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Abstract. Research within “post-quantum” cryptography has focused on development of
schemes that resist quantum cryptanalysis. However, if such schemes are to be deployed,
practical questions of efficiency and physical security should also be addressed; this is par-
ticularly important for embedded systems. To this end, we investigate issues relating to
side-channel attack against the McEliece and Niederreiter public-key cryptosystems, for ex-
ample improving those presented by [19], and novel countermeasures against such attack.
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1 Introduction

The availability of a heterogeneous, i.e., structurally diverse, range of cryptosystems has
significant advantages. For example, diversity in security properties that underpin said
cryptosystems helps to insulate users from advances in cryptanalysis. This fact has been
amplified by the advent of quantum computing. It is hard to assess when practical quantum
computers will be available, but much easier to see that their development will have a pro-
found impact on classical cryptography in the long term. Concrete examples of quantum
cryptanalysis include Shor’s algorithms for factoring and discrete logarithms [15] which,
given a suitable quantum computer, could threaten the security of RSA and elliptic curve
cryptosystems (the elliptic curve case has been investigated more closely by Proos and Za-
lka [13]). Within this context two “post-quantum” research areas have emerged in classical
cryptography, namely

1. the design of new cryptosystems that are immune to quantum cryptanalysis and based
on a more diverse range of security properties, and

2. the search for, and practicalisation of, existing cryptosystems that satisfy the same
requirements.

The well-studied structure and security properties of the hash based signature schemes
proposed by Merkle [9] are a good example of the second case. Likewise, the first public-
key encryption scheme of this type, published in 1978 and proposed by McEliece [8], has
security properties based on the intractability of decoding generic linear error correcting
? The work described in this paper has been supported in part by EPSRC grants EP/H001689/1 and
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codes. The scheme scrambles the structure of a Classical Goppa Code (CGC) pseudo-
randomly so that efficient error correction is only possible with knowledge of the original
code structure.

However, the same diversity can also imply disadvantages. In particular, any post-
quantum cryptosystem must be practical as well as secure against quantum cryptanalysis.
In this respect, it is imperative that cryptographic engineering keeps pace with develop-
ments in post-quantum cryptography; in an embedded context specifically, this will allow
cryptosystems to be efficiently realised while also resisting physical attack. With this
motivation in mind, computational efficiency of the McEliece scheme on embedded plat-
forms (more specifically, on an 8-bit AVR processor) was studied by Eisenbarth et al. [4].
The physical security properties of the McEliece scheme is less understood. Strenzke et
al. [19], [16], [20] offer examples of timing/reaction attacks based on the error weight.
Heyse et al. [5] offer examples of SPA attacks.

In this paper, we extend existing research that investigates the physical security of
McEliece [8] and Niederreiter [10] public-key encryption schemes by making two main
contributions. Beforehand, both schemes (Section 2) are outlined and notation is intro-
duced. The first contribution (Section 3) improves a previous timing attack of Strenzke
et al. and shows a countermeasure against such attacks. The second contribution (Sec-
tion 4) highlights side-channel attacks that have not been mentioned in previous work;
these focus on the Goppa polynomial. As an aside, we also highlight in Appendix A note-
worthy issues relating to the constant weight encoder; these are independent of our main
contribution. We posit that in combination, these results are a step toward the security
of both schemes on embedded platforms, and therefore toward the wider goal of usable
post-quantum cryptography.

2 Background

Binary, irreducible CGCs represent the only code family for which the McEliece and
Niederreiter Public-Key Cryptosystems (PKCs) have resisted cryptanalysis. Other sub-
classes of algebraic geometric codes have been considered, but failed to provide the nec-
essary strength; see for example [17] or [21]. A binary, irreducible CGC with parameters
(n, k, d) is defined by an irreducible polynomial G(X) ∈ F2m [X] with deg(G(X)) = t =
bd2c (subsequently called the “Goppa polynomial”), and the code support F2m ⊇ L =
{γ0, γ1, . . . , γn−1}; such a parametrisation can correct at least t bit errors. The defining
equation is

n−1∑
j=0

cj
X − γj

≡ 0 mod G(X),

with cj denoting the j-th bit of the codeword c ∈ Fn
2 , which allows derivation of the check

matrix H ∈ Ft×n
2m . Based on this, the PKCs themselves can be defined as follows:
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Definition 1 (McEliece PKC). Let C(L, G(X)) be a binary, irreducible CGC. Further-
more, let

