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ABSTRACT
The need for controlled sharing of sensitive information occurs

in many realistic everyday scenarios, ranging from critical (e.g.,
national security) to mundane (e.g., social networks). A typical
scenario involves two parties, at least one of which seeks some in-
formation from the other. The latter is either willing, or compelled,
to share information. This poses two challenges: (1) how to en-
able this type of sharing such that parties learn no (or minimal)
information beyond what they are entitled to, and (2) how to do so
efficiently, in real-world practical terms.

In this paper, we discuss the concept of Privacy-preserving Shar-
ing of Sensitive Information (PSSI) and provide an efficient database
system implementation. The PSSI system functions as aprivacy
shield to protect parties from disclosing their respective sensitive
information. Although seemingly simple, the design and deploy-
ment of PSSI prompts a number of new and interesting practical
challenges, that are addressed in this paper. We present extensive
experimental results that attest to the practicality of attained privacy
features.

1. INTRODUCTION
In today’s increasingly digital world, there is often a tension be-

tween safeguarding privacy and sharing information. Clearly, sen-
sitive data needs to be kept confidential. However, in certain scenar-
ios, data owners are either motivated or forced to share (otherwise
sensitive) information. Consider the following examples:

Aviation Safety: The Department of Homeland Security (DHS)
needs to check whether any passengers on each flight from or to the
United States must be denied boarding or disembarkation, based on
several secret lists, including theTerror Watch Listand theNo Fly
List. Today, airlines surrender their entire passenger manifests to
the DHS, alongside a large amount of sensitive information, in-
cluding credit card numbers [29]. Besides its obvious privacy im-
plications, thismodus operandiposes liability issues with regard
to (mostly) innocent passengers’ data and concerns about possible
data loss.1 Ideally, the DHS would obtain information pertaining
only to passengers on one of its watch-lists, without disclosing any
information to the airlines.

Healthcare: A health insurance company needs to retrieve infor-
mation about its client from other parties, e.g., other insurance car-
riers or hospitals. Clearly, the latter cannot provide any information
on other patients, while the former cannot disclose the identity of
the target client.

Law Enforcement: An investigative agency (e.g., the FBI) needs to
1See [6] for a litany of recent incidents where large amounts sensitive data
were lost or mishandled by government agencies.

obtain electronic information about a suspect, e.g., from the local
police, the military, the DMV, the IRS, or the suspect’s employer.
In many cases, it is dangerous or forbidden to disclose the subject of
the investigation. On the other hand, the other party cannot disclose
its entire data-set and trust the FBI to only extract desired informa-
tion. Furthermore, FBI requests might need to be pre-authorized
by some appropriate authority, such as, a federal judge. This way,
the FBI can only obtain information corresponding toauthorized
requests.

Other examples of sensitive information sharing include recent
results incollaborativebotnet detection [23] – applications where
parties share their logs to identify common anomalies, without re-
vealing anything else about them.

Motivated by the examples above, this paper presents the de-
sign and implementation of a system forPrivacy-preserving Shar-
ing of Sensitive Information (PSSI). PSSI functions as aprivacy
shield to protect parties from disclosing more than the required
minimum of their respective sensitive information. We model PSSI
as a simple database-querying application, composed by two par-
ties: aserver, holding a database, and aclient, issuing disjunctive
equality queries. Recall the Aviation Safety scenario: airline com-
panies maintain databases with passenger information, while the
DHS poses queries corresponding to its secret lists (e.g., the Terror
Watch List). Our goal is to prevent the airlines from learning the
content of the queries, while letting the DHS obtain only records
matching those queries.

Intended Contributions. First, we explore the concept of Privacy-
preserving Sharing of Sensitive Information (PSSI). We then turn to
Private Set Intersection (PSI) techniques and show that they repre-
sent the most appropriate building block to achieve both efficiency
and provably-secure guarantees. Next, we identify and address a
number of challenges in adapting set intersection techniques to re-
alistic database settings. For instance, these techniques usually as-
sume that set items are unique, whereas, most realistic database set-
tings include duplicate records. Furthermore, their strong privacy
requirements impose the server to “touch” every single item and to
send its entire encrypted database. This may result in large band-
width overhead and prompt the problem of long-term data safety
and associated liability. (Indeed, an encryption scheme considered
strong today might gradually weaken in the long term). We pro-
pose a novel architecture that addresses these challenges and allows
large-scale privacy-preserving database querying. We demonstrate,
through experimental analysis, that our solution achieves negligible
overhead compared to (non privacy-preserving) MySQL DBMS.
Finally, we publish the source code of all our implementations.2

2Source code is available at:http://sprout.ics.uci.edu/
projects/iarpa-app/code.php
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Organization. In Section 2, we define PSSI along with its privacy
requirements, and present cryptographic building blocks. Then,
in Section 3, we discuss some challenges stemming from a naı̈ve
adaptation of Private Set Intersection (PSI) techniques to PSSI.
Section 4 presents our approach using a novel database encryption
mechanism. Section 5 identifies two additional challenges in terms
of large-scale database and presents a new architecture to address
them. Section 6 concludes the paper. In Appendix, we overview re-
lated work and present the details and the performance evaluation
of all underlying cryptographic protocols.

2. PRELIMINARIES
We first discuss the concept of Privacy-preserving Sharing of

Sensitive Information (PSSI), formalize its privacy requirements,
and review our cryptographic building blocks.

2.1 Notation

attrl lth attribute in the database schema
Rj jth record in the database

valj,l value inRj corresponding toattrl
kj key used to encryptRj

erj encryption ofRj

tkj,l token evaluated overattrl, valj,l
ctrj,l number of times wherevalj′,l = valj,l, ∀j

′ <= j

tagj,l tag forattrl, valj,l
k′

j,l key used to encryptkj

k′′

j,l key used to encrypt indexj
ekj,l encryption of keykj

eindj,l encryption of indexj

Table 1: Notation

We introduce our notation in Table 1. Also, we useEnck(·)
andDeck(·) to denote symmetric key encryption and decryption
(under keyk), respectively. Public key encryption and decryption
– under keyspk and sk – are denoted asEpk(·) andEsk(·)

−1,
respectively. Next,σ = Signsk(M) denotes the digital signa-
ture computed over messageM using secret keysk. Operation
Vrfypk(σ,M) returns either1 or 0, indicating whetherσ is a valid
signature onM . Z∗

N refers to an “RSA” group, whereN is the RSA
modulus. We useZ∗

p to denote a cyclic group with a subgroup of
order q, wherep and q are large primes, s.t.q|p − 1. We use
H(·), H1(·), H2(·), H3(·) to denote different hash functions. In
practice, we can implementH(m), H1(m), H2(m), H3(m) us-
ing SHA-1 [13] as: SHA-1(0||m),SHA-1(1||m),SHA-1(2||m),
SHA-1(3||m), respectively.

2.2 PSSI Syntax
The problem of Privacy-preserving Sharing of Sensitive Infor-

mation (PSSI) is best described as a simple database querying ap-
plication. In it, a server is holding a database,DB, containing
w records withm attributes(attr1, · · · , attrm). That is,DB =
{(Rj)}

w
j=1, where each recordRj = {valj,l}

m
l=1, andvalj,l is

the value ofRj for the attributeattrl. A client poses simple SQL
queries, such as:

SELECT * FROM DB

WHERE(attr∗1 = val∗1 OR · · · ORattr∗v = val∗v) (1)

As a result of the query, the client gets all records inDB satis-
fying the where clause, andnothing else. Whereas, the server
learns nothingabout any{attr∗i , val

∗
i }1≤i≤v. We assume that

the database schema (format) is known to the client. Furthermore,
without loss of generality, we assume that the client only queries
searchable attributes.

Authorized Queries.. In an alternative version withauthorized
queries, we require the client to obtain matching records only if
the corresponding(attr∗i , val

∗
i ) is pre-authorized by an appropri-

ate Certification Authority (CA), i.e., the client holds pertinent au-
thorizations.

2.3 PSSI Privacy Requirements
We now define PSSI privacy requirements. If needed, we distin-

guish between requirements for standard or authorized queries.
• Server Privacy.The client learns no information about any

record in server’s database that does not satisfy thewhere
clause(s).

