges in extending PSI to large-scale database applications, such as handling multi-
sets, data pointers, high communication overhead as well as liability issues. Finally, we design an
architecture that allows privacy-preserving interactions (similar to database querying), while overcoming
above challenges and achieving negligible overhead compared to a standard MySQL-based database
interface.

Toolkit. Our research was paralleled by an implementation effort that yielded the open-source PSST
toolkit.2 PSST provides users and application developers with several notable features. It includes
optimized implementations of several prominent PSI protocols. Since they achieve somewhat differ-
ent privacy properties (along different overhead and underlying assumptions), our toolkit allows users
to select the PSI technique best-suited to the specific application. Finally, PSST provides a versatile
privacy-preserving querying system, that combines efficiency, usability, and provably-secure privacy
guarantees for both querier and database server.

2PSST toolkit source is available athttp://code.google.com/p/psst-toolkit/.

2

http://code.google.com/p/psst-toolkit/

Paper Organization. Section 2 overviews state-of-the-art PSI protocols, presents privacy definitions,
and motivates choosing PSI as the main building block. Then, section 3 focuses on the efficient imple-
mentation (and benchmarking) of PSI protocols. Next, Section 4 discussessome challenges stemming
from adapting PSI protocols to realistic scenarios, and presents the system architecture aimed at over-
coming these challenges. Section 5 summarizes our contribution and concludes with a laundry-list of
future work items. Appendix A presents the details of all PSI protocols considered in the paper.

2 Preliminaries

Since the PSST toolkit builds upon PSI protocols, we now review relevant definitions, privacy prop-
erties, and discuss several related primitives that motivate the choice of PSI as our main building block.

2.1 Private Set Intersection (PSI)

The term “Private Set Intersection” has been used to denote a family of cryptographic protocols
providing different privacy flavors, rather than a single primitive. We distinguish among the following
variants:

• Plain PSI. Two parties compute the intersection of their private sets such that nothing is learned
other than the intersection itself and, perhaps, the size of the respective sets. We also call this
variantmutual PSI.

• One-way PSI. Only one party (client) learns the intersection, while the other party (server) learns
nothing beyond the size of client set. Assuming that no party aborts the protocol prematurely,
mutual PSI can be trivially obtained via two executions of one-way PSI. In the rest of this paper,
we focus on the one-way variant and hence usePSI to meanone-way PSI.

• PSI with Data Transfer (PSI-DT). If the server has data associated with each element in its set, this
data must be transferred to the client whenever the corresponding element is in the intersection.
This variant (introduced in [22]) is appropriate in many realistic scenarios, where the server holds
a set of records (as opposed to a simple list of items).

• Authorized PSI (APSI). One assumption implicit in all PSI protocols is that parties do not manip-
ulate their input sets.3 In other words, initial inputs are assumed to be somehow valid. APSI [22]
relaxes this assumption by ensuring that client input isauthorized by an appropriate authorization
authority (denoted asCA). Thus, unless the client holds an authorization (typically, in the form
of a digital signature), it does not learn whether the corresponding inputis in the set intersection.
At the same time, the server does not learn whether client input is authorized, i.e., verification is
performed obliviously.

• Authorized PSI-DT (APSI-DT). Similar to its PSI counterpart, APSI-DT can be defined from APSI
by adding data transfer for each element in the intersection.

In the rest of the paper, we focus on APSI-DT and PSI-DT, as they are general and appeal to many realis-
tic application settings. Looking back at Section 1, Healthcare and Airline Safety examples correspond
to PSI-DT. Whereas, the Law Enforcement example is better suited for APSI-DT (i.e., the FBI requests
must be pre-authorized by a court).4

We now formally define PSI-DT and APSI-DT. Our current notation is self-explanatory; a more
formal version is in Appendix A.

Definition 1 Private Set Intersection with Data Transfer (PSI-DT) [22]: a protocol involving Server,
on input of a set of w items, each with associated data record, S = {(s1, data1), · · · , (sw, dataw)},
and Client, on input of a set of v items, C = {c1, · · · , cv}. It results in Client outputting {(sj , dataj) ∈
S | ∃ci ∈ C s.t. ci = sj}.

3Note that such an assumption occurs not only in presence of honest-but-curious but also arbitrarily malicious adversaries.
4However, the Social Networking example best matches mutual/plain PSI.

3

Definition 2 Authorized Private Set Intersection (APSI-DT) [22]: a protocol between Server, on
input of a set of w items: S = {(s1, data1), · · · , (sw, dataw)}, and Client, on input of a set of
v items with associated authorizations, C = {(c1, σi) · · · , (cv, σv)}. It results in Client outputting
{(sj , dataj) ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) = 1}, (where pk is the authority’s public
key).

2.2 Desired Properties

Based on our discussion in Section 2.1, PSI (in its several flavors) can address privacy issues outlined
in Section 1. In Section 3, we show that recent work on PSI has yielded practical solutions, with linear
computation and communication complexities and inexpensive cryptographic operations.

We now discuss desired privacy properties. We assume that all interactions occur in the presence of
anHonest-but-Curious adversary. Specifically, we assume that parties always faithfully follow protocol
specifications and do not misrepresent any information related to their inputs,e.g., size and content.
However, during or after protocol execution, any party might attempt to infer additional information
about the other party’s input.

Desired properties are as follows:

• Correctness. At the end of the interaction, Client outputs all items in the set intersection, along
with associated data records, as specified in the definitions above.

• Client Privacy. Server learns no information about Client input, except its size.

• Server Privacy. Client learns no information about any Server input that is NOT in the intersection
of their respective sets, except the size ofS.

• Server Privacy (with Authorization). Client learns no information about any Server input that is
NOT in the intersection of their respective sets, where Client set (C) contains only items authorized
by the authorization authority.

• Forward Security (with Authorization). Client cannot violate Server privacy for any past interac-
tions, using any authorizations obtained at a later time.

• Client Unlinkability. Server cannot determine whether any two interactions with Client are related,
i.e., executed on the same inputs.

• Server Unlinkability. Client cannot determine whether any two interactions with Server are re-
lated, i.e., executed on the same inputs.

While privacy requirements are intuitive, forward security and unlinkability are more subtle. Nonethe-
less, they are needed in several scenarios. Consider forward security in the context of authorized Client
inputs. Suppose that an FBI agent engages in an interaction without beingauthorized for a given “sus-
pect”: Server privacy prevents the agent from accessing any information on the suspect. Later, the agent
obtains authorization. Unless forward security is guaranteed, the agentcan use the authorization to
recover the suspect’s file from the previous interaction.5 Unlinkability, beyond keeping from noticing
changes in parties’ inputs, minimizes possibility of privacy leaks. Unless it is guaranteed, if inputs of
one interaction are leaked, then all linked inputs would be leaked.

2.3 Related Primitives

Several cryptographic primitives provide privacy properties comparable to those in Section 2.1. Be-
low, we discuss related primitives and motivate the choice of PSI-DT and APSI-DT as our building
block.

Secure Two-Party Computation.Two parties, with respective inputsx andy, respectively can use Se-
cure Two-Party Computation (2PC) to privately compute the value of a public functionf at point(x, y).

5Our definition of forward security is not to be confused by forward secrecy, i.e., preventing athird-party adversary corrupting
Server from learning data encrypted prior to corruption.

4

Both parties learnf(x, y) and nothing else. A general procedure for 2PC of any function expressed as
a Boolean circuit is due to Yao [57]. Although one could implement PSI-DT with2PC, this technique
would incur impractical computation and communication complexities – at least quadratic, as pointed
out in [30, 41].

Oblivious Transfer (OT). Introduced by Rabin [48], OT involves a sender withn secret messages
and a receiver with one indexi. The receiver wants to retrieve thei-th among sender’s messages.
The sender does not learn which message is retrieved, and the receiver learns no other message. OT
privacy requirements resemble those of PSI-DT. However, in PSI-DT,inputs are items (e.g., keywords),
whereas, in OT, the receiver needs to know (and input) an existing index– an unrealistic assumption for
the applications we have in mind.