G ∈ Fk×n
2 be the generator matrix,

S ∈ Fk×k
2 be a random, dense, non-singular scrambler matrix,

Q ∈ Fn×n
2 be a random permutation matrix, and

G′ := SGQ be the hidden generator matrix.

The public and private keys are given by:

PKMcE = {n, k, t,G′} and SKMcE = {L, G(X),H,S,Q}

Let e ∈ Fn
2 be a random vector of weight t. Encryption of a data word a ∈ Fk

2 into a
ciphertext v is given by

encPKMcE
: v← aG′ + e,

while decryption is given by

decSKMcE
: a← decode(vQ−1)S−1.

Definition 2 (Niederreiter PKC). Let C(L, G(X)) be a binary, irreducible CGC. Fur-
thermore, let

H ∈ Ft×n
2m be the check matrix

S ∈ Fmt×mt
2 be a random, dense non-singular scrambler matrix

Q ∈ Fn×n
2 be a random permutation matrix, and

H′ := SHQ be the hidden check matrix denoted as Ftm×n
2 matrix.

The public and private keys are given by:

PKNie = {n, k, t,H′} and SKNie = {L, G(X),H,S,Q}

Let the constant weight encoder cw encode be a bijective, efficiently computable and effi-
ciently invertible mapping

cw encode : A 7→ {e ∈ Fn
2 ,weight(e) = t}

where A is the data space and weight(e) denotes the Hamming weight of e. Encryption of
such encoded data into a ciphertext s′ ∈ Fmt

2 is given by

encPKNie
: s′ ← H′e>.

Decryption is given by

decSKNie
: e← Q−1computeError(S−1s′)

whereafter e has to be decoded into plaintext using the inverse of the constant weight
encoder, cw decode := (cw encode)−1.
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Algorithm 1. McEliece decryption with Patterson’s algorithm.

INPUT: The sense word v ∈ Fn
2 , matrices (QL), (Q−1H), G′−1 and the Goppa polynomial G(X).

OUTPUT: The clear text a

1. S(X)← v(Q−1H)>

2. S′(X)← S−1(X) mod G(X) [For example with the EEA.]

3. if S′(X) = X then u(X)← S′(X)

4. else

5. S′(X)←
p
S′(X) +X

mod G(X)
[Polynomial square root modG(X)]

6. [x(X), y(X)]←EEA Decode (G(X), S′(X), dt/2e) [EEA Decode is given in Algorithm 5]

7. u(X)← x2(X) +Xy2(X)

8. for γi ∈ (QL) [i = 0, . . . , n− 1]

9. if u(γi) = 0 then v← toggleBit (v, i)

10. return a′ ← vG′−1

In the following sections we focus on McEliece decryption, making use of the well known
Patterson Algorithm [12] to decode the CGC as described in Algorithm 1. For the Nieder-
reiter PKC, the same algorithm can be trivially adapted to suit. The initial permutation
is avoided by using a prepermuted check matrix and a prepermuted code support. This
results in a more (time- and memory-) efficient implementation and reduces the risk of
side-channel attack by eliminating the associated leakage.

We implemented this algorithm on Linux AMD64 and Mac PowerPC architectures
using a specialised library for arithmetic in small binary fields: it implements multiplica-
tion and exponentiation of field elements using logarithmic and anti-logarithmic Look-Up
Tables (LUTs) and supports polynomial computations of these fields as well as vectors
and matrices over these fields and the base field. NTL [11] was used to support number
theoretic operations during the key generation and for testing purposes.

We have focused on the following parametrisations with security estimates based on
[2]:

• m = 11 and (n, k, d) = (2048, 1751, 55) provides 80-bit security,
• m = 12 and (n, k, d) = (2960, 2288, 113) provides 128-bit security, and
• m = 13 and (n, k, d) = (6624, 5129, 231) provides 256-bit security.

