
Predicate Encryption with Partial Public Keys

Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni
I-84084 Fisciano (SA), Italy

{carblu, iovino, giuper}@dia.unisa.it

Abstract. Predicate encryption is a new powerful cryptographic prim-
itive which allows for fine-grained access control for encrypted data: the
owner of the secret key can release partial keys, called tokens, that can
decrypt only a specific subset of ciphertexts. More specifically, in a pred-
icate encryption scheme, ciphertexts and tokens have attributes and a
token can decrypt a ciphertext if and only if a certain predicate of the
two associated attributes holds.
In this paper, ciphertext attributes are vectors x of fixed length ` over
an alphabet Σ and token attributes, called patterns, are vectors y of the
same length over the alphabet Σ? = Σ ∪ {?}. We consider the pred-
icate Match(x, y) introduced by [BW06] which is true if and only if
x = 〈x1, . . . , x`〉 and y = 〈y1, . . . , y`〉 agree in all positions i for which
yi 6= ?.
Various security notions are relevant for predicate encryption schemes.
First of all, one wants the ciphertexts to hide its attributes (this property
is called semantic security). In addition, it makes sense also to consider
the property of token security, a security notion in which the token is
required not to reveal any information on the associated pattern. It is
easy to see that predicate privacy is impossible to achieve in a public-
key setting. In [SSW09], the authors considered the notion of a predicate
encryption scheme in the symmetric-key setting and gave the first con-
struction with token security.
In this paper, we consider the notion of a partial public key encryption
(as suggested in [SSW09]) in which a partial public key allows a user to
generate only a subset of the ciphertexts. We give a construction which is
semantically secure and in which a token does not reveal any information
on the associated pattern except for the locations of the ?’s. The proofs
of security of our construction are based on hardness assumptions in
bilinear groups of prime order; this greatly improves the efficiency of the
construction when compared to previous constructions ([SSW09]) which
used groups of composite orders.
Our security proofs do not use random oracles.

1 Introduction

In a predicate encryption scheme, ciphertexts and keys have attributes
and a key can decrypt a certain ciphertext if and only if a certain predicate

on the two attributes holds. In this paper, ciphertext attributes x are
vectors of fixed length ` over an alphabet Σ and key attributes (also
called patterns) are vectors of the same length over the alphabet Σ? =
Σ ∪ {?}. We consider the predicate Match(x,y) which is true if and only
if x = 〈x1, . . . , x`〉 and y = 〈y1, . . . , y`〉 agree in all positions i for which
yi 6= ?.

We are interested in two security requirements which, roughly speak-
ing, can be described as follows. We first require that a ciphertext X̃
should hide all information on the associated attribute vector x (we call
this notion Semantic Security). In addition, we require that a key T (also
called a token) should hide all information on the associated pattern y
(we call this notion Token Security). Formal definitions of the two security
requirements are found in Section 2. We would like to stress though that
Token Security is not achievable in a pure public-key scenario: given to-
ken T for an unknown pattern y an adversary could check if Match(x,y)
holds by creating a ciphertext C for attribute vector x using the public
key, and then testing T against C. We thus consider the partial public
key model in which the key owner can decide on a policy that describes
which subset of the ciphertexts can be generated. More specifically, a pol-
icy Pol = 〈Pol1, . . . ,Pol`〉 is simply a vector of length ` of subsets of Σ
with the following intended meaning: the public key associated with pol-
icy Pol allows to create ciphertexts with attribute vector x = 〈x1, . . . , x`〉
iff and only for i ∈ [`] we have that xi ∈ Poli. The private key scenario
corresponds to a policy Pol with Poli = ∅ for all i’s; whereas a public key
scenario corresponds to a policy with Poli = Σ for all i’s. For example,
for ` = 2, Σ = {0, 1}, and policy Pol = 〈{1}, {0, 1}〉, then public key
PPKPol associated with Pol allows to create ciphertexts with attribute
vector x = 〈1, 0〉 but not x = 〈0, 1〉. In the formal definition of Token
Security we thus require that an adversary is not able to distinguish be-
tween tokens with pattern y0 or y1 with respect to a policy Pol provided
that the two patterns have the same value of the predicate Match for all
attributes x that can be encrypted under policy Pol.

Previous work. The first example of predicate encryption scheme has
been given by Boneh et al. [BDOP04] that introduced the concept of an
encryption scheme supporting equality test. Roughly speaking, in such
an encryption scheme, the owner of the public key can compute, for any
message M , a token TM that allows to test if a given ciphertext encrypts
message M without obtaining any additional information. More recently,
along this line of research, Goyal et al. [GPSW06] have introduced the

concept of an attribute-based encryption scheme (ABE scheme). In an
ABE scheme, a ciphertext is labeled with a set of attributes and private
keys are associated with a predicate. A private key can decrypt a cipher-
text iff the attributes of the ciphertext satisfy the predicate associated
with the key. An ABE scheme can thus been seen as a special encryp-
tion scheme for which, given the key associated with a predicate P , one
can test whether a given ciphertext carries a message M that satisfies
predicates P without having to decrypt and without getting any addi-
tional information. The construction of [GPSW06] is very general as it
supports any predicate that can be expressed as a circuit with threshold
gates but attributes associated with a ciphertexts appear in clear in a
ciphertext. Boneh and Waters [BW07] were the first to give predicate en-
cryption schemes that guaranteed security of the attributes for the Match
predicate and showed that this implies construction for several families of
predicates including conjunctions of equality, range predicate and subset
predicates. This has been subsequently extended to disjunctions, poly-
nomial equations and inner products [KSW08]. Both constructions are
based on hardness assumptions regarding bilinear groups on composite
order. Iovino and Persiano [IP08] gave more efficient constructions based
on hardness assumptions regarding bilinear group of prime order. Shen
et al. [SSW09] were the first to consider the issue of token security and
gave private-key predicate encryption schemes for inner product based on
hardness assumptions regarding bilinear group of order product of four
primes.

Our results. In this paper we give a predicate encryption scheme with par-
tial public keys based on hardness assumptions regarding bilinear group
of prime order for the Match predicate. Being able to use prime order
groups greatly improves the efficiency of the resulting encryption schemes
since, for the same level of security, our constructions uses groups of much
smaller order. Our scheme guarantees privacy of the attributes associated
with the ciphertexts (see Definition 3). In addition, we also show that to-
kens only reveal the positions of the ?-entries in the associated pattern.
More precisely, for any two patterns y0 and y1 that have ?-entries in the
same positions, no probabilistic polynomial time adversary can distin-
guish a token for y0 from a token for y1 better than guessing at random
(see Definition 4).

2 Predicate Encryption Schemes with Partial Public
Keys

In this section we present the notion of a predicate encryption scheme with
partial public keys. Following [SSW09,KSW08], we present our definitions
(and constructions in Section 4) for the case in which the ciphertexts are
predicate-only; that is, they do not carry any message and only specify
the attributes. It is straightforward to extend the definitions (and the
constructions) to the case in which ciphertexts carry a message.

In the following we will denote by [`] the set {1, . . . , `} of natural
numbers. We let Σ denote an alphabet (that is, a finite set of symbols)
and let 2Σ denote its power set (that is, the family of all subsets of Σ).
Furthermore, we let Σ? denote the alphabet Σ augmented with the special
symbol ?. Finally, we say that function ν : N→ [0, 1] is negligible if, for all
polynomials poly and sufficiently large n, we have that ν(n) ≤ 1/poly(n).

We start by defining the notion of a policy and of an allowed attribute
vector for a policy.

Definition 1. Fix the number ` > 0 of attributes and alphabet Σ. A
policy Pol = 〈Pol1, . . . ,Poll〉 ∈ (2Σ \ ∅)` is a sequence of ` non-empty
subsets of Σ. The set XPol of allowed attribute vectors for policy Pol
consists of all vectors x ∈ Σ` such that for i ∈ [`] we have that xi ∈ Poli.

Our predicate encryption schemes are for the predicate Match : Σ` ×
Σ`

? → {0, 1} defined as follows: Match(x,y) = 1 if and only if x =
〈x1, . . . , x`〉 and y = 〈y1, . . . , y`〉 agree in all positions i for which yi 6= ?.
We remark that a predicate encryption scheme for the Match predicate
implies efficient constructions for several other predicates (see [BW07] for
the descriptions of the reductions).

Definition 2. A Predicate Encryption Scheme with Partial Public Keys for
the predicate Match consists of five algorithms:

Setup(1n, 1`): Given the security parameter n and the number of at-
tributes ` = poly(n), procedure Setup outputs the secret key SK.

