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Abstract. We propose solutions to the problems which has been left in the Enhanced
STS, which was proposed in the PQCrypto 2010.
Enhanced STS signature scheme is defined as the public key with the Complementary
STS structure, in which two STS public keys are symmetrically joined together. Or,
the complementary STS is the public key where simply two STS public keys are joined
together, without the protection with Check Equation.
We discuss the following issues left in the Enhanced STS, which was prosented in the
PQCrypt2010:

(i) We implied that there may exist a way to cryptanalyze the Complementary STS
structure. Although it has been proposed that the system be protected by Check
Equations [35][37], in order to cope with an unknown attack, we did not show the
concrete procedure. We show the actual procedure to cryptanalyze it and forge a
signature.

(ii) We assumed that the Check Equation should be changed every time a document
is signed. This practice is not always allowed. We improved this matter. The
Check Equation which was proposed in the PQCrypto 2010 defined the valid life
as a function of the number of times the documents are signed, because the secret
key of Check Equation is analyzed by collecting valid signatures.

Now we propose a new method of integrating the Check Equation into the secret key
and eliminate the risk of the hidden information drawn from the existing signature.

Key words: Multivariate Public Key Cryptosystem, Digital Signature, Stepwise Tri-
angular Scheme, Check Equation

1 Introduction

1.1 MPKC Trapdoors

Multivariate Public Key Cryptosystem (MPKC) has long history of study and they are still actively
studied worldwide. Although there are numerous kinds of trapdoors, most of the encryption scheme
are based on either of the 2 basic trapdoors:
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(i) MI-HFE Trapdoor (Matsumoto, Imai, Patarin)
The development of the first MPKC in the world had been launched around 1983 by Mat-
sumoto and Imai [1]. The new cryptosystem, which is widely known as “Matsumoto-Imai
cryptosystem” (MI), was proposed in EUROCRYPT in 1988 [2]. After Patarin [3] successfully
cryptanalyzed MI, he extended the idea of MI further and proposed Hidden Field Equation
(HFE) cryptosystem in 1996 [4].

(ii) STS Trapdoor (Tsujii, et al. Shamir, Kasahara, et al.)
STS trapdoor was proposed by Tsujii in 1985 [5]. Its initial scheme, which was named
“Sequential Solution Method” [6], was cryptanalyzed by Hasegawa and Kaneko in 1987 [7].
Tsujii et al. proposed the improved version in 1989 [8]. 1989 version of Tsujii’s cryptosystem,
which was translated to English by Tadaki, et al. and published on the Cryptology ePrint
Archive [9] in 2004, was cryptanalyzed by Ding et al. in PQCrypto 2008 [10].
Afterwards Kasahara et al. actively published various schemes including RSE, generalizing
the concept of Sequential Solution Method [11][12]. Moh et al. proposed their scheme utilizing
the Sequential Solution Method [13][14][15]. When Wolf, et al. attacked Kasahara’s scheme
with Rank Attack, they specified the family of the cryptosystems which Kasahara’s group
proposed as “Stepwise Triangular System” (STS) [16]. Here the family of MPKCs based on
the trapdoor of Sequential Solution Method is called “STS scheme” in this paper.

1.2 MPKC signatures

Besides the 2 trapdoors for encryption, Unbalanced Oil and Vinegar (UOV) is another basic trap-
door proposed by Kipnis et al. [42][17]. Unlike other two, UOV is not used for encryption. Although
no effective way of attacking UOV is found yet, it has 3 times more variables than polynomials.
Therefore UOV scheme has not ever been implemented as it is. Ding et al. proposed its efficient
implementation by the name of “Rainbow” [18]

The trapdoors for encryption have been applied to signature schemes, either by hiding poly-
nomials (“minus” modification) or appending extra variables (“vinegar” modification)[19]. MI was
modified into SFLASH [20] and HFE into QUARTZ [21]. SFLASH was cryptanalyzed [22] and
QUARTZ consumes so much memory that currently it is difficult to implement.

Shamir proposed the signature scheme based on the Sequential Solution Method, with its linear
polynomials hidden, in CRYPTO 1993 [23]. His signature was also cryptanalyzed by Coppersmith
et al. [24], with the attack similar to the Rank Attack [16].

