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Abstract. This paper proposes explicit formulae for the addition step
and doubling step in Miller’s algorithm to compute Tate pairing on Ja-
cobi quartic curves.
We present a geometric interpretation of the group law on Jacobi quar-
tic curves, which leads to formulae for Miller’s algorithm. The doubling
step formula is competitive with that for Weierstrass curves and Edwards
curves. Moreover, by carefully choosing the coefficients, there exist quar-
tic twists of Jacobi quartic curves from which pairing computation can
benefit a lot. Finally, we provide some examples of supersingular and
ordinary pairing friendly Jacobi quartic curves.
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1 Introduction

Since the seminal work of Miller[20] and Koblitz[17] in 1985, elliptic curve cryp-
tology has progressed rapidly over the years. The implementation of elliptic
curve cryptosystem involves mainly two operations: point scalar multiplication
and pairing computation. A well known elliptic curve model is the Weierstrass
model in the form of cubic equation y2 = x3 + ax + b. The group law of the
Weierstrass curves is explicitly defined by the chord and tangent rule, and many
efficient formulae for point addition[12] and pairing computation[1, 6, 16] are
proposed for Weierstrass curves.

Besides the Weierstrass equation, there are still many other forms of elliptic
curve equations, some are cubic and others quartic. For example, Edwards elliptic
curve is a quartic form x2+y2 = 1+dx2y2 introduced by Edwards[8] in 2007, then
it was generalized to twisted Edwards curves by Bernstein, Lange et al.[3]. The
point addition formula of twisted Edwards curves is unified. When the formula is
optimized for addition and doubling separately, it is faster than the formula for
Weierstrass form curves. Pairing computation on twisted Edwards curves was
first considered by Das and Sarkar[18] and then by Ionica and Joux[16] using
birational maps between twisted Edwards curves and Weierstrass curves. Then
Arene, Lange et al.[1] developed explicit formulae for pairing computation on
twisted Edwards curves based on geometric interpretation of group law instead
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of birational maps. They announced their formulae of pairing computation are
competitive with the formulae for Weierstrass curves.

Edwards curves have achieved great success in point scalar multiplication.
Pairing computation on Edwards curves is almost as efficient as that on Weier-
strass curves, but only quadratic twists can be used. Inspired by the good qual-
ity of Edwards curves, it seems worthy of studying other kinds of elliptic curves
which are not Weierstrass form. In this paper, we focus our interest on Jacobi
quartic elliptic curves y2 = dx4 + 2ax2 + 1, which are also quartic form. Many
formulae for point addition and doubling of this form are given in the literatures,
see [4, 5] or [15] for a brief development history. Point addition and doubling on
Jacobi quartic curves are also faster than that on Weierstrass curves. But to the
best of our knowledge, no formulae for pairing computaion are given on Jacobi
quartic curves. One way to obtain the pairing computation formulae is to use
the birational maps between Jacobi quartic curves and Weierstrass curves, but
the process is complicated and hard to comprehend.

In this paper, we show an easy way to obtain the Tate pairing computation
formulae. First we present a geometric interpretation of group law for Jacobi
quartic curves, then we give our formulae for pairing computation based on
this geometric interpretation. The addition step formula we give needs to be
optimized which we consider as the further work. The doubling step formula is
efficient and competitive with that for Weierstrass curves and Edwards curves.
To accelerate pairing computation, we define a kind of curves which are twists
of Jacobi quartic curves. Moreover, we demonstrate there exist quartic twists
of Jacobi quartic curves if a is chosen to be zero. It induces the quartic twist
technique in pairing computation while in Edwards curves only quadratic twist
technique is applied. As is well known, higher twists benefit more in pairing
computation than lower twists.

This paper is organized as follows: section 2 gives a brief background of Jacobi
quartic curves and pairing on elliptic curves. Section 3 shows the geometric
interpretation of the group law. Section 4, 5, 6 define twisted Jacobi quartic
curves and propose explicit formulae of Miller function on Jacobi quartic curves.
Then some examples of pairing friendly curves are given in section 7. We conclude
in section 8.

2 Background on Jacobi Quartic Curves and Pairing

This section gives the definition of Jacobi quartic curves and some basics of Tate
pairing that will be used later.