• Server Privacy (Authorized Queries).The client learns no
information about any record in server’s database that does
not satisfy thewhere clause(s) or that corresponds to a query
not authorized by the CA.

• Client Privacy.The server learns nothing about any parame-
ters of client’s queries.

• Client Unlinkability.The server cannot determine (with prob-
ability non-neglibly exceeding1/2) whether any two client
queries are related.

• Server Unlinkability. For any two queries, the client can-
not determine whether any record in the server’s database
has changed, except for the records that are learned (by the
client) as a result of both queries.

• Forward Security (Authorized Queries).The client cannot
violate Server Privacy with regard to prior interactions, using
authorizations obtained afterward.

Note that Forward Security and Unlinkability requirements are cru-
cial in many practical scenarios. For instance, recall the Law En-
forcement scenario from Section 1. Suppose that the FBI queries
an employee database without having authorization for a given sus-
pect, e.g., Alice: Server Privacy ensures that the FBI does not ob-
tain any information about Alice. However, unless Forward Secu-
rity is guaranteed, if the FBI later obtains authorization for Alice, it
could recover her file from the (recorded) protocol transcript. This
would violate privacy if authorizations are not retroactive.

On the other hand, Unlinkability keeps one party from noticing
changes in other party’s input. In particular, unless Server Unlinka-
bility is guaranteed, the client can always detect whether the server
updates its database between two interactions. Unlinkability also
minimizes the risk of privacy leaks. Without Client Unlinkability,
if the server learns that the client’s queries are the same in two inter-
actions and one of these query contents are leaked, the other query
would be immediately exposed.

2.4 Building Blocks – Private Set Intersection
Private Set Intersection (PSI) [15] allows two parties – a server

and a client – to interact on their respective input sets, such that the
client only learns the intersection of the two sets, while the server
learns nothing beyond client’s set size. We overview several PSI
variants.

PSI with Data Transfer (PSI-DT) [12] involves a server, on input
a set ofw items, each with associated data record,S = {(s1, data1),
· · · , (sw, dataw)}, and a client, on input of a set ofv items,C =
{c1, · · · , cv}. It results in the client outputting{(sj , dataj) ∈
S | ∃ci ∈ C s.t. ci = sj} and the server learning nothing except
v. This variant is appealing in many database scenarios, where the
server holds a set of records, rather than a simple set of items.

Authorized PSI-DT (APSI-DT) [12] ensures that client input is
authorizedby an appropriate certification authority (CA). Unless it
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holds relevant authorizations, the client does not learn whether its
input is in the intersection. At the same time, the server does not
learn whether client’s input is authorized, i.e., verification of client
authorizations is performed “obliviously”.
More specifically, APSI-DT involves a server, on input of a set ofw
items:S = {(s1, data1), · · · , (sw, dataw)}, and a client, on input
of a set ofv items with associated authorizations (typically, in the
form of digital signatures),C = {(c1, σi) · · · , (cv, σv)}. It results
in client outputting{(sj , dataj) ∈ S | ∃(ci, σi) ∈ C s.t. ci =
sj ∧ Vrfypk(σi, ci) = 1} (wherepk is CA’s public key).

We also distinguish between various (A)PSI-DT protocols based
on whether they supportpre-distribution:

• (A)PSI-DT with pre-distribution. In this variant, the server
can “pre-process” its input set independently from client in-
put. This way, the server canpre-distributeits (processed)
input before protocol execution. Both pre-processing and
pre-distribution can be done offline, just once for all possi-
ble clients.

• (A)PSI-DT without pre-distribution. In this variant, the server
cannot pre-process and pre-distribute its input.

Note that several state-of-the-art PSI-DT techniques are reviewed
in Appendix B. Observe that pre-distribution precludes Server Un-
linkability, since server input is fixed over multiple protocol exe-
cutions. For the same reason, in the context of authorized proto-
cols, Forward Security cannot be guaranteed with pre-distribution.
Therefore, protocols with pre-distribution are preferred in scenar-
ios where server input is mostly static and bandwidth overhead is
critical. Whereas, they should be avoided when server database
changes frequently, and/or either Server Unlinkability or Forward
Security properties are necessary.

3. A FIRST ATTEMPT
It appears possible to meet the privacy requirements (stated in

Section 2.3) by using the Private Set Intersection (PSI) techniques
outlined in Section 2.4. In this section, we discuss astrawmanap-
proach to deploy a system for Privacy-preserving Sharing of Sen-
sitive Information (PSSI) using PSI-DT protocols (resp., APSI-DT
for authorized queries). However, we show that the strawman solu-
tion is not secure, as we discuss below.

The Strawman Solution. For each record, consider the hash of
every attribute-value pair (attrl, valj,l) as a set element, andRj –
as its associated data. Server “set” then becomes:

S = {(H(attrl, valj,l), Rj)}1≤l≤m,1≤j≤w

Client “set” is: C = {H(attr∗i , val
∗
i )}1≤i≤v, i.e., elements cor-

respond to thewhereclause in Equation 1. Optionally, if autho-
rized queries are enforced,C is accompanied by signaturesσi over
H(attr∗i , val

∗
i ), following the APSI-DT syntax. Client and server

engage in an (A)PSI-DT interaction and, at the end, the client ob-
tains all records matching its (authorized) query.
The strawman solution has, however, a number of issues, that we
discuss below.

Challenge 1: Multi-Sets. By our definitions, PSI-DT and APSI-
DT do not support multi-sets, i.e., set items are assumed to be
unique. However, most realistic database settings include duplicate
records. Although some PSI constructs (e.g., [22]) support multi-
sets, their performance is not promising as they involve quadratic
overhead (in the size of the sets), and they do not supportdata
transfer. However, in all efficient (linear-complexity) (A)PSI-DT
constructs, the server sends the client so-calledtags, i.e., one-way

function computations over set items ((attrl, valj,l) in this case),
that the client can re-compute (and match) only if the correspond-
ing items are in the intersection. Therefore, tags computed over
duplicate(attrl, valj,l) would be identical. Since the entire en-
crypted database, along with the tags, is transferred to the client,
the latter learns all patterns and distribution frequencies. This is
problematic, since actual values can be often inferred from their
frequencies. For example, consider a large database where one at-
tribute reflects “employee blood type”. Since blood type frequen-
cies are well-known for general population, tag distribution for this
attribute would essentially reveal the plaintext, similar to determin-
istic encryptions.

Challenge 2: Data Pointers.To enable querying by any attribute,
eachRj must be copied (and separately encrypted)m times, once
for each attribute, and this would incur high storage/bandwidth
overhead. This issue can be addressed by encrypting eachRj with
a unique symmetric keykj and then usingkj (instead ofRj) as
data associated withH(attrl, valj,l). Although this would reduce
the overhead, it would also prompts an additional privacy issue: In
order to use the key – instead of the actual record – as “data” in the
(A)PSI-DT protocol, a pointer to the encrypted record (on disk or
in memory) would have to be stored alongside each tag. This would
let the client determine which tags correspond to different attributes
of the same record. This (potential) privacy leak is aggravated by
the previous issue (multi-sets), since, given two encrypted records,
the client can establish their similarity based on the number of tags
they have in common. For example, a malicious client could test
how many records share exactly two attributes.

4. PRIVACY-PRESERVING SHARING OF
SENSITIVE INFORMATION

We now present a secure instantiation of a system for Privacy-
preserving Sharing of Sensitive Information (PSSI) based on (A)PSI-
DT techniques. We address the two challenges discussed in Sec-
tion 3 by proposing a novel database encryption mechanism. Note
that we select(A)PSI-DT without pre-distributionin order to guar-
anteeUnlinkability andForward Security.

