
Automata Evaluation and Text Search Protocols

with Simulation Based Security

Rosario Gennaro∗ Carmit Hazay† Jeffrey S. Sorensen‡

June 3, 2010

Abstract

This paper presents an efficient protocol for securely computing the fundamental problem
of pattern matching. This problem is defined in the two-party setting, where party P1 holds a
pattern and party P2 holds a text. The goal of P1 is to learn where the pattern appears in the
text, without revealing it to P2 or learning anything else about P2’s text.

Our protocol is the first to address this problem with full security in the face of malicious
adversaries. The construction is based on a novel protocol for secure oblivious automata evalu-
ation which is of independent interest. In this problem, party P1 holds an automaton and party
P2 holds an input string, and they need to decide if the automaton accepts the input, without
learning anything else.

1 Introduction

Secure two-party computation is defined as joint computation of some function over private inputs.
This joint computation must satisfy at least privacy (no other information is revealed beyond the
output of the function) and correctness (the correct output is computed). In order to achieve
this, the parties engage in a communication protocol. Today’s standard definition (cf. [1] following
[2, 3, 4]) formalizes security by comparing the execution of such protocol to an “ideal execution”
where a trusted third party helps the parties compute the function. Specifically, in the ideal world
the parties just send their inputs over perfectly secure communication lines to a trusted party, who
then computes the function honestly and sends the output to the designated party. Informally, the
real protocol is defined to be secure if all adversarial attacks on a real protocol can also be carried
out in the ideal world; of course, in the ideal world the adversary can do almost nothing and this
guarantees that the same is also true in the real world. This definition of security is often called
simulation-based because security is demonstrated by showing that a real protocol execution can
be “simulated” in the ideal world.

Secure two-party computation has been extensively studied, and it is known that any efficient
two-party functionality can be securely computed [5, 6, 7]. However these are just feasibility results
that demonstrate secure computation is possible, in principle, though not necessarily in practice.
One reason is that the results mentioned above are generic, i.e. they do not exploit any structural
properties of the specific function being computed. A long series of research efforts has been focused

∗IBM T.J. Watson Research Center, Yorktown Heights, NY Email:rosario@us.ibm.com.
†Dept. of Computer Science and Applied Mathematics, Weizmann Institute and IDC, Israel. Email:

carmit.hazay@weizmann.ac.il.
‡Google, New York, NY Email: sorenj@google.com.

1

on finding efficient protocols for specific functions; constructing such protocols is crucial if secure
computation is ever to be used in practice.

Our Contribution. In this paper we focus on the following problems:

• Secure Pattern Matching. We look at the basic problem of pattern matching. In this problem,
one party holds a text T and the other a pattern p, where the size of T and p are mutually
known. The aim is for the party holding the pattern to learn all the locations of the pattern
in the text (and there may be many) while the other party learns nothing about the pattern.

• Oblivious Automata Evaluation. To solve the above problem we consider the approach of [8]
which reduces the pattern matching problem to the composition of a pattern-specific automa-
ton with the text T . We develop a protocol for two parties (one holding an automaton Γ
and another holding an input text T) to securely compute the evaluation of Γ on T . This
protocol can be of independent interest beyond the pattern matching application and can be
considered an extension of the work by Ishai and Paskin [9]. In their work, Ishai and Paskin
considered the model of obliviously evaluating branching programs (a deterministic automa-
ton is a special case of a branching program). In this model, the communication is limited to
an amount that is proportional to the input for the branching program and independent of
the description of the program. Still, only privacy is guaranteed. Our protocol achieves full
security, but the amount of work is proportional to the size of the automaton (program).

Pattern matching has been widely studied for decades due to its broad applicability. Yet,
most of the suggested constructions do not achieve any level of security, even for the most limited
settings. Therefore, we starting with an extremely efficient protocol that computes this function
in the “honest-but-curious” setting.1 This solution can be extended to be secure in the case of
one-sided simulation, where full simulation is provided for one of the corruption cases, while only
privacy (via computational indistinguishability) is guaranteed for the other corruption case. This
protocol is comparable to the one-sided simulatable protocol of [10].

Moving to the malicious setting introduces quite a few subtleties and requires the use of a
different technique. To achieve full simulatability, we introduce a second independent protocol,
which employs several other novel sub-protocols, including, a protocol to prove that a correct
pattern-specific automaton was constructed. We note that our protocols are the first efficient ones
in the literature to achieve full simulatability for these problems with malicious adversaries.

Our algorithm’s security is based on the El Gamal encryption scheme [11, 12] and thus requires
a relatively small security parameter (although any additively homomorphic threshold encryption
scheme with secure two-party distributed protocols to generate shared keys and perform decryptions
would work).

Motivation. Secure pattern matching has many potential applications. Consider, for example,
the hypothetical case of a hospital holding a DNA database of all the participants in a research study,
and a researcher wanting to determine the frequency of the occurrence of a specific gene. This is
a classical pattern matching application, which is however complicated by privacy considerations.
The hospital may be forbidden from releasing the DNA records to a third party. Likewise, the
researcher may not want to reveal what specific gene she is working on, nor trust the hospital to
perform the search correctly.

