Privacy-Preserving Sharing of Sensitive Information

Emiliano De Cristofaro Yanbin Lu Gene Tsudik

Information and Computer Science
University of California, Irvine
{edecrist,yanbinl,gis@ics.uci.edu

ABSTRACT obtain electronic information about a suspect, e.g., from the local

The need for controlled sharing of sensitive information occurs Pelice, the military, the DMV, the IRS, or the suspect's employer.
in many realistic everyday scenarios, ranging from critical (e.qg., In many cases, itis dangerous or forbidden to disclose the supject of
national security) to mundane (e.g., social networks). A typical _the mv_estlgatlon. On the other hand, the other party cqnno@dlsclose
scenario involves two parties, at least one of which seeks some in-its entire data-set and trust the FBI to only extract desired informa-
formation from the other. The latter is either willing, or compelled, tion. Furthermor_e, FBl requests might need to be_qmthorlzgd
to share information. This poses two challenges: (1) how to en- by some appropriate e_lut_horlty, Sl_JCh as, a fede“’?" judge. Th's way,
able this type of sharing such that parties learn no (or minimal) the FBI can only obtain information correspondingatathorized

information beyond what they are entitled to, and (2) how to do so requests. L . Lo
efficiently, in real-world practical terms. Other examples of sensitive information sharing include recent

In this paper, we discuss the concept of Privacy-preserving Shar- results incollaborativebotnet detectiori [23] — applications where

ing of Sensitive Information (PSSI) and provide an efficient databasepartli_es sharﬁ_theirllogst;[o idehntify common anomalies, without re-
system implementation. The PSSI system functions pgvacy veaiing any; tl)ng Ese a OUtIt en;). hi he d
shieldto protect parties from disclosing their respective sensitive _ Motivated by the examples above, this paper presents the de-

information. Although seemingly simple, the design and deploy- SI9n @nd implementation of a system fnivacy-preserving Shar-
ment of PSSI prompts a number of new and interesting practical ”:19 ?f Senstwelnformauc;n (PSS_l).lPS_,SI functlor;]s askf‘arlvacy_
challenges, that are addressed in this paper. We present extensivé _|edto protect parties from disclosing more than the required

experimental results that attest to the practicality of attained privacy Mnimum of their respective sensitive information. We model PSSI
features. as a simple database-querying application, composed by two par-

ties: aserver holding a database, ancchent, issuing disjunctive
equality queries. Recall the Aviation Safety scenario: airline com-
1. INTRODUCTION panies maintain databases with passenger information, while the
In today’s increasingly digital world, there is often a tension be- DHS poses queries corresponding to its secret lists (e.g., the Terror
tween safeguarding privacy and sharing information. Clearly, sen- Watch List). Our goal is to prevent the airlines from learning the
sitive data needs to be kept confidential. However, in certain scenar-content of the queries, while letting the DHS obtain only records
ios, data owners are either motivated or forced to share (otherwisematching those queries.

sensitive) information. Consider the following examples: o))
Intended Contributions. First, we explore the concept of Privacy-

Aviation Safety. The Department of Homeland Security (DHS) preserving Sharing of Sensitive Information (PSSI). We then turn to
needs to check whether any passengers on each flight from or to thePrivate Set Intersection (PSI) techniques and show that they repre-
United States must be denied boarding or disembarkation, based orsent the most appropriate building block to achieve both efficiency
several secret lists, including tAerror Watch Listand theNo Fly and provably-secure guarantees. Next, we identify and address a
List. Today, airlines surrender their entire passenger manifests tonumber of challenges in adapting set intersection techniques to re-
the DHS, alongside a large amount of sensitive information, in- alistic database settings. For instance, these techniques usually as-
cluding credit card numbers[29]. Besides its obvious privacy im- sume that set items are unique, whereas, most realistic database set-
plications, thismodus operandposes liability issues with regard tings include duplicate records. Furthermore, their strong privacy
to (mostly) innocent passengers’ data and concerns about possiblgequirements impose the server to “touch” every single item and to
data losél Ideally, the DHS would obtain information pertaining ~ send its entire encrypted database. This may result in large band-
onlyto passengers on one of its watch-lists, without disclosing any width overhead and prompt the problem of long-term data safety
information to the airlines. and associated liability. (Indeed, an encryption scheme considered
strong today might gradually weaken in the long term). We pro-
pose a novel architecture that addresses these challenges and allows
large-scale privacy-preserving database querying. We demtajstra
through experimental analysis, that our solution achieves negligible
overhead compared to (non privacy-preserving) MySQL DBMS.
Finally, we publish the source code of all our implementatfbns.

Healthcare: A health insurance company needs to retrieve infor-
mation about its client from other parties, e.g., other insurance car-
riers or hospitals. Clearly, the latter cannot provide any information
on other patients, while the former cannot disclose the identity of
the target client.

Law Enforcement: An investigative agency (e.g., the FBI) needs to

lSeell@] for a litany of recent incidents where large amountsitee data 2Source code is available atht t p://sprout.ics.uci.edu/
were lost or mishandled by government agencies. proj ect s/ i ar pa- app/ code. php

http://sprout.ics.uci.edu/projects/iarpa-app/code.php
http://sprout.ics.uci.edu/projects/iarpa-app/code.php

Organization. In Sectior 2, we define PSSI along with its privacy ~ Authorized Queries.. In an alternative version witauthorized
requirements, and present cryptographic building blocks. Then, queries we require the client to obtain matching records only if
in Sectior 8, we discuss some challenges stemming froniv@ na the correspondingattr;, val;) is pre-authorized by an appropri-
adaptation of Private Set Intersection (PSI) techniques to PSSI.ate Certification AuthorityCA), i.e., the client holds pertinent au-
Sectiorl# presents our approach using a novel database encryptiotthorizations.

mechanism. Sectidd 5 identifies two additional challenges in terms . .

of large-scale database and presents a new architecture to addres?-3 ~PSSI Privacy Requirements

them. Sectiohl6 concludes the paper. In Appendix, we overview re- We now define PSSI privacy requirements. If needed, we distin-
lated work and present the details and the performance evaluationguish between requirements for standard or authorized queries.

of all underlying cryptographic protocols.

2. PRELIMINARIES

We first discuss the concept of Privacy-preserving Sharing of
Sensitive Information (PSSI), formalize its privacy requirements,

and review our cryptographic building blocks.

2.1 Notation
attr; [th attribute in the database schema
R; jth record in the database
valj i value in R corresponding tattr;
k; key used to encrypR
er; encryption of R
thj, token evaluated overttr;, val;
ctrj number of times whereal ;s ; = val; i, Vi <=7
tag;. tag forattr;, val;
kg key used to encrypt;;
kj’l key used to encrypt index
ekj encryption of keyk ;
eind; encryption of indeyy

Table 1: Notation

We introduce our notation in Tabld 1. Also, we uBec(-)

and Decy(+) to denote symmetric key encryption and decryption
(under keyk), respectively. Public key encryption and decryption

— under keygpk and sk — are denoted a&,(-) and Eg(-) ™",
respectively. Nextg = Sign,, (M) denotes the digital signa-
ture computed over messagé using secret keyk. Operation
Vrfy,,. (o, M) returns eithet or 0, indicating whethes is a valid
signature onV/. Zy refers to an “RSA’ group, wherd is the RSA

modulus. We usé&,, to denote a cyclic group with a subgroup of

order g, wherep and ¢ are large primes, s.tglp — 1. We use

H(-),H.(-), H2(-), H3(-) to denote different hash functions. In

practice, we can implemert (m), Hi(m), H2(m), Hs(m) us-
ing SHA-1 [13] as: SHA-10||m), SHA-1(1||m), SHA-1(2||m),
SHA-1(3||m), respectively.

2.2 PSSI Syntax

The problem of Privacy-preserving Sharing of Sensitive Infor-
mation (PSSI) is best described as a simple database querying ap-

plication. In it, a server is holding a databade, containing
w records withm attributes(attry, - - - , attry,). Thatis,DB =
{(R;)}j=1, where each recor®; = {val;,;};",, andwval;, is
the value ofR; for the attributeattr;. A client poses simple SQL
queries, such as:

SELECT * FROM DB

WHERE (attr; = vali OR--- ORattr; = valy) Q)
As a result of the query, the client gets all recordsJi satis-

fying the where clause, anchothing else Whereas, the server
learns nothingabout any{attr;,val; }1<i<.,. We assume that

e Server Privacy.The client learns no information about any
record in server's database that does not satisfynthere
clause(s).

e Server Privacy (Authorized QueriesThe client learns no
information about any record in server’s database that does
not satisfy thevhere clause(s) or that corresponds to a query
not authorized by the CA.

e Client Privacy.The server learns nothing about any parame-
ters of client’s queries.

e Client Unlinkability. The server cannot determine (with prob-
ability non-neglibly exceeding/2) whether any two client
queries are related.

e Server Unlinkability. For any two queries, the client can-
not determine whether any record in the server's database
has changed, except for the records that are learned (by the
client) as a result of both queries.

e Forward Security (Authorized Queries)lhe client cannot
violate Server Privacy with regard to prior interactions, using
authorizations obtained afterward.