2.1 Jacobi Quartic Curve

A Jacobi quartic elliptic curve over a field K with char(K) 6= 2 is defined by

Ed,a : y2 = dx4 + 2ax2 + 1

where a, d ∈ K and discriminant ∆ = 256(a2 − d)2 6= 0.



Pairing Computation on Elliptic Curves of Jacobi Quartic Form 3

Each elliptic curve over K with even number of K-rational points can be
transformed to Jacobi quartic form. The birational equivalence between Ed,a

and a Weierstrass form elliptic curve y2 = x3 + bx + c is given in [5].

2.2 Tate Pairing

Here we briefly give basics of Tate pairing, other pairing definitions can be found
in [22]. Let E be an elliptic curve with neutral element O defined over a finite
field Fq. Let r|#E(Fq), where r is a prime and #E(Fq) is the number of Fq-
rational points on E. The embedding degree of E with respect to r is defined to
be the smallest integer k such that r|qk − 1.

Let P ∈ E(Fq)[r], Q ∈ E(Fqk) and fr,P be a function such that divisor
div(fr,P ) = r(P ) − r(O). Assume that the function fr,P is normalised, i.e.,
ur
Ofr,P (O) = 1 for a uniformizer uO at O, then the reduced Tate pairing is

defined by

t(., .) : E(Fq)[r]× E(Fqk)/rE(Fqk) −→ µr

(P, Q) 7−→ fr,P (Q)(q
k−1)/r

where µr ⊂ F ∗qk is the group of r-th roots of unity.

2.3 Miller’s Algorithm

Tate pairing can be computed in an iterative way by Miller’s algorithm [21]. Let
the binary representation of r = (rl−1, . . . , r1, r0) and hP1,P2 be a function called
Miller function such that div(hP1,P2) = (P1) + (P2)− (P1 + P2)− (O), where P1

and P2 are two points on E. Miller’s algorithm is as follows:

Input: P and Q
Output: t(P, Q)
1. Set f = 1 and P1 = P .
2. For i = l − 2 downto 0 do

f ← f2 · hP1,P1(Q), P1 ← 2P1.
if ri = 1, then f ← f · hP1,P (Q), P1 ← P1 + P .

3. Return f = f (qk−1)/r.

The key task of Miller’s algorithm is to find function hP1,P2 . If E is in Weier-
strass form, then this task can be easily accomplished by using the chord and
tangent rule for point addition. But if E is given in other forms, generally it is
not as easy as Weierstrass form to find this function. Once this function is found,
then Miller’s algorithm can be applied to compute Tate pairing.

There are many improvements of Miller’s algorithm and some very useful
techniques are worth mentioning, such as denominator cancellation, choosing
subgroup order with low Hamming weight, final power acceleration [2], using
higher twists [7] and reducing iterations [13].
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3 Geometric Interpretation of the Group Law

The group law of Jacobi quartic form curves is quite different from that of
Weierstrass form curves which is defined by the chord and tangent rule. In this
section, we show the geometric interpretation for the group law of Jacobi quartic
form curves.

Rewrite the Jacobi quartic equation in projective form

Y 2Z2 = dX4 + 2aX2Z2 + Z4.

There is a singular point (0 : 1 : 0) in projective plane P2, which is a point at
infinity in affine plane, denote it as ∞. Select O = (0, 1) as neutral point, note
the fact O′ = (0,−1) is a point on the curve. The geometric interpretation of
the group law is shown in the following:

3.1 Negative Point

An affine plane curve given by equation fP = 0 which defines negative point
must satisfy div(fP ) = (P ) + (−P )− 2(O). Let l0 = 0 be the vertical line across
point O and O′ with div(l0) = (O)+ (O′)− 2(∞), in fact l0 = x. Let CP = 0 be
a conic across P , R, and O′ with div(CP ) = (P ) + (R) + 2(O′)− 4(∞). Define

fP =
CP

l20
,

then −P = R. The function CP is given as follows:

Lemma 1. Let CP = 0 be a conic with div(CP ) = (P ) + (R) + 2(O′) − 4(∞),
and P = (x1, y1), then

CP = y + 1− cx2

with c = (y1 + 1)/x2
1.