To allow easier comparison with previous work, we also consider the “classic” case m = 10
and (n, k, d) = (1024, 524, 101) which should be considered insecure.

3 Timing Related Side-Channels

Within Algorithm 1 there are basically four exploitable side-channels relating to variation
in execution time:

– The first side-channel was published in [19] and concerns Line 9. The side-channel itself
will be discussed in Section 3.1 where we introduce the first effective countermeasure,
the non-support.
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– The number of rounds performed by the EEA Decode Algorithm, as used in Line 6,
depends on the error weight; attacks based on this fact were presented in both [16]
and [20]. In Section 3.2 we discuss why the non-support countermeasure fails against
such attacks, and why Line 2 does leak information through a similar side-channel.

– Section 3.3 discusses the third and fourth side-channels which relate to the matrix
operation in Line 10, and the impact of cache behaviour on any LUT-based realisation
of finite field arithmetic.

3.1 Polynomial Evaluation

A simple, yet very successful timing attack on McEliece encryption is given by Strenzke
et al. [19]. It is based on the observation that the time needed for the error computation
step is directly related to the error weight, and this dominates the total time required
for decryption. The attack is basically a reaction attack that uses the timing difference
to obtain the error positions in a ciphertext. When these positions are known to an at-
tacker, correcting the error and recovering the message becomes easy. The secret key is
not compromised.

In Algorithm 1, the error computation is equal to evaluating the error locator poly-
nomial u(X) on all points of the code support which, by definition of u(X), is equal to
factoring u(X). This is usually done using a Horner scheme, resulting in a time estimation
of

tEVAL = |L|deg(u(X))(tMUL + tADD).

The correlation between error weight and decryption time using a straight forward im-
plementation of Patterson’s algorithm is shown by the plots not marked “hardened” in
Figure 1.

Based on the suggestions of [19] we have been able to improve the timing attack with a
setup stage (Algorithm 2) that profiles the algorithm for all correctable error weights, and
an iterative process (Algorithm 3) that approximates the random error vector by using
the previously collected timing profiles to measure the success of each iteration. Thus we
improve the already reasonable success probability of 50% of the original attack to obtain
a success probability greater than 99%: in fact we recovered the correct error vectors for
300 out of 300 randomly chosen ciphertexts.

However, we propose the “non-support” as a simple, efficient and effective counter-
measure against this attack. It is defined as follows:

Definition 3. Let L ⊆ F2m be the code support. The non-support is defined as

L = F2m \ L

if and only if L ( F2m, as
L = F2m′ \ L

with m′ ≥ m+ 1 if and only if |L| = 2m and a free choice of m′ is possible or as

L = F2xm \ F2m

with x ≥ 2 if and only if |L| = 2m and m is fixed. In this last case, the error computation
has to be done in the extension field F(2m)x.
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Fig. 1. Average decryption time for given (correctable) error weights on a Linux AMD64 machine. The code
parameters are m = 10 and (1024, 524, 101), m = 11 and (2048, 1751, 55), m = 12 and (2960, 2288, 113),
m = 13 and (6624, 5129, 231). Measurements for a hardened decryption (using Algorithm 4) have been
added for the cases m = 12 and m = 13.

Clearly the last case will incur considerable overhead, but from a theoretic point of view
it can be avoided by choosing m′ ≥ m + 1 and from a practical point of view one has to
wonder whether the decision to enforce m′ = m is justified compared to the overhead of
doing computations in F(2m)x .