1In this setting, an adversary follows the protocol specification but may try to examine the messages it receives
to learn more than it should.

2

It would seem that existing honest-but-curious solutions would work here. However, the parties
may be motivated to produce invalid results, so a proof of accurate output might be as important as
the output itself. Moreover, there is also a need to make sure that the data on which the protocol is
run is valid. For example, a rogue hospital could sell “fake” DNA databases for research purposes.
Perhaps some trusted certification authorities might one day pre-certify a database as being valid
for certain applications. Then, the security properties of our protocol could guarantee that only
valid data is used in the pattern matching protocol. (The first step of our protocol is for the hospital
to publish an encryption of the data, this could be replaced by publication of encrypted data that
was certified as correct.)

Related work. The problem of secure pattern matching was studied by Hazay and Lindell in [10]
who used oblivious pseudorandom function (PRF) evaluation to evaluate every block of size m bits.
However, their protocol achieves only a weaker notion of security called one-sided simulatability
which guarantees privacy in all cases, but requires that one of the two parties is never corrupted
to guarantee correctness. It is tempting to think that a protocol for computing oblivious PRF
evaluation with a committed key (where it is guaranteed that the same key is used for all PRF
evaluations) for malicious adversaries [13] suffices for malicious security. Unfortunately, this is not
the case, since the inputs for the PRF must be consistent, and it is not clear how to enforce this.
Namely, for every i, the last m− 1 bits of the ith block are supposed to be the first m− 1 bits of
the following block.

The idea to use oblivious automata evaluation to achieve secure pattern matching originates
in [14]. Their protocols, however, are only secure in the honest-but-curious setting. We extend
these results to tolerate a malicious adversary.

The efficiency of our protocol. When presenting a two-party protocol for the secure com-
putation of a specific function, one has to make sure that the resulting protocol is indeed more
efficient than the “generic” solutions for secure two-party computation of any function already
present in the literature. We are going to compare our protocols to the two most efficient generic
two-party protocols against malicious adversaries, both based on the garbling-technique by Yao [5].
Recall that Yao’s protocol (which is secure against semi-honest players) uses a Boolean circuit that
computes the function, and its computational complexity is linear in the size of the circuit.

• Lindell and Pinkas [15]: in order to make Yao resistant to malicious adversaries, their scheme
uses binary cut-and-choose strategy, so it requires running s copies in parallel of Yao’s pro-

tocol, where s is a statistical security parameter that must be large enough so that 2 ∗ 2
−s
17

is sufficiently small. The main drawback of [15] the communications costs associated with
O(s|C| + s2n) symmetric-key encryptions. A recent paper by Pinkas et al. [16] showed that
communication is the major bottleneck when implementing the malicious protocol of [15].

• Jarecki and Shmatikov [17] uses a special form of encryption for the garbling, and performs
efficient zero-knowledge (ZK) proofs over that encryption scheme. The protocol however
requires a common reference string (CRS) which consists of a strong RSA modulus. To the
best of our knowledge, there are currently no efficient techniques for generating a shared strong
RSA modulus without external help. Furthermore, their protocol requires approximately 720
RSA exponentiations per gate, where these operations are computed modulo 2048 due to the
Paillier’s encryption scheme. This means that the bandwidth of [17] is relatively high as well.

Our protocols for oblivious automata evaluation and pattern matching operate in the standard
model and require no CRS, nor do they apply a cut-and-choose strategy. Having P1, P2 hold strings

3

of lengths `,m for the text and the pattern respectively, both protocols incur communication and
computation costs of O(` · m) which is even asymptotically better then the general construction
for the oblivious automata evaluation that requires a circuit with O(` ·m logm) gates. Finally, we
note that our protocols apply the El Gamal encryption scheme [12] that can be implemented over
an elliptic curve group. This, in turn, reduces the modulus value dramatically, typically only 160
bits for keys. We present detailed comparisons with these constructions in Section 3.2.1.

Round Communication Asymmetric Symmetric
Complexity Complexity Computations Computations

Lindell- constant O(s|C|+ s2n) times max(4n, 8s) O(s|C|+ s2 · n)
Pinkas 128/256 bits OT’s

Jarecki- constant O(` ·m) times 720 exp. None
Shmatikov 2048 bits per gate

Our O(m) O(` ·m) times O(` ·m) None
Protocol 160 bits

Figure 1: Comparison of Pattern Matching Protocols

2 Tools and Definitions

Throughout the paper, we denote the security parameter by n. Although not explicitly specified,
input lengths are always assumed to be bounded by some polynomial in n. A probabilistic machine
is said to run in polynomial-time (ppt) if it runs in time that is polynomial in the security parameter
n alone.