Any given implementation of (A)PSI-DT without pre-distribution
could be used. However, for the sake of clarity, in Figure 1, we
show one specific solution using the DT10-1 construction [12].
DT10-1 is the most efficient protocol according to our experimen-
tal results. DT10-1 works as follows. Public inputs arep, q, g.
First, the client sends to the serverX = [(

∏v
i=1 hci)) · g

Rc ] where
Rc

r
← Zq andhci = H(attr∗i , val

∗
i ). Also, for each1 ≤ i ≤ v,

the client sendsyi = [(
∏

l 6=i hcl) · g
Rc:i], whereRc:i

r
← Zq. The

server picks a randomRs in Zq and replies withZ = gRs andy′
i =

yRs
i (for every yi it receives). Then, it evaluatesToken(hsj,l)

function as(X/hsj,l)
Rs , wherehsj,l = H(attrj , valj,l), and

invokesEDB ← EncryptDatabase (Algorithm 1). Also, it
sends to the client the encrypted database,EDB, along withZ
and {y′

i}1≤i≤v. The client, for each of its elements, computes
Kc:i = y′

i · Z
Rc · Z−Rc:i and invokesLookup (Algorithm 2) to

recover matching records.
Compared to the original protocol, we modify the “encryption”

technique: in step 3(b), instead of straightforwardly using a symmetric-
key encryption scheme, the server invokes theEncryptDatabase
procedure. Also note that, in step 5(b), the client invokes theLookup
procedure, outlined in Algorithm 2: note that, only if∃i, j, l, such
that hci = hsj,l, then Kc:i = Token(hsj,l)
= ((

∏
l 6=i hcl · g

Rc)Rs . Thus, step 10 of Algorithm 1 generates
a tag matched in step 2 of Algorithm 2.
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• Common input: group generatorg, modulusp andg’s orderq
• Client’s input:{hc1, · · · , hcv}, where:hci = H(attr∗i , val

∗
i )

• Server’s input:{hsj,l}1≤j≤w,1≤l≤m, {Rj}1≤j≤w , where:hsj,l = H(attrl, valj,l)

1. Client:

(a) Rc
r
← Zq , X ←

∏v
i=1 hci · g

Rc , {Rc:i ← Zq , yi = (
∏

l 6=i hcl) · g
Rc:i}1≤i≤v

2. Client
X,{yi}1≤i≤v

// Server

3. Server:

(a) Rs
r
← Zq , Z ← gRs , {y′i ← (yi)

Rs}1≤i≤v

(b) Token(hsj,l) , (X/hsj,l)
Rs , EDB ← EncryptDatabase(Token(·), {Rj}1≤j≤w)

4. Server
Z, {y′i}1≤i≤v ,EDB

oo client

5. Client:

(a) {Kc:i ← y′i · Z
Rc · Z−Rc:i}1≤i≤v

(b) ∀1 ≤ i ≤ v,Ri ← Lookup(Kc:i),T ← T ∪Ri

(c) OutputT.

Figure 1: PSI-based PSSI (DT10-1)

Algorithm 1 : EncryptDatabase

input : FunctionToken(·) and record set{Rj}1≤j≤w

output: Encrypted DatabaseEDB

Shuffle{Rj}1≤j≤w;1
maxlen ← max length among allRj ;2
for 1 ≤ j ≤ w do3

PadRj tomaxlen;4

kj
r
← {0, 1}128;5

erj ← Enckj
(Rj);6

for 1 ≤ l ≤ m do7
hsj,l ← H(attrl, valj,l);8

tkj,l ← Token(hsj,l);9

tagj,l ← H1(tkj,l||ctrj,l);10

k′
j,l ← H2(tkj,l||ctrj,l);11

k′′
j,l ← H3(tkj,l||ctrj,l);12

ekj,l ← Enck′

j,l
(kj);13

eindj,l ← Enck′′

j,l
(j);14

LTablej,l ← (tagj,l, ekj,l, eindj,l);15
end16

end17
ShuffleLTable with respect toj andl;18

EDB ← {LTable, {erj}1≤j≤w};19

Similarly, one can adapt any APSI-DT without pre-distribution
to our PSSI solution for authorized queries. According to our ex-
perimental results, the most efficient protocol is DT10-APSI [12].
Since DT10-APSI and DT10-1 are quite similar, the resulting adap-
tation is almost unaltered and is deferred to the extended version of
the paper due to space limitation.

In the rest of the section, we examine the details of the
EncryptDatabase andLookup procedures. Next, we show how
our solution addresses the aforementioned challenges, and we present
our performance evaluation.

4.1 Database Encryption with Counters
The procedure used for database encryption is presented in Al-

gorithm 1. It is composed of two phases: (1)record-leveland (2)
lookup-tableencryptions. The Record-level encryption is relatively
trivial; it is shown in lines 1–6. First, the server shuffles record lo-
cations in the database. Then, it pads eachRj up to the maximum

size of all records, picks a random symmetric keykj , and encrypts
Rj aserj = Enckj

(Rj).
The Lookup-table (LTable) encryption, shown in lines 8–15, refers

to the encryption of attribute name and value pairs. It enables effi-
cient lookup and record decryption.

In step 8, the server hashes a attribute-value pair and uses the
hash result as the input of aToken function in Step 9. In step 10,
we use the concatenation of the output from theToken procedure
and a counter,ctrj,l, in order to compute the tagtagj,l, later used
as lookup tag during client query. We usectrj,l to denote the in-
dex of duplicate value for thel-th attribute. In other words,ctrj,l
is the counter of times wherevalj′,l = valj,l, ∀j

′ <= j. For
example, the third occurrence of value “Smith” for attribute “Last
Name” will havectrj,l = 3. The counter guarantees that duplicate
(attr, val) pairs will correspond to different tags, thus addressing
Challenge 1. Next, the server computesk′

j,l = H2(tkj,l||ctrj,l)
andk′′

j,l = H3(tkj,l||ctrj,l). Note thatk′
j,l is used for encrypt-

ing symmetric keykj . k′′
j,l is used for encrypting the index of

Rj . In step 13, the server encryptskj as ekj,l = Enck′

j,l
(kj).

Then, the server encryptseindj,l = Enck′′

j,l
(j). The encryption

of index (data pointer) guarantees that the client cannot distinguish
whether or not two tags belong to the same record, thus addressing
Challenge 2. In step 15, the server inserts eachtagj,l, ekj,l and
eindj,l into LTable, which is{tagj,l, ekj,l, eindj,l}1≤j≤w,1≤l≤m.
Next, the server shuffles LTable (step 18). The resulting encrypted
database,EDB, is composed of LTable and{erj}wj=1 (step 19).

4.2 Lookup with counters

We describe theLookupprocedure in Algorithm 2. It is used to
search (inEDB) for all the records that match client’s search to-
kens (computed in step 5(a) of Figure 1). In step 1 of Algorithm 2,
the client sets a counter to 1. Next, it searchesLTable for a tag
tagj,l such thattagj,l = H1(tk||counter). If there is a match, the
client attempts to recover the record associated to thetagj,l. To do
so, the client needs to locate the associated record, thus, it computes
k′′ = H3(tk||ctr) and recoversj′ = Deck′′(eindj,l). Note that
erj′ now corresponds to the associated record. To decrypterj′ , the
client first recovers the keyk used to encrypterj′ , by computing
k′ = H2(tk||ctr) and obtainingk = Deck′(ekj,l). Finally,Rj is
recovered upon decryption, i.e.,Rj = Deck(erj′).
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Client # Records PSSI PSSI Authorized Queries MySQL
Query Size Returned Client (ms) Server (ms) Trans. (ms) Total Client (ms) Server (ms) Trans. (ms) Total Total

1 10 4.1 336.2 1802 2142.3 8.2 339.8 1802 2150.0 54.7
10 100 37.6 337.9 1802 2177.5 59.4 360.7 1802 2222.1 547.3
100 1000 371.4 354.4 1802 2527.8 571.5 572.1 1802 2945.6 5473.5

Table 2: Performance Evaluation of our PSSI system for standard andauthorized queries.

Algorithm 2 : Lookup

input : A search tokentk and encrypted database
EDB = {LTable, {erj}1≤j≤w}

output: Matching record setR
ctr ← 1;1

while ∃tagj,l ∈ LTable s.t. tagj,l = H1(tk||ctr) do2
k′′ ← H3(tk||ctr);3

j′ ← Deck′′(eindj,l);4

k′ ← H2(tk||ctr);5

k ← Deck′(ekj,l);6

Rj ← Deck(erj′);7
R ← R ∪Rj ;8
ctr ← ctr + 1;9

end10

4.3 Challenges Revisited
We now review the challenges discussed in Section 3 and discuss

how our solution successfully addresses them.

Multi-sets: The counter used during database encryption makes
eachtagj,l (resp. ekj,l, eindj,l) distinct inLTable, thus hiding
plaintext patterns.

Data Pointers: Storingeindj,l (rather thanj) in LTable, prevents
the server from exposing the relationship between an entryLTablej,l

and its associated recordRj .