Private Information Retrieval (PIR). PIR [18] allows a client to retrieve an item from a server (public)
database without revealing which item it is retrieving, with the additional requirement that communi-
cation overhead must be strictly lower thanO(n) (if n is the database size). Note that, in PIR, privacy
of server’s database is not protected – the client may receive items/records beyond those requested.
Symmetric PIR (SPIR) [32] additionally offers server privacy, thus achieving OT with communication
overhead lower thanO(n). However, similar to OT, a symmetric PIR client needs to know and input the
index of the desired item in server’s database. An extension to keyword-based retrieval is Keyword-PIR
(KPIR) [17]. However, it is still focused on minimizing bandwidth, rather than optimizing computation
and protecting server privacy. Thus, it incurs significantly higher computational overhead, as well as
multiple rounds of PIR executions. We discuss PIR further in Section 3.2.

Private Keyword Search [29].This primitive is akin to a special case of PSI-DT, where Client input is a
singleton and Server input is a multi-set. Similarly, Oblivious Keyword Search(OKS) [44] allows Client
to search forv different keywords. We discuss how to handle multi-sets using PSI-DT in Section 4.

Searchable Encryption. The problem of APSI-DT could be solved usingPublic-key Encryption with
Keyword Search (PEKS) [9] (or, similarly, searchable encrypted logs [55]), based onIBE [10]. A sender
can use a PEKS scheme to append encryptions of keywords (items) to encrypted data records. Whereas,
a receiver can “test” a keyword (and obtain associated data) only if it has a corresponding trapdoor,
i.e., an authorization. Consequently, (1) the sender learns nothing aboutreceiver’s trapdoors, and (2)
the receiver learns nothing about keywords not matching its searches.This is the intuition of the work
in [13], which shows a modified PEKS construct: it additionally hides receiver’s keywords from the
authority and offers security against malicious adversaries in the standard model. Nonetheless, PEKS
Test algorithm requires the receiver to test each trapdoor against each encrypted keyword it receives,
thus incurringquadratic computational overhead. Furthermore, [13] is built atop the relatively expensive
Boyen-Waters IBE scheme [11]. Finally, searchable encryption has been studied in symmetric key
settings [53]: users outsource encrypted data at an untrusted serverand privately search over it. This is
substantially different from our goals.

3 Implementing Efficient PSI-s

In this Section, we turn to efficient instantiation of several PSI-DT and APSI-DT protocols and
compare their performance via experimental results. In the process, we also attempt to identify possible
obstacles to practical use and discuss possible improvements and optimizations.

Note that, for readability’s sake, details of the considered protocols are deferred to Appendix A.
The evaluation presented below is necessary for our goal of constructing a practical and usable toolkit.
However, those not interested in performance details may wish to skip to Section 4 without much loss
of continuity.

One important variable in our discussion is authorization of Client input. Recall that the main dif-
ference between PSI-DT and APSI-DT is that, in the latter, Client input mustbe authorized.

Another variable is Server-sidepre-distribution, i.e., whether Server can pre-process its inputs inde-
pendent from Client inputs. If so, pre-processing can be done off-line and the results can be transferred

5

to Client (or published, for many clients) only once. Server-side pre-distribution is also a mandatory
feature of so-calledadaptive protocols [14], as it is needed to let Servercommit to its input.

However, pre-distribution is incompatible with Server unlinkability (between twoconsecutive pre-
distributions), since Server input is fixed during that period. Moreover, in APSI protocols, forward
security can not be guaranteed: Client that obtains authorizationsafter interacting with the Server can
still extract theprevious intersection given the transcript of prior interaction. Therefore, for scenarios
where Server input changes often and/or unlinkability is desired, protocols without pre-distribution are
appropriate. Whereas, if Server input is (mostly) static and bandwidth overhead is critical, protocols
with pre-distribution are preferred.

Candidate Protocols. We discuss efficient implementation of several (A)PSI-DT protocols (seeAp-
pendix A for details), and compare their performance and privacy properties:

w/o Pre-Distribution w/ Pre-Distribution

PSI-DT
FNP04 ([30]), JL09 ([39]), JL10 ([40]),

DT10-1 (Fig.3 in [22]) DT10-2 (Fig.4 in [22])
APSI-DT DT10-APSI (Fig.2 in [22]) IBE-APSI (Fig.5 in [21])

Table 1: PSI-DT and APSI-DT protocols included in the PSST toolkit.

3.1 Experimental Analysis

Each protocol was implemented in C++ using GMP (ver. 5.01) [28] and PBC (ver. 0.57) [42]
libraries. All benchmarks were collected on a Ubuntu 9.10 desktop platformwith Intel Core i7-920
(2.66MHz and 8MB cache) and 6GB RAM.

Evaluation Methods and Assumptions.For protocols supporting data transfer, data associated with
each Server element can be arbitrarily long. Also, performance of some protocols is dominated by each
element’s data size, rather than set size. For a fair comparison, we aim to capture the intrinsic cost
of each protocol. To this end, we employ the following strategy to eliminate data size effects: First,
in all protocols, we encrypt each element’s data with a distinct random symmetric key and consider
these keys as the new associated data. Assuming that a different key is selected at each interaction, this
technique does not violate Server unlinkability. This way, our evaluation is fair for all schemes, in that
the computation cost of each protocol is measured based upon the same fixed-length key, regardless of
data size. We set symmetric key size to128 bits.

Besides the basic cost (incurred by all protocols) to transfer a key, each protocol execution involves
additional overhead of symmetric en-/de-cryption of records. Figure 1 estimates this overhead for vari-
able data sizes, using RC4 [50] and AES-CBC [20] with 128-bit keys. Toestimate the total cost of a
protocol, we just need to combine this overhead with the basic cost of each protocol and add data transfer
delay for all Server encrypted data.

We further assume that Client does not perform any pre-computation, while Server performs as
much pre-computation on its input as possible. This reflects the reality where Client input is (usually)
determined in real time, while Server input is pre-determined. Figure 2 showsthe pre-computation
overhead for each protocol.

In the following, we only consider on-line computation overhead. Figures 3and 4 show Client
online computation overhead in terms of Client and Server input sizes, respectively. Figures 5 and 6
show Server online computation overhead in terms of Client and Server input size, respectively.

Figures 7 and 8 present protocol bandwidth complexity in terms of Client andServer input sizes. For
protocols with pre-distribution, bandwidth consumption (since it is performedoff-line) does not include
pre-distribution overhead. Note that, in these figures, we sometimes use the same marker for different
protocols to indicate that these protocols share the same value. Client input size v (or Server input size
w) is fixed at5, 000 in figures where x-axis refers to Server (or Client) input size.

Finally, in all experiments, we use a 1024-bit RSA modulus, a 1024-bit cyclic-group modulus and
a 160-bit subgroup order. All test results are averaged over100 independent runs. All protocols are

6

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Data size (MB)

128-bit RC4
128-bit AES CBC

Figure 1: Symmetric key en-/de-cryption performance.

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

S
er

ve
r

P
re

co
m

pu
ta

tio
n

T
im

e
(m

s)

Server Set Size (w)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 2: Server pre-computation overhead.

1

10

100

1000

10000

 0 2000 4000 6000 8000 10000

C
lie

nt
 O

nl
in

e
C

om
pu

ta
tio

n
T

im
e

(m
s)

Client Set Size (v)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 3: Client online computation w.r.t. Client set size.

1

10

100

1000

10000

 0 2000 4000 6000 8000 10000

C
lie

nt
 O

nl
in

e
C

om
pu

ta
tio

n
T

im
e

(m
s)

Server Set Size (w)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 4: Client online computation w.r.t. Server set
size.

instantiated under the assumption ofHonest-but-Curious (HbC) adversaries and in theRandom Oracle
Model (ROM), as discussed in Section 2.2.