A function µ(·) is negligible in n (or simply negligible) if for every polynomial p(·) there exists
a value N such that µ(n) < 1

p(n) for all n > N ; i.e., µ(n) = n−ω(1). Let X = {X(n)}n∈N,a∈{0,1}∗
and Y = {Y (n)}n∈N,a∈{0,1}∗ be distribution ensembles. We say that X and Y are computationally

indistinguishable, denoted X
c≡ Y , if for every polynomial non-uniform distinguisher D there exists

a negligible µ(·) such that∣∣∣Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]
∣∣∣ < µ(n)

for every n ∈ N and a ∈ {0, 1}∗.

2.1 Definition of Secure Two-Party Computation for malicious Adversaries

In this section we briefly present the standard definition for secure multiparty computation and
refer to [7, Chapter 7] for more details and a motivating discussion.2

Two-party computation. A two-party protocol can be systematically analyzed by characteriz-
ing the protocol as a random process that maps pairs of inputs to pairs of outputs (one for each
party). We refer to such a process as a functionality and denote it as f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y), the output is a random
variable (f1(x, y), f2(x, y)) ranging over pairs of strings where P1 receives f1(x, y) and P2 receives

2This section is adapted, with permission, from [10].

4

f2(x, y). We sometimes denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)). Thus, for ex-
ample, the oblivious transfer functionality is denoted by ((x0, x1), σ) 7→ (λ, xσ), where (x0, x1) is
the first party’s input, σ is the second party’s input, and λ denotes the empty string (meaning that
the first party receives no output).

Adversarial behavior. The aim of a secure multiparty protocol is to protect honest parties
against dishonest behavior by other parties. However, in full-simulation based security we are also
concerned with malicious adversaries who control some subset of the parties and may instruct them
to arbitrarily deviate from the specified protocol. We also consider static corruptions, meaning that
the set of corrupted parties is fixed at the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. A protocol is secure if any adversary
interacting in the real protocol (where no trusted third party exists) can do no more harm than
if it was involved in the above-described ideal computation. One technical detail that arises in
the setting of no honest majority is that it is impossible to achieve fairness or guaranteed output
delivery [18]. That is, it is possible for the adversary to prevent the honest party from receiving
outputs. Furthermore, it may even be possible for the adversary to receive output while the honest
party does not.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the
trusted party who computes the output. An honest party just sends the input that it received
whereas a corrupted party can replace its input with any other value of the same length. Since
we do not consider fairness, the trusted party first sends the output of the corrupted parties to
the adversary, and the adversary then decides whether the honest parties receive their (correct)
outputs or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be a
non-uniform probabilistic polynomial-time machine, and let I ⊆ [2] be the set of corrupted parties
(either P1 is corrupted, or P2 is corrupted, or neither). Then, the ideal execution of f on inputs
(x, y), auxiliary input z to A and security parameter n, denoted IDEALf,A(z),I(x, y, n), is defined as
the output pair of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties
interact directly. The adversary A sends all messages in place of the the corrupted party, and may
follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions
of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then,
the real execution of π on inputs (x, y), auxiliary input z to A and security parameter n, denoted
REALπ,A(z),I(x, y, n), is defined as the output vector of the honest parties and the adversary A from
the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define the security of protocols. Loosely speaking, the definition asserts

5

that a secure multi-party protocol (in the real model) emulates the ideal model (in which a trusted
party exists). This is formulated by saying that adversaries in the ideal model are able to simulate
executions of the real-model protocol.

Definition 1 Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model, such that for every I ⊆ [2],{

IDEALf,S(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈IN

c≡
{
REALπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈IN

where |x| = |y|.

2.2 Sequential Composition

Sequential composition theorems are important security goals in and of themselves. Sequential
composition theorems are useful tools that help in writing proofs of security. The basic idea behind
these composition theorems is that it is possible to design a protocol that uses an ideal functionality
as a subroutine, and then analyze the security of the protocol when a trusted party computes this
functionality. For example, assume that a protocol is constructed that uses the secure computation
of some functionality as a subroutine. Then, first we construct a protocol for the functionality in
question and then prove its security. Next, we prove the security of the larger protocol that uses the
functionality as a subroutine in a model where the parties have access to a trusted party computing
the functionality. The composition theorem then states that when the “ideal calls” to the trusted
party for the functionality are replaced by real executions of a secure protocol computing this
functionality, the protocol remains secure.

The hybrid model. The aforementioned composition theorems are formalized by considering a
hybrid model where parties both interact with each other (as in the real model) and use trusted
help (as in the ideal model). Specifically, the parties run a protocol π that contains “ideal calls” to
a trusted party computing some functionalities f1, . . . , fm. These ideal calls are just instructions
to send an input to the trusted party. Upon receiving the output back from the trusted party,
the protocol π continues. We stress that honest parties do not send messages in π between the
time that they send input to the trusted party and the time that they receive back output (this
is because we consider sequential composition here). Of course, the trusted party may be used a
number of times throughout the π-execution. However, each time is independent (i.e., the trusted
party does not maintain any state between these calls). We call the regular messages of π that are
sent amongst the parties standard messages and the messages that are sent between parties and the
trusted party ideal messages.

