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Abstract. In the current methodology of the Random Oracle Model, the random oracle is instantiated by

a “good cryptographic hash function”. However, due to the work of Canetti, Goldreich and Halevi, such

methodology has been found problematic because there exist a construction secure in the Random Oracle

Model, but any instantiation of the random oracle by any fully specified function which includes also any

“good cryptographic hash function” will result in an insecure implementation. We investigate the Canetti-

Goldreich-Halevi method, and propose a new method for the instantiation of the random oracle, in which

the random oracle is instantiated by a floating pseudorandom function. Under this new method, Canetti,

Goldreich and Halevi’s construction will have a secure implementation. Our work puts the methodology

of the Random Oracle Model on firm grounds.
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1 Introduction

A common practice in the design of cryptographic protocols is using a hash function to “randomize”

some parameters in a cryptographic scheme. For example, in the full domain hash RSA signature

scheme, a message to be signed first gets hashed into the domain of Z∗
n, then the hash value is

applied on the RSA function, obtaining a signature like

σ = h(m)d mod n.

In 1996 Bellare and Rogaway formulated this type of practice as the Random Oracle Model [4].

A random oracle, commonly referred to as an abstraction of a hash function, is a black box which

can output a random string for a query, and always produces the same result for the same query.

Under such “idealization”, a proof is carried out to demonstrate the security of a protocol. Due to

simpleness and elegance of this model in the design of secure protocols, many new schemes have

been proposed with the Random Oracle Model based security proofs (e.g. [5, 6]). However Canetti,

Goldreich and Halevi have constructed a scheme which can be proved secure in such model while

any real implementation will result in an insecure construction [7]. Their work shows the Random

Oracle Model fundamentally has some flaws.

After their work, other research results have been published for the validity of the random oracle

methodology [10, 8, 2]. Gradually, this methodology becomes less desirable as a technique in the

design of cryptographic schemes in cryptography. However, it seems the exploit on the Random

Oracle Model has not shaken the real world as one might expect. Some widely used cryptographic

schemes in our daily life are still those which can only be demonstrated secure in the Random Oracle

Model (e.g. the RSA PKCS #1 [9]).

In this work, we study the attacking technique on the random oracle methodology developed by

Canetti, Goldreich and Halevi, which will be referred as the CGH technique in the rest of the paper.

We propose a modified random oracle model and a new method for the instantiation of the random

oracle. Our solution fixes the problem exposed by CGH technique. In general, our new model puts

the random oracle methodology on firm grounds.
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2 Canetti-Goldreich-Halevi’s Attack on the Random Oracle Model

The random oracle methodology works like this way. A public random oracle is set up being ac-

cessed by all participants in a cryptographic scheme. The random oracle answers queries. When a

query comes, the random oracle first checks its internal answer list if the query has been answered

before. If there is no entry for this query, the random oracle produces a random value as the answer,

records this (query, answer) on its answer list, and returns the answer to who issues the query.

If there is an entry on the list for this query, it returns the same answer. From outside, the random

oracle is a black box. In such setting, one then can prove the security of a cryptographic scheme

with respect to its security definition. We call the setting in which the random oracle is deployed as

a ideal one.

When implementing the scheme, the random oracle is replaced, or instantiated by a well de-

fined cryptographic hash function. This methodology seems working for a lot of schemes which

are widely deployed in practice. However, there is no exact clarification or definition what a good

implementation of the random oracle would be, or what a good cryptographic hash function is in

the context of the Random Oracle Model.

If we compare the setting of a random oracle based security proof, and its counterpart in real

implementation, it is not difficult for us to notice an obvious discrepancy between these two settings.

In the proof, the random oracle is a black box which outputs random values. However, any real

implementation of the random oracle is a fully specified function so its behavior is determined,

which can be understood by all participants. The discrepancy potentially could be explored in any

random oracle based schemes.

The attacking method by Canetti, Goldreich and Halevi is exactly the exploration of such dis-

crepancy. They devised a scheme whose security will rely on black box properties of the random

oracle. More specifically, they defined an evasive relation on a pre-image and its image for the ran-

dom oracle. Such relation can not be satisfied in the ideal setting. However, it is easy to find an

instance for such relation when the Random Oracle is implemented by a function ensemble. In the

current methodology of the Random Oracle Model, a good cryptographic hash function is essen-

tially being picked up by the method of a function ensemble. In their contrived schemes, there is an

operation that when a pair of pre-image and image of the hash function satisfying the evasive rela-

tion, the schemes do an insecure operation which breaks the scheme, such as outputting the private

key of the scheme. The probability of finding an instance to satisfy the evasive relation is negligible

in the ideal setting. However, any fully specified functions will make this relation trivially being

satisfied, so the scheme is broken.