PPKeyGen(SK,Pol): Given the secret key SK and the policy Pol ∈
(2Σ\∅)`, procedure PPKeyGen outputs the partial public key PPKPol rel-
ative to policy Pol. We denote by PK the public key relative to policy
Pol = Σ`.

Encryption(PPKPol,x): Given the partial public key PPKPol relative to
policy Pol and the attribute vector x ∈ XPol, procedure Encryption outputs
an encrypted attribute vector X̃.

GenToken(SK,y): Given the secret key SK and the pattern vector y ∈
Σ`

?, procedure GenToken outputs token Ty.

Test(X̃, Ty): given the encrypted attribute vector X̃ corresponding to
attribute vector x and the token Ty corresponding to pattern y, procedure
Test returns Match(x,y) with overwhelming probability. More precisely,
for all ` = poly(n), all policies Pol ∈ (2Σ \ ∅)`, all attribute vectors x ∈
XPol, and all patterns y ∈ Σ`

?, we have that

Prob[SK← Setup(1n, 1`); PPKPol ← PPKeyGen(SK,Pol) :
Test(Encryption(PPKPol,x),GenToken(SK,y)) 6= Match(x,y)]

is negligible in n.

Next we state security in the selective attribute model.

2.1 Semantic security

Semantic security deals with an adversary that tries to learn informa-
tion from ciphertexts. We define the security requirement by means of an
indistinguishability experiment in which the adversary A selects two chal-
lenge attribute vectors z0 and z1 and a policy Pol. The adversary A then
receives the partial public key PPKPol and is allowed to issue token queries
for patterns y such that Match(z0,y) = Match(z1,y) = 0. Finally, A re-
ceives encrypted attribute vector X̃ corresponding to a randomly chosen
challenge attribute vector zη. We require that A has probability essen-
tially 1/2 of guessing η.

We model the semantic security property by means of the following
game SemanticExpA between a challenger C and adversary A.

SemanticExpA(1n, 1`)
1. Initialization Phase. The adversary A announces two challenge at-

tribute vectors z0,z1 ∈ Σ` and policy Pol ∈ (2Σ \ ∅)`.
2. Key-Generation Phase. Challenger C computes the secret key SK by

running the Setup procedure on input (1n, 1`) and the partial public
key PPKPol by running PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of token queries.
C answers token query for pattern y as follows. If Match(z0,y) =
Match(z1,y) = 0, then A receives the output of GenToken(SK,y).
Otherwise, A receives ⊥.

4. Challenge construction. C chooses random η ∈ {0, 1} and gives the
output of Encryption(PK,zη) to A.

5. Query Phase II. Identical to Query Phase I.
6. Output phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.
Notice that in SemanticExpA we can assume, without loss of generality,

that A always asks for PK (the public key that allows to encrypt all
attribute vectors). We chose the formulation above to keep it similar to
the game used to formalize the token security property (see Section 2.2).

Definition 3. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is semantically secure, if
for all probabilistic polynomial-time adversaries A∣∣∣Prob[SemanticExpA(1n, 1`) = 1]− 1/2

∣∣∣
is negligible in n for all ` = poly(n).

2.2 Token security

In this section, we present an experiment that models the fact that a to-
ken T gives no information on the associated pattern y but the position
of the ?-entries. We use an indistinguishability experiment in which the
adversary A picks two challenge patterns y0 and y1 such that y0,i = ?
iff y1,i = ? and a policy Pol such that for all x ∈ XPol we have that
Match(x,y0) = Match(x,y1) = 0. A receives the partial public key
PPKPol associated with Pol and A is allowed to issue token queries for
patterns y of his choice. Finally, A receives the token associated to a
randomly chosen challenge pattern yη. We require that A has probability
essentially 1/2 of guessing η.

We model the token security property by means of the following game
TokenExpA between a challenger C and adversary A.

TokenExpA(1n, 1`)
1. Initialization Phase. The adversary A announces two challenge pat-

terns y0,y1 ∈ Σ`
? and a policy Pol such that for all x ∈ XPol we have

that Match(x,y0) = Match(x,y1) = 0.
If there exists i ∈ [`] such that y0,i = ? and y1,i 6= ? or if there exists
i ∈ [`] such that y1,i = ? and y0,i 6= ? then the experiment returns 0.

2. Key-Generation Phase. The secret key SK is generated by the Setup
procedure. The partial public key PPKPol relative to policy Pol is
generated running procedure PPKeyGen(SK,Pol). PPKPol is given to
A.

3. Query Phase I. A can make any number of token queries that are
answered by returning GenToken(SK,y).

4. Challenge construction. η is chosen at random from {0, 1} and receives
GenToken(SK,yη).

5. Query Phase II. Identical to Query Phase I.
6. Output phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 4. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is token secure if for all
probabilistic polynomial-time adversaries A,∣∣∣Prob[TokenExpA(1n, 1`) = 1]− 1/2

∣∣∣
is negligible in n for all ` = poly(n).

Definition 5. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is a secure predicate en-
cryption scheme with partial public keys if it is both semantically secure
and token secure.

3 Background and Complexity Assumptions

Linear secret sharing In our assumptions and constructions we use the
concept of a (k, n) linear secret sharing scheme (LSSS), for k ≤ n. A
(k, n) LSSS takes as input a secret s (typically from a finite field Fp) and
returns k shares (s1, . . . , sk) with the following properties. Any set of k−1
(or fewer) shares are independent among themselves and are independent
from the secret s. In addition, the secret s can be expressed as a linear
combination of the shares held by any k participants. More precisely, for
any F ⊆ [n] of size k there exist reconstruction coefficients αi such that
s =

∑
i∈F αisi. For instance, in Shamir’s secret sharing scheme [Sha79],

the reconstruction coefficients are the Lagrange interpolation coefficients.
We stress that the reconstruction coefficients depend only on the set F
and not on the actual shares.

The symmetric bilinear setting We have two multiplicative groups, the
base group G and the target group GT both of prime order p and a non-
degenerate bilinear pairing function e : G × G → GT . That is, for all
x ∈ G, x 6= 1, we have e(x, x) 6= 1 and for all x, y ∈ G and all a, b ∈ Zp,
we have e(xa, yb) = e(x, y)ab. We denote by g and e(g, g) generators of G

and GT . We call a tuple I = [p, G, GT , g, e] a symmetric bilinear instance
and assume that there exists an efficient generation procedure that, on
input security parameter 1n, outputs an instance with |p| = Θ(n).

We now review and justify the hardness assumptions we will use for
proving security of our constructions.

Our first two assumptions posit the hardness of distinguishing whether
the exponents relative to given bases of a sequence of (2`−1) elements of
G constitute the shares of 0 with respect to an (`, 2`−1) LSSS or one of the
exponents (the exponent of the challenge element, usually denoted by Z in
the following) is random. This computational problem is clearly trivial if
`−1 elements share the same base A with the challenge element Z. Indeed,
given an ordered `-subset F = 〈f1, . . . , f`〉 of [2`−1], base A, elements Asi

for i ∈ 〈f1, . . . , f`−1〉 and challenge Z = Asf` , checking if the exponents
si constitute ` shares of 0 of an (`, 2`− 1) LSSS is trivial by the linearity
of the secret sharing scheme. In a bilinear setting, the problem remains
easy in the base group if (`−1) elements share the same base A ∈ G even
though this is different from the base B ∈ G of the challenge element.
Specifically, given bases A and B, elements Asi , for i ∈ 〈f1, . . . , f`−1〉 and
challenge Z = Br it is possible to check whether the si’s and r constitute
` shares of 0 of an (`, 2`−1) LSSS in the following way. First, use linearity
to compute Asf` and then use bilinearity to check if r = sf`

by comparing
e(As` , B) and e(A,Br). If instead less than `− 1 elements share the same
base then the problem seems to be computationally difficult.

The Linear Secret Sharing Assumption (see Section 3.1 below) makes
a formal statement of this fact. Specifically, we are given bases

U1, . . . , U2`−1 ∈ G, elements Ua1
1 , . . . , U

a2`−1

` ∈ G and index j ∈ [2`−1]
of the challenge element and we have to decide whether (a1, . . . , a2`−1)
constitute an (`, 2` − 1) secret sharing of 0 or the exponent aj of the
challenge element is random. We stress that, for sake of ease of exposition,
in stating the Linear Secret Sharing Assumption we have not tried to
reduce the number of bases: we have (2`−1) bases for (2`−1) elements. It
is not difficult to see that we could have used only 4 bases to formulate an
assumption that is sufficient for proving the security of our constructions.