The current situation of MPKC encryption and signature schemes is illustrated in the Table 1.

1.3 Extra Variables of Signature trapdoor

Tsujii et al. [34][35][37] proposed a new signature scheme, which is named “Complementary STS
structure.” It was designed to fail the Rank Attack, which exploits the difference of rank among
steps. However, it has turned out that the Complementary STS is possible to cryptanalyze by
a variant of High Rank Attack. We discussed the vulnerability of the signature public keys and
proposed to strengthen the signature key by eliminating the “ambiguity” of the signature.

All signature keys are “underdetermined,” partly because most of MPKCs are not bijection.
Some ‘buffer’ is necessary for signature to exist for every document. We proposed to strengthen
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Table 1: Taxonomy of MPKC

Basic Scheme Encryption Signature
MI- MI Scheme A or C∗ [2] SFLASH [20]
HFE Hidden Field Equation [4] QUARTZ [21]

ℓ-IC [25] ℓ-IC− [25]
Square [26] Square-Vinegar [27]

STS Sequential Solution Method Birational
[28][16] [6] Permutation [23][29]

TTM [13] TTS [30][31]
RSE [11], RSSE [12] Enhanced STS
PPS [32][33] [34][35][37]
Tractable Rational Map [14], TRMS [36]
MFE [15]

UOV Unbalanced
None Oil and Vinegar [17]

Rainbow [18]

the public key by appending “Check equations” [37]. Now we discussed the improvement of Check
Equation further to make the actual implementation possible.

1.4 New Idea described in this paper

The result of our study presented in the PQCrypt2010 following points untouched. Now we discuss
them in this paper :

(i) We implied that there may exist a way to cryptanalyze the Complementary STS structure.
Although it has been proposed that the system be protected by Check Equations [35][37], in
order to cope with an unknown attack, we did not show the concrete procedure. We show
the actual procedure to cryptanalyze it and forge a signature.

(ii) We assumed that the Check Equation should be changed every time a document is signed.
This practice is not always allowed. The Check Equation which was proposed in the PQCrypto
2010 defined its valid life as a function of the number of times the documents are signed,
because the secret key of Check Equation could be analyzed by collecting valid signatures.

This paper is organized as follows. In Section 2, we describe relevant background on STS and
Complementary STS. In Section 3, we explain that cryptanalysis of Complementary STS structure
is still possible by a variant of High Rank Attack. In Section 4, we describe the concept of Check
equation proposed in [37] and propose the further improvement.
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2 Preliminaries

2.1 General Design of MPKC

General structure of MPKCs is shown in Figure 1.
The internal operation such as the central map and the affine transformation is hidden and users

x ∈ Fq
n

Signature

z = S(x)
S: Secret Key

¾ z ∈ Fq
n

w = G(z)
G: Secret Key

¾ w ∈ Fq
m

y = T (w)
T : Secret Key

¾
?

(Verifying the Signature) E(x) = (T ◦ G ◦ S)(x): Public Key

y ∈ Fq
m

Message(Signing the Message)

Figure 1: Multivariate Public Key Cryptosystem

encrypt the message just by assigning plaintext values to the variables of the polynomials. The
message is signed by obtaining the preimage of the document by the mapping E(x) in signature
schemes.

2.2 Summary of STS Scheme and its Security

Central map of the Sequential Solution Method [6] is shown in the formula (1). The first polynomial
is univariate. The number of variables increases in the later sequence number. The equation system
is solved by solving the sequence of univariate equations one by one from the top.

w1 = g1(v1)
w2 = g2(v1, v2)
...

wk−1 = gk−1(v1, v2, . . . , vk−1)
wk = gk(v1, v2, . . . , vk−1, vk)

(1)