The non-support has been defined such that any root added to the error locator poly-
nomial u(X) from the non-support will not affect the error computation. Using that, we
are able to compute a fake error locator u(X) and a hardened error locator u′(X) which
has deg(u′(X)) = t no matter what the input is; this is illustrated by Algorithm 4. The
success of the proposed hardening is visible in the plots marked “hardened” in Figure 1.
To mount our improved timing attack successfully, we have to correct

⌈
t
2

⌉
error bits in

the first iteration. Considering that there are no reliable timing differences for the error
weights t− ε . . . t in the hardened cases, using the attack on a hardened decryption makes
no sense. The sharp decline of the hardened cases for weight(e) = 0 is easily explained by
the fact that in this case the decryption algorithm breaks off before the locator computa-
tion step; an attacker who is able to remove all errors on the first run has broken the PKC
anyway. Furthermore, the plots show that the hardening is inexpensive compared to the
entire decryption which, in untampered scenarios, always has deg(u(X)) = t.

The small spikes and the slight decline for

0 < weight(e) <
t

2
are explained in the Sections 3.2 and 3.3. However, some system dependent noise could
not be avoided during the measurements and adds to the spikes as well.
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Algorithm 2. Setup stage for the timing attack against the McEliece decryption.

INPUT: The McEliece decryption module under attack with public key {n, k, t,G′}, number of samples taken per error weight
(numOfSamples)
OUTPUT: An array E containing the average decryption time per error weight.

1. for i = 0 to t

2. E [i]← 0

3. for j = 0 to numOfSamples

4. E [i]← E [i] + time
“

decrypt ( randCodeWord (G′)⊕ randErrorOfWeight (i))
”

5. return (E/numOfSamples)

Algorithm 3. Improved timing attack against the McEliece decryption.

INPUT: A senseword v of length n containing t errors and an array E computed by Algorithm 2
OUTPUT: The most likely data word ã

1. ṽ← v; t̃← t

2. while 0 6= t̃ [Repeat until current error weight = 0.]

3. for i = 0 to n− 1 [Timing Attack.]

4. v̂← toggleBit (ṽ, i)

5. time [i]← time
“

decrypt (v̂)
”

6. places← selectIndicesOfSmallestValues (time, t̃)

7. ṽ← toggleBits (ṽ,places)

8. time← time
“

decrypt (ṽ)
”

[Estimate current error weight.]

9. for i = 1 to t step 2 [Odd error weights can be ignored at this point.]

10. if time ≤ E [i]

11. t̃← i− 1; break

12. return ã← ṽ(QGS)−1

3.2 The Extended Euclidean Algorithm (EEA)

In [16] and [20] the authors observe and explain that the number of rounds spent in
theEEA Decode algorithm depends on the error weight and use this difference in the timing
to mount a reaction attack similar to [19]. As countermeasure they propose to raise the
degree of the polynomial within theEEA Decode artificially, but they do not detail their
proposed countermeasure exactly; in particular they do not describe how this approach
would avoid effecting the evaluation of the error locator polynomial.

Again, the non-support would be beneficial in achieving an execution time independent
from the error weight. A non check matrix H can be computed in advance, similar to the
check matrix, using the elements of the non-support instead of the elements of the code
support. If now a trivially computable function f with

f : weight(e) = f(S(X))
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Algorithm 4. Hardened McEliece decryption with Patterson’s algorithm.

INPUT: Senseword v, secret key SKMcE, non-support L.
OUTPUT: Plaintext a.

1. . . . [Syndrome & locator computation, see Alg. 1.]

2. u [TRUE]← u(X), u [FALSE]← 1
h
u [TRUE] := u′(X); u [FALSE] := u(X)

i
3. for i = 0 to t− 1

4. γi ← chooseElement (L)

5. boolean b← deg(u′(X)) ≤ i [e.g. boolean := {TRUE, FALSE} 7→ {1, 0}]

6. u [b]← u [b] (X + γi)

7. u′(X)← u [TRUE]

8. for i = 0 to n− 1 [Error computation.]

9. if u′(γi) = 0 then v← toggleBit (v, i) [Horner scheme.]

10. return a′ ← v(SGQ)−1

exists, we would be able to add t − f(S(X)) rows of the non check matrix to the syn-
drome (in a way similar to Algorithm 4) before any other computations are performed
on the syndrome. This would counter all timing side-channels originating from the error
computation without incurring any other costs. However, we have not been able to find
such a function f and thus lack a criteria to decide how many rows need to be added. We
suggest this is an open problem that should be addressed in further research.