Canetti, Goldreich and Halevi’s work exposes the fundamental problem in the Random Oracle

Model. That is, any implementation of the random oracle by a fully specified function will certainly

make the scheme vulnerable. This was summarized in their paper as “having a description of a

function is much powerful than just having a black box access to that function”.

3 A New Way for Instantiation of the Random Oracle

There is a natural way to implement the random oracle without any security concerns. That is, the

random oracle can be instantiated by an online party who implements a pseudorandom function,

and keeps secret the seed of the function. This was even mentioned by Bellare and Rogaway when

they formulated the concept of the random oracle [4]. Canetti, Goldreich and Halevi further iterated



the same idea in their work for attacking the random oracle methodology. The problem for this

method is that a trusted third party needs to be online all the time, which is not a practical solution.

So heuristically a “good cryptographic hash function” is used to replace the online party and a

hash query is evaluated locally with the hope that this operation will not impair the scheme. As the

analysis in the previous section, this operation exhibits a huge gap between the ideal system and the

real one. However, we shows that there exits ways to remove the online third party while keeping

most of its security property.

3.1 Floating Pseudo-Random Function

The key for the success of the CGH technique depends on the knowledge of description of a function

ensemble. In a real system, the random oracle is implemented by a fully specified function in the

setup stage for a scheme, and fixed ever after. To prevent attacks due to the CGH technique, a natural

consideration is that if we could only partially specify a function, and the full specification is only

fixed after the query appears.

If we look at how the random oracle works in any security proofs, it should not that difficult

to realize that the random oracle in fact works in a “partially” specified manner. The answer list of

the random oracle is empty initially. When a fresh query comes, the random oracle then produces a

random answer, and adds the (query, answer) pair on the answer list. At the time when there is no

query, the behavior of the random oracle is undefined, or, “floating”. It can associate any query to

any random value on its domain.

For the instantiation of the random oracle through the online party, certainly the online party

can works in a floating manner. Instead of having a fixed secret seed, it uses a different seed for a

different query, and only produces a seed when a query appears. In the eyes of the outsider, there is

no difference since all these seeds are secret. We call the pseudo-random function working in this

manner as floating pseudo-random function, which is referred as f -PRF in the sequel.

We can think f -PRF as multiple instances of a pseudo-random function, each of which is asso-

ciated a different seed. Each instance of the pseudo-random function is independent to each other.

Internally, f -PRF mimics the random oracle much better than a pseudo-random function with a

fixed seed.

3.2 Instant Black Box

For the online party who implements f -PRF, each seed is produced randomly and never repeats

itself. Once a pair of (query, answer) is obtained, it does not matter anymore whether the seed

should continue to be kept secret or not since anyway all transactions are done. The publication of

a seed certainly will not have any effect on the security of a scheme. Based on this observation, we

let the online party publish its seed along with associated (query, answer) pair.

This observation makes us re-consider what the black box means in the view of the adversary.

Since the random oracle is a black box, any meaningful attacks on the random oracle can only

be conducted through exploration the relationship between a pre-image and its image. Therefore,

if a structure reveals its secret only after a query is fixed, it is still a black box in term of what

the adversary can do. The online party deploying this strategy is certainly still a black box for any

outsiders.

So far, our analysis still stays at the stage where the random oracle is implemented as an online

party. We push our consideration further. One important observation of publishing a seed after the



transaction is finished is that the secret can only be known after the query is fixed. Thinking about

this in another way, if we can ensure a seed for f -PRF can only be obtained after a query for f -PRF

is fixed, then it does not matter f -PRF has to be deployed at an online party or not. What we are

looking for is a mechanism in which a seed can only be produced and known by the adversary when

the query is fixed. That is, a query goes first, a seed comes next. This implies at the very moment

when the adversary comes up with a query, the seed for this query has yet to be determined, so the

behavior of f -PRF is not known by the adversary beforehand. In the views of the adversary at this

moment, f -PRF IS a back box. We call such a mechanism an instant black box.