Random Singular Simultaneous Equation (R(S)SE) cryptosystem [11][12] proposed by Kasahara et
al. is a system where the equation is solved by solving each r-variate determined equation system,
instead of the univariate equation. Kasahara et al. published various encryption system for the
case of r = 4 and r = 5. In the case of r = 4, the legitimate receiver solves the 4-variate determined
random equations in the first step. the second step has 4 polynomials with 8 variables. Among
them, 4 variables are obtained by solving the 4-variate determined system of equations in the first
step. In this way, the overall system is solved by solving the subsystems of equations step by step.
It should be noted that both RSSE, one of the variants of STS scheme, and MI are bijections, while
the majority of MPKCs are not.
The STS Scheme has 2 vulnerabilities:

(i) Vulnerability to the Gröbner Bases Attack [38][40]
It is possible to solve multivariate algebraic equation systems by computing the Gröbner bases
of the ideal generated by the public key. This is the Gröbner bases attack, which successfully
cryptanalyzed various MPKCs including Patarin’s HFE Challenge [40]. According to the
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ideal theory, the affine transformation, which seems to effectively disguise the structure of the
central map, does not influence the complexity of computing Gröbner bases. The structure of
the STS polynomials in the central map is vulnerable to Gröbner bases algorithm and easily
computed. According to our experiments, the time complexity of computing Gröbner bases
of the STS scheme is roughly the same as MI scheme.

(ii) Vulnerability to the Rank Attack [28][16][41]
Since the central map have several polynomials with small number of variables, The linear
space spanned by the public key has a basis with low rank such as r or 2r. Although
structure of the central map is hidden by the affine transformation T , its equivalent inverse
transformation T̃−1 is found by probing for low-rank elements by generating random linear
combinations of public key elements [28][16]. Once each step is sorted out, the equivalent
copy of the central map is restored and the plain text is restored.

2.3 Complementary STS Structure

Complementary STS structure was proposed by Tsujii et al[34][35][37]. It was inteded to avoid
the Rank Attack by eliminating the gap of rank among steps. Besides, it has been confirmed by
experiment that the Complementary STS structure is secure against the Gröbner bases attack [37].
The concept of the structure is illustrated in Figure 2.
u := (u1, . . . , um) and v := (v1, . . . , vm−r) are sets of variables. The number of the steps L is

y = T p(u, v)

⇑

Central Map

Structure of
Complementary STS

S x

Figure 2: Structure of Complementary STS

equal to m/r, hence m must be divisible by r. The number of variables is n := 2m − r. Let the
polynomial vector G = (g1(u, v), . . . , gm(u, v)) be a polynomial vector described in the formula
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(2).

Step 1


g1(u1, . . . , ur, v1, . . . , vm−r)

...
gr(u1, . . . , ur, v1, . . . , vm−r)

...

Step i


g(i−1)r+1(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...
g(i−1)r+r(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...

Step L


g(L−1)r+1(u1, . . . , um)

...
g(L−1)r+r(u1, . . . , um)

(2)

Polynomials in the step 1 of G include r variables u1, . . . , ur ∈ u and all variables of v, with the
total number of variables m. The variables of u increase by r as the step proceeds, and so many
variables of v decrease, thereby keeping the total number of variables included in each polynomial
at m. Hence the polynomials in the last step L := m/r have all variables of u and no variable of v.
All polynomials of G have the rank m, but when constant value c := (c1, . . . , cm−r) are assigned
to v, the resulting polynomial vector G′ = g1(u, c), . . . , gm(u, c) has STS structure (formula (3)).

Step 1


g′1(u1, . . . , ur)

...
g′r(u1, . . . , ur)

...

Step i


g′(i−1)r+1(u1, . . . , uir)

...
g′(i−1)r+r(u1, . . . , uir)

...

Step L


g′(L−1)r+1(u1, . . . , . . . , um)

...
g′(L−1)r+r(u1, . . . , . . . , um)

(3)

The public key E is created by applying affine transformation T and S to the central map G.

E := T ◦ G ◦ S

The message m := (m1, . . . ,mm) is signed as follows:

Signing a Message

(i) Inverse affine transformation T−1 is applied to the message m.

(ii) Random numbers are assigned to all variables of v.
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(iii) Since thus computed set of polynomials p1(u1, . . . , ur), . . . , pm(u1, . . . , um) has the structure
of m-variate STS, u is computed by decrypting the STS cryptosystem.