Proof. Suppose CP = a0x
2 + a1xy + a2y

2 + a3x + a4y + a5. The fact that
∞ = (0 : 1 : 0) lies on homogenous form of CP = 0 forces a2 = 0, and O′ = (0, 1)
lies on CP = 0 forces a4 = a5. Furthermore, O′ and ∞ are a zero of order 2
and a pole of order 4 respectively, which lead to a1 = 0 and a3 = 0. Since
multiplying CP by a constant does not change the divisor of CP , let a4 = 1,
then CP = y + 1 − cx2, and c = (y1 + 1)/x2

1 is obtained from the fact that CP

is zero at P .

Solving the system of equations CP = 0 and Ed,a = 0, it is easy to have
R = (−x1, y1). From the above analysis, −P = R = (−x1, y1).

Remark 1. If P = O′, then rewrite c = (y1 + 1)/x2
1 = (dx2

1 + 2a)/(y1 − 1).
Substitute (x1, y1) = O′ = (0,−1), then c = −a. By simple calculating, the order
of CO′ at O′ is 4, so div(CO′) = 4(O′)−4(∞). Then div(CO′/l20) = 2(O′)−2(O),
which means −O′ = O′, so O′ is a point of order 2.

An example of negative point is given in Fig.1.
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P −P

O

O′
E3,6

Fig. 1. Negative point

3.2 Point Addition

Assume that P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) are three points on
Jacobi quartic curve Ed,a and P3 = P1 + P2, P1, P2 6= O. Let CP1,P2 = 0 be a
cubic across P1, P2, R, O′, with div(CP1,P2) = (P1)+(P2)+(R)+3(O′)−6(∞).
Let fR be a function satisfying div(fR) = (R) + (−R)− 2(O). Define

fP1,P2 =
CP1,P2

fRl30
.

Then function fP1,P2 satisfies div(fP1,P2) = (P1)+(P2)−(−R)−(O), so P3 = −R.
The function CP1,P2 is given in the following:

Lemma 2. Let CP1,P2 = 0 be a cubic with div(CP1,P2) = (P1) + (P2) + (R) +
3(O′)− 6(∞), then

CP1,P2 = y + 1 + ax2 + sx + sxy + tx3

with

s =

∣∣∣∣∣
y1 + 1 + ax2

1 x3
1

y2 + 1 + ax2
2 x3

2

∣∣∣∣∣ /

∣∣∣∣∣
x3

1 x1(1 + y1)
x3

2 x2(1 + y2)

∣∣∣∣∣ ,

t =

∣∣∣∣∣
x1(1 + y1) y1 + 1 + ax2

1

x2(1 + y2) y2 + 1 + ax2
2

∣∣∣∣∣ /

∣∣∣∣∣
x3

1 x1(1 + y1)
x3

2 x2(1 + y2)

∣∣∣∣∣ .

Proof. Assume CP1,P2 = s1x
3 + s2x

2y + s3xy2 + s4y
3 + s5x

2 + s6xy + s7y
2 +

s8x + s9y + s10. The fact (0 : 1 : 0) lies on homogenous equation of CP1,P2 = 0
forces s4 = 0, and (0,−1) lies on CP1,P2 forces s7 = s9 − s10. Since O′ and
∞ are a zero of order 3 and a pole of order 6 respectively and d 6= a2 from
∆ 6= 0, then s2 = s3 = s7 = 0, s5 = as9, s6 = s8, s9 = s10. From the fact
s9 6= 0, or else C2 intersects Ed,a with no other points besides O′, P1, P2, then
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CP1,P2 = y + 1 + ax2 + sx + sxy + tx3. Since P1, P2 lie on cubic CP1,P2 = 0,
the coefficients s and t are easy to obtain by solving the system of these two
equations.

3.3 Point Doubling

Assume P3 = 2P1. Let CP1,P1 = 0 be a cubic across P1, R,O′, with div(CP1,P1) =
2(P1) + (R) + 3(O′) − 6(∞). The geometric interpretation of point doubling is
similar to the point addition. Let fR and l0 be defined the same as that in point
addition. Define

fP1,P1 =
CP1,P1

fRl30
.