If we consider the same problem in the target group GT , it seems that
it remains difficult even if ` − 1 elements share the same base which is
different from the base used for the challenge element. Indeed in the target
group we are not allowed to use the pairing function e and thus we cannot
use the same approach employed for the base group. The F -Linear Secret
Sharing Assumption (see Section 3.2 below) makes a formal statement of
this fact. By looking ahead, in the F -Linear Secret Sharing Assumption

we have ` shares corresponding to an ordered subset F = 〈f1, . . . , f`〉 of
elements of [2`−1] which appear as exponents of ` elements of GT : `−1 of
these elements share the same base e(g, g) (specifically, in the assumption
we have e(Ūfj

, Vfj
) = e(g, g)afj for 2 ≤ j ≤ `) and the challenge element

uses a different base (specifically, e(Uf1 , Vf1) = e(Uf1 , Uf1)
af1). The task

is to decide whether the ai’s for i ∈ F constitute an (`, 2`−1) secret share
of 0 or the af`

is random. We state our assumptions using elements of G
(i.e., the Ūj ’s and the Vj ’s) instead of elements of GT (i.e., giving only
e(Ūj , Vj)).

For each of the two above assumptions, we have a split version which
we call the Split Linear Secret Sharing Assumption (see Section 3.3)
and the F -Split Linear Secret Sharing Assumption (see Section 3.4). The
split versions of our assumptions are derived by mixing the assumptions
based on linear secret sharing with the Decision Linear Assumption (see
[BW06]). In the Decision Linear Assumption, the task is to decide, given
A,Ar, B, Bs, C, Cz whether z = r − s or z is random. Specifically, in the
Split Linear Secret Sharing Assumption we have bases U1, . . . , U2`−1, ele-
ments Ua1

1 , . . . , U
a2`−1

2`−1 and ga1 , . . . , ga2`−1 with (a1, . . . , a2`−1) constituting
an (`, 2`− 1) LSSS of 0, and 2`− 2 related instances of the Decision Lin-
ear Assumptions for a randomly chosen j ∈ [2` − 1]: Uu

i , U
aj

j ,W s, with
i ∈ [2` − 1] \ {j} in which we have to decide whether s = u − aj . In
addition, we are also given Û = W uj where Uj = guj . The F -Split Linear
Secret Sharing Assumption is obtained is a similar way from the F -Linear
Secret Sharing Assumption.

3.1 Linear Secret Sharing Assumption

Consider the following game between a challenger C and an adversary A.

LSSExpA(1n, 1`)
01. C computes shares a1, . . . , a2`−1 of 0 using an (`, 2`− 1)

linear secret sharing scheme;
02. C chooses instance I = [p, G, GT , g, e] with security parameter 1n;
03. C chooses random j ∈ [2`− 1];
04. for i ∈ [2`− 1]

C chooses random ui ∈ Zp and sets Ui = gui and Vi = Uai
i ;

05. C chooses random η ∈ {0, 1};
06. if η = 1 then C sets Z = U

aj

j else C chooses random Z ∈ G;
07. C runs A on input [I, j, (Ui)i∈[2`−1], (Vi)i∈[2`−1]\{j}, Z];
08. Let η′ be A’s guess for η;

09. if η = η′ then return 1 else return 0.

Assumption 1 (LSS Assumption) The Linear Secret Sharing Assump-
tion states that for all probabilistic polynomial-time algorithms A,∣∣Prob[LSSExpA(1n, 1`) = 1]− 1/2

∣∣ is negligible in n for all ` = poly(n).

3.2 F -Linear Secret Sharing Assumption

Let F = 〈f1, . . . , f`〉 be a sequence of ` distinct elements from [2`−1]. We
formalize the F -Linear Secret Sharing Assumption (F -LSS Assumption)
by means of the following game between a Challenger C and an Adversary
A.

F -LSSExpA(1n, 1`)
01. C computes shares a1, . . . , a2`−1 of 0 using an (`, 2`− 1)

linear secret sharing scheme;
02. C chooses instance I = [p, G, GT , g, e] with security parameter 1n;
03. for i ∈ F

C chooses random ui ∈ Zp and sets Ui = gui , Ūi = g1/ui , and
Vi = Uai

i ;
04. C chooses random η ∈ {0, 1};
05. if η = 1 then C sets Z = U

af`
f`

else C chooses random Z ∈ G;
06. C runs A on input [I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , Z];
07. Let η′ be A’s guess for η;
08. if η = η′ then return 1 else return 0.

Assumption 2 (F -LSS Assumption) The F -Linear Secret Sharing As-
sumption states that for all probabilistic polynomial-time algorithms A,∣∣Prob[F -LSSExpA(1n, 1`) = 1]− 1/2

∣∣ is negligible in n for all ` = poly(n).

The proof of the following theorem is similar to, but simpler than, the
proof of Theorem 2. So, we omit it.

Theorem 1. For any sequences F and K each of ` distinct elements
from [2`− 1], F -LSS implies K-LSS.

3.3 Split Linear Secret Sharing Assumption

In this section we present the Split Linear Secret Sharing Assumption
(the SplitLSS Assumption) which is similar to the Linear Secret Sharing

Assumption. The only difference is that whereas in the LSS Assumption
the task is to decide whether Vj = U

aj

j or Vj is random, here the task is
to decide, whether Z = W u−aj or Z is a random element of G. We for-
malize the SplitLSS Assumption by means of the following game between
a Challenger C and an Adversary A.

SplitLSSExpA(1n, 1`)
01. C computes shares a1, . . . , a2`−1 of 0 using an (`, 2`− 1)

linear secret sharing scheme;
02. C chooses instance I = [p, G, GT , g, e] with security parameter 1n;
03. C chooses random u, w ∈ Zp and sets W = gw;
04. for i ∈ [2`− 1]

C chooses random ui ∈ Zp and sets Ui = gui , Vi = Uai
i ,

Ai = gai , and Si = Uu
i ;

05 C picks a random j ∈ [2`− 1] and sets Û = Uw
j ;

06. C chooses random η ∈ {0, 1};
07. if η = 1 then C sets Z = W u−aj else C chooses random Z ∈ G;
08. C runs A on input

[I, j, (Ui)i∈[2`−1], (Vi)i∈[2`−1], (Ai)i∈[2`−1], (Si)i∈[2`−1]\{j},W, Û , Z];
09. Let η′ be A’s guess for η;
10. if η = η′ then return 1 else return 0.

Assumption 3 (SplitLSS Assumption) The Split Linear Secret Shar-
ing Assumption states that for all probabilistic polynomial-time algorithms
A,

∣∣Prob[SplitLSSExpA(1n, 1`) = 1]− 1/2
∣∣ is negligible in n for all ` =

poly(n).

3.4 F -Split Linear Secret Sharing Assumption

Let F = 〈f1, . . . , f`〉 be a sequence of ` distinct elements from [2` − 1].
We formalize the F -Split Linear Secret Sharing Assumption (F -SplitLSS
Assumption) by means of the following game between a Challenger C
and an Adversary A.

F -SplitLSSExpA(1n, 1`)
01. C computes shares a1, . . . , a2`−1 of 0 using an (`, 2`− 1)

linear secret sharing scheme;
02. C chooses instance I = [p, G, GT , g, e] with security parameter 1n;
03. C chooses random u ∈ Zp;
04. for i ∈ F ,

C chooses random ui ∈ Zp and sets Ui = gui , Ūi = g1/ui , Vi = Uai
i ,

and Si = Uu
i ;

08. C chooses random w ∈ Zp and sets W = gw and W̄ = g1/w.
09. C chooses random η ∈ {0, 1};
10. if η = 1 then C sets Z = W u−af` else C chooses random Z ∈ G;
11. C runs A on input

[I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , (Si)i∈F ,W, W̄ , Z];
12. Let η′ be A’s guess for η.
13. if η = η′ then return 1 else return 0.

Assumption 4 (F -SplitLSS Assumption)) The F -Split Linear Se-
cret Sharing Assumption states that for all probabilistic polynomial-time
algorithms A

∣∣Prob[F -SplitLSSExpA(1n, 1`) = 1]− 1/2
∣∣ is negligible in n

for all ` = poly(n).

The proof of the next theorem is found in Appendix A.

Theorem 2. For any two sequences F and K each of ` distinct elements
from [2`− 1], we have that F -SplitLSS implies K-SplitLSS.

4 The Scheme

In this section, we describe a new proposal for a secure predicate en-
cryption scheme with partial public keys. Our description is for binary
alphabets; it is possible to convert our scheme to a scheme for any alpha-
bet by increasing the size of the key, but not the size of ciphertexts and
tokens.