4.4 Performance Evaluation
We now discuss the performance of our first PSSI solution based

on PSI-DT (APSI-DT for authorized queries), using our novel database
encryption method. In our analysis, we select DT10-1 and DT10-
APSI as the underlying PSI-DT and APSI-DT constructs, respec-
tively. Both protocols are presented in details in Appendix B.

Experimental Setup. We execute the server on an Intel Harper-
town server with two Xeon E5420 CPUs (2.5 GHz) and8GB RAM.
The client runs on a laptop with Intel Core 2Duo CPU (2.2 GHz)
and4GB RAM. The client is connected to the server via Gigabit
ethernet. The test database has two attributes – one “searchable”
and another added to pad each record to uniform size – and contains
1, 000 records of size100KB each. Each distinct searchable value
corresponds to exact10 distinct records. We select RC4 as the un-
derlying symmetric encryption scheme. We compare our solution
to a non privacy-preserving baseline, i.e., using standard MySQL
with indexing enabled on the searchable attribute, using the same
database and queries, and running on the same machines. Note that
results are the average of10 independent tests.
In Table 2, we summarize our experimental results. Our imple-
mentation combines UDP with Selective Repeat ARQ to provide
reliable transmission. The first two columns report, respectively,
the size of client’s query (i.e., the number of predicates in the dis-
junctive query) and the number of records returned. We measure
query execution time incurred by our PSSI solutions (for both stan-
dard and authorized queries), resulting from client/server overhead
and the time needed to transfer the entire encrypted database. Fi-

nally, theMySQLcolumn reports total execution time of the non
privacy-preserving baseline (measured from the time the query is
issued to the time the last response is returned).

Analysis of PSSI Performance.Analyzing the results, we observe
that if queries return a small fraction of the database, our privacy-
preserving solution incurs, unsurprisingly, a higher computation
overhead than MySQL. Indeed, in order to guarantee Client Pri-
vacy, the server needs totouchevery record, thus incurring an over-
head linear in the number of database records. In other words, the
computational overhead incurred by the cryptographic operations
is negligible compared to the time needed to transfer the encrypted
database. Indeed, as queries return larger number of records (close
to the entire database), the performance slow-down of PSSI solu-
tions tends to be minimized, and it may even be faster than MySql.
For instance, if all1, 000 records are returned, both our PSSI so-
lutions take less than3s to complete, while the MySQL baseline
takes more than5s. One possible explanation is that MySQL uses
TCP for reliable transmission, and this is quite slower than our re-
liable UDP solution.

Comparing to Private Information Retrieval (PIR). One possi-
ble criticism to our solution may be that the communication over-
head islinear in the size of the database size, whereas, prior work
on Private Information Retrieval(PIR) [8] incurred logarithmic
communication overhead to support private database retrieval. There-
fore, we investigate whether PIR techniques can be used along-
side our solution to reduce bandwidth. First, observe that in PIR
queriers need to know theindexof desired record (indeed, server’s
database is assumed to be public), whereas we let the client issue
SQL queries. Nonetheless, in our solution, the client can discover
the index of matching records: if onlyLTable is sent by the server,
the client recovers the index of matching records in step 4 of Al-
gorithm 2. Thus, it can employ PIR to retrieve the desired record.
However, our performance evaluation shows that thecomputational
overhead incurred by PIR is so high that we are better off transfer-
ring the entire (encrypted) database.

PIR Benchmark. We benchmark Gentry-Ramzan PIR [16], which,
to the best of our knowledge, achieves the lowest communication
complexity, i.e.,O(log n) for a database withn records (whereas, it
incursO(n) computation overhead). Figure 2 compares the com-
putation time needed by the PIR implementation (i.e., even with-
out including time for data transmission) to thetotal execution
time incurred by our PSSI solutions for standard (resp., authorized)
queries, based on DT10-1 (resp., DT10-APSI), to execute online
operations and to transmit the encrypted database over a gigabit
link. For sake of completeness, we evaluate performance using an
increasing number of returned records. Our results show that, in-
dependently from the database size, even communication-efficient
PIR-s yield less efficient solutions compared to transferring the en-
tire “encrypted” database and computing cryptographic operations
related to the underlying Private Set Intersection protocols (i.e.,
DT10-1 and DT10-APSI). Note that this result mirrors the anal-
ysis in [30]. In the next section, we discuss a different solution to
reduce the bandwidth overhead incurred for large-scale databases.
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5. LARGE-SCALE PSSI
Our PSSI solution based on Private Set Intersection, presented in

Section 4, combines efficiency and provably-secure guarantees, and
incurs limited overhead compared to standard (non-privacy pre-
serving) MySQL. However, two additional issues may challenge
the effectiveness of our solution in the context of large-scale database
applications. We discuss them below.

Challenge 3: Bandwidth. If the database is relatively large and/or
communication takes place over an expensive/slow channel, the
bandwidth overhead may become a critical issue. Indeed, our so-
lution requires the entire encrypted database to be transferred to
the client. Furthermore, in Section 4.4, we have investigated and
excluded – due to very high computational overhead – the use of
Private Information Retrieval techniques to minimize the commu-
nication overhead.

Challenge 4: Liability. The transfer of the (entire) encrypted
database to the client also prompts the problem of long-term data
safety and associated liability. An encryption scheme considered
strong today might gradually weaken in the long term. Conse-
quently, it is not too far-fetched to imagine that the client might
be able to decrypt the database, e.g.,10 or 20 years later. How-
ever, data sensitivity might not dissipate over time. For example,
suppose that a low-level DoD employee is only allowed to access
unclassified data. By gaining access to the encrypted database
containing top secret data and patiently waiting for the encryption
scheme to “age”, the employee might obtain still-classified sensi-
tive information. Furthermore, in a number of scenarios, parties
(e.g., banks) may be prevented by regulation from releasing copies
of their databases (even if encrypted).

In the rest of this section, we introduce a novel architecture that
effectively addresses all above challenges and still incurs very lim-
ited overhead compared to non-privacy preserving database query-
ing systems. Specifically, we show a technique for adapting (A)PSI-
DT protocols with pre-distribution to support database encryption
and query lookup, and to guarantee Unlinkability and Forward Se-
curity at the same time. Next, we discuss challenges and attained
privacy features. Finally, we compare the performance of our new
solution to that of baseline MySQL.

5.1 New Architecture with Isolated Box

Overview. In Figure 3, we present a novel system architecture,
resulting from the introduction of theIsolated Box(IB). During
the setup phase, the server transfers the encrypted database and the
lookup table (LTable) to the IB. In order to pose an SQL query, the
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Figure 3: New system architecture with the introduction
of the Isolated Box.

client, in step 1, interacts with the server to obtain a set oftokens.
(Note that this does not reveal query contents). From each token,
in step 2, the client derives a set of tags and sends them to the IB,
which returns all matching records. (Again, this does not disclose
the query target). Observe that our IB-powered system relies on
(A)PSI-DT protocolswith pre-distribution, but guarantees Unlink-
ability and Forward Security.

Trust Assumptions. We only assume that the IB does not col-
lude with either the server or the client. (However, we discuss the
consequences of collusions in Section 5.6). Also, we assume the
existence of a private and authentic channel between the client and
the server, as well as between the client and the IB, e.g., using
SSL/TLS. In practice, the IB can be implemented on a cloud server
or a piece of secure hardware installed on server’s premises, as long
as the server does not learnwhatthe IB reads from its storage (i.e.,
which records) and transfers to the client.

Note that, before the client can interact with the server, the latter
needs to transfer a copy of encrypted database to the IB,offline. We
present the details of the encryption procedure in Section 5.2 and
the query procedure in Section 5.3.

5.2 Database Encryption
Our IB-powered solution uses the same encryption procedure

presented in Algorithm 1, but uses a differentToken(·) function.
Indeed, while, in Section 4, we use (A)PSI-DTwithoutpre-distribution
(i.e., the server cannot runToken(·) before interacting with the
client), we now use (A)PSI-DTwith pre-distribution. Thus, the
server can evaluateToken(·) over its inputsoffline, and then pub-
lish the results of theToken(·) evaluations, together with the en-
crypted database.

Finally, observe that, instead of transferring the encrypted database
to the client, the server transfers it to the IB (offline).