PSI-DT without pre-distribution. Here we compare FNP04 with DT10-1. Figures 3-8 show that
that FNP04 is much costlier than DT10-1 in terms of Client and Server online computation as well
as bandwidth consumption. For each Client set size, DT10-1 Client overhead varies from 460ms to
4400ms, while FNP04 Server overhead ranges between 1300ms and 15000ms. For each Server set size,
DT10-1’s Server overhead is below 1,300ms, while FNP04 Server overhead exceeds 15,000ms.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and DT10-2 as PSI-DT with pre-
distribution. Recall that all protocols are instantiated in the HbC model, thus ZKPK’s are not included
for JL09 and JL10. Figures 3-8 show that DT10-2 has a overhead almost two orders of magnitude lower
than JL09 and JL10 in terms of Client online computation. In fact, DT10-2 involves two Client mul-
tiplications for each Client item, while JL09 performs two heavy homomorphic operations and JL10
– two exponentiations. JL10 Server online computation overhead involvesv 160-bit exponentiations,
while DT10-2’s Server overhead involvesv RSA group exponentiations, that can be speeded up by using
the Chinese Remainder Theorem. As a result, DT10-2 almost doubles JL10 Server online computation
overhead. If we sum up Server and Client online computation overhead,DT10-2 remains the cheapest,
while JL09 is the most expensive. In terms of bandwidth consumption, DT10-2 and JL10 are almost the
same, while JL09 is more expensive.

APSI-DT without pre-distribution. The only protocol we evaluate for APSI-DT without data pre-
distribution is DT10-APSI. Figure 3-6 illustrates that Client overhead is determined only by Client
set size, whereas, Server overhead is determined by both Client and Server set sizes. Note that mea-
surements obtained for APSI-DT naturally mirror those of DT10-1, as the former simply adds Client

7

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000S
er

ve
r

O
nl

in
e

C
om

pu
ta

tio
n

T
im

e
(m

s)

Client Set Size (v)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 5:Server online computation w.r.t. Client set size.

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000S
er

ve
r

O
nl

in
e

C
om

pu
ta

tio
n

T
im

e
(m

s)

Server Set Size (w)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 6:Server online computation w.r.t. Server set size.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

B
an

dw
id

th
 C

on
su

m
pt

io
n

(M
B

)

Client Set Size (v)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 7:Bandwidth consumption w.r.t. Client set size.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

B
an

dw
id

th
 C

on
su

m
pt

io
n

(M
B

)

Server Set Size (w)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 8:Bandwidth consumption w.r.t. Server set size.

authorization feature.

APSI-DT with pre-distribution. The only protocol we evaluate for APSI-DT with data pre-distribution
is IBE-APSI. However, it does not provide forward security. Nonetheless, it is included in the evaluation,
as we later show how to overcome this issue (see Section 4.2.1). Figure 3-4 shows that Client side
overhead increases linearly with Client set size and does not depend onServer set size. In fact, Client
only needs to computev pairing operations. Recall that, in IBE-APSI, Server needs to compute pairing
operations for each item, independent of Client input. Moreover, since these operations can be pre-
computed, Server-side overhead and bandwidth consumption are negligible, as shown in Figures 5-8.6

During pre-computation, Server needs to computew pairing and exponentiations, which makes
pre-computation relatively expensive. If Server unlinkability is desired,Server would need to repeat,
for every interaction, the operations otherwise performed only during pre-computation. As a result,
if we sum up the overhead derived from Figures 4, 6 and 2, we see thatDT10-APSI achieves better
performance; also, it is the only protocol providing forward security.

One party small set case.Finally, we compare online computation costs and show the trend with small
Client or Server set size. Our goal is to address scenarios where oneparty only has a single input. Table 2
shows Client and Server overhead for different protocols where either party’s input is a singleton. We
observe that the result in the table agrees with our conclusions from Figures 3-6.

Summary. Based on the above experimental results, our toolkit includes several efficient PSI-DT and
APSI-DT implementations, each targeting a distinct setting. In particular, DT10-1 is best-suited for
PSI-DT with unlinkability, and DT10-2 – for (linkable) PSI-DT with pre-distribution. DT10-APSI is
geared for APSI-DT with unlinkability and forward security. Whereas, IBE-APSI is best for for the
more efficient case APSI-DT with pre-distribution.7

6In these figures, y-values for IBE-APSI are all 0 which is out of the scope of the y-axis.
7This is, however, linkable and not forward secure.

8

Protocols
Online Computation Overhead (ms)

v=1, w=10,000 v=10,000, w=1 v=1, w=1
Client Server Client Server Client Server

FNP04 1,556.3 19,450.4 12,627.1 65.1 1.2 2.3
DT10-1 0.3 22.7 3,140.8 1,376.6 0.3 0.1
DT10-2 0 0.3 52.6 2,787.7 0 0.3

JL09 7.6 3.3 77,622.6 32,373.4 7.6 3.2
JL10 1.1 0.2 11,270.9 1,415.7 1.1 0.2

IBE-APSI 1.4 0 14,142.3 0 1.4 0
DT10-APSI 1.9 26.8 18,646.5 9,162.3 2.2 2.1

Table 2: On-line computation overhead (in ms)

We claim that careful and optimized implementations of (A)PSI protocols included in the PSST
toolkit represent an independent contribution. This is because, prior toour work, it has been generally
believed that PSI protocols are impractical. For example, [3] reports the measurement of213 seconds
to run FNP04 [30] PSI over 100-item sets on a 3GHz Intel machine. In contrast, our implementation
completes the same task well below100 seconds even for 1000-item sets (on a similar machine).

3.2 Comparison with PIR

In the experiments above, we benchmarked different (A)PSI-DT protocols measuring the total time
needed by Client to identify the elements in the intersection and the associated symmetric key (later
used to decrypt corresponding data records).8 Additionally, however, one should also take into account
the time needed by Server to transmitall encrypted data records to Client. For this reason, one common
criticism to PSI-s has often been related to such a communication overhead, incontrast to PIR protocols,
which are known for minimizing bandwidth complexity. Recall, however, that: (1) only Symmetric PIR-s
would also provide Server privacy beyond hiding Client interests, and (2) within PIR, Client would need
to know and input the index of requested items, whereas, in PSI-DT, Clientinputs can be arbitrary set
elements. Despite these distinctions, we nonetheless argue that thecomputational overhead introduced
by PIR-s is high enough that, in reality, we are better off transferring the entire encrypted database.

To support our claim, we benchmark Gentry and Ramzan PIR protocol [31], that (to the best of our
knowledge) achieves the best communication complexity, i.e.,O(log n) for a database withn records.
Figure 9 compares the computation time needed by the PIR implementation (i.e., we do not include
data transmission time) and thetotal time needed by each (A)PSI-DT protocol to execute both off- and
on-line operations, plus the time to transmit the entire Server database over a gigabit link. Comparison
is made at different Server set sizes. Each element’s data record is setto be 1MB; this represents a
reasonably average record size. Our results show that even a “fast”PIR is appreciably more expensive
than transferring the entire “encrypted” database, plus computation time needed by any PSI protocol
discussed above. Indeed, this concurs with recent results in [52].

1

10

100

1000

10000

100000

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Server Set Size (w)

GR-PIR
FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
IBE-APSI

Figure 9: Comparison to GR-PIR.

8Recall thatServer privacy guarantees that Client can only decrypt records associated to items in theset intersection.

9

4 Large-Scale Privacy-preserving Sharing of Sensitive Information

We now turn to a more realistic scenario that mimics simple database querying and captures a more
general class of information sharing. Specifically, we assume that Server maintains a large database –
DB that containsw records withm attributes(attr1, · · · , attrm). We denoteDB = {(Rj)}

w
j=1. Each

recordRj = {valj,l}
m
l=1

, wherevalj,l is Rj ’s value for attributeattrl. Client inputs are assumed to be
in the form of simple SQL queries, such as Eq. 1.

“SELECT * FROM DB WHEREattr∗ = val∗” (1)

After the interaction, Client gets all records inDB, whereattr∗ = val∗ and nothing else. Whereas,
Server learns nothing aboutattr∗ or val∗. We assume that the database schema (format) is known to
Client. Furthermore, without loss of generality, we assume that all record attributes are searchable. Later
on, we discuss a simple extension to disjunctive queries.

Since security and privacy requirements are basically unaltered from those stated in Section 2.2, we
do not repeat them here.

In the rest of this section, we identify and discuss some challenges and issues brought about by
realizing (A)PSI-DT protocols in the context of large-scale database applications mentioned above. We
then present a general design that overcomes these problems and achieves both efficiency and practi-
cality without sacrificing privacy. Specifically, our approach is aimed at arbitrarily large Server-side
databases and arbitrarily frequent Client queries. We also demonstrate,via real running code, that our
system achieves performance comparable to an optimized MySQL DBMS, even with privacy-preserving
indexing enabled on each attribute.