Then function fP1,P1 satisfies div(fP1,P1) = 2(P1) − (−R) − (O), so P3 = −R.
The function CP1,P1 is given in the following:

Lemma 3. Let CP1,P1 = 0 be a cubic with div(CP1,P1) = 2(P1) + (R) + 3(O′)−
6(∞), then

CP1,P1 = y + 1 + ax2 + sx + sxy + tx3

with

s =

∣∣∣∣∣
2dx3

1 + 2ax1 + 2ax1y1 3x2
1y1

y1 + 1 + ax2
1 x3

1

∣∣∣∣∣ /

∣∣∣∣∣
3x2

1y1 2dx4
1 + 2ax2

1 + y1 + y2
1

x3
1 x1 + x1y1

∣∣∣∣∣ ,

t =

∣∣∣∣∣
2dx4

1 + 2ax2
1 + y1 + y2

1 2dx3
1 + 2ax1 + 2ax1y1

x1 + x1y1 y1 + 1 + ax2
1

∣∣∣∣∣

/

∣∣∣∣∣
3x2

1y1 2dx4
1 + 2ax2

1 + y1 + y2
1

x3
1 x1 + x1y1

∣∣∣∣∣ .

Proof. The proof is similar to that of lemma 2, the coefficients s, t are obtained
by the fact P1 is a zero of order 2 of CP1,P1 .

From lemma 2 and lemma 3, we obtain the following theorem.

Theorem 1. Let Ed,a : y2 = dx4+2ax2+1 be a Jacobi quartic curve defined over
a finite field Fq, O = (0, 1) be the neutral element, O′ = (0,−1), ∞ = (0 : 1 : 0).
Let P1 = (x1, y1), P2 = (x2, y2) be two points on Ed,a different from O and
P3 = (x3, y3) be a point on Ed,a. Let CP1,P2 = 0 be a conic passing through P1,
P2, O′, R with div(CP1,P2) = (P1)+ (P2)+ (R)+3(O′)− 6(∞), let l0 = 0 be the
vertical line across O and O′ , fR be a function with div(fR) = (R)+(−R)−2(O),
then

CP1,P2 = y + 1 + ax2 + sx + sxy + tx3.

The function fP1,P2 = CP1,P2
fRl30

with div(fP1,P2) = (P1)+(P2)−(−R)−(O) de-
fines the addition(doubling if P1 = P2) of P1 and P2 by P3 = −R. The simplized
coefficients of CP1,P2 are given in the following:
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(a) If P1 6= P2 and P1, P2 6= O′, then




s = (y1+1+ax2
1)x

3
2−(y2+1+ax2

2)x
3
1

x1x2[x2
1(y2+1)−x2

2(y1+1)]

t = (y2+1+ax2
2)(y1+1)x1−(y1+1+ax2

1)(y2+1)x2

x1x2[x2
1(y2+1)−x2

2(y1+1)]

(1)

(b) If P1 = P2, then {
s = −y1+2

2x1

t = y1+y2
1−2ax2

1
2x3

1

(2)

Remark 2. There is a case P1 6= P2 = O′ which is not included in theorem 1. In
this case, define VP1 = x− x1 with div(VP1) = (P1) + (S)− 2(∞), S = (x,−y).
Then div( CS

VP l0
) = (−S) + (O′)− (P1)− (O) which means −S +O′ = P1, since

2O′ = O, then (x1, y1) + (0,−1) = P1 +O′ = −S = (−x1,−y1).

Fig. 2 shows an example of point addition and doubling:

P1

P2

O

O′

P3

E3,6

R

P1

P3

O

O′

E3,6

R

Fig. 2. Point addition and doubling

4 Miller Function on Jacobi Quartic Curves

From the geometric interpretation of the group law in section 3, the Miller func-
tion is obtained as follows:

Theorem 2. Let Ed,a be a Jacobi quartic curve, O = (0, 1) and O′ = (0,−1).
Let P1 = (x1, y1), P2 = (x2, y2) be two points on Ed,a different from O′. Let
P3 = (x3, y3) = P1 + P2. Then the Miller function h(x, y) which satisfies

div(h) = (P1) + (P2)− (P3)− (O)
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is given by

h(x, y) =
CP1,P2

fP3 l
3
0

=
y + 1 + ax2 + sx + sxy + tx3

x(y + 1− cx2)
, (3)

where c = (y3 + 1)/x2
3 and s, t are the same as in theorem 1.