5.3 Query lookup
The newLookupprocedure is described in Algorithm 3. For ease

of exposition, we assume that the client only queries one(attr, val)
pair and wants to retrieve the firstt matching records. This cor-
responds to a simple SQL query, e.g., “SELECT * FROM DB
WHERE attr∗ = val∗ LIMIT t”. The extension to disjunctive
queries (querying multiple(attr, val) pairs) is relatively trivial3.
We will discuss how to cope with the case wheret is omitted from

3Disjunctive queries are implemented by treating each equality condition
in an “OR” clause as a separate query and removing duplicate responses.
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Algorithm 3 : Lookup in IB

Step 1: Client anonymously evaluates
tk∗ = Token(attr∗, val∗);

Step 2: Client sends to the IB
{tag∗i = H1(tk

∗‖|i), k′′
i = H3(tk

∗‖|i)}1≤i≤t;
Step 3: IB computes:

for 1 ≤ i ≤ t do
If(∃tagj,l ∈ LTablej,l s.t. tagj,l = tag∗i )

ek∗
i ← ekj,l

j′ = Deck′′

i
(eindj,l)

er∗i ← erj′
end

end
Step 4: IB transfers{ek∗

i , er
∗
i }1≤i≤t to the client.

Step 5: Client computes:
for 1 ≤ i ≤ t do

k′
i = H2(tk

∗||i)
ki = Deck′

i
(ek∗

i )

Ri = Decki
(er∗i )

end

client’s query in Section 5.4.
In step 1 of Algorithm 3, the client runs any (A)PSI-DT proto-

col with pre-distribution over a singleton set with{(attr∗, val∗)}
as its input, and obliviously evaluatestk∗ = Token(attr∗, val∗)
with the server. In step 2, the client sets a counteri from 1 to t,
and computes a set of tags{tag∗i = H1(tk

∗||i)}1≤i≤t and a set of
index decrypting keys{k′′

i = H3(tk
∗||i)}1≤i≤t. Next, the client

sends{tag∗i , k
′′
i }1≤i≤t to the IB. In step 3, for eachi ∈ [1, t], the

IB searches fortag∗i in LTable. If there is no result, the IB adds
⊥ in the response set. If a tuple(tagj,l, ekj,l, eindj,l) is found
(wheretagj,l = tag∗i ), the IB decryptseindj,l and recovers in-
dexj′ by runningDeck′′(ekj,l). The IB then addserj′ andekj,l
(which are equal toer∗i andek∗

i , respectively) to the response set.
In step 4, the IB returns the response set{ek∗

i , er
∗
i }1≤i≤t to the

client. In step 5, the client computes a set of decrypting keys{k′
i =

H2(tk
∗||i)}1≤i≤t. For eachi ∈ [1, t], it obtains the decryption

keyki = Deck′(ek∗
i ), and decryptser∗i by Ri = Decki

(er∗i ).

5.4 Optimizations
If t is too large (i.e., there are less thant matching records) or

it is simply omitted from the query, computing all thetag∗i andk′′
i

at once in step 3 might be time-consuming. Note that the client
can retrieve records one by one from the IB by gradually incre-
menting the counteri in each round. To address this, we let the
client compute only onetag∗i andk′′

i each time and pipe-line the
computation oftag∗i+1 andk′′

i+1 with the retrieval ofek∗
i ander∗i

(step 4–5). The query terminates when eithert responses or⊥ is
received. This way, the overhead incurred in step 3 is related to the
computation of only one tag and one key. Also, the client does not
need to estimate how many tags and keys to compute in step 3.

Observe that we can further optimize the computation ofekj,l
andeindj,l (steps 13–14 in Algorithm 1). Since we use a counter
as part of the input to computek′

j,l (respectively,k′′
j,l), eachk′

j,l

(respectively,k′′
j,l) is different from anyj, l. Both k′

j,l and k′′
j,l

are 160-bit values (SHA-1), whilekj is 128 bits andj is clearly
smaller. Hence, we can useone-time-padencryption (i.e.ekj,l =
k′
j,l⊕kj andeindj,l = k′′

j,l⊕j) to speed up computation. In Alg. 3,
Deck′′

i
(eindj,l) becomesk′′

i ⊕ eindj,l andDeck′

i
(ek∗

i ) changes
to k′

i ⊕ ek∗
i .

5.5 New Challenges Revisited
Since we reuse the encryption procedure discussed in Section 4,

Challenge 1 and 2 are straightforwardly addressed. Therefore, we
only discuss Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline) to the
IB, the latter sends only records matching the query back to the
client, thus minimizing bandwidth consumption.

Liability: Since the IB holds the encrypted database, the client only
obtains the result of its queries.

Finally, note that the introduction of the IB allows guaranteeing
Unlinkability and Forward Security, despite we employ (A)PSI-DT
techniqueswith pre-distribution.

5.6 Discussion

Privacy Revisited.The introduction of the IB and the use of counter
mode in database encryption provides additional privacy properties.
We use the termtransactionto denote a complete query procedure
(from the time a SQL query is issued, until the last response from
the IB is received).Retrievaldenotes the receipt of a single re-
sponse record during a transaction. We observe that, if the client
performs only one query transaction, as in Algorithm 3, the IB can
link all tag∗i values in step 3 to the same(attr, val) pair. This may
pose a similar risk to that discussed in Challenge 1. However, the
counter allows the client to retrieve matching records one by one.
Therefore, the client can choose to add a random delay between two
subsequent retrievals in a single transaction. If the distribution of
additional delays is indistinguishable from time gaps between two
transactions, the IB cannot tell the difference between two continu-
ous retrievals within one transaction from two distinct transactions.
As a result, the IB cannot infer whether two continuously retrieved
records share the same(attr, val) pair and the distribution of the
attribute value remains hidden.
We also note that the introduction of the IB does not violate Client
or Server Privacy. Client Privacy is preserved because the client
(obliviously) computes a token, which is not learned by the server.
The IB does not learn client’s interests, since client’s input to the IB
(tag) is statistically indistinguishable from a random value. Server
Privacy is preserved because the client does not gain any extra in-
formation by interacting with the IB. Finally, the IB only holds the
encrypted database and learns no plaintext.

Limitations. We acknowledge that our PSSI system has some lim-
itations. Over time, as it serves many queries, the IB gradually
learns the relationship between tags and encrypted records through
pointers associated with each tag. This issue can be mitigated by
letting the server periodically re-encrypt the database. Next, if the
server and the IB collude, Client Privacy is lost, since the IB learns
tag that the client seeks, and the server knows the(attr, val) pair
eachtag is related to. On the other hand, if the client and the IB
collude, the client can access the whole encrypted database, hence,
liability becomes a problem. Last, Server Unlinkability is actually
guaranteed only with respect to the client. Server Unlinkability
with respect to the IB is not guaranteed, since the IB learns about
all changes in server’s database.
Finally, note that we currently support only equality and disjunc-
tive SQL queries. Whereas, supporting conjunctive queries would
require treating all combinations of(attr, val) pairs as server’s set
elements. Thus, client’s input would become exponential in terms
of the number of attributes. This remains an interesting challenge
left as part of future work.

5.7 Comparison to MySQL
We now discuss the performance of our second PSSI solution,

geared to address the new challenges discussed in the context of
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Figure 4: Performance comparison between our PSSI implementations and non-privacy preserving MySql baseline

large-scale database applications.
Recall that we use PSI-DT and APSI-DT protocols with pre-

distribution. In our analysis, we select DT10-2 and IBE-APSI as
the underlying PSI-DT and APSI-DT constructs with pre-distribution,
respectively. Both protocols are presented in details in Appendix B.

We use the same system setup as Section 4.4 with the IB and
Server running on the same machine. The test database has now
45 searchable attributes and 1 unsearchable attribute used to pad
each record to uniform size. There are, in total,100, 000 records.
All records have the same size, which we vary during experiments.
Again, we compare our solution to a non privacy-preserving base-
line, i.e., using standard MySQL with indexing enabled on the
searchable attributes, using the same database and queries, and run-
ning on the same machines. Note that results are average of10
independent tests.