Note that Forward Security and Unlinkability requirements are cru-
cial in many practical scenarios. For instance, recall the Law En-
forcement scenario from Sectibh 1. Suppose that the FBI queries
an employee database without having authorization for a given sus-
pect, e.g., Alice: Server Privacy ensures that the FBI does not ob-
tain any information about Alice. However, unless Forward Secu-
rity is guaranteed, if the FBI later obtains authorization for Alice, it
could recover her file from the (recorded) protocol transcript. This
would violate privacy if authorizations are not retroactive.

On the other hand, Unlinkability keeps one party from noticing
changes in other party’s input. In particular, unless Server Unlinka-
bility is guaranteed, the client can always detect whether the server
updates its database between two interactions. Unlinkability also
minimizes the risk of privacy leaks. Without Client Unlinkability,
if the server learns that the client’s queries are the same in two inter-
actions and one of these query contents are leaked, the other query
would be immediately exposed.

2.4 Building Blocks — Private Set Intersection

Private Set Intersection (PSI)]15] allows two parties — a server

and a client — to interact on their respective input sets, such that the
client only learns the intersection of the two sets, while the server

learns nothing beyond client’s set size. We overview several PSI
variants.

PSI with Data Transfer (PSI-DT) [12] involves a server, on input
aset ofw items, each with associated data recétds {(s1, datay),

-+, (sw,datay)}, and a client, on input of a set ofitems,C =
{c1,-++,cv}. It results in the client outputting(s;, data;) €

S |3dc; € Cs.t.c; = s;} and the server learning nothing except

v. This variant is appealing in many database scenarios, where the

the database schema (format) is known to the client. Furthermore,Server holds a set of records, rather than a simple set of items.
without loss of generality, we assume that the client only queries Authorized PSI-DT (APSI-DT) [L2] ensures that client input is

searchable attributes.

authorizedby an appropriate certification authorif@4). Unless it

holds relevant authorizations, the client does not learn whether its function computations over set item&{tr;, val; ;) in this case),
input is in the intersection. At the same time, the server does not that the client can re-compute (and match) only if the correspond-
learn whether client’s input is authorized, i.e., verification of client ing items are in the intersection. Therefore, tags computed over

authorizations is performed “obliviously”. duplicate(attr;, val;,;) would be identical. Since the entire en-
More specifically, APSI-DT involves a server, on input of a sebof crypted database, along with the tags, is transferred to the client,
items:S = {(s1,data1),- -, (sw,dataw)},and aclient,oninput the latter learns all patterns and distribution frequencies. This is
of a set ofv items with associated authorizations (typically, in the problematic, since actual values can be often inferred from their
form of digital signatures); = {(c1,0:) -, (¢cv,00)}. It results frequencies. For example, consider a large database where one at-
in client outputting{(s;, data;) € S|3(ci,0i) € Cs.t.c; = tribute reflects “employee blood type”. Since blood type frequen-
55 AVrfy (04, ¢;) = 1} (wherepk is CA's public key). cies are well-known for general population, tag distribution for this

attribute would essentially reveal the plaintext, similar to determin-

We also distinguish between various (A)PSI-DT protocols based ™ -
istic encryptions.

on whether they suppoptre-distribution

e (A)PSI-DT with pre-distribution. In this variant, the server ~ Challenge 2: Data Pointers.To enable querying by any attribute,
can “pre-process” its input set independently from client in- eachR; must be copied (and separately encryptedjmes, once
put. This way, the server camre-distributeits (processed) for each attribute, and this would incur high storage/bandwidth
input before protocol execution. Both pre-processing and overhead. This issue can be addressed by encryptingfeaalith

pre-distribution can be done offline, just once for all possi- a unique symmetric key; and then using; (instead ofR;) as
ble clients. data associated witH (attr;, val; ;). Although this would reduce

the overhead, it would also prompts an additional privacy issue: In
order to use the key — instead of the actual record — as “data” in the
(A)PSI-DT protocol, a pointer to the encrypted record (on disk or
Note that several state-of-the-art PSI-DT techniques are reviewedin memory) would have to be stored alongside each tag. This would
in Appendp{ﬂ Observe that pre_distribution prec|udes Server Un- let the client determine which tags correspond to different attributes
linkability, since server input is fixed over multiple protocol exe- ©of the same record. This (potential) privacy leak is aggravated by
cutions. For the same reason, in the context of authorized proto-the previous issue (multi-sets), since, given two encrypted records,
cols, Forward Security cannot be guaranteed with pre-distribution. the client can establish their similarity based on the number of tags
Therefore, protocols with pre-distribution are preferred in scenar- they have in common. For example, a malicious client could test
ios where server input is mostly static and bandwidth overhead is how many records share exactly two attributes.
critical. Whereas, they should be avoided when server database

changes frequently, and/or either Server Unlinkability or Forward
Securlty properties are Necessary. 4. PRIVACY-PRESERVING SHARING OF
SENSITIVE INFORMATION

3. AFIRST ATTEMPT We now present a secure instantiation of a system for Privacy-
It appears possible to meet the privacy requirements (stated inpreserving Sharing of Sensitive Information (PSSI) l_)ased on (_A)PS
Sectior ZB) by using the Private Set Intersection (PSI) techniquesDT téchniques. We address the two challenges discussed in Sec-
outlined in Sectiof2]4. In this section, we discusgrawmanap- tion[3 by proposing a novel database encryption mechanism. Note
proach to deploy a system for Privacy-preserving Sharing of Sen- that we s.elec(A.)PSI-DT without pre-Q|strlbutlom order to guar-

sitive Information (PSSI) using PSI-DT protocols (resp., APSI-DT anteeUnlinkability andForward Security

for authorized queries). However, we show that the strawman solu- ANy givenimplementation of (A)PSI-DT without pre-distribution
tion is not secure. as we discuss below. could be used. However, for the sake of clarity, in Fiddre 1, we

. . show one specific solution using the DT10-1 construction [12].
The Strawman Solution. For each record, consider the hash of DT10-1 is the most efficient protocol according to our experimen-

e (A)PSI-DT without pre-distribution. In this variant, the server
cannot pre-process and pre-distribute its input.

every attribute-value paiufir;, val;,) as a set element, arfé; — tal results. DT10-1 works as follows. Public inputs arey, g.
as its associated data. Server “set” then becomes: First, the client sends to the sendr= [([]:_, hc;)) .ch] where
S = {(H(attr;,val;;), Rj) }<i<m.1<j<w R. & Zq andhe; = H(attr],val}). Also, for eachl < i < v,

the client sendg; = [([T,.., her) - 9], whereR..; <~ Z,. The

server picks a randot, in Z, and replies witlZz = g™+ andy] =
yl*= (for everyy; it receives). Then, it evaluatéBoken (hs;,;)
function as(X/hs;)%, wherehs;; = H(attr;,val;;), and
invokes EDB <+ EncryptDatabase (Algorithm [d). Also, it
sends to the client the encrypted databd@BB, along with Z
and {y; }1<i<». The client, for each of its elements, computes
Kei =y - Z%e . Zz7Fei and invokesLookup (Algorithm[2) to
recover matching records.

Challenge 1: Multi-Sets. By our definitions, PSI-DT and APSI- Compared to the original protocol, we modify the “encryption”
DT do not support multi-sets, i.e., set items are assumed to betechnique: in step 3(b), instead of straightforwardly using a symmetric-
unique. However, most realistic database settings include duplicatekey encryption scheme, the server invokeskherypt Database
records. Although some PSI constructs (elg.] [22]) support multi- procedure. Also note that, in step 5(b), the client invoked ek up
sets, their performance is not promising as they involve quadratic procedure, outlined in Algorithiid 2: note that, onlyd, j, [, such
overhead (in the size of the sets), and they do not supjaiet that he; = hs;i, then K.; = Token(hsj,)
transfer However, in all efficient (linear-complexity) (A)PSI-DT = (([],, ki - g™¢)". Thus, step 10 of Algorithfi]1 generates
constructs, the server sends the client so-caligd i.e., one-way a tag matched in step 2 of AlgoritHnh 2.

Client “set” is: C = {H (attr],val})}1<i<v, i.€., elements cor-
respond to thavhereclause in Equatiop]1. Optionally, if autho-
rized queries are enforced,is accompanied by signaturesover

H (attr;,val}), following the APSI-DT syntax. Client and server
engage in an (A)PSI-DT interaction and, at the end, the client ob-
tains all records matching its (authorized) query.