The Setup procedure. On input security parameter 1n and the number
of attributes ` = poly(n), Setup proceeds as follows.
1. Select a symmetric bilinear instance I = [p, G, GT , g, e] with |p| =

Θ(n).
2. For i ∈ [2`− 1], choose random t1,i,0, t2,i,0, t1,i,1, t2,i,1 ∈ Zp and set

Ki =
(

T1,i,0 = gt1,i,0 , T2,i,0 = gt2,i,0

T1,i,1 = gt1,i,1 , T2,i,1 = gt2,i,1

)
and

K̄i =
(

T̄1,i,0 = g1/t1,i,0 , T̄2,i,0 = g1/t2,i,0

T̄1,i,1 = g1/t1,i,1 , T̄2,i,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki, K̄i)i∈[2`−1]].

The PPKeyGen procedure. On input SK and policy
Pol = 〈Pol1, . . . ,Pol`〉 ∈ (2{0,1}\∅)` of length `, PPKeyGen proceeds as
follows.
1. For i = 1, . . . , `,

for every b ∈ Poli, add T1,i,b and T2,i,b to PPKi.
2. For i = ` + 1, . . . , 2`− 1,

add T1,i,0 and T2,i,0 to PPKi.
3. Return PPKPol = [(PPKi)i∈[2`−1]].

The Encryption procedure. On input partial public key PPKPol and at-
tribute vector x = (x1, . . . , x`) of length `, Encryption proceeds as follows.
1. If x /∈ XPol return ⊥.
2. Extend x to a vector with 2`−1 entries by appending (`−1) 0-entries.
3. Pick s at random from Zp.
4. Compute shares (s1, . . . , s2`−1) of 0 using an (`, 2` − 1) linear secret

sharing scheme.
5. For i = 1, . . . , 2`− 1,

set X1,i = T s−si
1,i,xi

and X2,i = T−si
2,i,xi

.

6. Return the encoded attribute vector X̃ = [(X1,i, X2,i)i∈[2`−1]].
Notice that if x ∈ XPol, then for every i it holds that T1,i,xi , T2,i,xi ∈
PPKPol. Hence, the Encryption procedure will be able to execute the steps
above.
In the following will use sometimes the writing
Encryption(PPKPol,x; s, (si)i∈[2`−1]) to denote the encoded attribute vec-
tor X̃ output by Encryption on input PPKPol and x when using s as
random element and (si)i∈[2`−1] as shares of an (`, 2` − 1) linear secret
sharing scheme for the secret 0.

The GenToken procedure. On input secret key SK and pattern vector
y = (y1, . . . , y`) of length `, GenToken proceeds as follows.
1. Let h be the number of non-? entries of y. Extend y to a vector with

(2`−1) entries by appending (`−h) 0-entries and (h−1) ?-entries and
denote by Sy the indices of the non-? entries of the extended vector.
Notice that |Sy| = `.

2. Compute shares (r1, . . . , r2`−1) of 0 using an (`, 2` − 1) linear secret
sharing scheme.

3. Pick random r ∈ Zp.
4. For i ∈ Sy,

set Y1,i = T̄ ri
1,i,yi

and Y2,i = T̄ r−ri
2,i,yi

.

5. Return Ty = [Sy, (Y1,i, Y2,i)i∈Sy].
In the following we will sometimes use the writing
GenToken(SK,y; r, (ri)i∈Sy) to denote the token Ty computed by GenToken
on input SK and y and using r as random element and (ri)i∈Sy as ` shares
of an (`, 2`− 1) LSSS for the secret 0.

The Test procedure. On input token Ty = [S, (Y1,j1 , Y2,j1 , . . . , Y1,j`
, Y2,j`

)]
and attribute vector X̃ = [(X1,i, X2,i)i∈[2`−1]], Test proceeds as follows.
Let vj1 , . . . , vj`

be the reconstruction coefficients for the set S = {j1, . . . , j`}.
Then, the Test procedure returns∏

i∈[`]

[e(X1,ji , Y1,ji) · e(X2,ji , Y2,ji)]
vji .

The proof of next theorem is found in Appendix B. The next theorem
holds.

Theorem 3. The quintuple of algorithms
(Setup,PPKeyGen,Encryption,GenToken,Test) specified above is a predi-
cate encryption scheme with partial public keys.

5 Semantic Security

In this section, we show that, if the Linear Secret Sharing Assumption
and the Split Linear Secret Sharing Assumption hold, then the scheme
presented in Section 4 is semantically secure. Specifically, we show that,
for any attribute vector z and for any policy Pol, the encoded attribute
vector output by the Encryption procedure is indistinguishable from a se-
quence of 2·(2`−1) random elements of G to a polynomial time adversary
A that has the partial public key associated with Pol and oracle access
to GenToken for all pattern vectors y such that Match(z,y) = 0. As it is
easily seen, this implies semantic security.

The experiments We start by describing 3` experiments with a proba-
bilistic polynomial-time adversary A.

Experiment k with 0 ≤ k ≤ 2` − 1. In this experiment, A outputs
an attribute vector z and a policy Pol, receives the partial public key
PPKPol relative to Pol, and has oracle access to GenToken for all pat-
tern vectors y such that Match(z,y) = 0. Then A receives challenge
X̃ = [(X1,i, X2,i)i∈[2`−1]] computed as follows and outputs a bit.
1. Extend z to a 2`− 1 vector by appending (`− 1) 0-entries.

2. Compute shares (s1, . . . , s2`−1) of 0 using an (`, 2`− 1) LSSS.
3. For i = 1, . . . , k, randomly choose X1,i ∈ G and set X2,i = T si

2,i,zi
.

4. For i = k + 1, . . . , 2`− 1, set X1,i = T s−si
1,i,zi

and X2,i = T si
2,i,zi

.

Experiment 2` + k − 1 with k ∈ [`]. These experiments differ from the
previous ones only in the way in which the challenge X̃ is computed. More
precisely, X̃ = [(X1,i, X2,i)i∈[2`−1]] is computed as follows.
1. Extend z to a 2`− 1 vector by appending (`− 1) 0-entries.
2. Compute shares (s1, . . . , s2`−1) of 0 using an (`, 2`− 1) LSSS.
3. For i = 1, . . . , k randomly choose X1,i, X2,i ∈ G.
4. For i = k + 1, . . . , 2` − 1 randomly choose X1,i ∈ G and set X2,i =

T si
2,i,zi

.

Clearly, in Experiment 0, vector X̃ is a well-formed encryption of z
whereas in Experiment 3` − 1 vector X̃ consists instead of randomly
chosen elements from G. We denote by pAk the probability that A outputs
1 when playing Experiment k. We start by proving that, under the Split
Linear Secret Sharing Assumption, the difference |pAk −pAk−1| is negligible,
for k ∈ [2`− 1].

Indistiguishability of the first 2`−1 experiments. The proof of the follow-
ing lemma is found in Appendix C.

Lemma 1. Assume the Split Linear Secret Sharing Assumption. Then,
for k ∈ [2`− 1], it holds that |pAk − pAk−1| is negligible for all probabilistic
polynomial-time adversaries A.

Indistiguishability of the last ` experiments. The proof of the following
lemma is found in Appendix D.

Lemma 2. Assume the Linear Secret Sharing Assumption. Then, for
k ∈ [`], it holds that |pA2`+k−2 − pA2`+k−1| is negligible for all probabilistic
polynomial-time adversaries A.

Lemma 1 and Lemma 2 imply the following theorem.

Theorem 4. Assume LSS and SplitLSS. Then, predicate encryption
scheme with partial public keys
(Setup,PPKeyGen,Encryption,GenToken,Test) is semantically secure.

6 Token Security

In this section, we show that, if the F -Linear Secret Sharing Assumption
and the F -Split Linear Secret Sharing Assumption hold, the scheme pre-
sented in Section 4 is token secure. Specifically, let z be a pattern and
Pol a policy such that XPol does not contain any attribute vector x such
that Match(x,z) = 1. Then we show that no probabilistic polynomial-
time adversary A that has oracle access to GenToken and the public key
relative to Pol can distinguish a well formed token for pattern z from a
sequence of random elements of G. It is straightforward to see that this
implies token security.

The experiments We start by describing 4` experiments with a proba-
bilistic polynomial-time adversary A.