First, we compareindex lookup time, defined as the time be-
tween SQL query issuance and the receipt of the first response from
the IB. We select a set of SQL queries that return0, 1, 10, 100,
1000, 10000 (±10%) responses, respectively, and fix each record
size at500KB. Figure 4(a) shows index lookup time for DT10-
2, IBE-APSI, and MySQL with respect to the response set size.
Both DT10-2 and IBE-APSI incur almost the same overhead and
are only1.5 times more expensive than MySQL. We also measure
index lookup time with respect to general record size. Since the
results are similar to the previous experiment, we omit them here
due to space limitation.

Next, we test the impact of the response set size on thetotal
query time, which we define as the time between SQL query is-
suance and the arrival of the last response from the IB. Figure 4(b)
shows the time for the client to complete a query for a specific
response set size divided by the time taken by MySQL. Results
gradually converge to1.1 for increasing response set sizes. This
is because of the extra delay incurred by cryptographic operations
being amortized by subsequent data lookups and decryptions.

Last, we test the impact of record size on the total query time.
We fix response set size at100 and vary each record size between
100KB and100MB. Figure 4(c) shows the ratio between DT10-2
and MySQL, IBE-APSI and MySQL, respectively. Again, results
gradually converge to1.1 with increasing of record size which oc-
curs because the overhead of symmetric record decryption becomes
dominant with growing record size.

In summary, both index lookup time and total query time of our
implementation are strictly less than double their respective coun-
terparts in MySQL.

6. CONCLUSIONS & FUTURE WORK
In this paper, our main goal was to drag some useful and efficient

privacy-preserving tools out of their cryptographic “closet” and use
them to construct practical systems for Privacy-preserving Sharing
of Sensitive Information (PSSI). Indeed, we have shown that, lever-
aging efficient Private Set Intersection techniques, we can construct
privacy-enhanced database systems that are efficient enough to be
used in real-world large-scale applications. In doing so, we en-
countered (and addressed) a number of interesting issues that led to
specific architectural choices. As confirmed by experimental eval-
uation, our PSSI implementations incur reasonable additional cost
over a base-line (non privacy-preserving) MySQL implementation.

Nonetheless, much remains to be done: First, we do not currently
support conjunctive (AND) queries across multiple attributes. This
is not difficult to do näıvely, however, the overhead is likely to be
quite high (exponential in the number of attributes). We also plan
to explore ways to support “fuzzy” querying, i.e., where client’s
input represents non-normalized data.
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APPENDIX

A. RELATED WORK
Several cryptographic primitives provide privacy properties com-

parable to those listed in Section 2.3. Below, we discuss related
primitives and motivate our design choices.

Secure Two-Party Computation. Two parties, on inputx andy,
respectively, can use Secure Two-Party Computation (2PC) to pri-
vately compute the value of a public functionf at point (x, y).
Both parties learnf(x, y) and nothing else. A general procedure
for 2PC of any function expressed as a Boolean circuit is due to
Yao [33]. Although one could implement PSSI with 2PC, this
technique would incur impractical computation and communica-
tion complexities – at least quadratic, as pointed out in [15, 22].

Oblivious Transfer (OT). Introduced by Rabin [26], OT involves a
sender withn secret messages and a receiver with one indexi. The
receiver wants to retrieve thei-th among sender’s messages. The
sender does not learn which message is retrieved, and the receiver
learns no other message. OT privacy requirements resemble those
of PSI-DT. However, in PSI-DT, inputs are items (e.g., keywords),
whereas, in OT, the receiver needs to know (and input) an existing
index – an unrealistic assumption for the applications we have in
mind.

Private Information Retrieval (PIR). PIR [8] allows a client to
retrieve an item from a server database without revealing which
item it is retrieving, incurring a communication overhead strictly

lower thanO(n) (if n is the database size). Note that, in PIR, pri-
vacy of server’s database is not protected – the client may receive
items/records beyond those requested. Symmetric PIR (SPIR) [17]
additionally offers server privacy, thus achieving OT with commu-
nication overhead lower thanO(n). However, similar to OT, a
client of a symmetric PIR needs to know and input the index of the
desired item in server’s database. An extension to keyword-based
retrieval is Keyword-PIR (KPIR) [7]. However, KPIR is still fo-
cused on minimizing bandwidth, rather than optimizing computa-
tion or protecting server’s privacy, and it incurs significantly higher
computational overhead, as well as multiple rounds of PIR execu-
tions.

Oblivious Keyword Search [24].This primitive is akin to a special
case of PSI-DT, where client input set is a singleton, i.e., the set has
only one element. Thek-out-of-n oblivious keyword search [24] is
very similar to the DT10-2 [12] protocol described in Appendix B.2,
while the one in [14] is very similar to the FNP04 [15] protocol de-
scribed in Appendix B.1. The main difference between PSI-DT
and OKS is that, in OKS, server input may contain duplicate key-
words. Whereas, we discuss how to deal with both duplicate key-
words (Multi-Sets) and duplicate data (Data Pointers) in Section 4.
Due to similar functionality and efficiency, we do not consider OKS
as a candidate building block.

Searchable Encryption. Searching on encrypted data (SoE) was
introduced, in the symmetric key setting, in [31]. This primitive al-
lows a client to store its encrypted data on an untrusted server and
later search for a specific keyword by giving the server a search ca-
pability that does not reveal the keyword or any plaintext. We can-
not use SoE to implement PSSI because the client cannot encrypt
or access the entire server’s database. Note that the problem of
PSSI with authorized queries could be solved usingPublic-key En-
cryption with Keyword Search(PEKS) [3] (or, similarly, searchable
encrypted logs [32]), based on Identity-based Encryption (IBE) [4].
The database server could append a so-called PEKS for each pair of
(attrl, valj,l) to the encrypted data recordRj and send the whole
encrypted database to the client. Whereas, the client could “test” a
predicateattr∗ = val∗ (and obtain associated data) only if it has
a corresponding trapdoor, i.e., an authorization of(attr∗, val∗).
Nonetheless, observe that theTest algorithm in PEKS requires the
client to test each trapdoor against each encrypted attribute-value
pair it receives, thus incurringquadraticcomputational overhead.

Related Privacy-Preserving Database Systems.Privacy-preserving
database querying has already been considered by related work. Al-
though some prior results support more complex query types (i.e.,
not only equality and disjunctive queries), they exhibit certain limi-
tations. For instance, Olumofin and Goldberg [25] construct a novel
Keyword-based PIR (KPIR [7]) providing a transition from block-
based PIR to SQL-enabled PIR. However, similar to KPIR-s, it in-
curs high computational complexity (several order of magnitudes
higher than our solutions), and lets clients obtaining other bits of
database data (beyond the query result). Next, solutions in [19, 2]
do not provide rigorous (provably-secure) privacy guarantees.Fi-
nally, [27, 9] require several independent trusted parties, unlike our
IB-based solution (presented in Section 5), which involves only one
semi-trusted party (implemented on a secure hardware). In particu-
lar, the work in [9] proposes a two-party query computation model
over distributed databases that involves three entities: a random-
izer, a computing engine, and a query front-end. Local answers to
queries are randomized by each database and aggregate results are
de-randomized at the front-end.
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B. STATE-OF-THE-ART PSI-S
In the following, we review state-of-the-art PSI protocols and

focus on PSI-DT variants. In the rest of the section, we assume
client and server set sizes arev andw, respectively.

B.1 PSI-DT without Pre-Distribution

FNP04. Freedman, Nissim, and Pinkas [15] useoblivious polyno-
mial evaluationto implement PSI. Their approach can be slightly
modified to support PSI-DT. The modified protocol – denoted as
FNP04 – works as follows: the client first setups an additively
homomorphic encryption scheme, such as Paillier, with key pair
(pkc, skc). Client defines a polynomialf(y) =

∏v
i=1(y − ci) =

∑v
i=0 aiy

i whose roots are its inputs. It encrypts each coefficient
ai under its public keypkc and sends encrypted coefficients
{Encpkc(ai)}

k
i=0 to the server. Since the encryption is homomor-

phic, the server can evaluateEnc(f(sj)) for eachsj ∈ S indepen-
denlty from the client. Then, the server returns{(Enc(rj ·f(sj)+
sj), Enc(r′j · f(sj) + dataj))}

n
j=0 to the client whererj andr′j

are fresh random numbers for each input inS. Client, for each re-
turned pair(el, er), decryptsel by computingc′ = Decskc(el).
Then if c′ ∈ C, the client continues to decrypter and gets the as-
sociated data. Otherwise, the client only gets some random value
and moves onto the next returned pair. In order to speed up the
performance, FNP04 can use modified ElGamal encryption instead
of Paillier. Specifically, the client usesgai instead ofai as the in-
put to the ElGamal encryption whereg is a generator with order
q modulop. And when it decryptsel, it recoversgc

′

. Client can
still decide whetherc′ ∈ C by comparinggc

′

to gci , ∀ci ∈ C.
In terms of data, the server can choose a random keygkj and
uses it to symmetrically encryptdataj . Then the server sends
{(Enc(rj ·f(sj)+sj), Enc(r′j ·f(sj)+kj), Enc

g
kj (dataj))}

w
j=0

to the client. If the client can recovergkj , it can also decrypt
dataj . Using balanced bucket allocation to speed up operations,
client overhead is dominated byO(v + w) |q|-bit modp exponen-
tiations (in ElGamal). Whereas, server overhead is dominated by
O(w log log v) |q|-bit modp exponentiations.