The strawman solution has, however, a number of issues, that we
discuss below.

e Common input: group generatgr modulusp andg’s orderq
e Client'sinput:{hci,--- , hcy }, Where:he; = H(attr, val})
e Server's inpUt:{hS]'J}1§j§w’1§l§m, {Rj}lgjgwr Where:hsj,l = H(attm,val]-,l)
1. Client:
(@) Rc & qu X H?:l he; 'gRCv {Rc:i — quyi = (Hl;ﬁi hcl) . ch;i}lgigv
) X{yih<i<o
2. Client Server
3. Server:
@) Rs & Zq, Z < g™ {y] < (i) }i<i<o
(b) Token(hsj;) = (X/hs;;)Ts, EDB + EncryptDatabase(Token(-),{R;}1<j<w)
Z,{yih<i<o, EDB
4. Server client
5. Client:
(a) {Kc:i — y; : ZRC ° Z_R“'hgigu
(b) V1 <i<wv,Rj « Lookup(K..;), T + TUR;
(c) OutputT.
Figure 1. PSl-based PSSI (DT10-1)
Algorithm 1: EncryptDatabase size of all records, picks a random symmetric kgyand encrypts
. . .) -] Rj aser; = Enckj (R])
gltf)tgtuﬁ Eﬁgf;gtggoggg%ggggcord sef i hi<j<w The Lookup-table (LTable) encryption, shown in lines 8-15, refers
1 Shuffle{R; }1<j<w; to the encryption of attribute name and value pairs. It enables effi-
2 mazxlen + max length among alR;; cient lookup and record decryption.
3 forl<j<wdo In step 8, the server hashes a attribute-value pair and uses the
4 PadR; to mazlen; hash result as the input ofToken function in Step 9. In step 10,
5 kj < {0,1}'%; we use the concatenation of the output from Tioken procedure
6 erj < Ency, (R;); and a countefgtr;, ;, in order to compute the talgg;,;, later used
7 for 1 <1< mdo as lookup tag during client query. We ude-;,; to denote the in-
8 hsji = H(attr,valj;); dex of duplicate value for theth attribute. In other words;tr; ;
9 tkj,i < Token(hs;,1); is the counter of times whereal;:;, = wval;;,¥j’ <= j. For
10 tag;, < Hi(tkjil|ctrj.); example, the third occurrence of value “Smith” for attribute “Last
11 k;-,z — Ha(tkj||ctrin); Name” will havectr;; = 3. The counter guarantees that duplicate
12 Ky < Hs(tkjallctrin); (attr,val) pairs will correspond to different tags, thus addressing
13 ekj1 E'I’Lck}l(k‘j); Challenge 1 Next, the server computds , = Ha(tk;,||ctr;)
" eind;; Enék'.'l(j)i andk}, = Hg(tkj,chtrjhl). Note thatk], is used for encrypt-
15 LTable,,; (tag;., ckj, cind;,): ing symmetric keyk;. k;, is used for encrypting the index of
16 end R;. In step 13, the server encrypts asek;,; = Enck},l(kj).
17 end Then, the server encryptsnd;; = Enckul(j)- The encryption
1 > . . . 7>
18 ShuffleLTable with respect tgj and/; of index (data pointer) guarantees that the client cannot distinguish
19 EDB « {LTable, {er;}1<j<u}; whether or not two tags belong to the same record, thus addressing

Challenge 2 In step 15, the server inserts edety; ;, ek;,; and
eind;,; into LTable, which iS{tagj,l, ekj, e’iNdj,l}lgjgw,lglgm-
Similarly, one can adapt any APSI-DT without pre-distribution Next, the server.shuffles LTable (step 18). The resulting encrypted
to our PSSI solution for authorized queries. According to our ex- databaseEEDB, is composed of LTable anfr; }; (step 19).
perimental results, the most efficient protocol is DT10-APS] [12].
Since DT10-APSI and DT10-1 are quite similar, the resulting adap- 4.2 Lookup with counters
tation is almost unaltered and is deferred to the extended version of
the paper due to space limitation. We describe th&ookupprocedure in Algorithmi 2. It is used to
In the rest of the section, we examine the details of the search (inEDB) for all the records that match client’s search to-
EncryptDatabase and Lookup procedures. Next, we show how kens (computed in step 5(a) of Figlile 1). In step 1 of Algoriim 2,
our solution addresses the aforementioned challenges, and wetpresghe client sets a counter to 1. Next, it search@able for a tag

our performance evaluation. tag;, such thatag;, = Hi(tk||counter). If there is a match, the
. . client attempts to recover the record associated tadhg;. To do
4.1 Database Encryptlon with Counters so, the client needs to locate the associated record, thus, it computes
The procedure used for database encryption is presented in Al-k” = Hs(tk||ctr) and recoverg’ = Decy (eind;,;). Note that
gorithm[d. It is composed of two phases: (&Ford-leveland (2) er;s NOW corresponds to the associated record. To deeryptthe

lookup-tableencryptions. The Record-level encryption is relatively — client first recovers the ke used to encryper;,, by computing
trivial; it is shown in lines 1-6. First, the server shuffles record lo- k' = Hx(tk||ctr) and obtaining: = Decy (ek;,;). Finally, R; is
cations in the database. Then, it pads eBghup to the maximum recovered upon decryption, i.€2; = Decy(er;).

Client # Records PSSI PSSI Authorized Queries MySQL
Query Size| Returned | Client (ms) [Server (ms)[Trans. (ms)[Total | Client (ms) | Server (ms)| Trans. (ms)| Total Total
1 10 4.1 336.2 1802 2142.3 8.2 339.8 1802 2150.0 54.7

10 100 37.6 337.9 1802 2177.5 59.4 360.7 1802 2222.1 547.3

100 1000 371.4 354.4 1802 2527.8 571.5 572.1 1802 2945.6| 54735

Table 2: Performance Evaluation of our PSSI system for standardwthdrized queries.

Algorithm 2: Lookup

input : A search tokertk and encrypted database
EDB = {LTable, {eT_j}lngw}
output: Matching record seR.
1 ctr < 1;
2 while 3tag;,; € LTable s.t. tag;; = Hi(tk||ctr) do
3 k" <+ Hs(tk||ctr);
j' < Decyr(eind;;);
k' < Hs(tk||ctr);
k < Decys(ekji);
Rj < Decy(erj);
R+~ RURj;
ctr < ctr + 1;
end

4
5
6
7
8
9

10

4.3 Challenges Revisited

nally, the MySQLcolumn reports total execution time of the non
privacy-preserving baseline (measured from the time the query is
issued to the time the last response is returned).

Analysis of PSSI Performance Analyzing the results, we observe
that if queries return a small fraction of the database, our privacy-
preserving solution incurs, unsurprisingly, a higher computation
overhead than MySQL. Indeed, in order to guarantee Client Pri-
vacy, the server needstimuchevery record, thus incurring an over-
head linear in the number of database records. In other words, the
computational overhead incurred by the cryptographic operations
is negligible compared to the time needed to transfer the encrypted
database. Indeed, as queries return larger number of records (clo
to the entire database), the performance slow-down of PSSI solu-
tions tends to be minimized, and it may even be faster than MySq|.
For instance, if alll, 000 records are returned, both our PSSI so-
lutions take less thaBs to complete, while the MySQL baseline
takes more thafs. One possible explanation is that MySQL uses

We now review the challenges discussed in Se€fion 3 and discussTCP for reliable transmission, and this is quite slower than our re-

how our solution successfully addresses them.

liable UDP solution.

Multi-sets: The counter used during database encryption makes Comparing to Private Information Retrieval (PIR). One possi-

eachtag;, (resp. ek;,, eind;,;) distinct in LTable, thus hiding
plaintext patterns.

Data Pointers: Storingeind;,; (rather thary) in LTable, prevents
the server from exposing the relationship between an &W¥gble; ;
and its associated recort);.

4.4 Performance Evaluation

We now discuss the performance of our first PSSI solution based

on PSI-DT (APSI-DT for authorized queries), using our novel dasab
encryption method. In our analysis, we select DT10-1 and DT10-
APSI as the underlying PSI-DT and APSI-DT constructs, respec-
tively. Both protocols are presented in details in Appeidix B.

Experimental Setup. We execute the server on an Intel Harper-
town server with two Xeon E5420 CPUs (2.5 GHz) &ddB RAM.

The client runs on a laptop with Intel Core 2Duo CPU (2.2 GHz)
and4G B RAM. The client is connected to the server via Gigabit

ethernet. The test database has two attributes — one “searchable
and another added to pad each record to uniform size — and contain

1,000 records of sizd 00K B each. Each distinct searchable value
corresponds to exadtb distinct records. We select RC4 as the un-
derlying symmetric encryption scheme. We compare our solution

to a non privacy-preserving baseline, i.e., using standard MySQL
with indexing enabled on the searchable attribute, using the same
database and queries, and running on the same machines. Note th

results are the average tl independent tests.