(iv) Signature (s1, . . . , sn) is computed by inverting the affine transformation S to the vector u||v.

Verification
Signature is verified by assigning the signature value (s1, . . . , sn) to the variable and checking
whether the value is equal to m.

3 Rank Attack to the Complementary STS structure

3.1 Rank Attack of Wolf et al.

Original idea of the Rank Attack was proposed by Goubin and Courtois [28], in order to cryptan-
alyze TPM, the signature scheme based on TTM. Based on that idea, Wolf et al. [16] proposed
the Rank Attack designed for STS scheme. They successfully cryptanalyzed Kasahara’s challenge
and published the solution in the paper. They proposed two kinds of Attacks, High Rank and Low
Rank.
High Rank Attack The procedure of High Rank Attack is described here. Low Rank Attack,
which is described in the next paragraph, exploits the similar property of STS. Following vector
spaces are considered:

Jl := {b′T−1 | b′ ∈ F m
q ∧ b′lr+l = . . . = b′m = 0} for 1 ≤ l ≤ L

Obviously they form a ascending chain, i.e. J1 ⊂ J2 . . . ⊂ JL. Because the dimension of Jl is lr,
when a random element a of the space Jl+1 is picked up, a = (a1, . . . , am) is also an element of Jl+1

with the probability of q−r. If a ∈ Jl, a polynomial
∑m

i=1 aipi is transformed by S−1 to an element
of the union of the steps l + 1, . . . , L of the central equations. Since the polynomial f :=

∑m
i=1 aipi

has only n − (l − 1)r independent variables, its quadratic form has the rank n − (l − 1)r or less.
It should be the criteria to determine that the matrix included in Ji+1 is also included in Ji. The
algorithm of High Rank Attack is shown below. matrixCheck in the line 006 is a function that
returns true when the rank of

∑m
i=1 aiPi is equal to or less than lr. Wolf et al. [16] also proposed

to use more efficient function polynomialCheck which can be used instead of matrixCheck. Wolf
et al. estimated the time complexity of this algorithm as O(L × mqr × n3). mqr is the number
of random generation of the vector and n3 is the evaluation of the quadratic form. The process is
repeated L times.

HighRankAttack(P)

Input: P: system of public equations
Output: T̃ an equivalent copy of the transformation T−1

001 Qi ←computeMatrix(pi); JL ← F m
q

002 for l ← L − 1 downto 1 do
003 Jl ← {0}
004 repeat
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005 a ∈R Jl−1

006 if matrixCheck(Q1, . . . , Qm, a, l) then
007 Jl∪ ← {a}
008 until Dimension(Jl) =? lr
009 J̃ ← Jl+1 ∪ Jl

010 for i ← 1 to r do
011 RowV ector(T̂ , lr + i) ← BasisV ector(J̃ , i)
012 end for
013 end for
014 return T̃ ← T̂−1

015 endproc

It should be noted that the descending chain of vector subspaces also exists in the Complementary
STS systems. The following sequence of linear space

Il := {b′T−1 | b′ ∈ F m
q ∧ b′lr+l = . . . = b′m = 0} for 1 ≤ l ≤ L

has the ascending chain I1 ⊂ I2 . . . ⊂ IL. Therefore fundamentally Rank Attack is not impossible
against Complementary STS. However, it is not possible to identify members of two linear spaces
just by comparing the rank of the quadratic form.

H1 = {b′T−1 | b′ ∈ F m
q ∧ b′m−r+1 = . . . = b′m = 0}

H2 = {c′T−1 | c′ ∈ F m
q ∧ c′1 = . . . = c′r = 0}

Both the polynomial f =
∑m

i=1 aipi ((a1, . . . , am) ∈ H1) and g =
∑m

i=1 bipi ((b1, . . . , bm) ∈ H2) have
the rank m − r. It is possible to distinguish members of H1 and H2 by comparing the variables
of f and g. But when an element of H1 is happened to be found, it is possible to directly obtain
other m − r bases of the H1 ∩ F m

q .