But even before EEA Decode is invoked in Line 6 of Algorithm 1, another invocation
of the EEA is performed for the polynomial inversion in Line 2; previous work has not
investigated this invocation at all, but clearly one has to consider it as a potential timing
side-channels as well. For

weight(e) <
t

2
an interesting situation arises: the error could be corrected by a more generic algorithm,
e.g., by the algorithm presented in [18] which would replace the inversion with an invoca-
tion of

EEA Decode(G(X), S(X), dt/4e).

It is obvious that for this case we have to cope with the resulting timing side-channel as
well. For

weight(e) >
t

2
we have no theoretic explanation so far but experimental results show the number of
rounds to be constant with a very small number of exceptions. This means, an attacker
would have to correct t/2 or more errors before being able to use this sidechannel which is
infeasable. Further, the exceptions observed make an iterative approximation as described
in the Section 3.1 less reliable. Our experimental results are shown in Figure 2.

3.3 Other Timing Related Side-Channels

Finally, we remark briefly on two further source of timing variation and hence potentially
exploitable side-channels. We stress that these have not been exploited via real attacks
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Fig. 2. Average number of rounds needed for the extended euclidean algorithm in the inversion step of
Algorithm 1. Averaged on 2000 random samples.

on our experimental platforms, but rather we suggest that doing so represents an open
problem that should be addressed in further research.

The Matrix Operation
The matrix operation in Line 10 of Algorithm 1 may influence execution time and thereby
represent a timing side-channel. Assume that all other timing side-channels relating to
error correction have been avoided; imagine the attacker modifies one bit of the ciphertext
v, and asks the device under attack to decrypt the result v′. If the modified bit is an
error bit, the error correction computes the correct code word and the operand of the
final matrix multiplication is the same; if it was not an error bit, the error correction
computes a wrong code word with potentially different Hamming weight. This will change
the time required for the matrix multiplication and allow the attacker to discover the error
positions (and a few false positives) unless proper measures are taken to ensure constant
time execution. Two possible solutions are:

1. Use of a window-algorithm for matrix multiplication. This increases the amount of
memory required by a factor 2w, but is faster by a factor w if w denotes the window
size. The possibility of a “zero window” is 1/(2w) and the numbers of zero windows
would have to differ between the correct and a wrong code word so that the attacker
sees the difference between both.

2. Alternatively, all rows of the retrieval matrix are added but the unneeded rows are
added to a fake plaintext instead. This means that always the worst case time is
needed but the additional memory is limited to k bits.
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Cache Behaviour
In the case of the McEliece and Niederreiter PKCs, all performance-oriented implementa-
tions use logarithmic and anti-logarithmic LUTs to realise finite field arithmetic; for the
parameters used, various related quantities are given in Table 1. The chance of retaining
the entire working set in (a reasonably sized) cache memory is low: this implies that cache
interference based on access to the LUTs is inevitable, and that the variation in execution
due to the resulting cache-misses leaks information. We suggest that this affords an attack
the possibility of recovering information about operands used in finite field operations by
virtue of their use as addresses in LUT access.

m = 10 m = 11 m = 12 m = 13
10 bpE 16 bpE 11 bpE 16 bp 12 bpE 16 bpE 13 bpE 16 bpE

log table 1280B 2048B 2816B 4096B 6144B 8192B 13312B 16384B

log & anti-log tables 2560B 4096B 5632B 8192B 12288B 16384B 26624B 32768B

H 64000B 102400B 76032B 110592B 248640B 331520B ≈ 1.18MB ≈ 1.45MB

G(X) 63.75B 102B 38.5B 56B 85.5B 114B 188.5B 232B
√
X

mod G(X)
62.5B 100B 37.125B 54B 84B 112B 186.875B 230B

Table 1. Sizes for log & anti-log LUTs, and the two required polynomials, measured in bytes (“bpE” stands
for “bits per (field) element”, 16 is the size of an unsigned short type on our experimental platforms).