In Table[2, we summarize our experimental results. Our imple-
mentation combines UDP with Selective Repeat ARQ to provide
reliable transmission. The first two columns report, respectively,
the size of client’s query (i.e., the number of predicates in the dis-

junctive query) and the number of records returned. We measure

query execution time incurred by our PSSI solutions (for both stan-

dard and authorized queries), resulting from client/server overhead
and the time needed to transfer the entire encrypted database. Fi

ble criticism to our solution may be that the communication over-
head islinear in the size of the database size, whereas, prior work
on Private Information Retrieva(PIR) [8] incurredlogarithmic
communication overhead to support private database retrieval.-There
fore, we investigate whether PIR techniques can be used along-
side our solution to reduce bandwidth. First, observe that in PIR
queriers need to know thiedexof desired record (indeed, server’s
database is assumed to be public), whereas we let the client issue
SQL queries. Nonetheless, in our solution, the client can discover
the index of matching records: if onlyTable is sent by the server,

the client recovers the index of matching records in step 4 of Al-
gorithm[2. Thus, it can employ PIR to retrieve the desired record.
However, our performance evaluation shows thattireputational
overhead incurred by PIR is so high that we are better off transfer-
ring the entire (encrypted) database.

PIR Benchmark. We benchmark Gentry-Ramzan PIR][16], which,
to the best of our knowledge, achieves the lowest communication
complexity, i.e.O(log n) for a database with records (whereas, it

?ncursO(n) computation overhead). Figuté 2 compares the com-

putation time needed by the PIR implementation (i.e., even with-
out including time for data transmission) to thatal execution

time incurred by our PSSI solutions for standard (resp., authorized)
queries, based on DT10-1 (resp., DT10-APSI), to execute online
operations and to transmit the encrypted database over a gigabit

fihk. For sake of completeness, we evaluate performance using an

increasing number of returned records. Our results show that, in-
dependently from the database size, even communication-efficient
PIR-s yield less efficient solutions compared to transferring the en-
tire “encrypted” database and computing cryptographic operations
related to the underlying Private Set Intersection protocols (i.e.,
DT10-1 and DT10-APSI). Note that this result mirrors the anal-
ysis in [30]. In the next section, we discuss a different solution to
reduce the bandwidth overhead incurred for large-scale databases.

CLIENT SERVER

GR-PIR —— ' '
PSS e Q . R
1000 |] S pS
h
< > NS
z Qi
2 100 | 1 a
10} EHS
i
[IR S St D e e G S ; %
1 X X .
0 200 400 600 800 1000
Return Set Size
Figure 2: Comparison between computation time of GR-PIR and ISOLATED BOX

total query execution time of our PSSI system.])))]
Figure 3: New system architecture with the introduction

of the Isolated Box.
5. LARGE-SCALE PSSI

Our PSSI solution based on Private Set Intersection, presented in
Sectiori 3, combines efficiency and provably-secure guaranteks, an
incurs limited overhead compared to standard (non-privacy pre-
serving) MySQL. However, two additional issues may challenge
the effectiveness of our solution in the context of large-scale databa:
applications. We discuss them below.

client, in step 1, interacts with the server to obtain a sebkéns
(Note that this does not reveal query contents). From each token,
in step 2, the client derives a set of tags and sends them to the IB,
SWhich returns all matching records. (Again, this does not disclose
the query target). Observe that our IB-powered system relies on
(A)PSI-DT protocolswith pre-distribution, but guarantees Unlink-
Challenge 3: Bandwidth. If the database is relatively large and/or ability and Forward Security.
communication takes place over an expensive/slow channel, the
bandwidth overhead may become a critical issue. Indeed, our so-
lution requires the entire encrypted database to be transferred to
the client. Furthermore, in Sectifn .4, we have investigated and
excluded — due to very high computational overhead — the use of
Private Information Retrieval techniques to minimize the commu-
nication overhead.

Trust Assumptions. We only assume that the IB does not col-
lude with either the server or the client. (However, we discuss the
consequences of collusions in Secfion 5.6). Also, we assume the
existence of a private and authentic channel between the client and
the server, as well as between the client and the IB, e.g., using
SSL/TLS. In practice, the IB can be implemented on a cloud server
or a piece of secure hardware installed on server’s premises, as long
Challenge 4: Liability. The transfer of the (entire) encrypted as the server does not leashatthe 1B reads from its storage (i.e.,
database to the client also prompts the problem of long-term datawhich records) and transfers to the client.
safety and associated liability. An encryption scheme considered Note that, before the client can interact with the server, the latter
strong today might gradually weaken in the long term. Conse- needs to transfer a copy of encrypted database to thafflBie We
quently, it is not too far-fetched to imagine that the client might present the details of the encryption procedure in Seffidn 5.2 and
be able to decrypt the database, elg.or 20 years later. How- the query procedure in Sectibnb.3.
ever, data sensitivity might not dissipate over time. For example, .
suppose that a low-level DoD employee is only allowed to access .2 Database Encryption
unclassified data. By gaining access to the encrypted database Qur IB-powered solution uses the same encryption procedure
containing top secret data and patiently waiting for the encryption presented in Algorithrill1, but uses a differ@Piken(-) function.
scheme to “age”, the employee might obtain still-classified sensi- |ndeed, while, in Sectidd 4, we use (A)PSI-Bifthoutpre-distribution
tive information. Furthermore, in a number of scenarios, parties (j.e., the server cannot rufioken(-) before interacting with the
(e.g., banks) may be prevented by regulation from releasing copiesclient), we now use (A)PSI-DWith pre-distribution. Thus, the
of their databases (even if encrypted). server can evaluatBoken(-) over its inputsoffling, and then pub-

In the rest of this section, we introduce a novel architecture that lish the results of th@'oken(-) evaluations, together with the en-
effectively addresses all above challenges and still incurs very lim- crypted database.
ited overhead Compared to non_privacy preserving database_query Finally, observe that, instead of transferring the encrypted database
ing systems. Specifically, we show a technique for adapting (A)PSI- t0 the client, the server transfers it to the IB (offline).
DT protocols with pre-distribution to support database encryption
and query lookup, and to guarantee Unlinkability and Forward Se- 5.3 Query |00kup
curity at the same time. Next, we discuss challenges and attained The newLookupprocedure is described in AlgoritHth 3. For ease
privacy features. Finally, we compare the performance of our new of exposition, we assume that the client only queries(ane-, val)

solution to that of baseline MySQL. pair and wants to retrieve the firstmatching records. This cor-
. . responds to a simple SQL query, e.g., “SELECT * FROM DB
5.1 New Architecture with Isolated Box WHERE attr* = val* LIMIT t". The extension to disjunctive

. .) queries (querying multipléattr, val) pairs) is relatively trividl.
Overview. In Figure[3, we present a novel system architecture, e will discuss how to cope with the case wheig omitted from
resulting from the introduction of thisolated Box(IB). During
the setup phase, the server transfers the encrypted database and th®isjunctive queries are implemented by treating each equadindition
lookup table (LTable) to the IB. In order to pose an SQL query, the in an “OR” clause as a separate query and removing duplicapenses.

Algorithm 3: Lookup in IB

Step 1: Client anonymously evaluates
tk* = Token(attr*,val®);
Step 2: Client sends to the IB
{tag; = Hi(tk™|||i), ki’ = Hs(tk™[|[i)}1<i<e;
Step 3: IB computes:
for1 <i<tdo
If (3tag,, € LTable;; s.t.tag;; = tag;)
ek; < ek;;
j' = Decyy (eind;)
er; < er;
end
end
Step 4: IB transfergek;, er; }1<i<: to the client.
Step 5: Client computes:
for1<i<tdo
K= Ha(tk"||i)
ki = Decy (ek;)
R; = Decy, (ery)
end

client’'s query in Sectiop 5l4.

In step 1 of AlgorithnB, the client runs any (A)PSI-DT proto-
col with pre-distribution over a singleton set wifattr*, val™)}
as its input, and obliviously evaluates® = Token(attr®,val™)
with the server. In step 2, the client sets a count&om 1 to ¢,
and computes a set of tagug; = Hi(tk™||i) }1<i<: and a set of
index decrypting keygk; = Hs(tk*||i)}1<i<:. Next, the client
sends{tag;, k' }1<i<: to the IB. In step 3, for eache [1,1], the
IB searches fotag; in LTable. If there is no result, the IB adds
L in the response set. If a tupléag;i, ek;,i, eind;;) is found
(wheretag;,; = tag;), the IB decryptseind;,; and recovers in-
dexj’ by runningDecy (ek;,;). The IB then addsr;, andek;,
(which are equal ter; andek;, respectively) to the response set.
In step 4, the IB returns the response §et;, er; }1<i<: to the
client. In step 5, the client computes a set of decrypting Kéys=
Hj(tk™||7) }1<i<¢. For eachi € [1,t], it obtains the decryption
key k; = Decy/ (ek;), and decrypter; by R; = Decy, (ery).

5.4 Optimizations

If ¢ is too large (i.e., there are less thamatching records) or
it is simply omitted from the query, computing all theg; andk;’
at once in step 3 might be time-consuming. Note that the client
can retrieve records one by one from the IB by gradually incre-
menting the countef in each round. To address this, we let the
client compute only oneéag; andk; each time and pipe-line the
computation oftag;,; andk;’,; with the retrieval ofek; ander;

(step 4-5). The query terminates when eitheesponses ot is

Challenge 1 and 2 are straightforwardly addressed. Therefore, we
only discuss Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline) to the
IB, the latter sends only records matching the query back to the
client, thus minimizing bandwidth consumption.