Let f1, . . . , fm be probabilistic polynomial-time functionalities and let π be a two-party proto-
col that uses ideal calls to a trusted party computing f1, . . . , fm. Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then,
the f1, . . . , fm-hybrid execution of π on inputs (x, y), auxiliary input z to A and security parameter

n, denoted HYBRID
f1,...,fm
π,A(z),I(x, y, n), is defined as the output vector of the honest parties and the

adversary A from the hybrid execution of π with a trusted party computing f1, . . . , fm.

6

Sequential modular composition. Let f1, . . . , fm and π be as above, and let ρ1, . . . , ρm be
protocols. Consider the real protocol πρ1,...,ρm that is defined as follows: All standard messages
of π are unchanged. When a party Pi is instructed to send an ideal message αi to the trusted
party to compute functionality fj , it begins a real execution of ρj with input αi instead. When
this execution of ρj concludes with output βi, party Pi continues with π as if βi was the output
received by the trusted party (i.e. as if it were running in the f1, . . . , fm-hybrid model). Then, the
composition theorem of [1] states that if ρj securely computes fj for every j ∈ {1, . . . ,m}, then
the output distribution of a protocol π in a hybrid execution with f1, . . . , fm is computationally
indistinguishable from the output distribution of the real protocol πρ1,...,ρm . This holds for security
in the presence of malicious adversaries [1] and one-sided simulation when considering the corruption
case that has a simulator (an easy corollary from [1]).

2.3 One-Sided Simulation for Two-Party Protocols

Two of our protocols achieve a level of security that we call one-sided simulation. In these protocols,
P2 receives output while P1 should learn nothing. In one-sided simulation, full simulation is possible
when P2 is corrupted. However, when P1 is corrupted we only guarantee privacy, meaning that
P1 learns nothing whatsoever about P2’s input (this is straightforward to formalize because P1

receives no output). This is a relaxed level of security and does not achieve everything we want; for
example, independence of inputs and correctness are not guaranteed. Nevertheless, for this level
of security we are able to construct highly efficient protocols that are secure in the presence of
malicious adversaries.

Formally, let REALπ,A(z),i(x, y, n) denote the output of the honest party and the adversary A
(controlling party Pi) after a real execution of protocol π, where P1 has input x, P2 has input y, A
has auxiliary input z, and the security parameter is n. Let IDEALf,S(z),i(x, y, n) be the analogous
distribution in an ideal execution with a trusted party who computes f for the parties. Finally, let
VIEWAπ,A(z),i(x, y, n) denote the view of the adversary after a real execution of π as above. Then,
we have the following definition:

Definition 2 Let f be a functionality where only P2 receives output. We say that a protocol π
securely computes f with one-sided simulation if the following holds:

1. For every non-uniform ppt adversary A controlling P2 in the real model, there exists a non-
uniform ppt adversary S for the ideal model, such that{

REALπ,A(z),2(x, y, n)
}
x,y,z∈{0,1}∗,n∈N

c≡
{
IDEALf,S(z),2(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

where |x| = |y|.

2. For every non-uniform ppt adversary A controlling P1, and every polynomial p(·){
VIEW

A
π,A(z),1(x, y, n)

}
x,y,y′,z∈{0,1}∗,n∈N

c≡
{
VIEW

A
π,A(z),1(x, y

′, n)
}
x,y,y′,z∈{0,1}∗,n∈N

(1)

where |x| = |y| = |y′|.

Note that the ensembles in Eq. (1) are indexed by two different inputs y and y′ for P2. The
requirement is that A cannot distinguish between the case that P2 used the first input y or the
second input y′.

7

2.4 Finite Automata

A deterministic finite automaton is described by a tuple Γ = (Q,Σ,∆, q0, F), where Q is the set
of states, Σ is an alphabet of inputs, ∆ : Q × Σ → Q denotes a state-transition table, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final (or accepting) states. Without loss of generality,
we consider only automata with complete transition tables, where there exists a transition at each
state for every input σ ∈ Σ. We also consider the notation of ∆(q0, (σ1, . . . , σ`)) to denote the
result of the automaton evaluation on σ1, . . . , σ`. Every automaton specifies a language, which is
the (potentially infinite) set of strings accepted by the automaton.

2.5 The El Gamal Encryption Scheme

We consider the following modification of the El Gamal encryption scheme [12]. The public-key is
the tuple pk = 〈G, q, g, h〉 and the corresponding private key is sk = 〈G, q, g, x〉, where G is a cyclic
group of prime order q with a generator g (we assume multiplication and group membership can
be performed efficiently in G). In addition, it holds that h = gx.