This mechanism is achievable. In the simplest form, we could think a cryptographic hash func-

tion can achieve such goal. For conceptual purpose, we propose a prototype structure called h-Box

which is showed in Figure 1. There are two inputs for h-Box, q-input for query and r-input for a

random input. h-Box outputs a value s which is used as a seed for f -PRF. Once q, r is fixed, s is

subsequently fixed, and so the behavior of f -PRF. In h-Box, a q-input first goes through a crypto-

graphic hash function, and the result is further input into a oneway permutation function. Meantime,

a r-input goes through a oneway permutation function. Two results from the oneway permutation

functions are xor-ed to produce s. h-Box should ensure oneway permutation so it is infeasible to

compute q, r from s. We require h-Box outputs s uniformly on its domain. It should be pointed out

h-Box is a fully specified function, and not considered as the random oracle.

Fig. 1. The Implementation of h-Box

With h-box, the sequence of a query going ahead of a seed is enforced, which effectively carries

out the mechanism of an instant black box. As a result, the online party is not really necessary any

more. All participants in a scheme can evaluate f -PRF with the help of h-Box on their own. We will

discuss h-Box more in the next section.

So far, our analysis presents a gradual transition for the instantiation of the random oracle, which

is showed as in Figure 2.



Fig. 2. The Transition of The Random Oracle

3.3 Isolation of the Random Oracle

There exists a pitfall which could be easily neglected when instantiating the random oracle. So

far our discussion is in an abstract manner. That is, we discuss the random oracle without even

considering a concrete setting. However, the random oracle is not a stand alone structure, and it

resides in a specific scheme. One implication of the random oracle as a black box in the ideal

system is that the random oracle is completely separated from the rest of the protocol/scheme. This

further means there will be no exploration of relationship between the random oracle and the rest

of the scheme, since no internal structure exists in the random oracle could be utilized to attack the

scheme.

However, an instantiation of the random oracle could be correlated to the rest of the system

in complicated way, and the correlation may expose vulnerable area for the designated scheme.

The exploration of the random oracle methodology through this correlation attack is not a generic

one. Its effectiveness depends on a specific implementation in which certain structural connection

is introduced between a specific instantiation of the random oracle and the rest of the system, and

such connection is explorable by a polynomial-time attacker. On the contrary, the CGH technique

is considered as a generic attacking strategy since it only depends the description of the function

which instantiates the random oracle.

In principle it is known on how to prevent such pitfall in practice. Any instantiation of the ran-

dom oracle should be completely independent to the rest of the system. For instance, cryptographic

primitives deployed in an instantiation should not have any inherent connections to those used by

the rest of the system by using different mathematical structures, unrelated complexity assumptions,

etc. We may call this principle as the isolation principle of the random oracle.

4 A New Random Oracle Model

Based on the analysis in the previous section, we propose a new version of the Random Oracle

Model. The new model is showed as in Fig 3.

The key structure in the figure is h-Box. A scheme based on the new model should have such

structure both in the ideal system and the real system. In the new model,

– The random oracle accepts two inputs: one input is for query, another is for seed. A query is the

concatenation of q-input and r-input of h-Box.

– The seed must be produced by h-Box. In another word, no one can directly feed a seed into the

random oracle.

– The random oracle is instantiated by a f -PRF.

In the ideal system of the new model, the output of h-box, i.e., s, is used by the random oracle to

choose a random function, and an answer is further obtained when the query is applied on this func-

tion. In the real system, s binds f -PRF so a fully specified function is obtained. If the distributions



Fig. 3. The New Random Oracle Model

induced by outputs of the random oracle and h-PRF are statistically the same, we say f -PRF is a

perfect instantiation of the random oracle. In such case, h-Box works as a pseudo-random function,

and we say that it is equivalent for using s to pick up a random function in the ideal system and

using s to bind f -PRF in the real system.

There exists discrepancy between the random oracle and f -PRF in the new model. We can think

the random oracle internally has a pool of functions, which all map any query on its domain uni-

formly. No matter what an adversary can do through h-Box, the random oracle will always choose

a function from its function pool, so the output of the random oracle is always uniformly distributed

on its domain. In the real setting, s is directly bound to f -PRF. For a specific implementation, there

could exist a set of s, and the output distribution induced by such set will exhibit statistical differ-

ence, which might be detected by a polynomial-time attacker with non-negligible probability. The

r-input of h-Box controls the quality of s. If r is truly random, s is randomly distributed in the seed

range of f -PRF. So f -PRF will be a perfect instantiation of the random oracle. r-input in a specific

scheme can be controlled by the adversary, so the instantiation will not be a perfect one. In such

case, the discrepancy indeed could happen. However, such discrepancy is less serious than the one

between the black box and the fully specified function in the current random oracle model. We call

such instantiation a weak one. In the next section, we will show the full domain RSA signature is a

perfect instantiation, while the OAEP-like RSA scheme is a weak one.