Liability: Since the IB holds the encrypted database, the client only
obtains the result of its queries.

Finally, note that the introduction of the IB allows guaranteeing
Unlinkability and Forward Security, despite we employ (A)PSI-DT
techniquesvith pre-distribution.

5.6 Discussion

Privacy Revisited. The introduction of the IB and the use of counter
mode in database encryption provides additional privacy properties.
We use the ternransactionto denote a complete query procedure
(from the time a SQL query is issued, until the last response from
the IB is received).Retrievaldenotes the receipt of a single re-
sponse record during a transaction. We observe that, if the client
performs only one query transaction, as in Algorifiim 3, the IB can
link all tag; values in step 3 to the sanettr, val) pair. This may
pose a similar risk to that discussed in Challenge 1. However, the
counter allows the client to retrieve matching records one by one.
Therefore, the client can choose to add a random delay between two
subsequent retrievals in a single transaction. If the distribution of
additional delays is indistinguishable from time gaps between two
transactions, the IB cannot tell the difference between two continu-
ous retrievals within one transaction from two distinct transactions.
As aresult, the IB cannot infer whether two continuously retrieved
records share the sanfettr, val) pair and the distribution of the
attribute value remains hidden.

We also note that the introduction of the IB does not violate Client
or Server Privacy. Client Privacy is preserved because the client
(obliviously) computes a token, which is not learned by the server.
The IB does not learn client’s interests, since client’s input to the IB
(tag) is statistically indistinguishable from a random value. Server
Privacy is preserved because the client does not gain any extra in-
formation by interacting with the IB. Finally, the IB only holds the
encrypted database and learns no plaintext.

Limitations. We acknowledge that our PSSI system has some lim-
itations. Over time, as it serves many queries, the 1B gradually
learns the relationship between tags and encrypted records through
pointers associated with each tag. This issue can be mitigated by
letting the server periodically re-encrypt the database. Next, if the
server and the IB collude, Client Privacy is lost, since the IB learns
tag that the client seeks, and the server knows(thiér, val) pair
eachtag is related to. On the other hand, if the client and the 1B

received. This way, the overhead incurred in step 3 is related to the collude, the client can access the whole encrypted database, hence,
computation of only one tag and one key. Also, the client does not |iability becomes a problem. Last, Server Unlinkability is actually

need to estimate how many tags and keys to compute in step 3.
Observe that we can further optimize the computatior/gf;

andeind;,; (steps 13-14 in Algorithfil1). Since we use a counter

as part of the input to computg; (respectively;), eachk’

(respectively,k7 ;) is different from anyj,l. Both &, and k7,

are 160-bit values (SHA-1), whilg; is 128 bits andj is clearly

smaller. Hence, we can usae-time-padencryption (i.e.ek;; =

K} ;®k; andeind;; = k7, @) to speed up computation. In Alg. 3,

Decyy(eind;,i) becomesk) @ eind;, and Decy (ek;) changes

to ki @ ek;.

5.5 New Challenges Revisited

guaranteed only with respect to the client. Server Unlinkability
with respect to the IB is not guaranteed, since the IB learns about
all changes in server’s database.

Finally, note that we currently support only equality and disjunc-
tive SQL queries. Whereas, supporting conjunctive queries would
require treating all combinations @ft¢tr, val) pairs as server’s set
elements. Thus, client’s input would become exponential in terms
of the number of attributes. This remains an interesting challenge
left as part of future work.

5.7 Comparison to MySQL

We now discuss the performance of our second PSSI solution,

Since we reuse the encryption procedure discussed in SEttion 4geared to address the new challenges discussed in the context of

o Y PSSI/MySQL —e— 124 PSSIIMySQL —e—
80 16 PSSI Auth Queries/MySQL - 1.22 P PSSI Auth Queries/MySQL ===
70 1.2
00 5 1.18
50 ¥ e g DG :

1.16

TMyysoL

40
30
20
10

Time (ms)

TMyysoL

114
112
11

D

10 100 1000

Response Set Size

10000 100000

10

100

Response Set Size

1.08
1000 10000 100K M 10M

Record Size (B)

100M

(a) Index lookup speed comparison.(b) Comparison to MySQL w.r.t. response s@f) Comparison to MySQL w.r.t. record size.

size.

Figure 4: Performance comparison between our PSSI implementatidmsoa-privacy preserving MySql baseline

large-scale database applications.

privacy-preserving tools out of their cryptographic “closet” and use

Recall that we use PSI-DT and APSI-DT protocols with pre- them to construct practical systems for Privacy-preserving Sharing
distribution. In our analysis, we select DT10-2 and IBE-APSI as of Sensitive Information (PSSI). Indeed, we have shown that, lever-
the underlying PSI-DT and APSI-DT constructs with pre-distribution,aging efficient Private Set Intersection techniques, we can construct
respectively. Both protocols are presented in details in Appéndix B. privacy-enhanced database systems that are efficient enough to be

We use the same system setup as Se€fidn 4.4 with the IB andused in real-world large-scale applications. In doing so, we en-
Server running on the same machine. The test database has nowountered (and addressed) a number of interesting issues that led to
45 searchable attributes and 1 unsearchable attribute used to padpecific architectural choices. As confirmed by experimental eval-

each record to uniform size. There are, in told), 000 records.

uation, our PSSI implementations incur reasonable additional cost

All records have the same size, which we vary during experiments. over a base-line (non privacy-preserving) MySQL implementation.

Again, we compare our solution to a non privacy-preserving base-

Nonetheless, much remains to be done: First, we do not currently

line, i.e., using standard MySQL with indexing enabled on the support conjunctive (AND) queries across multiple attributes. This
searchable attributes, using the same database and queries, and ruis not difficult to do névely, however, the overhead is likely to be

ning on the same machines. Note that results are average of
independent tests.

First, we comparendex lookup timgdefined as the time be-
tween SQL query issuance and the receipt of the first response from
the IB. We select a set of SQL queries that ret0yri, 10, 100,
1000, 10000 (+10%) responses, respectively, and fix each record
size at500KB. Figure[4{a) shows index lookup time for DT10-
2, IBE-APSI, and MySQL with respect to the response set size.
Both DT10-2 and IBE-APSI incur almost the same overhead and
are only1.5 times more expensive than MySQL. We also measure
index lookup time with respect to general record size. Since the
results are similar to the previous experiment, we omit them here
due to space limitation.

Next, we test the impact of the response set size ortdta
query time which we define as the time between SQL query is-

quite high (exponential in the number of attributes). We also plan
to explore ways to support “fuzzy” querying, i.e., where client’s
input represents non-normalized data.

7[l] Nﬂélgn%ﬁﬁya%eEm ch, M. Chase, M. Kohlweiss,

A. Lysyanskaya, and H. Shacham. Randomizable proofs and

delegatable anonymous credentialsChypto, 2009.

E. Bertino, J. Byun, and N. Li. Privacy-preserving daab systems.

Foundations of Security Analysis and Desigf05.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. PersiRablic

key encryption with keyword search. Eurocrypt 2004.

D. Boneh and M. K. Franklin. Identity-based encryptioarh the

weil pairing. SIAM Journal of Computing32(3), 2003.

[5] J. Camenisch and G. M. Zaverucha. Private intersectiaredified
sets. InFinancial Cryptography and Data Securjt2009.

(2]
(3]
(4]

suance and the arrival of the last response from the IB. Fjgur 4(b) [6] S:gllognérlﬂynglc;fggts :ng? r?;? Iglozst’brﬁt p: /1w
shows the time for the client to complete a query for a specific [7] B. Chor, N. Gilboa, and M. Naor. Private information retral by
response set size divided by the time taken by MySQL. Results keywords Manuscript 1998.
gradually converge ta.1 for increasing response set sizes. This [8] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Rt
is because of the extra delay incurred by cryptographic operations information retrievalJournal of the ACM45(6), 1998.
being amortized by subsequent data lookups and decryptions. [9] S.Chow,J. Lee, and L. Subramanian. Two-party computatiodel
Last, we test the impact of record size on the total query time. for privacy-preserving queries over distributed databaeNDSS
We fix response set size &0 and vary each record size between 2009. - o
100K B and100M B. Figurg[4(c) shows the ratio between DT10-2 [10] J. Daeman and V. Rijmen. AES proposal: Rijndael. 1999.
. . [11] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik.
and MySQL, IBE-APSI and l_\/IySQL,_ respectively. _Agaln,_ results Privacy-preserving policy-based information transfeET'S 2009.
gradually converge ta.1 with increasing of record size which oc- [12] E. De Cristofaro and G. Tsudik. Practical private ségiisection

curs because the overhead of symmetric record decryption becomes
dominant with growing record size.

In summary, both index lookup time and total query time of our [13]
implementation are strictly less than double their respective coun- [14]

terparts in MySQL.

protocols with linear complexity. Ifinancial Cryptography and
Data Security2010.

D. Eastlake and P. Jones. US Secure Hash Algorithm 12.200

M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyh&garch
and oblivious pseudorandom functionsTI&C, 2005.