KS05. Kissner and Song [22] also use oblivious polynomial eval-
uation to construct a variety of set operations. However, their so-
lution is designed for mutual intersection overmulti-setthat may
contain duplicate elements, and it is unclear how to adapt it to trans-
fer associated data. Also, their technique incurs quadratic (O(vw))
computation (but linear communication) overhead. As we use a
different method to handle multi-sets (see Section 4) and we only
consider one-way PSI, we do not consider KS05 any further.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT
protocol (Fig. 3 in [12]) with linear computation and communica-
tion complexities. This protocol, denoted as DT10-1, operates as
follows: The setup phase yields primesp (e.g. 1024 bits) andq
(e.g. 160 bits), s.t.q|p− 1, and a generatorg with orderq modulo
p. In the following, we assume computation is done modp. First,
the client sends to the serverX = [(

∏v
i=1 H(ci)) · g

Rc ] whereRc

is randomly selected fromZq. Also, for each1 ≤ i ≤ v, the client
sendsyi = [(

∏
l 6=i H(cl)) · g

Rc:i], where theRc:i’s are random in

Zq. The server picks a randomRs in Zq and replies withZ = gRs

andy′
i = yRs

i (for everyyi it received). Also, for each itemsj
(1 ≤ j ≤ w), it computesKs:j = (X/H(sj))

Rs , and sends the
tag tj = H1(Ks:j) with the associated data record encrypted un-
derkj = H2(Ks:j). The client, for each of its elements, computes
Kc:i = y′

i · Z
Rc · Z−Rc:i and the tagt′i = H1(Kc:i). Only if ci is

in the intersection (i.e., there exists an elementsj = ci), the client

finds a pair of matching tags(t′i, tj). Besides learning the elements
intersection, the client can decrypt associated data records by key
H2(Kc:i). Client overhead amounts toO(v) |q|-bit modulop ex-
ponentiations and multiplications and server overhead isO(v+w)
|q|-bit modulop exponentiations.

B.2 PSI-DT with Pre-Distribution

JL09. Jarecki and Liu [20] (following the idea in [18]) give a PSI-
DT based on Oblivious PRF (OPRF) [14]. We denote this protocol
as JL09 (and present the improved OPRF construction discussed
in [1]). Recall that an OPRF is a two-party protocol that securely
computes a pseudorandom functionfk(·), on keyk contributed by
a server and inputx contributed by a client, such that the server
learns nothing aboutx, while the client learnsfk(x). The main
idea is the following: For every itemsj ∈ S, the server publishes a
set of pair{H1(fk(sj)), EncH2(fk(sj))(dataj)}. Then, the client,
for every itemci ∈ C, obtainsfk(ci) by OPRF with the server. As
a result, the client can useH1(fk(ci)) to check ifci ∈ C ∩S and if
so then it usesH2(fk(ci)) to recoverdataj . JL09 incursO(w+v)
server exponentiations, andO(v) client exponentiations. Exponen-
tiations are|N |-bit moduloN2, whereN is the RSA modulus.

JL10. Another recent work by Jarecki and Liu [21] (denoted as
JL10) leverages an idea similar to JL09 [20] to achieve PSI-DT.
Instead of using OPRF, JL10 uses the newly-introducedParallel
Oblivious Unpredictable Function(POUF),fk(x) = (H(x)k mod
p), in the Random Oracle Model. In order to obliviously com-
putefk(x), the client first picks a random exponentα and sends
yj = H(cj)

α to the server. The server replies to the client with
zj = (yj)

k. Then the client recoversfk(x) = z1/α. The compu-
tational complexity of this protocol amounts toO(v) online expo-
nentiations for both server and client, as the server can pre-process
(offline) itsO(w) exponentiations. Exponentiations areq-bit mod-
ulo p, similar to DT10-1.

DT10-2. In Fig. 4 of [12], De Cristofaro and Tsudik present a PSI-
DT based on blind-RSA signatures in the Random Oracle Model
(ROM). We denote this protocol as DT10-2. The protocol uses the
hash of RSA signatures as a PRF in ROM and achieves the same
asymptotic complexities as DT10-2 and JL10, but (1) the server
now computes RSA signatures (e.g., 1024-bit exponentiations), and
(2) client workload is reduced to only multiplications if the RSA
public key,e, is chosen short enough (e.g.,e = 3).

In summary, we consider JL09, JL10 and DT10-2 in the context
of PSI-DT with pre-distribution. Note that, although faster than
protocols without pre-distribution, these protocols do not achieve
Server Unlinkability.

B.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig.2 of [12], De Cristofaro and Tsudik also present
an APSI-DT technique mirroring its PSI-DT counterpart, DT10-1.
We denote this protocol as DT10-APSI. It operates as follows: the
client first obtains authorization from the court for its elementci,
where an authorization corresponds to an RSA-signature:σi =
H(ci)

d. Then, the client sends the serverX = [(
∏v

i=1 σi) ·

gRc ] for a randomRc. Then, for each elementci, it sendsyi =
[(
∏

l 6=i σl) · g
Rc:i], where theRc:i’s are additional random values.

The server picks a random value,Rs, and replies withZ = geRs ,
y′
i = yeRs

i (for each receivedyi). Also, for each elementsj ,
she computesKs:j = (Xe/H(sj))

Rs , and sends thetag tj =
H1(Ks:j) and the associated data record encrypted under the key
kj = H2(Ks:j). Client, for each of its elements, computesKc:i =
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y′
i · Z

Rc · Z−Rc:i and the tagt′i = H1(Kc:i). Client can find
a pair of matching tag(t′i, tj) only if ci is in the intersection and
σi is a valid signature onci, Besides learning the elements in the
intersection, the client can decrypt associated data records. The
computation overhead isO(v) exponentiations for the client, and
O(v+w) – for the server. Exponentiations are|N |-bit moduloN ,
whereN is the RSA modulus.

CZ09. Camenisch and Zaverucha [5] provide mutual set intersec-
tion with authorization on both parties’ input. The proposed proto-
col builds upon oblivious polynomial evaluation and has quadratic
computation and communication overhead. Also, it does not pro-
vide data transfer.

As a result, we only consider the DT10-APSI protocol in the con-
text of APSI-DTwithout pre-distribution. Note that DT10-APSI
provides both Server and Client Unlinkability, as well as Forward
Security.

B.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 5 of [11] presents a protocol based
on Boneh-Franklin Identity-based Encryption [4], which can be
adapted to APSI-DT with pre-distribution. We denote this protocol
as IBE-APSI. Note that such a construct is described in the context
of a different primitive – Privacy-Preserving Information Transfer
(PPIT). However, it can be converted to APSI-DT.
First, the authorization authority (acting as the IBE PKG) gen-
erates a primeq, two groupsG1,G2 of order q, a bilinear map
e : G1 × G1 → G2. A randoms ∈ Zq is selected as a se-
cret master key. Then, a random generatorP ∈ G1 is chosen,
andQ is set such thatQ = s · P . (P,Q) are public parameters.
Client obtains authorization for an elementci as an IBE secret key,
σi = s · H(ci). In the pre-distribution phase, the server first se-
lects a randomz ∈ G1 and then, for each(sj , dataj), publishes
(tj , ej) wheretj = H1(e(Q,H(sj))

z) andej is the IBE encryp-
tion of dataj under identifiersj . Then, the server gives the client
R = zP and the client computest′i = H1(e(R, σi)). For anyt′i,
s.t. t′i = tj , the client can decryptej . The protocol can be speeded
up by encryptingej under symmetric keyH2(e(Q,H(sj))

z). The
computation overhead for the client amounts toO(v) pairing oper-
ations, while there is no online overhead for the server.
Remark that IBE-APSI has two drawbacks compared to APSI-DT:
it provides neither Server Unlinkability nor Forward Security.