3.2 Improved High Rank Attack

As described above, Wolf’s rank attack probes for (m − r) elements of J1 ∩ F m
q . The following

function EliminateHigh probes for a polynomial with the rank less than (m − r) and find other
(m − r − 1) elements with the rank (m − r), which share the kernel (of the quadratic form).

Function: EliminateHigh
Input: M : A tuple of n × n matrices {Q1, . . . , Qm}

r: Step size
Output: M ′: Set of matrices within the linear space spanned by M , with the rank within (n − r)

001 loop
002 loop
003 (a1, . . . , am) ∈R F m

q

004 R :=
∑m

i=1 aiQi

005 if Rank(R) = n − r then
006 exit the loop
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007 end of the loop
008 K := Kernel(R)
009 a ∈R K

010 C :=

 aQ1
...

aQm


011 if Rank(C) ≤ r then
012 B̃ := Matrix(Kernel(C))
013 exit the loop
014 end of the loop
015 M ′ := {

∑m
i=1 bijQi} (B̃ = (bij), 1 ≤ j ≤ m − r)

016 return M ′

017 endproc

In the above function EliminateHigh, the set of matrices M ′ also have the structure of Com-
plementary STS. Therefore it is possible to generate sets of matrices with lower rank from M ′.
The program BetterHighRankAttack calls the EliminateHigh repeatedly and generate L tuples
of square matrices H1, . . . ,HL.

Program: BetterHighRankAttack
Input: P = (p1(x), . . . , pm(x)): Public Key of Complementary STS structure

r: Size of each Step
Output: Tuple of square matrices H = H1||, . . . , ||HL

such that Kernel(H1) ⊂ Kernel(H2) . . . ⊂ Kernel(HL)，and corresponding polynomials span
the same linear space as P .

001 H i := ϕ (1 ≤ i ≤ L − 1)
002 M := (Q1, . . . , Qm) (Qi is the quadratic form of pi)
003 for i from 1 to L loop
004 M ′ := EliminateHigh(M, r)
005 W := LinearSpace(M ∩ M ′)
006 H i := Basis(W )
007 M := M ′

008 end of the for loop
009 return H1||H2|| . . . ||HL

010 endproc

Let Ii be the linear space spanned by rows of the member of the tuple of matrices H i, there is a
descending chain I1 ⊃ I2 . . . ⊃ IL−1. Therefore a tuple of polynomials correspoinding to the tuple
of matrices H are easily tranformed into STS structure.
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4 Security Improvement by Check Function

4.1 Vulnerability of Underdetermined MPKC signature scheme

Almost all MPKC signature schemes are underdetermined, in order to enable preimage of every
message to exist. As well as it increases the public key size compared with the message length
(number of equations), it might generate vulnerability for the attackers to exploit. If the signature
public key has m polynomials with n variables defined on GF (q), the equation system derived
from the public key has qn−m solutions as a rule of thumb. In the case of our Complementary
STS signature, there can be more than qm−r valid signatures. We propose here a further security
improvement by appending extra polynomials.
It should be noted that most of the MPKC signature public keys have subsets of the variable set.
Messages are signed by assigning value to the elements of one subset and solving the consequent
equation. Therefore typically the structure of the subsets constitutes an important part of the
secret key. In the case of Enhanced STS, variables are specified into subsets u and v. Most of
the attacks to MPKC signatures are done by finding the elements of the subsets, like done to the
Balanced Oil and Vinegar [42]. In case an attack should be developed to distinguish the variables
of u from the ones of v, the signature scheme is in serious jeopardy.

4.2 System of Check Equations

In case even either one of the two linear spaces spanned by the set of vectors u and the one
spanned by v should be found by any remote chance, the signatures would be forged by solving the
equation. Tsujii et al.[37] proposed the countermeasure against such cases and named the reinforced
Complementary STS public key as ”Enhanced STS.” Their idea is to limit the acceptable value
of the variables in v. Together with the public key P (x), the system of check equations W (x) is
published. It is specified as a rule that the valid signature must satisfy both the system of equation
P (x) = m and W (x) = 0, as shown in the Figure 3.