4.1 Strawman Approach: Problems and Challenges

One näıve way implementing privacy-preserving sharing of sensitive information inthe aforemen-
tioned large-scale database-like setting is to extend (A)PSI-DT implementationsaccording to the fol-
lowing strawman approach:

For each record, consider the hash of every (attribute,value) pair (attrl, valj,l) as a set element, and
Rj – as associated data. Server “set” then becomes:

S = {(H(attrl, valj,l), Rj)}1≤l≤m,1≤j≤w

Client poses an SQL query (similar to that in Eq. 1). Thus, Client “set” is actually a singleton:C =
{H(attr∗, val∗)} optionally accompanied by a signatureσ overH(attr∗, val∗) in case authorized in-
puts are enforced. Then, Client and Server engage in a PSI-DT (APSI-DT) interaction and, at the end,
Client obtains all records matching its query. However, this simple approachhas a number of privacy
and performance issues, as can be seen from prior work, e.g., [2].

Challenge 1: Multi-Sets. By our definitions, PSI-DT and APSI-DT do not support multi-sets. How-
ever, most realistic database settings include duplicate values. Although somePSI protocols (e.g., [41])
support multi-sets, their performance is not promising as they involve quadratic overhead. However, in
other more efficient protocols (e.g., DT10-1), tags computed over the same(attrl, valj,l) are identical.
Since the entire encrypted database (including all tags) is transferred to Client, the latter learns all pat-
terns and distribution frequencies. This is problematic, since actual valuescan be often inferred from
their frequencies.9

Challenge 2: Data Pointers.To enable querying by any attribute, eachRj must be copied (and sepa-
rately encrypted)m times, once for each attribute. For protocols with pre-distribution, high Client-side
storage overhead would result. For protocols without pre-distribution, high bandwidth overhead would

9For example, consider a large database where one attribute reflects “employee blood type”. Since blood type frequencies are
well-known for general population, tag distribution for this attribute would essentially reveal the plaintext. This is equivalent
to deterministic encryption.

10

be incurred. This issue can be addressed by encrypting eachRj with a unique symmetric keykj and
then usingkj (instead ofRj) as data associated withH(attrl, valj,l). Although this would reduce stor-
age/bandwidth overhead, it would also prompts an additional privacy issue: In order to use the key –
instead of the actual record – as “data”, a pointer to the encrypted record (on disk or in memory) would
have to be stored alongside each tag. This would let Client determine what tags correspond to different
attributes of the same record. This (potential) privacy leak is aggravated by the previous issue (multi-
sets), since, given two encrypted records, Client can establish their similarity based on the number of
tags they have in common. For example, a malicious Client could test how many records share exactly
two attributes.

Challenge 3: Bandwidth. If Server database is large and/or records contain large bulk data, bandwidth
overhead may become prohibitively high. For all protocols discussed above (and despite their seemingly
low linear bandwidth complexity), the entire encrypted database must be transferred to Client. For
protocols without pre-distribution, this has to be donefor each query. For protocols with pre-distribution,
the bulk transfer can be done once, at the start (as long as the databaseis static). Thus, if the database is
very large, the delay experienced by Client would be commensurately high for the first query (with pre-
distribution) or for each query (without it). Furthermore, in some scenarios, bandwidth is very limited
or costly, e.g., Client running on mobile devices.

Challenge 4: Liability. Transfer of the entire encrypted database to Client also prompts the problem
of long-term data safety and associated liability. An encryption scheme considered strong today might
gradually weaken in the long term. Consequently, it is not too far-fetched toimagine that Client might
be able to decrypt the database, e.g., 10 or 20 years later. However, data sensitivity might not dissipate
over time. For example, suppose that a low-level DoD employee is only allowedto access to unclassified
data. By gaining access to the encrypted database containing top secret data and patiently waiting for
the encryption scheme to “age”, the employee might obtain still-classified sensitive information.

Aforementioned challenges do not arise in all settings discussed in Section 1. Recall the Social Net-
working and Airline safety examples: they do not exhibit problems with bandwidth consumption or
long-term liability: the former – because a list of friends (or a passenger manifest) is unlikely to be
very long, and the latter – because, years into the future, neither friends’ names nor airline passengers
represent sensitive information. In contrast, the Healthcare and Law Enforcement examples prompt both
long-term liability and bandwidth consumption issues. (A database of Client/patient or police records
can be very large and data privacy is a long-term concern).

4.2 PSST Design

We now discuss the design of the PSST toolkit. First, we describe our systemarchitecture with addi-
tional privacy requirements. Next, we show a methodology for adapting (A)PSI-DT protocols to support
database encryption and query lookup. Then, we discuss challenges and achieved privacy. Finally, we
compare the performance of PSST to that of base-line MySQL. Our notationis reflected in Table 3.

attrl thelth attribute in the database schema
Rj thejth record in the database table

valj,l the value inRj corresponding toattrl

kj the key used to encryptRj

erj encryption ofRj

tkj,l a token evaluated overattrl, valj,l

ctrj,l the number of times wherevalj′,l = valj,l, ∀j′ <= j
tagj,l a tag forattrl, valj,l

k′
j,l

key used to encryptkj

k′′
j,l

key used to encrypt indexj
ekj,l encryption of keykj

eindj,l encryption of indexj

Table 3: Notation

11

Figure 10: New system architecture with the introduction ofIsolated Box.

4.2.1 Architecture

As shown in Figure 10, our system architecture involves three parties: Client, Server and a stand-
alone third party, calledIsolated Box (IB). IB is a stand-alone entity in possession of the encrypted
database and a lookup table (denoted by LTable), transferred from Server. In order to pose an SQL
query, Client first interacts with Server to obtain atoken while not revealing the content of the query.
From this token, it derives a set of tags and sends these tags to IB, that returns all matching records.
(Again, this does not disclose the query target). Note that Server, instead of transferring the entire
encrypted database to Client, transfers it (off-line) to IB.

Our IB-powered system relies on (A)PSI-DT protocolswith pre-distribution. Indeed, all four chal-
lenges listed in Section 4.1 can be solved using such protocols within the IB architecture. Furthermore,
such protocols achieve better on-line communication and computation overhead.

PSST addresses privacy concerns mainly using a novel encryption mechanism, while it requires
minimal trust in IB. Note that the use of stand-alone semi-trusted parties to enhance privacy dates back
to Beaver’s initial intuition ofCommodity-based Cryptography [4]. Other examples are the solutions
in [12] and [23]. The former introduces an oblivious third party to let a server obliviously compare two
numbers (e.g., to solve the millionaire’s problem [57]), whereas, the latter uses the same intuition to
solve the scalar product problem. More recent techniques, using semi-trusted parties in the context of
privacy-preserving database applications, are [49, 19], discussed later in Section 4.3.

Trust Assumptions. We assume that IB does not collude with either Server or Client. (However,we
discuss the consequences of collusions in Section 4.2.6). Also, we assumethe existence of a private and
authentic channel between Client and Server, as well as between Client and IB, e.g., using SSL/TLS.
Finally, note that IB can be realized as a piece of secure hardware installed on Server premises, as
long as Server does not learn what IB reads from storage (i.e., what records) and transfers to Client.
(Architecture for this kind of secure hardware has been proposed, e.g., in [1]).

4.2.2 Database Encryption with counters

The procedure used for database encryption is presented in Alg. 1. Itis composed of two phases: (1)
record-level and (2)lookup-table encryption. Record-level encryption is relatively trivial; it is shown
in lines 1–6. First, Server shuffles record locations in the database. Then, it pads eachRj up to the
maximum size of all records, picks a random symmetric keykj and encryptsRj aserj = Enckj

(Rj).
Lookup-table (LTable) encryption, shown in lines 8–14, refers to encryption of attribute name and value
pairs. It enables efficient lookup and record decryption.