[15] M. Freedman, K. Nissim, and B. Pinkas. Efficient private chatg

6. CONCLUSIONS & FUTURE WORK

In this paper, our main goal was to drag some useful and efficient

and set intersection. IBurocrypt 2004.

[16] C. Gentry and Z. Ramzan. Single-database private infooma

retrieval with constant communication rate I®ALP, 2005.

http://www.caslon.com.au/datalossnote.htm
http://www.caslon.com.au/datalossnote.htm

[17]

[18]

[29]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Recting data
privacy in private information retrieval schemes.SmOG 1998.

C. Hazay and Y. Lindell. Efficient protocols for set irgection and
pattern matching with security against malicious and covert
adversaries. ITCC, 2008.

B. Hore, S. Mehrotra, and G. Tsudik. A privacy-presagvindex for
range queries. INLDB, 2004.

S. Jarecki and X. Liu. Efficient Oblivious Pseudorandéumction
with Applications to Adaptive OT and Secure Computation df Se
Intersection. INTCC, 2009.

S. Jarecki and X. Liu. Fast secure computation of setdetaion. In
SCN 2010.

L. Kissner and D. Song. Privacy-preserving set operti In
CRYPTQ2005.

S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Bari@otGrep:
Finding Bots with Structured Graph Analysis.Wsenix Security
2010.

W. Ogata and K. Kurosawa. Oblivious keyword seatddurnal of
Complexity 20(2-3), 2004.

F. Olumofin and |. Goldberg. Privacy-preserving quedesr
relational databases. PETS 2010.

M. Rabin. How to exchange secrets by oblivious transf&-81,
Harvard Aiken Computation Lab, 1981.

M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure agmous
database search. @CSW 2009.

R. Rivest. The RC4 Encryption Algorithm. 1992.

Sherri Davidoff. What Does DHS Know About You?
http://philosecurity.org/2009/09/07/

what - does- dhs- know about - you.

R. Sion. On the computational practicality of privatéoimmation
retrieval. INNDSS 2007.

D. Song, D. Wagner, and A. Perrig. Practical technicfoesearches
on encrypted data. IEEE Symposium on Security and Privacy
2000.

B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Buijdan
encrypted and searchable audit logNBSS 2004.

A. Yao. Protocols for secure computationsHOCS 1982.

APPENDIX

A.

RELATED WORK

lower thanO(n) (if n is the database size). Note that, in PIR, pri-
vacy of server’s database is not protected — the client may receive
items/records beyond those requested. Symmetric PIR (SPIR) [17]
additionally offers server privacy, thus achieving OT with commu-
nication overhead lower tha®(n). However, similar to OT, a
client of a symmetric PIR needs to know and input the index of the
desired item in server’s database. An extension to keyword-based
retrieval is Keyword-PIR (KPIR)[[7]. However, KPIR is still fo-
cused on minimizing bandwidth, rather than optimizing computa-
tion or protecting server’s privacy, and it incurs significantly higher
computational overhead, as well as multiple rounds of PIR execu-
tions.

Oblivious Keyword Search [24]. This primitive is akin to a special
case of PSI-DT, where client input set is a singleton, i.e., the set has
only one element. The-out-of-n oblivious keyword search[24] is
very similar to the DT10-Z[12] protocol described in ApperidixIB.2,
while the one in[[14] is very similar to the FNP(04]15] protocol de-
scribed in AppendiX_BJ1. The main difference between PSI-DT
and OKS is that, in OKS, server input may contain duplicate key-
words. Whereas, we discuss how to deal with both duplicate key-
words (Multi-Sets) and duplicate data (Data Pointers) in SeEtion 4.
Due to similar functionality and efficiency, we do not consider OKS
as a candidate building block.

Searchable Encryption. Searching on encrypted data (SoE) was
introduced, in the symmetric key setting, in[31]. This primitive al-
lows a client to store its encrypted data on an untrusted server and
later search for a specific keyword by giving the server a search ca-
pability that does not reveal the keyword or any plaintext. We can-
not use SoE to implement PSSI because the client cannot encrypt
or access the entire server’s database. Note that the problem of
PSSI with authorized queries could be solved ugtnglic-key En-
cryption with Keyword SearciPEKS) [3] (or, similarly, searchable
encrypted logs[32]), based on Identity-based Encryption (IBE) [4]
The database server could append a so-called PEKS for each pair of
(attry,valj,;) to the encrypted data recofg; and send the whole
encrypted database to the client. Whereas, the client could “test” a
predicateattr™ = val™ (and obtain associated data) only if it has

a corresponding trapdoor, i.e., an authorization(@fr*, val™).

Several cryptographic primitives provide privacy properties com- Nonetheless, observe that fFest algorithm in PEKS requires the
parable to those listed in Sectibn2.3. Below, we discuss related gjient to test each trapdoor against each encrypted attribute-value
primitives and motivate our design choices.

Secure Two-Party Computation. Two parties, on input andy,

respectively, can use Secure Two-Party Computation (2PC) to pri- database querying has already been considered by related work. Al-
vately compute the value of a public functighat point (x,y).

pair it receives, thus incurringuadraticcomputational overhead.

Related Privacy-Preserving Database SystemPBrivacy-preserving

though some prior results support more complex query types (i.e.,

Both parties learry'(z, y) and nothing else. A general procedure not only equality and disjunctive queries), they exhibit certain limi-
for 2PC of any function expressed as a Boolean circuit is due 10 tations. For instance, Olumofin and Goldbérg [25] construct a novel
Yao [33]. Although one could implement PSSI with 2PC, this keyword-based PIR (KPIF]7]) providing a transition from block-
technique would incur impractical computation and communica- pased PIR to SQL-enabled PIR. However, similar to KPIR-s, it in-
tion complexities — at least quadratic, as pointed oUtinl[15, 22]. cyrs high computational complexity (several order of magnitudes

Oblivious Transfer (OT). Introduced by Rabir{[26], OT involves a higher than our solutions), and lets clients obtaining other bits of
sender with, secret messages and a receiver with one ind&ke database data (beyond the query result). Next, solutions in[19, 2]

receiver wants to retrieve thth among sender's messages. The d0 not provide rigorous (provably-secure) privacy guarantées.

sender does not learn which message is retrieved, and the receivePaly, [27,[9] require several independent trusted parties, unlike our
learns no other message. OT privacy requirements resemble thosdB-based solution (presented in Secfidn 5), which involves only one
of PSI-DT. However, in PSI-DT, inputs are items (e.g., keywords), Semi-trusted party (implemented on a secure hardware). In particu-

whereas, in OT, the receiver needs to know (and input) an existing &' the work in[9] proposes a two-party query computation model
index — an unrealistic assumption for the applications we have in over distributed databases that involves three entities: a random-

mind. izer, a computing engine, and a query front-end. Local answers to
queries are randomized by each database and aggregate results are

Private Information Retrieval (PIR). PIR [8] allows a client to de-randomized at the front-end.

retrieve an item from a server database without revealing which
item it is retrieving, incurring a communication overhead strictly

http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you
http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you

B. STATE-OF-THE-ART PSI-S

In the following, we review state-of-the-art PSI protocols and
focus on PSI-DT variants. In the rest of the section, we assume
client and server set sizes arandw, respectively.

B.1 PSI-DT without Pre-Distribution

FNPO4. Freedman, Nissim, and Pinkas [15] usdivious polyno-
mial evaluationto implement PSI. Their approach can be slightly
modified to support PSI-DT. The modified protocol — denoted as
FNPO4 — works as follows: the client first setups an additively
homomorphic encryption scheme, such as Paillier, with key pair
(pke, sk.). Client defines a polynomigl(y) = [[;_,(y — ;) =
> a;y* whose roots are its inputs. It encrypts each coefficient
a; under its public keypk. and sends encrypted coefficients
{Encyr, (a;i)}_, to the server. Since the encryption is homomor-
phic, the server can evalual&wc(f(s;)) for eachs; € S indepen-
denlty from the client. Then, the server retufi€nc(r; - f(s;) +

s5), Enc(r} - f(s;) + datay))}7—o to the client where; andr”

are fresh random numbers for each inpusSinClient, for each re-
turned pair(e;, e,-), decryptse; by computinge’ = Decsy, (e1).
Then if¢’ € C, the client continues to decrypt and gets the as-

finds a pair of matching tagg;, ¢,). Besides learning the elements
intersection, the client can decrypt associated data records by key
H>(K..;). Client overhead amounts @(v) |g|-bit modulop ex-
ponentiations and multiplications and server overhe@(is+ w)

|¢|-bit modulop exponentiations.