To exploit weak instantiation in the new model, any attacking strategy would depend on

– whether there exists such a set of s in an implementation of f -PRF;

– or if it exists, whether it can be mapped on through h-Box by a polynomial-time attacker with

non-negligible probability.

Any implementation of h-Box and f -PRF should ensures that these two conditions are hard

to be satisfied, which are achievable based on some regular complexity assumptions. In practice,



a regular cryptographic hash function is supposed to map any pre-image uniformly on its domain

among other properties such as collision-resistance, onewayness, etc.

Let’s briefly explain the CGH techniques does not work any more in the new model. The CGH

technique would define an evasive relation between a pre-image (q||r, s) and its output with respect

to the random oracle or f -PRF. The difficulty of finding an instance to satisfy such relation is based

on the knowledge of s. In the current random oracle methodology, an instantiation of the random

oracle happens at the system setup stage where a random function is picked up from a function

ensemble, and fixed ever after. In the new model, this pickup operation dynamically happens when

a query appears. The output s of h-Box is used to choose a function in the ideal system, or bind

f -PRF in the real system. The oneway property of h-Box ensures s obtained after q, r. Both in the

ideal system and the real system, it is infeasible to find a candidate for the evasive relation. Therefore

the new model prevents the attack due to the CGH technique.

The last note for the new model is the reminder of the isolation principle of the random oracle

model. The implementation of h-box and f -PRF should be independent to each other and the rest

of the scheme.

5 The RSA Scheme in the New Random Oracle Model

In this section, we illustrate the idea of the new random oracle model through the RSA signature

and encryption schemes. Our primary goal is for demonstration how a scheme based on the new

model looks like. So we do not specify every possible details in the schemes, such as which specific

f -PRF is needed, how to implement h-Box. These two schemes can be easily proved secure based

on the RSA assumption when the pseudo-random function in the schemes is idealized as the random

oracle. The proofs are essentially the same as those in the current random oracle model.

In the following, Let n = pq, where p, q are two random large prime numbers which makes the

factorization of n infeasible. Let d is a random element in Z∗
n and relatively prime to φ(n), where

φ(n) = (p− 1)(q − 1). Let e = d−1 mod φ(n). Let h be h-box, H be a pseudo-random function.

In practice, we can consider choosing a good cryptographic hash function as a h-Box, and HMAC

algorithm as f -PRF [3, 1].

5.1 The New Full Domain RSA Signature Scheme

In the full domain RSA signature scheme, the pseudo-random function H produce a random element

in (0, n − 1). To produce a signature on m, the signer picks a random r, and computes a signature

as

σ = (H(m||r, h(m, r)))d mod n.

The signature is (σ, r). A verify can do the verification as

s = σe mod n, s ? = H(m||r, h(m, r)).

Here we give a proof in the random oracle model. The interesting part for this proof is that the

reduction is tight from attacking the RSA problem to forging a signature. In comparison, the proof

based the current random oracle model is not a tight one.

Theorem 1. The new full domain RSA signature scheme is a perfect instantiation of the random

oracle based RSA signature scheme, which is secure under the adaptive chosen message attack

based on the RSA assumption.



Proof. In the ideal setting of the RSA signature scheme based on the new random oracle model, the

random oracle is set up to answer queries. A signing simulator is input a random u in Z∗
n, asked for

a v such that ve ≡ u mod n.

The simulator plays the adaptive chosen message attack with an adversary, who is assumed

able to forge a valid signature after the game is finished. This attacking game is played polynomial

times with respect to a security parameter of the scheme. The game is conducted as follows. The

adversary can pick any m, r, compute s = h(m, r), and send (m||r, s) to the random oracle asking

for the answer. The random oracle internally picks a large random prime integer k, compute w =
uk mod n, and gives w to the adversary.

The adversary asks the signing simulator for the signature on m. The signing simulator picks

a random r, obtains s = h(m, r), asking the random oracle to produce an answer. The random

oracle picks a random σ, compute w = σe mod n, and let w = O(m||r, s). Therefore the signing

simulator is able to produce a valid signature as (σ, r) since

σe mod n = w = O(m||r, h(m, r)).