We use (A)PSI-DT protocols with pre-distribution (discussed above) to “obliviously” compute a
function, whose input is a Client set element – specifically, the concatenation of attribute and value. Here

12

Algorithm 1 : Database Encryption

Shuffle{Rj}1≤j≤w;1
maxlen ← max length among allRj ;2
for 1 ≤ j ≤ w do3

PadRj to maxlen;4
kj ← {0, 1}128;5
erj ← Enckj

(Rj);6

for 1 ≤ l ≤ m do7
tkj,l ←Token(attrl, valj,l);8
tagj,l ← H1(tkj,l||ctrj,l);9
k′

j,l ← H2(tkj,l||ctrj,l);10
k′′

j,l ← H3(tkj,l||ctrj,l);11
ekj,l ← Enck′

j,l
(kj);12

eindj,l ← Enck′′

j,l
(j);13

LTablej,l ← (tagj,l, ekj,l, eindj,l);14

end15

end16
ShuffleLTable with respect toj andl;17
EDB ← {LTable, {erj}1≤j≤w};18
Off-line transferEDB to IB.19

we useToken to denote the result of this function computation. When creating LTable, Server computes
tkj,l = Token(attrl, valj,l) for all combinations ofj andl (line 8). For example, in encrypting database
in DT10-2, Server computes an RSA signaturetkj,l = H(attrl, valj,l)

d and, in IBE-based APSI-DT, it
computestkj,l = e(Q, H(attrl, valj,l))

z. (See Appendix A for protocol details.)
We usectrj,l to denote the index of duplicate value for thel-th attribute. In other words,ctrj,l is the

counter of times wherevalj′,l = valj,l,∀j′ <= j. For example, the third occurrence of value “Smith”
for attribute “Last Name” will havectrj,l = 3.

Next, Server computestagj,l = H1(tkj,l||ctrj,l), k′
j,l = H2(tkj,l||ctrj,l) andk′′

j,l = H3(tkj,l||ctrj,l),
whereH1, H2, H3 are different hash functions (lines 9-11). In practice, we can implementH1(m),
H2(m), H3(m) using SHA-1 [24] as: SHA-1(1||m), SHA-1(2||m), SHA-1(3||m), and so on.

Note thattagj,l is later used as lookup tag during Client query.k′
j,l is used for encrypting symmetric

keykj . k′′
j,l is used for encrypting the index ofRj .

Next, Server computesekj,l = Enck′
j,l

(kj) andeindj,l = Enck′′
j,l

(j) (lines 12-13). It then inserts

eachtagj,l, ekj,l andeindj,l into LTable (line 14), which is{tagj,l, ekj,l, eindj,l}1≤j≤w,1≤l≤m. Next,
Server shuffles LTable (line 17). The resulting encrypted database,EDB, is made up of LTable and
{erj}

w
j=1 (line 18). Finally, Server transfers EDB (off-line) to IB.

4.2.3 Query lookup

Query lookup procedure is described in Alg. 2 (see also Figure 10). Client produces a simple SQL
query, i.e. “SELECT * FROM DB WHEREattr∗ = val∗ LIMIT t”. For ease of exposition, we
assume that Client only wants to retrieve firstt matching records. (In the next section, we describe
how to cope with the case whent is omitted from Client query.) In step (1), Client runs any (A)PSI-
DT with pre-distribution over a singleton set with{(attr∗, val∗)} as its input and obliviously evaluates
tk∗ = Token(attr∗, val∗) with Server. In step (2), Client sets a counteri from 1 to t, and computes a set
of tags{tag∗i = H1(tk

∗||i)}1≤i≤t and a set of index decrypting keys{k′′
i = H3(tk

∗||i)}1≤i≤t. Next,
Client sends{tag∗i , k

′′
i }1≤i≤t to IB. For eachi ∈ [1, t], IB searches fortag∗i in LTable in step (3). If there

is no result, IB puts⊥ in response set. If a tuple(tagj,l, ekj,l, eindj,l) is found wheretagj,l = tag∗i , IB
decryptseindj,l and recovers indexj′ by runningDeck′′(ekj,l). IB then putserj′ andekj,l, which equal
to er∗i andek∗

i , to the response set. In step (4), Server returns the response set{ek∗
i , er

∗
i }1≤i≤t to Client.

In step (5), Client computes a set of decrypting keys{k′
i = H2(tk

∗||i)}1≤i≤t. For eachi ∈ [1, t], it
obtains decryption keyki = Deck′(ek∗

i), and decryptser∗i by Ri = Decki
(er∗i).

13

Algorithm 2 : Query Lookup

Step 1: Client anonymously evaluatestk∗ = Token(attr∗, val∗);
Step 2: Client sends{tag∗

i = H1(tk
∗‖|i), k′′

i = H3(tk
∗‖|i)}1≤i≤t to IB;

Step 3: IB computes:
for 1 ≤ i ≤ t do

find LTablej,l

such thattagj,l = tag∗
i

ek∗
i ← ekj,l

j′ = Deck′′

i
(eindj,l)

er∗i ← erj′

end
Step 4: IB transfers{ek∗

i , er∗i }1≤i≤t to Client.
Step 5: Client computes:

for 1 ≤ i ≤ t do
k′

i = H2(tk
∗||i)

ki = Deck′

i
(ek∗

i)
Ri = Decki

(er∗i)
end

4.2.4 Optimizations

If t is too large (i.e., there are fewer thant matching records) or it is simply omitted from the query,
computing all thetag∗i andk′′

i at once in step 3 might be time consuming or impossible. Note that Client
can retrieve records one by one from IB by gradually incrementing counter i in each round. Thus, a
possible solution is to let Client compute only onetag∗i andk′′

i each time and pipe-line computation
of tag∗i+1 andk′′

i+1 with the retrieval ofek∗
i ander∗i (step 4–5). The query terminates when eithert

responses or⊥ are (is) received. This way, overhead incurred in step 3 amounts to computation of only
one tag and one key. Furthermore, Client does not need to estimate how manytags and keys to compute
in step 3.

We can further optimize the computation ofekj,l andeindj,l (steps 12–13 in Alg. 1). Since we use a
counter as part of the input to computek′

j,l (respectively,k′′
j,l), eachk′

j,l (respectively,k′′
j,l) is distinct for

anyj, l. Bothk′
j,l andk′′

j,l are 160-bit values, whilekj is 128 bits andj is clearly smaller. Hence, we can
use one-time-pad-like encryption (i.e.ekj,l = k′

j,l ⊕ kj andeindj,l = k′′
j,l ⊕ j) to speed up computation.

In Alg. 2, Deck′′
i
(eindj,l) becomesk′′

i ⊕ eindj,l andDeck′
i
(ek∗

i) changes tok′
i ⊕ ek∗

i .

4.2.5 Challenges Revisited

We now show how the proposed architecture addresses challenges discussed in Section 4.1.

Multi-sets. The counter used during database encryption makes eachtagj,l (resp.ekj,l, eindj,l) distinct
in LTable, thus hiding plaintext patterns.

Data Pointers. Storingeindj,l, instead ofj, in LTable prevents Server from revealing the relationship
between an entryLTablej,l and its associated recordRj .

Bandwidth Overhead. Once Server transfers its database (off-line) to IB, the latter sends onlythose
records that match the query back to Client, instead of the entire encrypted database.

Liability. Since IB assumes the role of the custodian of the encrypted database, Client only obtains the
result of its queries.

4.2.6 Addressing Privacy

The introduction of IB and the use of counter mode in database encryption provides additional
privacy properties. We use the termtransaction to mean a complete query procedure from the time a
SQL query is issued, until the last response from IB is received. Aretrieval is defined as the receipt
of a single response record during a transaction. We claim that, if Client performs only one query
transaction, as in Alg. 2, IB can link alltag∗i s values in step 3 to the same(attr, val) pair. This poses the

14

same risk as discussed in the “multi-set” challenge. However, as mentioned in Section 4.2.5, the counter
allows Client to retrieve matching records one by one. Therefore, Client can choose to add a random
delay between two subsequent retrievals in a single transaction. If the distribution of additional delays
is indistinguishable from time gaps between two transactions, IB can not tell thedifference between two
continuous retrievals within one transaction from two distinct transactions. As a result, IB cannot infer
whether two continuously retrieved records share the same(attr, val) pair and the distribution of the
attribute value remains hidden.

We also note that the introduction of IB does not violate Client or Server privacy. Client privacy
is preserved because Client obliviously computes a token which is not learned by Server. IB does not
learn Client interest, since Client input to IB (tag) is statistically indistinguishable from a random value.
Server privacy is preserved because Client does not gain any extrainformation by interacting with IB.
Finally, IB only has the encrypted database and learns no plaintext.