B.2 PSI-DT with Pre-Distribution

JL09. Jarecki and Liu[[20] (following the idea i [18]) give a PSI-
DT based on Oblivious PRF (OPRFE)[14]. We denote this protocol
as JL09 (and present the improved OPRF construction discussed
in [1]). Recall that an OPRF is a two-party protocol that securely
computes a pseudorandom functifir{(-), on keyk contributed by

a server and input contributed by a client, such that the server
learns nothing about, while the client learng, (). The main
idea is the following: For every item; € S, the server publishes a
setof pai{ H1(fk(s;)), Encu, s, (s;)) (data;) }. Then, the client,

for every iteme; € C, obtainsfx(c;) by OPRF with the server. As
aresult, the client can ugé, (fx(c;)) to check ifc; € CNS and if

so then it use$ls (fx(ci)) to recoverdata;. JLO9 incursO (w4 v)
server exponentiations, ai¥(v) client exponentiations. Exponen-
tiations arg N|-bit modulo N2, whereN is the RSA modulus.

sociated data. Otherwise, the client only gets some random valueJL10. Another recent work by Jarecki and Liu[21] (denoted as
and moves onto the next returned pair. In order to speed up theJL10) leverages an idea similar to JLO9][20] to achieve PSI-DT.
performance, FNP04 can use modified EIGamal encryption instead!nstead of using OPRF, JL10 uses the newly-introdueaxhllel

of Paillier. Specifically, the client useg” instead ofa; as the in-

put to the ElIGamal encryption whegeis a generator with order

g modulop. And when it decrypts;, it recoverSgC'. Client can

still decide whether! € C by comparinggcl to g“,Ve; € C.

In terms of data, the server can choose a random géeyand
uses it to symmetrically encryplata;. Then the server sends
{(Enc(r;-f(s;)+s;), Enc(rj-f(s;)+k;), Enc x; (data;)) } o

to the client. If the client can recove/*s, it can also decrypt
dataj. Using balanced bucket allocation to speed up operations,
client overhead is dominated 6y(v + w) |g|-bit modp exponen-
tiations (in EIGamal). Whereas, server overhead is dominated by
O(wloglog v) |g|-bit modp exponentiations.

KS05. Kissner and Sond [22] also use oblivious polynomial eval-
uation to construct a variety of set operations. However, their so-
lution is designed for mutual intersection ovaulti-setthat may
contain duplicate elements, and it is unclear how to adapt it to trans-
fer associated data. Also, their technique incurs quadr@tie))
computation (but linear communication) overhead. As we use a
different method to handle multi-sets (see Sedfbn 4) and we only
consider one-way PSI, we do not consider KSO5 any further.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT
protocol (Fig. 3 in[[12]) with linear computation and communica-
tion complexities. This protocol, denoted as DT10-1, operates as
follows: The setup phase yields primgqe.g. 1024 bits) ang
(e.g. 160 bits), s.tg|p — 1, and a generatgy with orderg modulo

p. In the following, we assume computation is done npodFirst,

the client sends to the serv&r = [([]_, H(c:)) - g*] whereR.

is randomly selected fro,. Also, for eachl < i < v, the client
sendsy; = [([1,.; H(c1)) - g"“"], where theR..;'s are random in
Z,. The server picks a random, in Z, and replies withz = ¢
andy, = yf“s (for everyy; it received). Also, for each iters;

(1 < j < w), it computesK.; = (X/H(s;))", and sends the
tagt; = Hi(Ks.;) with the associated data record encrypted un-
derk; = H2(Ks:;). The client, for each of its elements, computes
Koy =y, - ZR . Zz7Rei and the tag, = H1(K..;). Onlyif ¢; is

in the intersection (i.e., there exists an elemgnt= ¢;), the client

10

Oblivious Unpredictable FunctioPOUF), fx () = (H (z)* mod

p), in the Random Oracle Model. In order to obliviously com-
pute fx(x), the client first picks a random exponentand sends

y; = H(c;)“ to the server. The server replies to the client with

z; = (y;)*. Then the client recoverf, (z) = 2z*/®. The compu-
tational complexity of this protocol amounts @(v) online expo-
nentiations for both server and client, as the server can pre-process
(offline) its O(w) exponentiations. Exponentiations aréit mod-

ulo p, similar to DT10-1.

DT10-2. In Fig. 4 of [12], De Cristofaro and Tsudik present a PSI-
DT based on blind-RSA signatures in the Random Oracle Model
(ROM). We denote this protocol as DT10-2. The protocol uses the
hash of RSA signatures as a PRF in ROM and achieves the same
asymptotic complexities as DT10-2 and JL10, but (1) the server
now computes RSA signatures (e.g., 1024-bit exponentiations), and
(2) client workload is reduced to only multiplications if the RSA
public key,e, is chosen short enough (e.g.+ 3).

In summary, we consider JL09, JL10 and DT10-2 in the context
of PSI-DT with pre-distribution. Note that, although faster than
protocols without pre-distribution, these protocols do not achieve
Server Unlinkability.

B.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig.2 of [12], De Cristofaro and Tsudik also present
an APSI-DT technique mirroring its PSI-DT counterpart, DT10-1.
We denote this protocol as DT10-APSI. It operates as follows: the
client first obtains authorization from the court for its element
where an authorization corresponds to an RSA-signatare=
H(c;)®. Then, the client sends the servar [(IT;=, o0) -

g™] for a randomR... Then, for each element, it sendsy; =
[(TTpi o) - g™"], where theR...;'s are additional random values.
The server picks a random valug,, and replies withZ = g%,

Y yfRS (for each receivedy;). Also, for each element;,

she computedy,.; = (X°/H(s;))", and sends théag t; =
H,(K,.;) and the associated data record encrypted under the key
kj = H2(Ks.;). Client, for each of its elements, compuf€s.;

yi - Z%e . 77 Rei and the tagt; = Hi(K..). Client can find
a pair of matching tagt;, ¢;) only if ¢; is in the intersection and
o; is a valid signature on;, Besides learning the elements in the

intersection, the client can decrypt associated data records. The

computation overhead i9(v) exponentiations for the client, and
O(v + w) — for the server. Exponentiations gr€|-bit modulo.V,
whereN is the RSA modulus.

CZ09. Camenisch and ZaverucHz [5] provide mutual set intersec-
tion with authorization on both parties’ input. The proposed proto-
col builds upon oblivious polynomial evaluation and has quadratic
computation and communication overhead. Also, it does not pro-
vide data transfer.

As a result, we only consider the DT10-APSI protocol in the con-
text of APSI-DT without pre-distribution. Note that DT10-APSI
provides both Server and Client Unlinkability, as well as Forward
Security.

B.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 5 of [111] presents a protocol based
on Boneh-Franklin Identity-based Encryptidd [4], which can be
adapted to APSI-DT with pre-distribution. We denote this protocol
as IBE-APSI. Note that such a construct is described in the context
of a different primitive — Privacy-Preserving Information Tramsfe
(PPIT). However, it can be converted to APSI-DT.

First, the authorization authority (acting as the IBE PKG) gen-
erates a prime, two groupsGi, G2 of ordergq, a bilinear map

e : G x G — Go. Arandoms € Z, is selected as a se-
cret master key. Then, a random generdforce G; is chosen,
andQ@ is set such thaf) = s - P. (P, Q) are public parameters.
Client obtains authorization for an elements an IBE secret key,
o; = s+ H(c;). In the pre-distribution phase, the server first se-
lects a randomx € G; and then, for eaclis;, data;), publishes
(t;,e;) wheret; = Hq(e(Q, H(s;))*) ande; is the IBE encryp-
tion of data; under identifiers;. Then, the server gives the client
R = zP and the client compute$ = Hi(e(R,0;)). For anyt;,
s.t.t; = t;, the client can decrypt;. The protocol can be speeded
up by encrypting:; under symmetric keyi»(e(Q, H(s;))*). The
computation overhead for the client amount&Xta) pairing oper-
ations, while there is no online overhead for the server.

Remark that IBE-APSI has two drawbacks compared to APSI-DT:
it provides neither Server Unlinkability nor Forward Security.

C. BENCHMARKING (A)PSI-DT CONSTRUCTS

In this section, we benchmark several (A)PSI-DT protocols and
compare their performance through experimental results. During
the process, we try to identify the most efficient (A)PSI-DT pro-
tocols (with or without pre-distribution), and select the building
blocks of our PSSI solutions.

Candidate Protocols. We discuss efficient implementation of the
following (A)PSI-DT protocols:

w/ Pre-Distribution
JLO9 ([20]), JL10 ([21)),
DT10-2 (Fig.4 in[[12])
IBE-APSI (Fig.5 in[11])

w/o Pre-Distribution
FNPO4 ([15]),
DT10-1 (Fig.3 in[12])
DT10-APSI (Fig.2 inl[12])

PSI-DT
APSI-DT

Table 3: Candidate PSI-DT and APSI-DT protocols.

Each protocol was implemented in C++ using GMP (ver. 5.01)
and PBC (ver. 0.57) libraries. All benchmarks were collected
on a Ubuntu 9.10 desktop platform with Intel Xeon E5420 CPU
(2.5GHz and 6MB cache) and 8GB RAM.

11

120

128-bit AES CBC -3¢
100 ,X'J
X
X
__ 80 %
(%) X
E o
60 -
.aé X“x‘x
- 40 X7
20
oL
0O 1 2 3 4 5 6 7 8 9 10
Data size (MB)
Figure 5: Symmetric key en-/de-cryption performance.