4 Side-Channel Attacks on the Goppa Polynomial

To consider direct side-channel leaks from Patterson’s algorithm on the Goppa polynomial,
one has to look at the locator computation as shown in Algorithm 1. The Goppa polynomial
appears implicitly in Line 5 and explicitly in Lines 2 and 6 (both of which represent leakages
from the EEA).

Note that these leakages impact on both PKCs; only minor differences in the setup of
the attack need to be considered for the attack to accommodate both.

Implicit Leakage from the Square Root Computation
The preferred method to compute

√
S′(X) +X

mod G(X)
has been given by Huber in [6].

(For a short description see Appendix B.) Here the Goppa polynomial is not involved
directly, but rather during the square root computation a multiplication with the polyno-
mial √

X
mod G(X)

,

which is constant and unique for given G(X), has to be performed. If this constant leaks
from the polynomial multiplication, the attacker can compute

y(X) = (
√
X

mod G(X)
)2 +X = z(X)G(X)

and obtains G(X) by factoring y(X). Having t ≤ deg(y(X)) < 2t and G(X) irreducible
with deg(G(X)) = t this is no problem. The attack on Huber’s method will be simplified



Side-Channel Attacks on the McEliece and Niederreiter Public-Key Cryptosystems 11

if the attacker can choose a syndrome such that

S′(X)← S−1(X) mod G(X)

has all coefficients S′2i+1 set to zero.

Algorithm 5. EEA Decode

INPUT: y(X), z(X) having deg(y(X)) ≥ deg(z(X)), bound b ∈ N; use b = 1 for EEA
OUTPUT: xE(X), zE(X) such that xE(X) ≡ zE(X)z(X) mod y(X) and xE(X) having maximal degree with
deg(xE(X)) < b

1. x0(X)← y(X); x1(X)← z(X)
z0(X)← 0; z1(X)← 1

2. while deg(xi+1(X)) ≥ b do [loop counter: i = 1, . . .]

3. q(x)← 0; xi+1(X)← xi−1(X)
l← deg(xi(X)) [quoRem: quotient q(X),]

4. for j = deg(xi−1(X)) downto l [xi+1(X)← xi−1(X) mod xi(X)]

5. qj−l ← coeff (xi+1(X), j) / coeff (xi(X), l)

6. xi+1(X)← xi+1(X) + qj−lX
j−lxi(X)

7. zi+1(X)← zi−1(X) + q(X)zi(X)

8. return (xE(X)← xi+1(X), zE(X)← zi+1(X))

EEA Leakage
A typical implementation of EEA Decode, which can be seen as a generalisation of the EEA,
is shown in Algorithm 5. In both cases of Patterson’s algorithm, x0(X) will be initialised
with G(X), and the Lines 5 and 6 during the first iteration of the while-loop will yield
the most for the attacker. x1(X) will be initialised either with S(X) or S′(X). Since the
algorithmic properties are the same in both cases, we continue using S(X) without loss
of generality; the cases differ only in the effort necessary to choose an appropriate input
polynomial. Ideally, the attacker would want to have

x1(X) = S(X) = α ∈ F∗2m

and circumvent (using a fault attack) the condition in Line 2 so that the while-loop can be
observed. In that case, the for-loop would process all coefficients of the Goppa polynomial
and Line 5 would be

qj−l ← Gjα
−1.

Furthermore, the attacker may assume Gt = 1 and will thus learn the value of α−1.
However, the attacker might not be able to circumvent the condition of Line 2. In that
case, the attacker would want to have:

x1(X) = S(X) = αX + β, α ∈ F∗2m , β ∈ F2m

Then the for-loop will only process the coefficients Gt . . . G1 in Line 5 and the G0 coefficient
has to be recovered either from observations on Line 6 or through a brute force search
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which is feasible since only 2m − 1 elements have to be searched. However, for syndrome
polynomials of degree 1 Line 5 will not be as friendly as for the degree 0 case

qt−1 ← Gtα
−1 , qt−2 ← (Gt−1 + qt−1β)α−1 , qt−3 ← (Gt−2 + qt−2β)α−1 , . . .