Encryption of a message m ∈ [1, . . . , q′] (with q′ << q) is performed by choosing r ←R Zq
and computing Epk(m; r) = 〈gr, hr · gm〉. Decryption of a ciphertext c = 〈a, b〉 is performed by
computing gm = b · a−x, and then finding m by exhaustive search, or some more efficient (but still
super-polynomial) method such as the baby-step giant-step algorithm. So this scheme works only
for small integer domains (i.e. q′ must be small) which is the case for our protocol. Note that a
zero encryption corresponds to Epk(0; r) = 〈gr, hr · g0〉 = 〈gr, hr〉

The security of this scheme relies on the hardness of solving the DDH problem. The reason we
modify El Gamal in this way (by encrypting gm rather than m) is to make it additively homomor-
phic.

Homomorphic encryption. We abuse notation and use Epk(m) to denote the distribution
Epk(m; r) where r is chosen uniformly at random.

Definition 3 A public-key encryption scheme (G,E,D) is homomorphic if, for all n and all (pk, sk)
output by G(1n), it is possible to define groups M,C such that:

• The plaintext space is M, and all ciphertexts output by Epk are elements of C.

• For any m1,m2 ∈M and c1, c2 ∈ C with m1 = Dsk(c1) and m2 = Dsk(c2), it holds that

{pk, c1, c1 · c2} ≡ {pk,Epk(m1), Epk(m1 +m2)}

where the group operations are carried out in C and M, respectively.

Our modification of El Gamal is homomorphic with respect to component-wise multiplication of
ciphertexts. We denote by c1 ·G c2 the respective multiplications of c11 · c12 and c21 · c22 where ci =
〈c1i , c2i 〉 = Epk(mi), such that the multiplication result yields the encryption of m1 +m2.

Threshold encryption. We denote the key generation functionality by FKEY and the corre-
sponding protocol by πKEY. the key generation functionality FKEY is informally defined as follows:

(1n, 1n) 7→
(

(pk, sk1), (pk, sk2)
)
, (2)

8

where (pk, sk)←R G(1n), and sk1 and sk2 are random shares of sk. The decryption functionality
is defined by

(c, pk) 7→
(

(m : c = Epk(m)), λ
)
, (3)

An efficient threshold El Gamal scheme can be constructed based on the protocol of Diffie and
Hellman [11]; see details below.

2.6 Zero-Knowledge Proofs

Our protocols use the following standard zero-knowledge proofs:

Protocol Relation/Language Reference

πDL RDL = {((G, g, h), x) | h = gx} [19]

πDDH RDDH = {((G, g, g1, g2, g3), x) | g1 = gx ∧ g3 = gx2}} [20]

πNZ LNZ = {(G, g, h, 〈α, β〉) | ∃ (m 6= 0, r) s.t. α = gr, β = hrgm} [21]

It further employs the following zero-knowledge proofs for which we provide detailed construc-
tions

1. A zero-knowledge proof of knowledge πENC for the following relation: Let Ci = [ci,1, ..., ci,m]
for i ∈ {0, 1} and C ′ = [c′1, ..., c

′
m] be three vectors of m ciphertexts each. We want to prove

that C ′ is the “re-encryption” of the same messages encrypted in either C0 or C1, or, in other
words, there exists an index i ∈ {0, 1} such that for all j, c′j was obtained by multiplying ci,j
by a random encryption of 0. More formally,

RENC ={
(G, g,m,C0, C1, C

′), (i, {rj}j)| s.t. for all j : c′j = ci,j ·G Epk(0; rj)
}
.

In the proof the joint statement is a collection of three vectors, and the prover produces
proofs that the third vector is a randomized version of either the first or the second vector.
We continue with our protocol,

Protocol 1 (zero-knowledge proof of knowledge for RENC):

• Joint statement: The set (G, g,Q,C0, C1, C
′).

• Auxiliary input for the prover: An index i and a set {rj}j as in RENC.

• Auxiliary inputs for both: A prime p such that p− 1 = 2q for a prime q, the description of
a group G of order q for which the DDH assumption holds, and a generator g of G.

• The protocol:

(a) Let Ci = [ci,1, ..., ci,Q] for i ∈ {0, 1} and C ′ = [c′1, ..., c
′
Q]. Then the parties compute the sets

c0 =
{∏

(c0,j ·G (1/c′j))
r0,j
}Q
j=1

and c1 =
{∏

(c1,j ·G (1/c′j))
r1,j
}Q
j=1

, where the sets {r0,j}j
and {r1,j}j are public randomness.

(b) The prover then proves that either 〈pk, c0〉 or 〈pk, c1〉 is a Diffie-Hellman tuple.

Proposition 2.1 Assume that the DDH assumption holds relative to G. Then Protocol 1 is a
statistical zero-knowledge proof of knowledge for RENC with perfect completeness and negligible
soundness.

9

It is easy to verify that the verifier is always convinced by an honest prover. The arguments
for zero-knowledge and knowledge extraction can be derived from [22].