Proof. Since div(fP3) = div(CP3/l20) = (P3) + (−P3) − 2(O), and div(l0) =
div(x) = (O) + (O′) − 2(∞), then divisor div(fP3 l

3
0) = (P3) + (−P3) + (O) +

3(O′)−6(∞). From theorem 1, div(CP1,P2) = (P1)+(P2)+(−P3)+3(O′)−6(∞),
then div(h) = div(CP1,P2

fP3 l30
) = (P1) + (P2)− (P3)− (O).

5 Twisted Jacobi Quartic Curves

In this section, we define a class of curves called twisted Jacobi quartic curves
since they are twists of Jacobi quartic curves. These curves are used to accelerate
pairing computation in the following section.

Definition 1. A twisted Jacobi quartic curve over Fqm is given by:

Ed,a,δ : y2 = dx4 + 2aδ2x2 + δ4 (4)

with d, a ∈ Fq, δ2, δ4 ∈ Fqm and d 6= a2.

The following proposition is easily obtained from definition 1.

Proposition 1. Let Ed,a,δ over Fqm be a twist of Ed,a, The map

φ : Ed,a,δ −−−−−→ Ed,a

(x, y) 7−→ (x
δ , y

δ2 )

maps points on Ed,a,δ to points on Ed,a.

(a) If a 6= 0, there exist quadratic twists when δ2, δ4 ∈ Fqk/2 and δ ∈ Fqk , then
m = k/2, choose (x, y) ∈ (Fqk/2 , Fqk/2) we have (x

δ , y
δ2 ) ∈ (Fqk , Fqk/2);

(b) If a = 0, there exist quartic twists when δ4 ∈ Fqk/4 and δ ∈ Fqk , then
m = k/4, choose (x, y) ∈ (Fqk/4 , Fqk/4) we have (x

δ , y
δ2 ) ∈ (Fqk , Fqk/2).

6 Explicit formulae for Miller functions

Here we set the following notations which will be used in the rest of this paper.

M, S multiplication and squaring in Fqk

m, s multiplication and squaring in Fq

Assume that embedding degree k is even. Now we give the formulae of Miller
functions using quadratic twist technique.
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From proposition 1, by quadratic twist map, point Q in the Tate pairing
is chosen to be (x/δ, y/δ2) ∈ (Fqk , Fqk/2), where δ ∈ Fqk , δ2 ∈ Fqk/2 , (x, y) ∈
(Fqk/2 , Fqk/2) is a point on twisted Jacobi quartic curve Ed,a,δ. From theorem 2,
the Miller function

h(xQ, yQ) =
x2

Q

yQ + 1− cx2
Q

(
yQ + 1 + ax2

Q

x3
Q

+
1 + yQ

x2
Q

s + t),

where Q = (xQ, yQ) = (δ−1x, δ−2y). Write s = M1/N , t = M2/N , we have

h(δ−1x, δ−2y) = δ−2x2

δ−2y+1−cδ−2x2 ( δ−2y+1+aδ−2x2

δ−2x3 δ + M1
N

1+δ−2y
δ−2x2 + M2

N )
= x2

N(y+δ2−cx2) (N · ξ · δ + M1 · η + (M2 − aM1)),

where ξ = y+δ2+ax2

x3 , η = y+δ2+ax2

x2 = x · ξ.
Since c,N ∈ Fq, x2, y ∈ Fqk/2 , then x2

N(y+δ2−cx2) ∈ Fqk/2 , so it can be dis-
carded in pairing computation since it is well known that if u ∈ Fqk/2 then

u
qk−1

r = 1. Now we only have to evaluate

N · ξ · δ + M1 · η + M3 (5)

where M3 = M2 − aM1.
We have the coefficients ξ, η ∈ Fqk/2 , N, M1,M3 ∈ Fq, δ ∈ Fqk . It is unnec-

essary to multiply N · ξ with δ since the element in Fqk can be represented by
u+ v · δ with u, v ∈ Fqk/2 . N · ξ and M1 · η need k

2m respectively. So only km are
needed besides calculation in M1, M3 and N . Since Q = (δ−1x, δ−2y) is fixed
during pairing computation, ξ, η can be precomputed.