Experiment j with 0 ≤ j ≤ 2`−1. In this experiment, A outputs a pattern
z ∈ {0, 1, ?}` and a policy Pol, receives the partial public key PPKPol

relative to Pol and has oracle access to GenToken for all pattern vectors
y. If there exists an attribute vector x ∈ XPol such that Match(x,z) =
1 then, A receives ⊥; otherwise, A receives challenge Tz computed as
follows. In both cases A outputs a bit.
1. Let h be the number of non-? entries of z. Extend z to a vector with

(2` − 1) entries by appending (` − h) 0-entries and (h − 1) ?-entries.
With a slight abuse of notation, we call z the extended vector and
denote by Sz the set of indices i such that zi ∈ {0, 1}. Notice that
|Sz| = `.

2. Choose random r ∈ Zp and compute shares (r1, . . . , r2`−1) of 0 using
an (`, 2`− 1) LSSS.

3. For i ∈ Sz and i ≤ j, set Y1,i = gri/t1,i,zi and Y2,i = g(r−ri)/t2,i,zi .
4. For i ∈ Sz and i > j, set Y1,i = gri/t1,i,zi and choose random Y2,i ∈ G.
5. Set Tz = [Sz, (Y1,i, Y2,i)i∈Sz].

Experiment j with 2` ≤ j ≤ 4`− 1. The experiments differ from the pre-
vious ones only in the way the challenge Tz is computed. More precisely,
the challenge Tz is computed as follows.
1. Let h be the number of non-? entries of z. Extend z to a vector with

(2` − 1) entries by appending (` − h) 0-entries and (h − 1) ?-entries.
With a slight abuse of notation, we call z the extended vector and
denote by Sz the set of indices i such that zi ∈ {0, 1}. Notice that
|Sz| = `.

2. Choose random r ∈ Zp and compute shares (r1, . . . , r2`−1) of 0 using
an (`, 2`− 1) LSSS.

3. For i ∈ Sz, set Y2,i to a random element in G.
4. For i ∈ Sz and i ≤ j, set Y1,i = gri/t1,i,zi .
5. For i ∈ Sz and i > j, set Y1,i to a random element in G.
6. Set Tz = [Sz, (Y1,i, Y2,i)i∈Sz].

Clearly in Experiment 0, Tz is a well formed token for pattern z
whereas in Experiment 4` − 1, Tz consists of 2` randomly chosen ele-
ments of G. We denote by pAj the probability that A outputs 1 when
playing Experiment j. We start by proving that, under the F -Linear Se-
cret Sharing, the difference |pAj − pAj−1| is negligible for j ∈ [2`− 1].

Indistinguishability of the first 2` experiments. The proof of the next
lemma is in Appendix E.

Lemma 3. Assume F -Split Linear Secret Sharing holds. Then, for j ∈
[2`−1], it holds that |pAj −pAj−1| is negligible for all probabilistic polynomial-
time adversary A.

Indistinguishability of last 2` experiments. The proof of the following
lemma is found in Appendix F.

Lemma 4. Assume F -Linear Secret Sharing holds. Then, for j = 2`, . . . ,
4`−1, it holds that |pAj −pAj−1| is negligible for all probabilistic polynomial-
time adversary A.

Next theorem holds.

Theorem 5. Assume F -Linear Secret Sharing and F -Split Linear Secret
Sharing. Then predicate encryption

(Setup,PPKeyGen,Encryption,GenToken,Test) is token secure.

7 Acknowledgments

This work is partially founded by the Italian Ministry of University and
Research Project PRIN 2008 PEPPER: Privacy and Protection of Per-
sonal Data (prot. 2008SY2PH4).

References

[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano. Public key encryption with keyword search. In Christian Cachin and

Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 506–522, Interlaken,
Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

[BW06] Xavier Boyen and Brent Waters. Anonymous Hierarchical Identity-Based
Encryption (Without Random Oracles). In Cynthia Dwork, editor, Ad-
vances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in
Computer Science, pages 290–307, Santa Barbara, CA, USA, August 20–
24, 2006. Springer-Verlag, Berlin, Germany.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset and range queries on en-
crypted data. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptog-
raphy Conference, volume 4392 of Lecture Notes in Computer Science, pages
535–554, Amsterdam, The Netherlands, February 21–24, 2007. Springer-
Verlag, Berlin, Germany.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
Based Encryption for Fine-Grained Access Control for Encrypted Data. In
ACM CCS 06: 13th Conference on Computer and Communications Secu-
rity, pages 89–98, Alexandria, VA, USA, October 30 - November 3, 2006.
ACM Press.

[IP08] Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption with
groups of prime order. In Steven D. Galbraith and Kenneth G. Pater-
son, editors, Pairing-Based Cryptography - Pairing 2008, Second Interna-
tional Conference. Prooceedings, volume 5209 of Lecture Notes in Computer
Science, pages 75–88, Egham, UK, September 1–3, 2008. Springer-Verlag,
Berlin, Germany.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption Sup-
porting Disjunction, Polynomial Equations, and Inner Products. In Nigel
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 146–162, Istanbul, Turkey,
April 13–17, 2008. Springer-Verlag, Berlin, Germany.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography
Conference, volume 5444 of Lecture Notes in Computer Science, pages 457–
473, San Francisco, CA, USA, 2009. Springer-Verlag, Berlin, Germany.

A Proof of Theorem 2

Theorem 2 For any two sequences F and K each of ` distinct elements
from [2`− 1], we have that F -SplitLSS implies K-SplitLSS.

Proof. Let F = 〈f1, . . . , f`〉 and K = 〈k1, . . . , k`〉 be sequences of ` dis-
tinct elements from [2`− 1]. Given an F -SplitLSS instance

[I, F, (Uj)j∈F , (Ūj)j∈F\{f1}, (Vj)j∈F , (Sj)j∈F ,W, W̄ , Z]

we show how to get from it a K-SplitLSS instance

[I,K, (U ′
j)j∈K , (Ū ′

j)j∈K\{k1}, (V
′
j)j∈K , (S′

j)j∈K ,W ′, W̄ ′, Z ′].

For i = 1, . . . , `, let αi = vfi,F /vki,K , where vfi,F (vki,K) is the publicly
known value associated to fi-th (ki-th) share when participants whose
identities are in F (resp., K) collaborate to the reconstruction of the
secret in an (`, 2`− 1) LSSS. Set U ′

k1
= Uf1 . For i = 2, . . . , `, set

U ′
ki

= Ufi
and Ū ′

ki
= Ūfi

.

For i = 1, . . . , `, set

V ′
ki

= V αi
fi

and S′
ki

= Sα`
fi

.

Set W ′ = W and W̄ ′ = W̄ . Finally, set Z ′ = Zα` . It is immediate to see
that the values (U ′

j)j∈K , (Ū ′
j)j∈K\{k1}, (V

′
j)j∈K , (S′

j)j∈K ,W ′, W̄ ′, Z ′ define
a K-SplitLSS instance.

B Proof of Theorem 3

Theorem 3 The quintuple of algorithms
(Setup,PPKeyGen,Encryption,GenToken,Test) specified above is a predi-
cate encryption scheme with partial public keys.

Proof. It is sufficient to verify that the procedure Test returns 1 when
Match(x,y) = 1. Let X̃ = [(X1,i, X2,i)[2`−1]] be the output of

Encryption(PPKPol,x; s, (si)[2`−1]) and let Ty = [Sy, (Y1,i, Y2,i)i∈Sy] be
the output of procedure GenToken(SK,y; r, (ri)i∈Sy). Let vj1 , . . . , vj`

be
the reconstruction coefficients for set Sy = {j1, . . . , j`}. We have,

Test(X̃, Ty) =
∏
i∈[`]

[e(X1,ji , Y1,ji) · e(X2,ji , Y2,ji)]
vji

=
∏
i∈[`]

e(T
s−sji
1,ji,xji

, T̄
rji
1,ji,yji

)vji · e(T−sji
2,ji,xji

, T̄
r−rji
2,ji,yji

)vji

= (since xji = yji for i ∈ [`])

=
∏
i∈[`]

e(g, g)rji
vji

(s−sji
) · e(g, g)−sji

vji
(r−rji

)

=
∏
i∈[`]

e(g, g)srji
vji

−rsji
vji = e(g, g)s

P
i∈[`] rji

vji ·

e(g, g)−r
P

i∈[`] sji
vji = 1.

The last equality is satisfied as the rji ’s and the sji ’s for i ∈ [`] are `
shares of an (`, 2` − 1) linear secret sharing scheme for the secret 0 and
the vji ’s are the reconstructing coefficient for set Sy = {j1, . . . , j`}. Hence,
we have that

∑
i∈[`] rjivji = 0 and

∑
i∈[`] sjivji = 0.