2. Let C = {ci,j}j,i and C ′ = {c′i,j}j,i be two sets of encryptions, where j ∈ {1, . . . , |Q|} and
i ∈ {0, 1}. Then we consider a zero-knowledge proof of knowledge πPERM for proving that C
and C ′ correspond to the same decryption vector up to some random permutation. Meaning
that,

RPERM =
{(
pk, C,C ′

)
,
(
π, {rj,i}j,i

)
|∀ i, {cj,i = c′π(j),i · Epk(0; rj,i)}j

}
where π is a random one-to-one mapping over the elements {1, . . . , |Q|}. Basically we prove
that C ′ is obtained from C by randomizing all the ciphertexts and permuting the indices
(i.e., the columns). We require that the same permutation is applied for both vectors. The
problem in which a single a vector of ciphertexts is randomized and permuted is defined by

R1
PERM =

{(
(c1, . . . , cQ), (c̃1, . . . , c̃Q), pk

)
,(

π, (r1, . . . , rQ)
)
|∀ i, c̃j = cπ(j) · Epk(0; rj)

}
.

and has been widely studied in the literature. The state-of-the-art protocol is in [23] (we refer
the reader to [23] also for a complete list of relevant work in the area). We are going to use a
simpler, slightly less efficient (but still good for our purposes) protocol by Groth and Lu [24].
They presented an efficient zero-knowledge proof π1PERM for R1

PERM with linear computation
and communication complexity and constant number of rounds. The reason we use a slightly
less efficient protocol is due to the fact that it is easy to show that this proof is applicable to
the case where the same permutation is applied to more than one vector of ciphertexts (as
we require), and because it can be applied to the El Gamal encryption scheme.

3 Secure Text Search Protocols

Text search algorithms can be broadly broken down into algorithms that are sequential where
the text is searched by scanning for all occurrences of a particular pattern. Efficient variants of
this approach analyze the pattern string to enable O(`) scanning that skips over regions of text
whenever possible matches are provably not possible. This includes the widely studied Knuth-
Morris-Pratt [8], Boyer-Moore [25], and most recently, Factor Oracle [26] based algorithms.

Alternatively, algorithms based upon analysis of the text to be searched are categorized as index
based search. In this category are suffix tree based algorithms which build a data structure in O(`)
time and storage. In practice, the storage requirements for suffix trees can be quite a large multiple
of the text length `, but indexes that are sub-linear, but bounded by the entropy of the text, is
surveyed in [27].

Finally, for completeness, there also exists algorithms, for searching that build partial or “fuzzy”
indexes based upon n-grams or Bloom filters [28]. This includes inverted index based approaches.
These probabilistic algorithms can not easily be bounded in security properties nor in running time
for general texts. For some applications areas, such as natural language search, these approaches
may yield more practical solutions, and this type of indexing was suggested in [29] in a similar
security context. This paper is, however, concerned with general texts.

The pattern matching problem is defined as follows: given a binary text T of length ` and a
binary pattern p of length m, find all the locations in the text where pattern p appears in the text.
Stated differently, for every i = 1, . . . , `−m+ 1, let Ti be the substring of length m that begins at

10

the ith position in T . Then, the basic problem of pattern matching is to return the set {i | Ti = p}.
Formally, we consider the functionality FPM defined by

(p, (T,m)) 7→
{

({i | Ti = p}, λ) if |p| = m
(λ, λ) otherwise

where λ is an empty string, Ti is defined as above.
Note that P2, who holds the text, learns nothing about the pattern held by P1, and the only

thing that P1 learns about the text held by P2 is the locations where its pattern appears. As
discussed above, this problem has been intensively studied and can be solved optimally in time
that is linear in size of the text and the number of occurrences, independent of the pattern size.

3.1 Honest-But-Curious Secure Text Search

The protocol employs the properties of homomorphic encryption to compute the sum of the differ-
ences between the pattern and the text. Informally, party P1 computes a matrix Φ of size 2 ×m
that includes an encryption of zero in position (i, j) if pj = i and an encryption of one otherwise.
Given Φ, party P2 creates a new encryption ek for every text location k that corresponds to the
product of the encryptions at locations (tk+j−1, j) for all j ∈ {1, . . . ,m}. Now, since ek is equal
to the Hamming distance between p and Tk, this guarantees that if p matches Tk, ek is indeed a
random zero encryption. Figure 2 illustrates the approach schematically.

P1(p) P2(T)

For all i ∈ {0, 1},
j ∈ {1, . . . ,m} :
Φ(i, j) = Epk(0) for i = pj
Φ(1− i, j) = Epk(1)

Φ -
For all k ∈ {1, . . . , `} :

e′k =
∏m−1
j=0 [Φ (tk+j , j)]

r

�
e′k

output {k | Dsk(e′k) = 0}

Figure 2: Text search in the honest-but-curious setting
Formally, Protocol πSIMPLE

• Inputs: The input of P1 is a binary search string p = p1, . . . , pm and P2 a binary text string T =
t1, . . . , t`

• Conventions: The parties jointly agree on a group G of prime order q and a generator g for the
El Gamal encryption. Party P1 generates a key pair (pk, sk) ← G and publishes pk. Finally, unless
written differently, j ∈ {1, . . . ,m} and i ∈ {0, 1}.