Limitations. We acknowledge that PSST has certain limitations. Over time, as it serves many queries,
IB gradually learns the relationship between tags and encrypted recordsthrough pointers associated
with each tag. This issue can be mitigated by letting Server periodically re-encrypt the database. Next,
if Server and IB collude, Client privacy is lost, since IB learnstag that Client seeks, and Server learns
an (attr, val) pair eachtag is related to. On the other hand, if Client and IB collude, the liability of
encrypted database possession by Client becomes a problem once again. Finally, Server unlinkability
is guaranteed only as far as Client. Server unlinkability as far as IB is not guaranteed, since IB learns
about all changes in Server database.

Finally, PSST currently supports only equality and disjunctive SQL queries. In fact, the latter are
implemented by treating each equality condition inside an “OR” clause as a separate query and removing
duplicate responses. Whereas, supporting conjunctive queries wouldrequire treating all combinations
of (attr, val) pairs as Server set elements. Thus, set size would become exponential interms of the
number of attributes. This remains a challenge for future work.

4.2.7 Comparison to MySQL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 10 100 1000 10000 100000

T
im

e
 (

s)

Response Set Size

MySQL
DT10-2

IBE-APSI

(a) Index lookup speed comparison.

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 10 100 1000 10000

T
/T

M
yS

Q
L

Response Set Size

DT10-2 v.s. MySQL
IBE-APSI v.s. MySQL

(b) Comparison to MySQL w.r.t.
response set size.

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

100K 1M 10M 100M

T
/T

M
yS

Q
L

Record Size (B)

DT10-2 v.s. MySQL
IBE-APSI v.s. MySQL

(c) Comparison to MySQL w.r.t. record
size.

Figure 11: Comparison to MySql

In Section 3.1, we have shown that DT10-2 and IBE-APSI are the most efficient PSI-DT and APSI-
DT protocols with pre-distribution, respectively. Therefore, we implemented both protocols as the build-
ing blocks of PSST. We run both IB and Server on an Intel Harpertown Server with two Xeon E5420
CPUs (2.5 GHz) and12GB RAM. Client runs on a laptop with Intel Core 2 Duo CPU (2.2 GHz) and
4GB RAM. Client is connected to IB and Server via Gigabit ethernet. The database has 45 searchable
attributes and100, 000 records. All records have the same size, which we vary during experiments.
We compare our results against a MySQL setup for the same database with indexing enabled for each
attribute. MySQL is running on the same machine as Server. Note that each result is averaged over ten
independent tests.

15

First, we compareindex lookup time, defined as the time between SQL query issuance and the
receipt of the first response from IB. We select a set of SQL queriesthat return 0, 1, 10, 100, 1000,
10000 (±10%) responses, respectively and fix each record size at500KB. Figure 11(a) shows index
lookup time for DT10-2, IBE-APSI and MySQL in terms of the response setsize. Both DT10-2 and
IBE-APSI incur almost the same overhead for and are 1.5 times more expensive than MySQL. We also
measures index lookup time in terms of general record size. Since the resultsare similar to the previous
experiment, we omit them here.

Next, we test the impact of response set size ontotal query time, defined as the time between SQL
query issuance and the arrival of the last response from IB. Figure11(b) shows the time for Client
to complete a query for a specific response set size divided by the time takenby MySQL. Results
gradually converge to1.1 for increasing response set sizes. This is because of the extra delay incurred
by cryptographic operations (as part of oblivious function evaluation)being amortized by subsequent
data lookup and decryption.

Last, we test the impact of record size on total query time. We fix response set size at 100 and
vary each record size betwwen 100KB and 100MB. Figure 11(c) shows the ratio between DT10-2 and
MySQL, IBE-APSI and MySQL, respectively. Again, results graduallyconverge to1.1 with increasing
of record size which occurs because the overhead of symmetric recorddecryption becomes dominant
with growing record size.

In summary, both index lookup time and total query time of our implementation are strictly less than
double their respective counterparts in MySQL.

4.3 Related Privacy-Preserving Database Systems

Privacy-preserving database querying has been considered in prior work. Although prior results
support more complex query types (not just equality and disjunctive queries), they exhibit certain limita-
tions, such as: (1) high computation overhead and no protection of database data, e.g., [45]10, (2) lack of
provable privacy guarantees, e.g., [33, 37, 8], or (3) requirementfor several independent trusted parties,
e.g., [49, 19].11

Some recent work focused on automating and speeding up secure two-party computation tools [7,
36, 47]. On one hand, such solutions meet more theoretically-sound security requirements (e.g., do
not require the random oracle model or assume arbitrarily malicious adversaries). On the other hand,
they result into much lower efficiency (several orders of magnitude). Since these solutions address
different problems and scenarios (and because of space limitations) we consider a detailed discussion
and comparison with our toolkit to be out of the scope of this paper.

5 Conclusions & Future Work

In this paper, our goal was to drag some useful and efficient privacy-preserving tools out of their
cryptographic “closet” and demonstrate that privacy-preserving sharing of sensitive information is prac-
tical today. Indeed, we have shown that some recent Private Set Intersection techniques are efficient
enough to serve as a basis for real-world large-scale systems. We haveimplemented a simple database-
like system that allows Client, armed with one or more (optionally authorized) search elements or key-
words, to search over Server database, such that no extra informationis learned by either party. In
the course of designing and implementing our toolkit, we encountered (and addressed) a number of in-
teresting issues that led to specific architectural choices. As confirmed byexperimental evaluation, our

10Olumofin and Goldberg [45] construct a privacy mechanism for Keyword-based PIR (KPIR [17]) and provide a transition
from block-based PIR to SQL-enabled PIR. However, similar to KPIR-s, it incurs high (several order of magnitudes) compu-
tational complexity, and allows clients to obtain other bits of database data (beyond the query result).
11Chow, et al. [19] propose a two-party query computation model over distributed databases that involves three entities: a
randomizer, a computing engine, and a query front-end. Local answers to queries are randomized by each database and
aggregate results are de-randomized at the front-end.

16

PSST toolkit offers amenu of privacy-preserving services at reasonable additional cost over the base-line
MySQL implementation.

Much remains to be done: First, PSST does not currently support conjunctive (AND) queries across
multiple attributes. This is not difficult to do naı̈vely, however, the overhead is likely to be quite high
(exponential in the number of attributes). Second, some on-going work yielded PSI protocols that hide
the size of Client input (set). We intend to incorporate them into PSST. Finally,we plan to explore ways
to support “fuzzy” querying, i.e., where Client input represents non-normalized data.

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign Joins. InICDE’06, 2009.

[2] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases. InSIGMOD’03,
2003.

[3] B. Applebaum, H. Ringberg, M. Freedman, M. Caesar, and J.Rexford. Collaborative, privacy-preserving
data aggregation at scale. InPETS’10.

[4] D. Beaver. Commodity-based cryptography. InSTOC’97, pages 446–455, 1997.

[5] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credentials. InCrypto’09, 2009.

[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and
the security of Chaum’s blind signature scheme.Journal of Cryptology, 16(3):185–215, 2008.

[7] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-party computation. In
CCS’08, 2008.

[8] E. Bertino, J. Byun, and N. Li. Privacy-preserving database systems.Foundations of Security Analysis and
Design, 2005.

[9] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.Public key encryption with keyword search. In
Eurocrypt’04, 2004.

[10] D. Boneh and M. K. Franklin. Identity-based encryptionfrom the weil pairing.SIAM Journal of Computing,
32(3):586–615, 2003.

[11] X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles).
In Crypto’06, pages 290–307, 2006.

[12] C. Cachin. Efficient private bidding and auctions with an oblivious third party. InCCS’99, 1999.

[13] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and Anonymous Identity-Based Encryption and
Authorised Private Searches on Public Key Encrypted Data. In PKC’09, 2009.

[14] J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer. InEurocrypt’07, pages
573–590, 2007.

[15] J. Camenisch and G. M. Zaverucha. Private intersectionof certified sets. InFinancial Cryptography’09,
2009.

[16] Caslon Analytics. Consumer Data Losses.http://www.caslon.com.au/datalossnote.htm.