C Proof of Lemma 1

Lemma 1 Assume the Split Linear Secret Sharing Assumption. Then,
for k ∈ [2`− 1], it holds that |pAk − pAk−1| is negligible for all probabilistic
polynomial-time adversaries A.

Proof. Assume, for sake of contradiction, that there exist a probabilistic
polynomial-time A and an index k for which the lemma does not hold. We
construct a successful adversary B for experiment SplitLSSExp. B receives
instance [I, j, (Ui)i∈[2`−1], (Vi)i∈[2`−1], (Ai)i∈[2`−1], (Si)i∈[2`−1]\{j},W, Û , Z]
of the SplitLSS assumption from the challenger with t = `. We denote by
(a1, . . . , a2`−1) the shares of 0 associated with the instance and by u and
w the secret exponents used by the challenger to compute the Si’s and
W .

If j 6= k then B outputs a random bit. Otherwise, B executes the
instructions specified below. As we shall see, these instructions will have
the effect that, depending on whether Z = W u−aj or Z is random in
G, B simulates Experiment k − 1 or Experiment k for A and A’s guess
(which is assumed to be significatly better than random) is used by B
to break the Split Linear Secret Sharing Assumption. It is not difficult
to see that if |pAk − pAk−1| ≥ 1/poly(n) then B has probability at least
1/2 + 1/(2 · ` · poly(n)) of winning experiment SplitLSSExp.

B starts by running A and receives z and Pol. For sake of ease of
exposition we assume that z = 0`. It is straightforward to adapt the
proof for general z.

Key-generation Phase. For i ∈ [2`−1], B picks random t′1,i,0, t
′
1,i,1, t

′
2,i,0, t

′
2,i,1 ∈

Zp. For i ∈ [2`− 1] \ {k}, B sets T1,i,0 = U
t′1,i,0

i , T1,i,1 = gt′1,i,1 , T2,i,0 =
gt′2,i,0 and T2,i,1 = gt′2,i,1 .

Finally, B sets T1,k,0 = W t′1,k,0 , T1,k,1 = gt′1,k,1 , T2,k,0 = U
t′2,k,0

k , and T2,k,1 =
gt′2,k,1 . Notice that, for i ∈ [2`− 1] \ {k}, the above settings implicitly de-
fine t1,i,0 = uit

′
1,i,0, t1,i,1 = t′1,i,1, t2,i,0 = t′2,i,0 and t2,i,1 = t′2,i,1

and t1,k,0 = wt′1,k,0, t1,k,1 = t′1,k,1, t2,k,0 = ukt
′
2,k,0 and t2,k,1 =

t′2,k,1. In turn, these values implictly define the values T̄1,i,0, T̄1,i,1, T̄2,i,0,
and T̄2,i,1 for i ∈ [2` − 1]. Therefore, after this step, secret key SK =
(I, (Ki, K̄i)i∈[2`−1]) is implicitly defined. It is immediate to see that SK
has the same distribution as a secret key given in output by Setup.

Computing PPKPol. B computes the partial public key PPKPol for policy
Pol and gives it to A. We stress that the partial public key depends only
on the values T1,i,0, T1,i,1, T2,i,0, T2,i,1 that are known to B.

Answering GenToken Queries. We now describe how B answers A’s
queries to the oracle GenToken for vectors y ∈ {0, 1, ?}`. B extends y to
a vector of (2` − 1) entries by appending 0-entries and ?-entries so that
the resulting vector has exactly (`− 1) ?-entries and exactly ` entries in
{0, 1}. With a slight abuse of notation, we call y the extended vector and
denote by Sy the set of indices i for which yi ∈ {0, 1}. Notice that by
construction |Sy| = `. Let h ∈ [2` − 1] be such that yh = 1. If no such
h exists then Match(z,y) = 1 and B returns ⊥. Otherwise, B computes
token Ty in the following way.
B starts by picking a random t ∈ Zp. Then, for i ∈ Sy \{h, k}, B picks

random ti ∈ Zp and sets

Y1,i =

{
gti/t′1,i,0 , if yi = 0;

U
ti/t′1,i,1

i , if yi = 1;
and Y2,i = U

t/t′2,i,yi
k · U

−ti/t′2,i,yi
i .

Simple algebraic manipulations show that, by the above settings, we have
that, for i ∈ Sy \ {h, k},

Y1,i = T̄ ri
1,i,yi

and Y2,i = T̄ r−ri
2,i,yi

for ri = ti · ui and r = t · uk. We remark that B does not know r and the
ri’s and that r and the ri’s are randomly chosen from Zp.

Furthermore, if k ∈ Sy, B picks random tk ∈ Zp and sets

Y1,k =

{
U

tk/t′1,k,0

k , if yk = 0;
Û tk/t′1,k,1 , if yk = 1;

and Y2,k =

{
gt/t′2,k,0 ·W−tk/t′2,k,0 , if yk = 0;

U
t/t′2,k,1

k · Û−tk/t′2,k,1 , if yk = 1.

As before, we can see that

Y1,k = T̄ rk
1,k,yk

and Y2,k = T̄ r−rk
2,k,yk

for rk = w · tk · uk and r = t · uk. Also we observe that rk is randomly
distributed in Zp.

Finally, we are left with computing Y1,h and Y2,h. We observe that our
construction dictates that

Y1,h = T̄ rh
1,h,1 and Y2,h = T̄ r−rh

2,h,1 (1)

for rh such that the sequence of (ri)i∈Sy is a sequence of ` shares of 0 with
respect to the underlying (`, 2`− 1) LSSS. For the linearity of the secret
sharing scheme, there exist publicly-known reconstructing coefficients αi

such that
rh = − 1

αh

∑
i:Sy\{h}

αiri.

We stress that the αi’s only depend on the set Sy. Thus, if k ∈ Sy, B sets

Y1,h = Û−αk/αh·tk/t′1,h,1

∏
i∈Sy\{h,k}

U
−αi/αh·ti/t′1,h,1

i

and

Y2,h = U
t/t′2,h,1

k · Û−αk/αh·tk/t′2,h,1 ·
∏

i∈Sy\{h,k}

U
−αi/αh·ti/t′2,h,1

i

otherwise B sets
Y1,h =

∏
i∈Sy\{h}

U
−αi/αh·ti/t′1,h,1

i

and
Y2,h = U

t/t′2,h,1

k ·
∏

i∈Sy\{h}

U
−αi/αh·ti/t′2,h,1

i

Simple algebraic manipulations show that, in both cases, Y1,h and Y2,h

satisfy Equation (1).
We can thus conclude that the replies computed by B forA’s GenToken

queries are correctly computed.

Challenge construction. When B is asked to provide encrypted at-
tribute vector for z, B constructs the tuple X̃ = [(X1,i, X2,i)i∈[2`−1]] in
the following way.

1. For i = 1, . . . , k − 1,: B chooses random X1,i ∈ G and sets X2,i =

A
−t′2,i,0

i .

2. B sets X1,k = Zt′1,k,0 and X2,k = V
−t′2,k,0

k .

3. For i = k + 1, . . . , 2` − 1,: B sets X1,i = S
t′1,i,0

i · V
−t′1,i,0

i and X2,i =

A
−t′2,i,0

i .

We have the following simple observations:
1. For i ∈ [2`− 1], we have that X2,i = T−ai

2,i,0.
2. The sequence (a1, . . . , a2`−1) comprises the shares of 0 with respect
to an (`, 2`−1) LSSS (just as in Experiment k and Experiment k−1).

3. For i ∈ [k−1], X1,i is a random element of G (just as in Experiment
k and Experiment k − 1).

4. For i = k+1, . . . , 2`−1, X1,i = T u−ai
1,i,0 , for a randomly chosen u ∈ Zp

(just as in Experiment k and Experiment k − 1).
5. If Z = W u−ak , then X1,k = T u−ak

1,k,0 (just as in Experiment k − 1).
6. If Z is random in G, then X1,k is also random in G (just as in
Experiment k).

By the above observations, we have that if Z = W u−ak , then the view
of A in the interaction with B is exactly the same as the view of A in
Experiment k − 1; on the other hand, if Z is random in G then the view
of A in the interaction with B is exactly the same as the view of A in
Experiment k. The lemma then follows.

D Proof of Lemma 2

Lemma 2 Assume the Linear Secret Sharing Assumption. Then, for
k ∈ [`], it holds that |pA2`+k−2 − pA2`+k−1| is negligible for all probabilistic
polynomial-time adversaries A.

Proof. Assume, for sake of contradiction, that there exist a probabilistic
polynomial-time A and an index k for which the lemma does not hold.
We construct a successful adversary B for experiment LSSExp. B receives
instance [I, j, (Ui)i∈[2`−1], (Vi)i∈[2`−1]\{j}, Z] of the LSS assumption from
the challenger with t = `. We denote by (a1, . . . , a2`−1) the shares of 0
associated with the instance.