Now we deal with operations in M1, M3, N . For efficiency, the points are
represented in extended homogeneous projective coordinate proposed by Hisil
et al.[15]. (X : Y : T : Z) = (λX : λY : λT : λZ), and T = X2/Z. Let
Pi = (Xi : Yi : Ti : Zi), i = 1, 2, 3.

6.1 Addition

When P1 6= P2, rewrite the denominator of s and t in theorem 2 as follows:

N ′ = x1x2(x2
1(y2 + 1)− x2

2(y1 + 1))
= X1X2

Z2
1Z2

2
(T1(Y2 + Z2)− T2(Y1 + Z1))

= X1X2
Z2

1Z2
2
((T1Y2 − Y1T2) + (T1Z2 − Z1T2)).

The numerators of s and t can be rewritten as:

M ′
1 = (y1 + 1 + ax2

1)x
3
2 − (y2 + 1 + ax2

2)x
3
1

= 1
Z2

1Z2
2
[(Y1 + Z1 + aT1)X2Z1T2 − (Y2 + Z2 + aT2)X1T1Z2].

M ′
2 = (y2 + 1 + ax2

2)(y1 + 1)x1 − (y1 + 1 + ax2
1)(y2 + 1)x2

= 1
Z2

1Z2
2
[(Y2 + Z2 + aT2)(Y1 + Z1)X1Z2 − (Y1 + Z1 + aT1)(Y2 + Z2)Z1X2]

= 1
Z2

1Z2
2
[(Y1 + Z1 + aT1)(Y2 + Z2 + aT2)(X1Z2 −X2Z1) + aM ′

1Z
2
1Z2

2 ].
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Then we obtain:

M1 = (Y1 + Z1 + aT1)X2Z1T2 − (Y2 + Z2 + aT2)X1T1Z2,
M3 = (Y1 + Z1 + aT1)(Y2 + Z2 + aT2)(X1Z2 − Z1X2),
N = X1X2[(T1Y2 − Y1T2) + (T1Z2 − Z1T2)].

We use the point addition formula proposed by Hisil, Wong, Carter, and
Dawson[15].

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2),
Y3 = (T1Z2 + Z1T2 − 2X1X2)(Y1Y2 − 2aX1X2 + Z1Z2 + dT1T2)− Z3,
Z3 = (X1Y2 − Y1X2)2.

From above two formulae, P3 = P1 + P2 and (M1,M3, N) are computed as
follows:

A = X1X2;B = Y1Y2;C = Z1Z2;D = T1T2;E = Y1 + Z1 + aT1;
F = Y2 + Z2 + aT2;G = (X1 − Z1)(X2 + Z2)−A + C;
H = (Y1 + T1)(Y2 − T2)−B + D; I = T1Z2;
J = Z1T2;K = (X1 − Y1)(X2 + Y2)−A + B;
M1 = EJX2 − FIX1;M3 = EFG;N = A(H + I − J);
Z3 = K2;Y3 = (I + J − 2A)(B − 2aA + C + dD)− Z3;
X3 = K(I − J).

As we will see in the following subsection, T3 is not needed in the doubling
step. Then the total cost of P3 = (X3, Y3, Z3) and (M1,M3, N) is 18m + 1s +
3ma + md, where ma, md denote the cost of multiplication by constant a and d.
Since P2 is fixed during pairing computation, let Z2 = 1, then P2 = (x2, y2, x

2
2, 1).

The cost of computing P3 and (M1,M3, N) is 16m+1s+3ma +md. So the cost
of addition step reduced to 1M + (k + 16)m + 1s + 3ma + md.

Results and performance comparison are summarized in Table 1.

Table 1. Costs of mixed addition step

mixed addition

Weierstrass, a4 = −3[1] 1M + km + 6m + 6s
Weierstrass, a4 = 0[1] 1M + km + 6m + 6s
Edwards[16] 1M + km + 14m + 4s + 1md

twisted Edwards[1] 1M + km + 12m
Jacobi quartic 1M + km + 16m + 1s + 3ma + md

6.2 Doubling

From Theorem 2, if P1 = P2, we obtain:

M1 = −(Y1 + 2Z1)X2
1 ,

M3 = (aX2
1 + Z2

1 + Y1Z1)Y1,
N = 2X3

1 .
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The point doubling formula is also from [15].