Notice the random oracle internally uses different way to calculate w when the query issuer is differ-

ent. Since the random oracle is a black box, the adversary will not be able to notice such difference.

When the adversary receives (σ, r) from the signature simulator, it asks the random oracle to pro-

duce the answer for (m, r). The random oracle already produces the answer for this query, so it

returns the same answer on its answer list. Notice r from the signing simulator is independent to

ones from the adversary.

If eventually, the adversary is able to forge a signature on a message m such that

σe ≡ O(m||r, h(m, r)) mod n.

Since O(m||r, h(m, r)) ≡ uk mod n, and k is a prime integer, we have

σe ≡ uk mod n.

By Shamir’s trick [11], when e is relatively prime to k, this equation can be solved and we are able

to have a result like

ve ≡ u mod n,

which is a solution to the RSA problem. However, this is assumed impossible under the RSA as-

sumption. Therefore the RSA signature scheme in the ideal setting is secure under the adaptive

chosen message attack. Also, the reduction is tight since the probability of forging a signature is

equal to that of solving the RSA problem.

We notice in the proof that r-input of h-Box for signature generation is controlled by the signing

simulator, which is beyond the control of any adversary. This means in the real instantiation, h-Box

is controlled by the real signer, who should obviously picks r-input truly random. Therefore, the

real system is a perfect instantiation. ⊓⊔

5.2 The New RSA Encryption Scheme

In the RSA encryption scheme, we need pre-process a message before applying it on the RSA

function. Let lm be the bit length of a message, lr be the bit length of random r and lH be the bit



length of output of f -PRF. ln = lm + lr + lH. A cryptographic hash function h2 produces a hash

value in the range of (0, 2lm+lr).
A message m in the valid range is pre-processed as follows. Let rH = H(m||r, h(m, r)). Com-

pute r2 = h2(rH), and obtain σ = ((m||r) ⊕ r2)||rH. To check whether σ is produced properly

following the above steps, one can reverse these steps. Let σ = r2||rH. Compute r′2 = h2(rH). Let

m||r = r′2 ⊕ r2, and check rH ? = H(m||r, h(m, r)).
To encrypt a message m in the required range, one prepares a random r, and calculate σ as

above. Then a cipher text is obtained as

c = σe mod n.

To decrypt a cipher text c, one computes

σ′ = cd mod n,

and check if σ′ is formed properly. If so, m is extracted. Otherwise, the cipher text is rejected.

The proof for the RSA encryption scheme in the new model is similar to the one in [5], and we do

not elaborate it here. One thing we need to point out, in the attacking game specified by IND-CCA2

(Indistinguishability under chosen adaptive chosen cipher text attack), h-Box is controlled by the

adversary, certainly the adversary would not pick up r-input randomly. Therefore, the instantiation

of the RSA encryption scheme in the new model by the adversary is a weak one. The security

of the scheme then needs to assume that h-box produces s “uniformly”, which is a quite regular

assumption. For any participants in the RSA encryption scheme, an honest party surely would pick

up r-input truly random to encrypt its message, in such case its instantiation is a perfect one.

6 Conclusion

In this paper we propose a new Random Oracle Model, which overcomes the fundamental gap

exposed by the CGH technique. That is, a black box random oracle model can never be imple-

mented by a fully specified function. In our new model, a floating pseudo-random function, f -PRF,

is idealized as the random oracle, and an h-Box is deployed to produce seeds for f -PRF. The new

model successfully fills the gap in the current Random Oracle model, putting the methodology of

the Random Oracle Model on firm grounds.

There are two instantiation mode in the new model. In the case of perfect instantiation, a scheme

keeps all security property guaranteed by the ideal system, while in the case of weak instantiation,

we need the assumption that h-Box should satisfy the conditions enumerated in this paper. In any

case, we have a clear structural level understanding of the new model, which implies that any po-

tential problems in instantiation is fully aware. On the contrary, in the current random oracle model,

instantiation is heuristic. This is biggest improvement on the current random oracle methodology.

As we have mentioned, some widely deployed schemes can only be demonstrated secure in the

current random oracle methodology. With the introduction of the new model, how do we evalu-

ate them in the frame work of the new model? Is their security really ensured as in their current

implementation? We will discuss these topics in the future.
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