If j 6= k then B outputs a random bit. Otherwise, B executes the
instructions specified below. As we shall see, these instruction will have
the effect that, depending on whether Z = U

aj

j or Z is random in G,
B simulates Experiment k − 1 or Experiment k for A. A’s guess is then
output by B. It is not difficult to see that, if |pAk −pAk−1| ≥ 1/poly(n) then
B has probability at least 1/2 + 1/(2 · ` · poly(n)) of winning experiment
LSSExp.

We next describe B’s instruction for the case j = k. B starts by
running A and receives z and Pol. For sake of ease of exposition we

assume that z = 0`. It is straightforward to adapt the proof for general
z.

Key-generation Phase. For i ∈ [2`−1], B picks random t′1,i,0, t
′
1,i,1, t

′
2,i,0, t

′
2,i,1 ∈

Zp and sets T1,i,0 = gt′1,i,0 , T1,i,1 = gt′1,i,1 , T2,i,0 = U
t′2,i,0

i and T2,i,1 = gt′2,i,1 .
Notice that, for i ∈ [2` − 1], such a settings implicitly define t1,i,0 =
t′1,i,0, t1,i,1 = t′1,i,1, t2,i,0 = uit

′
2,i,0, and t2,i,1 = t′2,i,1. which in turn define

the values T̄1,i,0, T̄1,i,1, T̄2,i,0 and T̄2,i,1. Therefore, after this step, secret
key SK = (I, (Ki, K̄i)i∈[2`−1]) is implicitly defined. It is immediate to see
that SK has the same distribution as a secret key given in output by
Setup.

Computing PPKPol. B computes the partial public key PPKPol for policy
Pol and gives it to A. We stress that the partial public key depends only
from the values T1,i,0, T1,i,1, T2,i,0, T2,i,1 which are known to B.

Answering GenToken Queries. We now describe how B answers A’s
queries to the oracle GenToken for vector y ∈ {0, 1, ?}`. B extends y to a
vector of (2`− 1) entries by appending 0-entries and ?-entries so that the
resulting vector has exactly (`−1) ?-entries and exactly ` entries in {0, 1}.
With a slight abuse of notation, we call y the extended vector and denote
by Sy the set of indices i for which yi ∈ {0, 1}. Notice that |Sy| = `. Let
h ∈ [2`− 1] be such that yh = 1. If no such h exists then Match(z,y) = 1
and B returns ⊥. Otherwise, B computes token Ty is the following way.
B starts by picking a random t ∈ Zp. Then, for i ∈ Sy \ {h}, B picks

random ti ∈ Zp and sets

Y1,i = g
t/t′1,i,yi · U

−ti/t′1,i,yi
i and Y2,i =

{
gti/t′2,i,0 , if yi = 0;

U
ti/t′2,i,1

i , if yi = 1;

Simple algebraic manipulations show that, for i ∈ Sy\{h}, Y1,i = T̄ ri
1,i,yi

and Y2,i =
T̄ r−ri

2,i,yi
for r = t and ri = t− ti · ui. We remark that B does not know the

ri’s and that r and the ri’s are randomly chosen from Zp.
Finally, B is left with computing Y1,h and Y2,h. We observe that our

construction dictates that

Y1,h = T̄ rh
1,h,1 and Y2,h = T̄ r−rh

2,h,1 (2)

for rh such that the sequence of (ri)i∈Sy is a sequence of ` shares of 0 with
respect to the underlying (`, 2`− 1) LSSS. For the linearity of the secret
sharing scheme, there exist publicly-known reconstructing coefficients αi

such that

rh = − 1
αh

∑
i∈Sy\{h}

αiri.

We stress that the αi’s only depend on the set Sy. Thus B sets

Y1,h = g−αi/αh·t/t′1,h,1 ·
∏

i∈Sy\{h}

U
−αi/αh·ti/t′1,h,1

i and Y2,h =
∏

i∈Sy\{h}

U
−αi/αh·ti/t′2,h,1

i .

Simple algebraic manipulation shows that by above settings Y1,h and Y2,h

satisfy Equation (2).
We can thus conclude that the replies computed by B forA’s GenToken

queries are correctly computed.

Challenge construction. When B is asked to provide encrypted at-
tribute vector for z, B constructs the tuple X̃ = [(X1,i, X2,i)i∈[2`−1]] in
the following way.

1. For i = 1, . . . , k − 1: B chooses random X1,i, X2,i ∈ G.

2. B chooses random X1,k ∈ G and sets X2,k = Z−t′2,k,0 .
3. For i = k + 1, . . . , 2` − 1: B chooses random X1,i ∈ G and sets

X2,i = V
−t′2,i,0

i .

We have the following simple observations.
1. For i ∈ [2` − 1], X1,i is a random element of G (just as in Experi-
ment 2` + k − 1 and in Experiment 2` + k − 2).

2. For i ∈ [k − 1], X2,i is random element of G (just as in Experi-
ment 2` + k − 1 and in Experiment 2` + k − 2).

3. For i = k + 1, . . . , 2`− 1, X2,i = V
−t′2,i,0

i = U
−ait

′
2,i,0

i = T−ai
2,i,0

4. The sequence (a1, . . . , a2`−1) comprises the shares of 0 with respect
to an (`, 2`− 1) LSSS (just as in Experiment 2`+ k− 1 and in Exper-
iment 2` + k − 2).

5. If Z = Uak
k , then X2,k = T ak

2,k (just as in Experiment 2` + k − 2).
6. If Z is random in G, then X2,k is also random (just as in Experi-
ment 2` + k − 1).

Therefore, if Z = Uak
k , then the view of A in the interaction with B is

exactly the same as the view of A in Experiment 2` + k− 2; on the other
hand, if Z is random in G, then the view of A in the interaction with B is
exactly the same as the view of A in Experiment 2` + k − 1. The lemma
then follows.

E Proof of Lemma 3

Lemma 3 Assume F -Split Linear Secret Sharing holds. Then, for j ∈
[2`−1], it holds that |pAj −pAj−1| is negligible for all probabilistic polynomial-
time adversary A.

Proof. Assume, for sake of contradiction, that there exist a probabilistic
polynomial-time adversary A and j ∈ [2`− 1] for which the lemma does
not hold. We construct a successful adversary B for experiment F -LSSExp.
B receives an istance
, [I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , (Si)i∈F ,W, W̄ , Z]
of the F -Split Linear Secret Sharing Assumption and runs A receiving
pattern z ∈ {0, 1, ?} and policy Pol. If there exists x ∈ XPol for which
Match(x,z) = 1 then B returns⊥ toA and outputsA’s output. Otherwise
B constructs token T in the following way.
B extends z to a vector with (2` − 1) entries by appending 0-entries

and ?-entries so that the resulting vector has exactly ` entries in {0, 1}.
With a slight abuse of notation, we call z the extended vector and denote
by Sz the set of indices i such that zi ∈ {0, 1}. For ease of exposition,
we assume that for i ∈ Sz we have zi = 0. It is straightforward to adapt
the proof for general z. We denote by k an index such that k ∈ Sz and
0 /∈ Polk. Observe that such a k exists for otherwise there would exist
x ∈ XPol that matches z. We assume that k 6= j (the proof for the case
k = j is simpler and is omitted). We further assume that Sz coincides
with F = 〈f1, . . . , f`〉, that f1 = k, and that f` = j. This is without loss
of generality by Theorem 2. B starts by simulating the Key-generation
Phase.