4.3 Generation of the System of Check Equation

It is possible to create a polynomial set W (x), all elements of which become 0 when v is equal to
the pre-defined vector α ∈ F m−r

q . Let f(u, v) ∈ F q[u, v]m−r be a set of random polynomials of x.
Then the polynomial set W (x) = f(u, v) − f(u, α) satisfies the condition. The system of check
equations is one-time use. The system is renewed every time a message is signed.
Then messages are signed in the following way:

Signing a Message

(i) Invert the Affine transformation T−1 to the message m

(ii) Assign the pre-defined value α, instead of random numbers, to the variables v

(iii) The consequent STS polynomials are solved. The solution is s′ ∈ F n
q

(iv) The affine transformation is inverted to the solution. s := S−1s′

Verification
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(i) It is checked whether P (s) is equal to m

(ii) It is checked whether W (s) is zero vector

This Check Equation is applicable to other public key signature, as long as the algebraic map
defined by P (u, α) is bijection. Otherwise existence of signature is not assured.

P(u, v)=m
Public Key

W(u, v)=0
Check Equation

The polynomial vector P(u, v) and W(u, v) 
are shown in parallel

Figure 3: Reinforcement of the Signature Public Key by Check Equation

4.4 Problem of Check Equation

The Check Equation contains a vulnerability that the Check Equation itself gives information on
the specification between u and v. It should be noted that the polynomial vector W has the form
of “balanced Oil and Vinegar,” with v as the vinegar variable and u the oil. Therefore it is possible
to distinguish u from v by the Kipnis-Shamir attack [43]. There is another way of creating new
public key by generating linear combination of the public key and check equation [44]. However, this
system gives some information to attckers, that all valid signatures satisfy some linear equations,
regardless of the documents.

Now we face a serious dilemma between hiding information and eliminating degree of freedom.
We tried to eliminate the degree of freedom and give constraint. But it turned out that the
constraint gives information to attackers. We found an effective way to solve the dilemma with
“Hidden Pair of Bijection.”

4.5 Hidden Pair of Bijection Signature

Now it is assumed that the variable u and v have the same length of m. Let F (u) ∈ F q[u1, . . . , um]m

be the STS central map of u. G(v) ∈ F q[v1, . . . , vm]m be another STS central map of u. Let
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H(u,v) be the random linear combination of cross-term between u and v. Hk =
∑i≤m,j≤m

i=1,j=1 hkijuivj (1 ≤
k ≤ m)

Let A1 and A2 be regular m×m matrices. Then the polynomial vector P ′(u, v) := A1F (u) +
A2G(v)+H(u, v) is a 2m-variate polynomial vector. Now this polynomial vector has an interesting
property. It becomes bijection of u when v is zero vector. On the other hand, it becomes bijection
of v when u is zero vector. In this central map P ′, the equation system F + H is acting as the
check equation of G and inversely, G + H is acting as the check equation of F .

Subsequently an affine transformation S : x → u, v are applied to create the public key P (x):

P (x) = P ′ ◦ S(x)

It should be noted that the matrices A1 and A2 are playing the role of left-hand affine trans-
formation T .

Signing the Message
There are two ways to sign:

(i) v is assumed zero vector

(ii) Inverse of the matrix A1 is multiplied to the message m:

m′ := A−1
1 m

(iii) The equation F (u) = m′ is solved. Let the root be s′ := (s′1, . . . , s
′
m)

(iv) Affine transformation S is inverted to (s′,0):

s := S−1(s′,0)

The message can be signed by setting u to zero vector alternatively.
Then the attacker has no way to know whether u or v is set to zero. Therefore attacker could not
distinguish the variable between u and v. The structure of F and G is not restricted to STS, as
long as they are bijection, such as Sequential Solution or Matsumoto-Imai.

5 Conclusion

We have discussed that it is still possible to attack the Complementary STS structure. As a
countermeasure we have proposed the Check Equation system before. This discussion posed a
dilemma that the designer of the public key has to tradeoff between hiding information and giving
restriction. We have proposed the countermeasure of making u and v symmetric. This system gives
constraint that the pre-defined value should be given to the extra variables instead of arbitrary
value. At the same time, the information on which variables are set constant is hidden.

We expect that our system becomes a new MPKC signature trapdoor.
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