[17] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords.Manuscript, 1998.

[18] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.Journal of the ACM
(JACM), 45(6):965–981, 1998.

[19] S. Chow, J. Lee, and L. Subramanian. Two-party computation model for privacy-preserving queries over
distributed databases.NDSS’09, 2009.

[20] J. Daeman and V. Rijmen. AES proposal: Rijndael. 1999.

[21] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Privacy-preserving policy-based information transfer.
In PETS’09, pages 164–184, 2009.

17

http://www.caslon.com.au/datalossnote.htm

[22] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In
Financial Cryptography and Data Security’10, pages 143–159, 2010.

[23] W. Du and Z. Zhan. A practical approach to solve secure multi-party computation problems. InNSPW’02,
2002.

[24] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1), 2002.

[25] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

[26] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In
PODS’03.

[27] Federal Bureau of Investigation. Terrorist ScreeningCenter.
http://www.fbi.gov/terrorinfo/counterrorism/tsc.htm.

[28] Free Software Foundation. The GNU MP Bignum Library.http://gmplib.org/.

[29] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom functions.
In TCC’05, pages 303–324, 2005.

[30] M. Freedman, K. Nissim, and B. Pinkas. Efficient privatematching and set intersection. InEurocrypt’04,
pages 1–19.

[31] C. Gentry and Z. Ramzan. Single-database private information retrieval with constant communication rate.
In ICALP’05.

[32] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval
schemes. InSTOC’98, 1998.

[33] H. Hacig̈umüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database-service-
provider model. InSIGMOD’02, 2002.

[34] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security against
malicious and covert adversaries. InTCC’08, pages 155–175, 2008.

[35] C. Hazay and K. Nissim. Efficient Set Operations in the Presence of Malicious Adversaries. InPKC’10,
2010.

[36] W. Henecka, S. Kgl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for Automating Secure
Two-partY computations. InCCS’10 (to appear), 2010.

[37] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. InVLDB’04, pages
720–731, 2004.

[38] B. Huberman, M. Franklin, and T. Hogg. Enhancing privacy and trust in electronic communities. InECC’09,
1999.

[39] S. Jarecki and X. Liu. Efficient Oblivious PseudorandomFunction with Applications to Adaptive OT and
Secure Computation of Set Intersection. InTCC’09, pages 577–594, 2009.

[40] S. Jarecki and X. Liu. Fast secure computation of set intersection. InSCN’10 (to appear), 2010.

[41] L. Kissner and D. Song. Privacy-preserving set operations. InCRYPTO’05, pages 241–257, 2005.

[42] B. Lynn. PBC: The Pairing-Based Cryptography Library.http://crypto.stanford.edu/pbc/.

[43] S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Borisov. BotGrep: Finding Bots with Structured Graph
Analysis. InUsenix Security’10, 2010.

[44] W. Ogata and K. Kurosawa. Oblivious keyword search.Journal of Complexity, 20(2-3):356–371, 2004.

[45] F. Olumofin and I. Goldberg. Privacy-preserving queries over relational databases. InPETS’10, 2010.

[46] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. InEurocrypt’99, 1999.

[47] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical. InAsi-
acrypt’09, 2009.

[48] M. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard Aiken Computation Lab, 1981.

18

http://www.fbi.gov/terrorinfo/counterrorism/tsc.htm
http://gmplib.org/
http://crypto.stanford.edu/pbc/

[49] M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure anonymous database search. InCCSW, pages
115–126, 2009.

[50] R. Rivest. The RC4 Encryption Algorithm.RSA Data Security Inc., 1992.

[51] Sherri Davidoff. What Does DHS Know About You?
http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you.

[52] R. Sion. On the computational practicality of private information retrieval. InNDSS’07, 2007.

[53] D. Song, D. Wagner, and A. Perrig. Practical techniquesfor searches on encrypted data. InS&P’00, 2000.

[54] Transport Security Administration. Secure Flight: The ”No-Fly” list.
http://www.tsa.gov/approach/secure_flight.shtm.

[55] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an encrypted and searchable audit log. In
NDSS’04, 2004.

[56] Wikipedia, The Free Encyclopedia. Secondary SecurityScreening Selection.
http://en.wikipedia.org/wiki/Secondary_Security_Screening_Selection.

[57] A. Yao. Protocols for secure computations. InFOCS’82, pages 160–164, 1982.

Appendix

A State-of-the-art PSI-s

In the following, we thoroughly review state-of-the-art PSI protocols. We discuss both the protocols
implemented in the PSST toolkit, and those not included. During our discussion,we also motivate our
choices of PSI protocols providing the best combination of privacy guarantees and efficiency. We focus
on constructs providingdata transfer (see Section 2.1). We assume honest-but-curious adversaries.

Notation. We now introduce some terminology. We useEnck(·) andDeck(·) to denote symmetric key
encryption and decryption (under keyk), respectively. Public key encryption and decryption – under
keyspk andsk – are denoted byEpk(·) andEsk(·)

−1, respectively. Then,σ = Signsk(M) denotes a
digital signature computed over a messageM using the secret keysk. OperationVrfypk(σ, M) returns1
or 0 indicating whetherσ is a valid signature onM . Z∗

N refers to a composite-order RSA group, where
N is the RSA modulus. We useZ∗

p to denote a cyclic group with a subgroup of orderq, wherep and
q are large primes, andq|p − 1. We useH(·), H1(·), H2(·), H3(·) to denote different hash functions.
Finally, we assume Client and Server set sizes arev andw, respectively.

A.1 PSI-DT without Pre-distribution

FNP04. Freedman et al. [30] useoblivious polynomial evaluation (OPE) to implement PSI. Their ap-
proach can be slightly modified to support PSI-DT. The modified protocol –denoted with FNP04 –
works as follows: Client first setups an additively homomorphic encryptionscheme, such as Paillier [46],
with key pair(pkc, skc). Client defines a polynomialf(y) =

∏v
i=1

(y − ci) =
∑v

i=0
aiy

i whose roots
are its inputs. It encrypts each coefficientai under its public keypkc and sends encrypted coefficients
{Encpkc

(ai)}
k
i=0 to Server. Since the encryption is homomorphic, Server can evaluateEnc(f(sj)) for

eachsj ∈ S without the support from Client. Then Server returns{(Enc(rj ·f(sj)+sj), Enc(r′j ·f(sj)+
dataj))}

n
j=0 to the Client whererj andr′j are fresh random numbers for each input inS. Client, for each

returned pair(el, er), decryptsel by computingc′ = Decskc
(el). Then if c′ ∈ C, the Client continues

to decrypter and gets the associated data. Otherwise, Client only gets some random valueand moves
onto the next returned pair. In order to speed up the performance, FNP04 can use modified ElGamal
encryption [25] instead of Paillier. Specifically, Client usesgai instead ofai as the input to the ElGamal
encryption. And when it decryptsel, it recoversgc′ . Client can still decide whetherc′ ∈ C by comparing
gc′ to gci ,∀ci ∈ C. In terms of data, Server can choose a random keygkj and uses it to symmetrically
encryptdataj . Then Server sends{(Enc(rj · f(sj) + sj), Enc(r′j · f(sj) + kj), Enc

gkj (dataj))}
w
j=0

19

http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you
http://www.tsa.gov/approach/secure_flight.shtm
http://en.wikipedia.org/wiki/Secondary_Security_Screening_Selection

to Client. If Client can recovergkj , it can also decryptdataj . Using balanced bucket allocation to speed
up operations, Client overhead is dominated byO(v + w) |q|-bit modp exponentiations (in ElGamal).
Whereas, Server overhead is dominated byO(w log log v) |q|-bit modp exponentiations. Also, note that
a recent result in [35] presents an improved construction of FNP withoutROM in the malicious model,
with similar asymptotic overhead but more expensive underlying cryptographic operations.