• The protocol:

1. Encryption of pattern. Party P1 builds a 2×m matrix of ciphertexts Φ defined by,

Φ(i, j) =

{
Epk(0; r) pj = i
Epk(1; r) otherwise

where each r is a uniformly chosen random of appropriate length. The matrix Φ is sent to party
P2.

11

2. Scanning of text. For each offset k ∈ {1, . . . , `−m+ 1}, P2 computes

ek =

m∏
j=1

Φ (tk+j−1, j)

Then for each offset k, it holds that Tk matches pattern p if and only if ek = Epk(0).

3. Masking of terms. Due to the fact that the decryption of ek reveals the number of matched
elements at text location k, party P2 masks this result through scalar multiplication. In partic-
ular, P2 sends the set {e′k = (ek)rk}k where rk is a random string chosen independently for each
k.

4. Obtaining result. P1 uses sk to decrypt the values of e′k and obtains

{k | Dsk(e′k) = 0}

Clearly, if both parties are honest then P1 outputs a correct set of indexes with overwhelming
probability (an error may occur with negligible probability if (ek)

r is an encryption of zero even
though ek is not). Then we state the following,

Theorem 4 Assume that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
Protocol πSIMPLE securely computes FPM in the presence of honest-but-curious adversaries.

The proof is straightforward via a reduction to the security of (G,E,D) and is therefore omitted.
Furthermore, if party P1 proves that it computed matrix Φ correctly, we can also guarantee full

simulation with respect to a corrupted P1. This can be achieved by having P1 prove, for every j,
that Φ(0, j),Φ(1, j) is a permuted pair of the encryptions Epk(0), Epk(1), using πPERM. Constructing
a simulator for the case of a corrupted P2 is more challenging since the protocol does not guarantee
that P2 computes {e′k}k relative to a well defined bit string p. In particular, it may compute every
encryption e′k using a different length m string. Thus, only privacy is guaranteed for this case,
concluding that the protocol achieves one-sided simulation; see Section 2.3 for the formal security
definition. Let π′SIMPLE denote the modified version of πSIMPLE with the additional zero-knowledge
proof of knowledge πPERM of P1. We conclude with the following claim,

Theorem 5 Assume that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
Protocol π′SIMPLE securely computes FPM with one-sided simulation.

Proof Sketch: Assume P1 is malicious. Then we need to present a simulator S which plays the
role of P2 and builds a view for P1 which is (computationally) indistinguishable from the one of
the real protocol without knowing the real input text held by P2.

The crucial point is that at the end of Step 1 (which in π′SIMPLE includes the above zero-knowledge
proof) the simulator can learn the input of P1 (i.e. the pattern p) by extracting it from the proof
of knowledge πPERM. At this point the simulator is also given the output of the protocol by the
ideal-model trusted party, i.e. S knows in which locations of the input text of P2 the pattern
appears. S then chooses a text T ′ which contains the pattern in the exact same locations but is
otherwise an arbitrary string p′ 6= p. It then runs the rest of the protocol using T ′. It is not hard
to see that the view of P1 produced by S is actually identically distributed as the real one.

As for the case that P2 is corrupted, we only need to prove that the privacy of P1 is preserved.
This can be shown via a reduction to the security of El Gamal . Moreover, it can be proven that
for every two bit strings p, p′ of length m, a corrupted P2 cannot distinguish an execution where
P1 enters p, from an execution where P1 enters p′.

12

Efficiency. We first note that the protocol π′SIMPLE is constant round. The overall communication
costs are of sending O(m+`) group elements, and the computation costs are of performing O(m+`)
modular exponentiations, as P1 sends the table Φ and P2 replies with a collection of ` encryptions.
The additional cost of πPERM is linear in the length of the pattern. Thus, the total amount of work
is O(` ·m).

Because this protocol does not seem to have a natural extension to address malicious adversaries,
we propose a quite different protocol in the next section.

We conclude by remarking that protocol π′SIMPLE takes a different approach than the one-sided
simulatable protocol of [10]. In particular, while both protocols reach the same asymptotic com-
plexity, our protocol is much more practical since the concrete constants that are involved are much
smaller (as the protocol of [10] requires |p| oblivious transfer evaluations). Moreover, our protocol
can be easily applied to closely related problems such as approximate text search (matching with
errors) or text search with wildcards.

We present three generalizations of the classic pattern matching problem to other problems of
practical interest. Due to the similarities to protocol π′SIMPLE we omit the proofs.