10000

1000

100

10

Server Precomputation Time (ms)

IBE-APSI
—_—

4000 6000 8000
Server Set Size (w)

1
0 2000 10000

Figure 6: Server pre-computation overhead.

For protocols supporting data transfer, data associated with each
server element can be arbitrarily long. Also, performance of some
protocols is dominated by each element’s data size, rather than set
size (e.g., in FNPO4). In order to obtain a fair comparison, we need
to capture the “intrinsic” cost of each protocol. To this end, we
employ the following strategy to eliminate data size effects: First,
in all protocols, we encrypt each element’s data with a distinct ran-
dom symmetric key and consider these keys as the new associated
data. Assuming that a different key is selected at each interaction,
this technique does not violate Server Unlinkability. This way, the
computation cost of each protocol is measured based on the same
fixed-length key, regardless of data size. In our experiments, we set
symmetric key size t@28 bits.

As aresult, each protocol execution involves additional overhead
of symmetric en-/de-cryption of records. Figlite 5 compares the re-
sulting overhead (for variable data sizes), using either RC4 [28] or
AES-CBC [10] (with 128-bit keys). Therefore, to estimate the total
cost of a protocol, one needs to combine: (1) symmetric encryp-
tion overhead, (2) computation cost of each protocol, and (3) data
transfer delay for transmitting the encrypted data and PSI values.

We further assume that the client does not perform any pre-
computation, while the server performs as much pre-computation
on its input as possible. This reflects the reality where client in-
put is (usually) determined in real time, while server input is pre-
determined. Figurel 6 shows the pre-computation overhead for each
protocol.

Next, we evaluate online computation overhead. Figulres 7 and
[8 present client online computation overhead with respect to client
and server input sizes, respectively. Figlres 9[and 10 show server
online computation overhead with respect to client and server input
size, respectively.

Furthermore, Figurés11 ahd| 12 evaluate protocol bandwidth com-
plexity with respect to client and server input sizes. For protocols
with pre-distribution, bandwidth consumption (since the transfer

100000

- 10000
DT10-APS] -~
IBE-APS] -

1000

10000

1000 100

10

Client Online Computation Time (ms)
S
o
o
o

Client Online Computation Time (ms)

Server Online Computation Time (ms)

- .
: - 10 DT10-APSI
1 IBE-APS| -4
' 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 ‘4000 6000 8:000 10000
Client Set Size (v) Server Set Size (w) Client Set Size (v)

Figure 7: Client online computation w.r.t. Figure 8: Client online computation w.r.t. - Figure 9: Server online computation w.r.t.
client set size. server set size. client set size.

100000 14

2
E
P o o
E 2 12 2 12
< 10000 & : & DT10-APSI :
g k=4 10 IBE-APSI| - = 10 IBE-APSI| o
g £ £
3 1000 2 8 3 8
£ 5 5
O - O
g 100 FNPO4 —6— £ 6 el £ 6
c DT10-1 B B
= DT10-2 S 4 = 4
& e 2 2
= S 2l @ e B S D
g DTI0-APSI I I A e o LT T WA P S U " o—
& LIBE-APS] o X 0 T
0 2000 4000 ~ 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Server Set Size (w) Client Set Size (v) Server Set Size (w)

Figure 10: Server online computation w.r.t. Figure 11: Bandwidth consumption w.r.t. Figure 12: Bandwidth consumption w.r.t.
server set size. client set size. server set size.

of database encryption is performed offline) does not include pre- tween JL10 and DT10-2 is only double. Summing up server and
distribution overhead. Note that, in these figures, we sometimes client computation overhead, DT10-2 results to be the most effi-
use the same marker for different protocols to indicate that these cient. In terms of bandwidth consumption, DT10-2 and JL10 are
protocols share the same value. Client input siZgesp., server almost the same, while JL0O9 is slightly more expensive.

input sizew) is fixed at5, 000 in figures where x-axis refers to the
server (resp., the client) input size.

Finally, note that, in all experiments, we use a 1024-bit RSA
modulus and a 1024-bit cyclic-group modulus with a 160-bit sub-
group order. All test results are averaged oMemdependent runs.
All protocols are instantiated under the assumptioklohest-but-
Curious(HbC) adversaries and in tfiandom Oracle Mod€¢ROM).

APSI-DT without pre-distribution. The only protocol available

in this context is DT10-APSI (as discussed in Apperdix B.3). Fig-
ure[7EI0 illustrates that client overhead is determined only by client
set size, whereas, server overhead is determined by both client and
server set sizes. Note that measurements obtained for APSI-DT
naturally mirror those of DT10-1, as the former simply adds autho-
rization of client inputs (by merging signatures into the protocol).
PSI-DT without pre-distribution. We now focus on the com-
parison between FNP04 and DT10-1. Figur#s17-12 show that that
FNPO4 is much costlier than DT10-1 in terms of client and server
online computation as well as bandwidth consumption. For each
client set size, DT10-1 client overhead ranges fasitvns to 4, 400ms,

APSI-DT with pre-distribution. The only protocol we evaluate

for APSI-DT with data pre-distribution is IBE-APSI (as discussed
in AppendiXB.3). Figur&€ll38 shows that client overhead increases
linearly with client set size and does not depend on server set size.

while ENP04 server overhead — betwdeB00m.s and15, 000ms. Recall that, in IBE-APSI, the server needs to compute pairing op-

For each chosen server set size, server overhead in DT10-16s und ;ahrsggnj fg:ai%%hsltsgs]’ g‘:eeg_ncdoen:t 8];ec(ljleggp&fﬁgggggﬁ:é?gCaen d
1,300ms, while, in FNPO4, it exceedss, 000ms. P P P ’

bandwidth consumption are negligible, as shown in Figiiles®-12.
PSI-DT with pre-distribution. Next, we compare JL09, JL10 and During the pre-computation phase, the server needs to compute
DT10-2, i.e., PSI-DTs with pre-distribution. Recall that all pro- pairing and exponentiations, which makes pre-computation rela-
tocols are instantiated in the HbC model, thus ZKPK'’s are not tively expensive. Thus, note that, If Server Unlinkability is desired,
included for JLO9 and JL10. FigurB¥{7}12 show that DT10-2 in- server would need to repeat, for every interaction, the operations
curs client overhead almost two orders of magnitude lower than otherwise performed only during pre-computation.
JLO9 and JL10. Indeed, DT10-2 involves two client multiplica-
tions for each item, while JLO9 performs two heavy homomaorphic
operations and JL10 — two exponentiations. In JL10, the server on-
line computation overhead results franl60-bit exponentiations,
whereas, in DT10-2, it results fromRSA exponentiations. Since
these exponentiations can be speeded up using the Chinese Re-

mainder Theorem, the gap (for server computation overhead) be- *In these figures, y-values for IBE-APSI are all 0 which is dithe scope
of the y-axis.

One party small set caseFinally, we compare online computation
costs and show the trend with small client or server set size. Our
goal is to address scenarios where one party only has a single input.
Table[4 shows client and server overhead for different protocols

12

Online Computation Overhead (ms)
Protocols v=1, w=10,000 v=10,000, w=1 v=1, w=1
Client Server Client Server Client | Server

FNPO4 1,556.3 | 19,450.4| 12,627.1 65.1 1.2 2.3
DT10-1 0.4 22.7 3,140.8 1,376.6 0.3 0.1
DT10-2 0 0.3 52.6 2,787.7 0 0.3
JLO9 7.6 3.3 77,622.6 | 32,373.4 7.6 3.2
JL10 1.1 0.2 11,270.9 | 1,415.7 1.1 0.2

IBE-APSI 1.4 0 14,142.3 0 1.4 0
DT10-APSI 1.9 26.8 18,646.5| 9,162.3 2.2 2.1

Table 4: Online computation overhead (in ms)

where either party’s input is a singleton. We observe that the result
mirror those showed by Figure¥ 7110.

Take Away. Based on our extensive experimental results, we con-
clude that DT10-1 is best-suited for PSI-DT without pre-distribution,
and DT10-2 for PSI-DT with pre-distribution. DT10-APSI is the
choice for APSI-DT without pre-distribution, whereas, IBE-APSI
— for APSI-DT with pre-distribution.

13

	Introduction
	Preliminaries
	Notation
	PSSI Syntax
	PSSI Privacy Requirements
	Building Blocks – Private Set Intersection

	A First Attempt
	Privacy-preserving Sharing ofSensitive Information
	Database Encryption with Counters
	Lookup with counters
	Challenges Revisited
	Performance Evaluation

	Large-Scale PSSI
	New Architecture with Isolated Box
	Database Encryption
	Query lookup
	Optimizations
	New Challenges Revisited
	Discussion
	Comparison to MySQL

	Conclusions & Future Work
	References
	Related Work
	State-of-the-art PSI-s
	PSI-DT without Pre-Distribution
	PSI-DT with Pre-Distribution
	APSI-DT without Pre-distribution
	APSI-DT with Pre-distribution

	Benchmarking (A)PSI-DT Constructs