Key-generation Phase. For i ∈ [2`−1], B chooses random t′1,i,0, t
′
1,i,1, t

′
2,i,0, t

′
2,i,1 ∈

Zp. Then, for i 6∈ Sz, B sets T1,i,0 = g1/t′1,i,0 , T1,i,1 = g1/t′1,i,1 , T2,i,0 =

g1/t′2,i,0 , and T2,i,1 = g1/t′2,i,1 , for i ∈ Sz\{k, j}, B sets T1,i,0 = Ū
1/t′1,i,0

i , T1,i,1 =

g1/t′1,i,1 , T2,i,0 = Ū
1/t′2,i,0

i , T2,i,1 = g1/t′2,i,1 , T̄1,i,0 = U
t′1,i,0

i , T̄1,i,1 = gt′1,i,1 , T̄2,i,0 =

U
t′2,i,0

i , T̄2,i,1 = gt′2,i,1 , and, finally, B sets T1,j,0 = Ūj , T1,j,1 = g1/t′1,j,1 , T2,j,0 =
W̄ , T2,j,1 = g1/t′2,j,1 , T1,k,1 = g1/t′1,k,1 , T2,k,1 = g1/t′2,k,1 , T̄1,j,0 = Uj , T̄1,j,1 =

gt′1,j,1 , T̄2,j,0 = W, T̄2,j,1 = gt′2,j,1 , T̄1,k,0 = U
t′1,k,0

k , T̄1,k,1 = gt′1,k,1 , T̄2,k,0 =

U
t′2,k,0

k , T̄2,k,1 = gt′2,k,1 . After this step secret key SK = [I, (Ki, K̄i)i∈[2`−1]]
is implicitly defined. It is immediate to see that SK has the same distribu-
tion as a secret key output by Setup. We stress that B does not completely
know SK since B has not computed T1,k,0 and T2,k,0 (which however are

implicitly defined by Uk). However we observe that, since 0 6∈ Polk, B can
construct the partial public key PPKPol for A. In addition B knows all
values T̄ and can thus answer any GenToken query.

Challenge construction. When B is asked to provide token Tz, B con-
structs the token Tz = [Sz, (Y1,i, Y2,i)i∈Sz] as follows. The construction is
deterministic and uses the randomness present in challenge; specifically,
u and the ai’s (see Steps 01 and 03 of the F -Split Linear Secret Sharing).
As we shall see, the effect of the following instructions will be to construct
a token in which r = u and ri = ai, for i ∈ [2`− 1],

1. For i = 1, . . . , j − 1: If i ∈ Sz, then B sets Y1,i = V
t′1,i,0

i and Y2,i =

S
t′2,i,0

i · V
−t′2,i,0

i ;
2. B sets Y1,j = Vj and Y2,j = Z;

3. For i = j + 1, . . . , 2` − 1: If i ∈ Sz, then B sets Y1,i = V
t′1,i,0

i and
chooses random Y2,i ∈ G.
We have the following simple observations.

1. For i ∈ Sz \ {j}, we have that Y1,i = V
t′1,i,0

i = T̄ ai
1,i,0 (just as in

Experiment j and Experiment j − 1);
2. Y1,j = Vj = U

aj

j = T̄
aj

1,j,0 (just as in Experiment j and Experi-
ment j − 1);

3. For i ∈ Sz and i < j, we have that Y2,i = S
t′2,i,0

i · V
−t′2,i,0

i =

U
t′2,i,0(u−ai)

i = T̄ u−ai
2,i,0 (just as in Experiment j and Experiment j − 1);

4. For i ∈ Sz and i > j, we have that Y2,i is a random element of G
(just as in Experiment j and Experiment j − 1);

5. If Z = W u−aj , then Y2,j = T̄
u−aj

2,j,0 and (just as in Experiment j− 1);
6. If Z is random in G, then Y2,j is random in G (just as in Experiment
j).

By the above observations, we have that if Z = W u−aj , then the view
of A in the interaction with B is exactly the same as the view of A in
Experiment j − 1; on the other hand, if Z is random, then the view
of A in the interaction with B is exactly the same as the view of A in
Experiment j. The lemma then follows.

F Proof of Lemma 4

Lemma 4 Assume F -Linear Secret Sharing holds. Then, for j = 2`, . . . , 4`−
1, it holds that |pAj −pAj−1| is negligible for all probabilistic polynomial-time
adversary A.

Proof. Assume, for sake of contradiction, that there exist a probabilistic
polynomial-time adversary A and an index j, where 2` ≤ j ≤ 4`− 1, for
which the lemma does not hold. We construct a successful adversary B
for experiment F -LSSExp. In such an experiment, B receives an istance
[I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , Z] of the F -Linear Secret Sharing As-
sumption and runs A receiving pattern z ∈ {0, 1, ?} and policy Pol. If
there exists x ∈ XPol for which Match(x,z) = 0 then B returns ⊥ to
A and outputs A’s output. Otherwise B constructs the token T in the
following way. B extends z to a vector with 2` − 1 entries by appending
0-entries and ?-entries so that the resulting vector has exactly ` entries
in {0, 1}. With a slight abuse of notation, we call z the extended vector
and denote by Sz the set of indices i such that zi ∈ {0, 1}. For ease of
exposition, we assume that for i ∈ Sz we have zi = 0. It is straightfor-
ward to adapt the proof for general z. We denote by k an index such
that k ∈ Sz and 0 /∈ Polk. Observe that such a k exists for otherwise
there exists x ∈ XPol that matches z. We assume that k 6= j (the proof
for the case k = j is simpler and we omit it). We further assume that
Sz coincides with F = 〈f1, . . . , f`〉, that f1 = k, and that f` = j. This
is without loss of generality by Theorem 2. B starts by simulating the
Key-generation Phase.

Key-generation Phase. For i ∈ [2`−1], B chooses random t′1,i,0, t
′
1,i,1, t

′
2,i,0, t

′
2,i,1 ∈

Zp. Then, for i 6∈ Sz, B sets T1,i,0 = g1/t′1,i,0 , T1,i,1 = g1/t′1,i,1 , T2,i,0 =

g1/t′2,i,0 , and T2,i,1 = g1/t′2,i,1 , for i ∈ Sz\{k, j}, B sets T1,i,0 = Ū
1/t′1,i,0

i , T1,i,1 =

g1/t′1,i,1 , T2,i,0 = Ū
1/t′2,i,0

i , T2,i,1 = g1/t′2,i,1 , T̄1,i,0 = U
t′1,i,0

i , T̄1,i,1 = gt′1,i,1 , T̄2,i,0 =

U
t′2,i,0

i , T̄2,i,1 = gt′2,i,1 , Finally, B sets T1,j,0 = Ū
1/t′1,j,0

j , T1,j,1 = g1/t′1,j,1 , T2,j,0 =

Ū
1/t′1,j,0

j , T2,j,1 = g1/t′2,j,1 , T1,k,1 = g1/t′1,k,1 , T2,k,1 = g1/t′2,k,1 , T̄1,j,0 = U
t′1,j,0

j , T̄1,j,1 =

gt′1,j,1 , T̄2,j,0 = U
t′1,j,0

j , T̄2,j,1 = gt′2,j,1 , T̄1,k,0 = U
t′1,k,0

k , T̄1,k,1 = gt′1,k,1 , T̄2,k,0 =

U
t′2,k,0

k , T̄2,k,1 = gt′2,k,1 . After this step secret key SK = [I, (Ki, K̄i)i∈[2`−1]]
is implicitly defined. It is immediate to see that SK has the same distribu-
tion as a secret key output by Setup. We stress that B does not completely
know SK since B has not computed T1,k,0 and T2,k,0 (which however are
implicitly defined by Uk). However we observe but, since 0 6∈ Polk, B can
construct the partial public key PPKPol for A. In addition B knows all
values T̄ and can thus answer any GenToken query.

Challenge construction. When B is asked to provide token T , B con-
structs the token Tz = [Sz, (Y1,i, Y2,i)i∈Sz] as follows. The construction is
deterministic and uses the randomness present in challenge; specifically,

the ai’s (see Step 01 of the F -Linear Secret Sharing). As we shall see, the
effect of the following instructions will be to construct a token in which
ri = ai, for i ∈ [2`− 1],

1. For i ∈ Sz, B chooses random Y2,i ∈ G;

2. For i = 1, . . . , j − 1: If i ∈ Sz, then B sets Y1,i = V
t′1,i,0

i ;

3. B sets Y1,j = Zt′1,j,0 ;
4. For i = j + 1, . . . , 2`− 1: If i ∈ Sz, then B chooses random Y1,i ∈ G.

We have the following simple observations.
1. For each i ∈ Sz, we have that Y2,i is a random element of G (just
as in Experiment j and Experiment j − 1).

2. For i ∈ Sz and i < j, we have that Y1,i = V
t′1,i,0

i = U
ait

′
1,i,0

i = T̄ ai
1,i,0

(just as in Experiment j and Experiment j − 1).
3. For i ∈ Sz and i > j, we have that Y1,i is a random element of G
(just as in Experiment j and Experiment j − 1).

4. If Z = U
aj

j , then Y1,j = T̄
aj

1,j,0 (just as in Experiment j − 1).
5. If Z is random in G, then Y1,j is random in G (just as in Experiment
j).

By the above observations, we have that if Z = U
aj

j , then the view of
A in the interaction with B is exactly the same as the view of A in
Experiment j − 1; on the other hand, if Z is random, then the view
of A in the interaction with B is exactly the same as the view of A in
Experiment j. The lemma then follows.