C. BENCHMARKING (A)PSI-DT CONSTRUCTS
In this section, we benchmark several (A)PSI-DT protocols and

compare their performance through experimental results. During
the process, we try to identify the most efficient (A)PSI-DT pro-
tocols (with or without pre-distribution), and select the building
blocks of our PSSI solutions.

Candidate Protocols.We discuss efficient implementation of the
following (A)PSI-DT protocols:

w/o Pre-Distribution w/ Pre-Distribution

PSI-DT FNP04 ([15]), JL09 ([20]), JL10 ([21]),
DT10-1 (Fig.3 in [12]) DT10-2 (Fig.4 in [12])

APSI-DT DT10-APSI (Fig.2 in [12]) IBE-APSI (Fig.5 in [11])

Table 3: Candidate PSI-DT and APSI-DT protocols.

Each protocol was implemented in C++ using GMP (ver. 5.01)
and PBC (ver. 0.57) libraries. All benchmarks were collected
on a Ubuntu 9.10 desktop platform with Intel Xeon E5420 CPU
(2.5GHz and 6MB cache) and 8GB RAM.
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Figure 6: Server pre-computation overhead.

For protocols supporting data transfer, data associated with each
server element can be arbitrarily long. Also, performance of some
protocols is dominated by each element’s data size, rather than set
size (e.g., in FNP04). In order to obtain a fair comparison, we need
to capture the “intrinsic” cost of each protocol. To this end, we
employ the following strategy to eliminate data size effects: First,
in all protocols, we encrypt each element’s data with a distinct ran-
dom symmetric key and consider these keys as the new associated
data. Assuming that a different key is selected at each interaction,
this technique does not violate Server Unlinkability. This way, the
computation cost of each protocol is measured based on the same
fixed-length key, regardless of data size. In our experiments, we set
symmetric key size to128 bits.

As a result, each protocol execution involves additional overhead
of symmetric en-/de-cryption of records. Figure 5 compares the re-
sulting overhead (for variable data sizes), using either RC4 [28] or
AES-CBC [10] (with 128-bit keys). Therefore, to estimate the total
cost of a protocol, one needs to combine: (1) symmetric encryp-
tion overhead, (2) computation cost of each protocol, and (3) data
transfer delay for transmitting the encrypted data and PSI values.

We further assume that the client does not perform any pre-
computation, while the server performs as much pre-computation
on its input as possible. This reflects the reality where client in-
put is (usually) determined in real time, while server input is pre-
determined. Figure 6 shows the pre-computation overhead for each
protocol.

Next, we evaluate online computation overhead. Figures 7 and
8 present client online computation overhead with respect to client
and server input sizes, respectively. Figures 9 and 10 show server
online computation overhead with respect to client and server input
size, respectively.

Furthermore, Figures 11 and 12 evaluate protocol bandwidth com-
plexity with respect to client and server input sizes. For protocols
with pre-distribution, bandwidth consumption (since the transfer
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client set size.
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server set size.
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Figure 9: Server online computation w.r.t.
client set size.
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Figure 10: Server online computation w.r.t.
server set size.
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Figure 12: Bandwidth consumption w.r.t.
server set size.

of database encryption is performed offline) does not include pre-
distribution overhead. Note that, in these figures, we sometimes
use the same marker for different protocols to indicate that these
protocols share the same value. Client input sizev (resp., server
input sizew) is fixed at5, 000 in figures where x-axis refers to the
server (resp., the client) input size.

Finally, note that, in all experiments, we use a 1024-bit RSA
modulus and a 1024-bit cyclic-group modulus with a 160-bit sub-
group order. All test results are averaged over10 independent runs.
All protocols are instantiated under the assumption ofHonest-but-
Curious(HbC) adversaries and in theRandom Oracle Model(ROM).

PSI-DT without pre-distribution. We now focus on the com-
parison between FNP04 and DT10-1. Figures 7-12 show that that
FNP04 is much costlier than DT10-1 in terms of client and server
online computation as well as bandwidth consumption. For each
client set size, DT10-1 client overhead ranges from460ms to4, 400ms,
while FNP04 server overhead – between1, 300ms and15, 000ms.
For each chosen server set size, server overhead in DT10-1 is under
1, 300ms, while, in FNP04, it exceeds15, 000ms.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and
DT10-2, i.e., PSI-DTs with pre-distribution. Recall that all pro-
tocols are instantiated in the HbC model, thus ZKPK’s are not
included for JL09 and JL10. Figures 7-12 show that DT10-2 in-
curs client overhead almost two orders of magnitude lower than
JL09 and JL10. Indeed, DT10-2 involves two client multiplica-
tions for each item, while JL09 performs two heavy homomorphic
operations and JL10 – two exponentiations. In JL10, the server on-
line computation overhead results fromv 160-bit exponentiations,
whereas, in DT10-2, it results fromv RSA exponentiations. Since
these exponentiations can be speeded up using the Chinese Re-
mainder Theorem, the gap (for server computation overhead) be-

tween JL10 and DT10-2 is only double. Summing up server and
client computation overhead, DT10-2 results to be the most effi-
cient. In terms of bandwidth consumption, DT10-2 and JL10 are
almost the same, while JL09 is slightly more expensive.

APSI-DT without pre-distribution. The only protocol available
in this context is DT10-APSI (as discussed in Appendix B.3). Fig-
ure 7-10 illustrates that client overhead is determined only by client
set size, whereas, server overhead is determined by both client and
server set sizes. Note that measurements obtained for APSI-DT
naturally mirror those of DT10-1, as the former simply adds autho-
rization of client inputs (by merging signatures into the protocol).

APSI-DT with pre-distribution. The only protocol we evaluate
for APSI-DT with data pre-distribution is IBE-APSI (as discussed
in Appendix B.4). Figure 7-8 shows that client overhead increases
linearly with client set size and does not depend on server set size.
Recall that, in IBE-APSI, the server needs to compute pairing op-
erations for each item, independent of client input. Moreover, since
these operations can be pre-computed, server-side overhead and
bandwidth consumption are negligible, as shown in Figures 9-12.4

During the pre-computation phase, the server needs to computew
pairing and exponentiations, which makes pre-computation rela-
tively expensive. Thus, note that, If Server Unlinkability is desired,
server would need to repeat, for every interaction, the operations
otherwise performed only during pre-computation.

One party small set case.Finally, we compare online computation
costs and show the trend with small client or server set size. Our
goal is to address scenarios where one party only has a single input.
Table 4 shows client and server overhead for different protocols

4In these figures, y-values for IBE-APSI are all 0 which is out of the scope
of the y-axis.
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Protocols
Online Computation Overhead (ms)

v=1, w=10,000 v=10,000, w=1 v=1, w=1
Client Server Client Server Client Server

FNP04 1,556.3 19,450.4 12,627.1 65.1 1.2 2.3
DT10-1 0.4 22.7 3,140.8 1,376.6 0.3 0.1
DT10-2 0 0.3 52.6 2,787.7 0 0.3

JL09 7.6 3.3 77,622.6 32,373.4 7.6 3.2
JL10 1.1 0.2 11,270.9 1,415.7 1.1 0.2

IBE-APSI 1.4 0 14,142.3 0 1.4 0
DT10-APSI 1.9 26.8 18,646.5 9,162.3 2.2 2.1

Table 4: Online computation overhead (in ms)

where either party’s input is a singleton. We observe that the result
mirror those showed by Figures 7-10.

Take Away. Based on our extensive experimental results, we con-
clude that DT10-1 is best-suited for PSI-DT without pre-distribution,
and DT10-2 for PSI-DT with pre-distribution. DT10-APSI is the
choice for APSI-DT without pre-distribution, whereas, IBE-APSI
– for APSI-DT with pre-distribution.
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