With the same assumption that Gt = 1 is used, α−1 can be observed. However, β has to
be recovered either in Line 6 or a syndrome polynomial with β = 0 has to be chosen by
the attacker leading to a significantly reduced number of possible syndrome polynomials.
On the other hand, β 6= 0 leads to error propagation into all qj<i if a wrong qi has been
assumed. This approach can be generalised to accommodate syndromes of degrees larger
than 1 but incurs an increase in complexity and vulnerabilities to error propagation.

Abilities of the Attacker

To evaluate the difficulty of these attacks, one has to assess the abilities an attacker is
required to have. To make this assessment, two reasonable assumptions on the implemen-
tation of field operations are given:

– Additions are a simple XOR of two elements and leak almost no data compared to
multiplication.

– For multiplication, the log/anti-log LUTs are used which allows the operation to be
implemented without branches. The use of LUTs implies that the attacker will try to
identify which element of a LUT is accessed at a given moment.

Based on these assumptions, the attacker needs to have the following abilities:

– Learn the position of multiplication coefficients in the log/anti-log LUTs.
– To exploit the EEA leakage the attacker has to be able to learn the degree of S(X) or
S′(X). Note that this might also be used to acquire information on the Niederreiter
scrambler matrix. For the Niederreiter PKC we expect that a successful attacker tries
to use the knowledge he acquires on the scrambler matrix to reduce the time needed
to find low degree polynomials.

Furthermore, any fault induction abilities, either on the condition of the while-loop or on
the coefficients of the polynomials S(X) and S′(X) reduce the attack complexity.

5 Conclusions

Development and security analysis of post-quantum cryptographic schemes is an active
research area; the study of efficiency and physical security within the same context is vital
if said schemes are to be deployed and used.

Modified decryption paths [7, 5] for the McEliece and Niederreiter PKCs optimise
computational effort and already increase the complexity of side-channel attack. However,
by introducing the concept of non-support we have devised an efficient countermeasure
against specific timing attacks and hence closed the gap left by [19] and [16]. Further-
more, our analysis of vulnerabilities in the error locator computation outlines the research
questions that have to be answered for secure, embedded implementations.
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Finally, our results in appendix A demonstrate that it is not sufficient to secure the
encryption in its purest form when substantial data may be leaked from necessary, but
cryptographically irrelevant, preprocessing steps such as constant weight encoders.
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A Implementation Issues: Constant Weight Encoding

When we implemented the Niederreiter encryption (see Algorithm 6) on an ARM7TDMI-
based LPC2124 microprocessor we discovered two issues related to the constant weight
encoder which are noteworthy but not part of our main contribution. The constrained
nature of this platform meant that we focused on the first of the previous parametrisations
(i.e., 80-bit) only; given the 16 kB RAM and 256 kB flash memory available, the 74 kB
public-key was stored in flash memory.

The instantiation of cw encode, the constant weight encoder, is important in both
PKCs: it is inherent within the Niederreiter PKC, and can optionally be used to transform
the output of a random number generator into random error words (of weight t) within
the McEliece PKC. The cryptanalytic security of neither PKC depends on the constant
weight encoder, but the construct should be considered within the context of side-channel
attack. As such, the design of a constant weight encoder should ideally fulfil (at least) the
following requirements:

1. efficiency of computation,
2. efficiency of encoding, and
3. minimisation of side-channel leakage.

In relation to the second requirement, a constant weight encoder can encode at most
log2

(
n
t

)
input bits into one word. In the McEliece PKC the encoding efficiency has to be

large enough to prevent a complete enumeration of error words, and in the Niederreiter
PKC the encoding efficiency affects the effective bandwidth.

To our knowledge, there currently seems to be no constant weight encoder that satis-
fies all requirements. We selected the Sendrier constant weight encoder (see [14] and Algo-
rithm 7) which performs well in both efficiency categories, but uses variable length inputs
and (for the 80-bit parametrisation) leaks some bits. Using a template attack against our
microprocessor implementation, we were able to obtain (albeit with approximate place-
ment) the values of the bits read in Line 7 of Algorithm 7. Using a simulation with 107

random messages, we established that this instruction reads on average ≈ 26.6% of the
message with the minimum being ≈ 13.9% and the maximum being ≈ 53.0%. In the
absolute worst case (the “all one” message which was not part of the random sample of
messages), 100% of the message are revealed by the timing attack.