X3 = 2X1Y1(2Z2
1 + 2aX2

1 − Y 2
1 ),

Y3 = 2Y 2
1 (Y 2

1 − 2aX2
1 )− (2Z2

1 + 2aX2
1 − Y 2

1 )2,
Z3 = (2Z2

1 + 2aX2
1 − Y 2

1 )2.

Now the explicit formulae for computing P3 = 2P1 and (M1,M3, N) are given
as follows:

A = X2
1 ;B = Y 2

1 ;C = Z2
1 ;D = (X1 + Y1)2 −A−B;

E = ((Y1 + Z1)2 −B − C)/2;F = aA;G = C + F ;H = B − 2F ;
I = 2G−B;X3 = DI;Z3 = I2;Y3 = 2BH − Z3;
M1 = −(Y1 + 2Z1)A;M3 = Y1(G + E);N = 2AX1.

From the strategy proposed in [15], if a point doubling is followed by an-
other point doubling, the above doubling formula is used, then the total cost of
computing P3 and (M1,M3, N) is 5m + 6s + 1ma, a doubling step in Miller’s
algorithm costs 1M +1S+(k+5)m+6s+1ma. If a point doubling is followed by
a point addition, then T3 = D2 need to be computed in point doubling, and X3

can be computed as X3 = ((D+I)2−T3−Z3)/2, the total cost of computing P3

and (M1,M3, N) is 4m + 8s + 1ma, a doubling step in Miller’s algorithm costs
1M + 1S + (k + 4)m + 8s + 1ma.

Results and performance comparison are summarized in Table 2.

Table 2. Costs of doubling step

doubling

Weierstrass, a4 = −3[1] 1M + 1S + km + 6m + 5s
Weierstrass, a4 = 0[1] 1M + 1S + km + 3m + 8s
Edwards[16] 1M + 1S + km + 8m + 4s + 1md

twisted Edwards[1] 1M + 1S + km + 6m + 5s
Jacobi quartic 1M + 1S + km + 4m + 8s + 1ma

Remark 3. If a = 0, the Jacobi quartic curve y2 = dx4 + 1 has quartic twists
and Q can be chosen as (x/δ, y/δ2) ∈ (Fqk , Fqk/2) where x, y ∈ Fqk/4 . In this
case, pairing computation is more efficient compared to the quadratic twist case.
The addition step needs 1M ′ + (k + 16)m + 1s + md, the doubling step needs
1M ′ + 1S′ + (k + 5)m + 6s or 1M ′ + 1S′ + (k + 4)m + 8s, where M ′, S′ denote
the multiplication and squaring in Fqk/4 .

7 Construction of Pairing Friendly Jacobi Quartic Curves

In order to make the pairing computation on a Jacobi quartic curve feasible and
efficient, the curve should be pairing friendly. In this section, we give two kinds
of supersingular curves in Jacobi quartic form that can be constructed directly,
then we give two examples of ordinary pairing friendly Jacobi quartic curves.
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7.1 Supersingular Jacobi Quartic Curves

Let the elliptic curves we consider be defined over a finite field Fq and char(Fq) >
3. To get the supersingular curves in Jacobi quartic form, we make use of the
birational equivalence between Weierstrass form and Jacobi quartic form which
arises in [5], that is,

y2 = x3 + bx + c −−−−−−−−−→ Y 2 = dX4 + 2aX2Z2 + Z4

OE 7−→ (0 : 1 : 1)
(e, 0) 7−→ (0 : −1 : 1)
(x, y) 7−→ (2(x− e) : (2x + e)(x− e)2 − y2 : y)

and the inverse map is

(0 : 1 : 1) 7−→ OE

(0 : −1 : 1) 7−→ (e, 0)
(X : Y : Z) 7−→ ( 2(Y +Z2)

X2 − e
2 , (4(Y +Z2)−3eX2)Z

X3 ).

where OE is the point at infinity, (e, 0) is a point of order 2. The relation between
the two equations is d = −(3e2 + 4b)/16 and a = −3e/4. Two triplets (X1 : Y1 :
Z1) and (X2 : Y2 : Z2) are equivalent if and only if there exists t 6= 0 such that
X1 = tX2, Y1 = t2Y2 and Z1 = tZ2.