KS05. Kissner and Song [41] also use oblivious polynomial evaluation to construct a variety of set
operations. However, their solution is designed for mutual intersection over multi-set that may contain
duplicate elements, and it is unclear how to adapt it to transfer associated data. Also, their technique
incurs quadratic (O(vw)) computation (but linear communication) overhead. As we will use a different
method to handle multi-sets (see Section 4.2.1) and we only consider one-way PSI, we prefer FNP04 as
a PSI-DT solution based on OPE.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT protocol (Fig. 3 in [22]) with linear
computation and communication complexities. This protocol, denoted as DT10-1,operates as follows:
The setup phase yields primesp andq, s.t.q|p − 1, and a generatorg of the subgroup. In the following,
we assume computation done modp. First, Client sends to ServerX = [(

∏v
i=1

H(ci)) · gRc] where
Rc is randomly selected fromZq. Also, for eachi, Client sendsyi = [(

∏
l 6=i H(cl)) · gRc:i], where

theRc:i’s are random inZq. Server picks a randomRs in Zq and replies withZ = gRs andy′i = yRs

i

(for everyyi it received). Also, for each itemsj , it computesKs:j = (X/H(sj))
Rs , and sends thetag

tj = H1(Ksj
) with the associated data record encrypted underkj = H2(Ksj

). Client, for each of its
elements, computesKc:i = y′i · Z

Rc · Z−Rc:i and the tagt′i = H1(Kc:i). Only if ci is in the intersection
(i.e., there exists an elementsj = ci), Client finds a pair of matching tags(t′i, tj). Besides learning
the elements intersection, Client can decrypt associated data records by key H2(Kc:i). Client overhead
amounts toO(v) |q|-bit modulop exponentiations and multiplications and Server overhead isO(v + w)
|q|-bit modulop exponentiations. Communication complexity is linear –O(v + w).

As a result, we consider FNP and DT10-1 protocols in the context of (non-authorized) PSI-DT
without pre-distribution. (We discuss pre-distribution optimizations below). Note thatthese protocols
also provide the optional requirements of Server and Client unlinkability.

A.2 PSI-DT with Pre-distribution

JL09. Jarecki and Liu [39] (following the idea in [34]) give a PSI based on Oblivious PRF (OPRF) [29].
We denote this protocol as JL09. Recall that an OPRF [29] is a two-party protocol that securely computes
a pseudorandom functionfk(·), on keyk contributed by the Server and inputx contributed by Client,
such that Server learns nothing aboutx, while Client learnsfk(x). The main idea is the following: First,
for every itemsj ∈ S, the Server publishesuj = fk(sj). Then, Client, for every itemci ∈ C, obtains
u′

i = fk(ci) by running the secure computation of the OPRF with Server, so that Serverdoes not learn
Client input, and Client learns thatci ∈ C ∩ S if there existsuj s.t. u′

i = uj . JL09 incursO(w + v)
Server exponentiations, andO(v) Client exponentiations. Note that in our implementations we use the
improved OPRF construction presented in [5].

JL10. Another recent work by Jarecki and Liu [40] (denoted as JL10) leverages an idea similar to
the OPRF, namely the newly-introducedParallel Oblivious Unpredictable Function (POUF),fk(x) =
(H(x)k mod p), in the Random Oracle Model secure under theOne-More-Gap-DH assumption in
ROM [6]. During pre-distribution, Server publishesuj = H1(fk(sj)) = H1(H(x)k), for eachsj ∈ S.
Associated data is encrypted under keys obtained asH2(fk(sj)). Then, Client obtainsfk(ci) as follows.
Client picks a random exponentα and sendsyj = H(cj)

α to Server, that replies withz = yk, so that
Client recoversfk(x) = z1/α. Beingu′

i = H1(fk(ci)), Client learns thatci ∈ C ∩ S if there exists
uj s.t. u′

i = uj and may also decrypt the corresponding data. Note that this solution resembles the
set intersection protocols previously given by [26, 38]. The computational complexity of this protocol
amounts toO(v) on-line exponentiations for both Server and Client, as Server can pre-process (off-line)
its O(w) exponentiations. Note that random exponents can all be taken from a subgroup, e.g., they can
160-bit long, similar to DT10-1.

20

DT10-2. In Fig. 4 of [22], De Cristofaro and Tsudik present a PSI-DT (secure under the One-More-RSA
assumption [6]), based on blind-RSA signatures. We denote this protocolwith DT10-2. It achieves the
same computational complexity as JL10, but (1) Server computes RSA signatures (e.g., 1024-bit exps),
and (2) Client workload is reduced to only multiplications if the RSA public key,e, is chosen short
enough (e.g.,e = 3).

In summary, we consider JL09, JL10 and DT10-2 in the context of PSI-DT with pre-distribution.
Note that, although faster than protocols without pre-distribution, these protocols do not achieve Server
unlinkability.

A.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig. 2 of [22], De Cristofaro and Tsudik also present an APSI-DT technique mirroring
the PSI-DT discussed above (i.e., DT10-1). We denote this protocol as DT10-APSI. It works as follows:
Client first obtains authorization from the court for its elementci, where an authorization corresponds
to an RSA-signature:σi = H(ci)

d. Then, Client sends ServerX = [(
∏v

i=1
σi) · g

Rc] for a randomRc.
Then, for each elementci, it sendsyi = [(

∏
l 6=i σl)·g

Rc:i], where theRc:i’s are additional random values.

Server picks a random value,Rs, and replies withZ = geRs , y′i = yeRs

i (for each receivedyi). Also, for
each elementsj , she computesKs:j = (Xe/H(sj))

Rs , and sends thetag tj = H ′(Ks:j) and the asso-
ciated data record encrypted under the keykj = H ′′(Ks:j). Client, for each of its elements, computes
Kc:i = y′i · Z

Rc · Z−Rc:i and the tagt′i = H ′(Kc:i). Client can find a pair of matching tag(t′i, tj) only
if ci is in the intersection andσi is a valid signature onci, Besides learning the elements in the intersec-
tion, Client can decrypt associated data records. The computation overhead isO(v) exponentiations for
Client whileO(v + w) for Server.

CZ09. Camenisch and Zaverucha [15] provide mutual set intersection with certification on both parties’
input. The proposed protocol builds upon oblivious polynomial evaluationand has quadratic computa-
tion and communication overhead. Also, it does not provide data transfer.

As a result, we consider the DT10-APSI protocol in the context of APSI-DT without pre-distribution.
Note that DT10-APSI also provides Server and Client unlinkability, as wellas forward security.

A.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 3 of [21] presents a protocol based on Boneh-Franklin Identity-based
Encryption [10], which can be adapted to APSI-DT. We denote this protocol as IBE-APSI. Note that
such a construct is described in the context of a different primitive – Privacy-Preserving Information
Transfer (PPIT). However, it can be trivially converted to APSI-DT (see [22]). First, the authorization
authority (acting as the IBE PKG) generates a primeq, two groupsG1, G2 of orderq, a bilinear mape :
G1 ×G1 → G2. A randoms ∈ Zq is selected as a secret master key. Then, a random generatorP ∈ G1

is chosen, andQ is set such thatQ = s · P . (P, Q) are public parameters. Client obtains authorization
for an elementci as an IBE secret key,σi = s · H(ci). In the pre-distribution phase, Server first selects
a randomz ∈ G1 and then, for each(sj , dataj), publishes(tj , ej) wheretj = H1(e(Q, H(sj))

z) and
ej is the IBE encryption ofdataj under identifiersj . Then, Server gives ClientR = zP and Client
computest′i = H1(e(R, σi)). For anyt′i, s.t. t′i = tj , Client can decryptej . The protocol can be
speeded up by encryptingej under symmetric keyH2(e(Q, H(sj))

z). Remark that IBE-APSI has two
drawbacks compared to APSI-DT: it provides neither Server unlinkabilitynor forward security.

21

	Introduction
	Roadmap & Contributions

	Preliminaries
	Private Set Intersection (PSI)
	Desired Properties
	Related Primitives

	Implementing Efficient PSI-s
	Experimental Analysis
	Comparison with PIR

	Large-Scale Privacy-preserving Sharing of Sensitive Information
	Strawman Approach: Problems and Challenges
	PSST Design
	Architecture
	Database Encryption with counters
	Query lookup
	Optimizations
	Challenges Revisited
	Addressing Privacy
	Comparison to MySQL

	Related Privacy-Preserving Database Systems

	Conclusions & Future Work
	State-of-the-art PSI-s
	PSI-DT without Pre-distribution
	PSI-DT with Pre-distribution
	APSI-DT without Pre-distribution
	APSI-DT with Pre-distribution