Sendrier’s constant weight encoder is highly recursive in the original version. Due to
the memory constraints on our platform, stack size in particular, we reformulated the
algorithm using the recursion-free approach presented in Algorithm 7.

B Huber’s Polynomial Modular Square Root Computation Method

For those not familiar with Huber’s method (see [6]), we give a short description of it: It

requires that we precompute
√
X

mod G(X)
for an irreducible Goppa polynomial G(X). To
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Algorithm 6. niederreiterEnc, Niederreiter encryption.

INPUT: PKNie = {n, k, t,H′}, a binary data stream, precomputed best (see Algorithm 7)
OUTPUT: A ciphertext s′

1. ∆← cw encode(n, t, 0, best) [∆ [i] = number of zeros in e before next ’1’.]

2. s′ ← column( H′,∆ [0] )

3. for i from 1 to t− 1

4. ∆ [i]← ∆ [i− 1] +∆ [i] + 1

5. s′ ← s′ ⊕ column( H′,∆ [i] )

6. return s′

Algorithm 7. sendrierCWE, recursion-free Sendrier constant weight encoding.

INPUT: Bits in vector x = n, weight y = t, current distance δ = 0, precomputed

best =
n

1, 1− 1
2
, 1− 1√

2
, . . . , 1− 1

t√2

o
, an input bit stream

OUTPUT: Vector ∆ of y distances

1. while y > 0

2. if x ≤ y

3. ∆ [t− y]← δ

4. x← x− 1; y← y− 1; δ ← 0; continue [i.e. start next loop iteration immediately.]

5. z← round
“ `

x− y−1
2

´
∗ best [y]

”
6. if z = 0 then z← 1 [Avoid infinite loops.]

7. if
`

readBits(1) = 1
´

[Reads one bit; template based SPA reveals the value.]

8. x← x− z; δ ← δ + z; continue

9. l← dlog2(z)e [Lines 9 to 11 = subfunction decodefd from [14].]

10. δtmp ← readBits(l− 1) [δtmp ← 0 if and only if l = 1]

11. if δtmp ≥ (2l − z) then δtmp ← 2δtmp+ readBits(1)− (2l − z)

12. ∆ [t− y]← δ + δtmp

13. x← x− δtmp − 1; y← y− 1; δ ← 0

14. return ∆



16 R.M. Avanzi, S. Hoerder, D. Page and M. Tunstall

do so we split G(X) into polynomials g1(X) and g2(X)

G(X) =
(
g0 + g2X

2 + g4X
4 + g6X

6 + . . .
)︸ ︷︷ ︸

g1(X)

+X
(
g1 + g3X

2 + g5X
4 + . . .

)︸ ︷︷ ︸
g2(X)

such that the computation of
√
g1(X) and

√
g2(X) is reduced to computing the square

roots of the coefficients in F2mand obtain

g1(X) ≡ Xg2(X) mod G(X)√
g1(X) ≡

√
X

mod G(X)√
g2(X) mod G(X)

√
X

mod G(X)
≡
√
g1(X)

(√
g2(X)

)−1
mod G(X)

using gcd(G(X),
√
g2(X)) = 1. (Here we profit from G(X) being irreducible.)

To compute
√
S′(X) +X

mod G(X)
we split S̃(X) = S′(X)+X into polynomials s̃1(X)

and s̃2(X) (just as we split the Goppa polynomial) such that we can easily compute their
square roots. The final result follows:√

S̃(X)
mod G(X)

≡
(√

s̃1(X) +
√
X

mod G(X)√
s̃2(X)

)
mod G(X)

Thus we get the square root
√
S′(X) +X

mod G(X)
at the cost of performing t square

roots in F2m which can be done (due to the small m) very efficiently with a LUT similar
to the logarithmic LUTs we already mentioned and a polynomial multiplication modulo
G(X).