There are two kinds of well known supersingular curves in Weierstrass form
defined over prime field Fp, i.e., y2 = x3 + bx, p ≡ 3 mod 4, and y2 = x3 + c,
p ≡ 2 mod 3. Since #E(Fp) = p+1, there always exists a point of order 2, then
by the birational equivalence, we obtain the corresponding supersingular Jacobi
quartic form curves.

Case 1. y2 = x3 + bx, p ≡ 3 mod 4. If Legendre symbol(−b
p ) = −1, then

there is only one point of order 2, that is (e, 0) = (0, 0). The corresponding
supersingular equation is

Y 2 = − b

4
X4 + Z4.

Moreover, if (−b
p ) = 1, then there are another two such points, namely (±b

p+1
4 , 0).

In this case, it is also easy to get another two kinds of curves by the relations of
equation parameters.

Case 2. y2 = x3 + c, p ≡ 2 mod 3. By a simple calculation, we have that
if p ≡ 5 mod 12, then the only point of order 2 is (−c1/3, 0) = (−c(2p−1)/3, 0);
if p ≡ 11 mod 12, there are another two such points (c(2p−1)/3(1±√−3)/2, 0).
The supersingular Jacobi quartic curve corresponding to (−c(2p−1)/3, 0) is

Y 2 = −3e2 + 4b

16
X4 − 3e

4
X2Z2 + Z4

where e = −c(2p−1)/3.
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7.2 Ordinary Pairing Friendly Jacobi Quartic Curves

Pairing based cryptosystems require both the discrete logarithm problems on the
curve and in the multiplicative group of the finite field Fpk are intractable. Since
the embedding degree k of supersingular curves defined over a prime field is only
2, and due to the MOV[19] and FR[10] reduction, the field Fp must be chosen
much larger than that for the ordinary curves to achieve the same security level.
So in order to make the implementation more efficient, ordinary pairing friendly
curves are favorable.

It is obvious that a Jacobi quartic curve which always has a point of order 2
can only be transformed from a Weierstrass curve with even group order. Fortu-
nately, pairing friendly curves with even cofactor can be produced by GMV[11]
method and some other constructions which are provided by Freeman, Scott,
and Teske[9]. Considering the efficiency of pairing computation and different se-
curity levels, we present two examples of pairing friendly Jacobi quartic curves
with k = 6, 8 transformed from examples given in [1].

The first example has only quadratic twists while the second has quartic
twists. Let the parameters (k, D, ρ, Fp, d, a, h, r) represent a Jacobi quartic curve
Y 2 = dX4 + 2aX2Z2 + Z4 defined over Fp, with the number of rational points
#E(Fp) = hr, ρ = log(p)

log(r) and D be the discriminant in the construction.

Example 1. k = 6, D = 7230, ρ = 1.22, dlog(p)e = 201, dlog(r)e = 165,
p = 2051613663768129606093583432875887398415301962227490187508801,
d = 1863953287635956721384182076223832049126572428227767512756240,
a = 631772460235361970180500642413596623379371813277881622943722,
h = 4 · 7 · 733 · 2230663,
r = 44812545413308579913957438201331385434743442366277.

Example 2. k = 8, D = 1, ρ = 1.50, dlog(p)e = 337, dlog(r)e = 224,
p = 23377366536991056692603839001569188814245474692929568668962591

3289090943703572348756028778874481604289,
d = 17533024902743292519452879251176891610684106019697176501721943

4966818207777679261567021584155861203219,
a = 0,
h = 4 · 315669989 · 558193107149 · 14429732414341,
r = 22985796260053765810955211899935144604417092746113717429138553

265289.

8 Conclusion and Further Work

This paper presents a geometric interpretation of the group law on Jacobi quar-
tic curves, from which explicit formulae of the Miller function for Tate pairing
computation are obtained. The doubling step is efficient, whereas the addition
step may require further improvement. We define twisted Jacobi quartic curves
and use the twist map to accelerate the pairing computation on Jacobi quartic
curves. Furthermore, we demonstrate the existence of quartic twists of Jacobi
quartic curves with a = 0, and we give a numerical example of such curves.
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As many formulae[4, 14, 15] have been proposed for the point addition on
Jacobi quartic curves, future work may need to accelerate the addition step in
the pairing computation and to identify more efficient formula.
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