Approximate text search. In text search with mismatches, there exists an additional public
parameter ρ which determines the number of mismatched that can be tolerated. Specifically, P1

should learn all the text locations in which the Hamming distance between the pattern and the
substring at these text locations is smaller equal to ρ. More formally, we consider the functionality
for approximate text search FAPM that is defined by

((p, ρ), (T,m, ρ′)) 7→
{

({i | d(Ti, p) ≤ ρ}, λ) if |p| = m and ρ = ρ′

(λ, λ) otherwise

where d(x, y) denotes the Hamming distance of two binary strings. The most recent algorithm for
solving this problem in an insecure setting is the solution by Amir et. al. [30] who introduces a
solution in O(`

√
ρ log ρ) time. A simple extension to our protocol yields a protocol that computes

this functionality as well. That is, upon completing its computations and before masking the terms
as in Step 3 of π′SIMPLE, party P2 produces ρ+1 encryptions from each encryption ek by subtracting
from it all the values between [0, ..., ρ]. Finally, it masks these encryptions and randomly shuffles the
result. Clearly, if both parties are honest then P2’s output is correct with overwhelming probability.

Furthermore, we remark that the simulation for corrupted P1 does not change, since now the
simulator receives from the trusted party all the text locations where the pattern matches with at
most ρ mismatches. The proof for the case that P2 is corrupted is identical to the proof above. Let
πAPM denote protocol π′SIMPLE with the above modification, then it holds that

Theorem 6 Assume that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
Protocol πAPM securely computes FAPM with one-sided simulation.

The communication and computation complexities are O(ρ · `).

Text search with wildcards. A wildcard symbol matches against any character when searching
the text. Note that in protocol π′SIMPLE, a wildcard can be emulated by having P1 send two
encryptions of zero instead of encryptions of zero and one. By doing so, we make sure that regardless
of the text bit, P2 will not count it as a mismatch. Note that the number of exponentiations of
this modified protocol, πDC, is linear in the length of the text just as in the standard insecure
setting [31]. More formally,

13

Theorem 7 Assume that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
Protocol πDC securely computes the pattern matching problem with wildcards with one-sided simu-
lation.

The security proof is as above except that P1 uses a slightly different proof of knowledge. In partic-
ular, it proves the statement in which each encryption within Φ belongs to the set {Epk(0), Epk(1)}
and that there does not exists 1 ≤ j ≤ m such that {Φ(0, j),Φ(1, j)} denote a pair of encryptions
{Epk(1), Epk(1)}. These proofs are standard for the El Gamal encryption scheme.

Q-ary alphabet. Recalling that protocol π′SIMPLE compares binary strings and computes the
pattern matching functionality for the binary alphabet. However, in some scenarios the pattern
and the text are defined over a larger alphabet Σ, (e.g., when searching in a DNA database the
alphabet is of size four.) Note that when no security properties are required, dealing with larger
alphabet is rather straightforward.

When T and p are drawn from a q-ary alphabet, the algorithm πSIMPLE can be extended to the
case where Φ is a q by m matrix. In this case, P1 must prove that each row of Φ is a permutation
of a vector of {Epk(0), Epk(1), . . . , Epk(1)}, using πPERM with a single encryption of zero q − 1
encryptions of one. The size of the alphabet appears as a multiplicative cost for both computations
and communications. The security proof in this extension is not appreciably different from the
binary case.

Fail Γ(qi, j)
State Prefix Υ(qi) State j = 0 j = 1

q1 q1 q1 q2
q2 1 q1 Γ(q1, 0) q3
q3 11 1 q2 q4 Γ(q2, 1)
q4 110 q1 q5 Γ(q1, 1)
q5 1100 q1 q6 Γ(q1, 1)
q6 11000 q1 Γ(q1, 0) q7
q7 110001 1 q2 Γ(q2, 0) q8
q8 1100011 11 q3 q9 Γ(q3, 1)
q9 11000110 110 q4 q10 Γ(q4, 1)
q10 110001100 1100 q5 Γ(q5, 0) q11
q11 1100011001 1 q2 Γ(q2, 0) Γ(q2, 1)

�

�

�

�

��

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�
�

�

	
�

�

��

�

�

�

Figure 3: Construction of determinized KMP automaton for pattern 1100011001

3.2 Secure Text Search in the Presence of Malicious Adversaries

We consider a secure version of the KMP algorithm [8]. The KMP algorithm searches for occur-
rences of a pattern p within a text T by employing the observation that when a mismatch occurs,

14

the pattern itself embodies sufficient information to determine where the next match could begin,
thus bypassing re-examination of previously matched characters. More formally, P1, whose input is
a pattern p, constructs an automaton Γp as follows: We denote by p〈i〉 the length-i prefix p1, . . . , pi
of p. P1 first constructs a table Υ with m entries where its ith entry denotes the largest prefix of
p that matches a suffix of p〈i−1〉. Namely, the table points to the largest prefix p〈i′〉 that matches a
suffix of p〈i−1〉. Assume that we have already successfully compared the first i− 1 bits of p against
the text, yet we encounter a mismatch when comparing the ith bit of p (we store the length of this
prefix). The automaton encodes the appropriate transition to begin comparing the next potential
match. If we ever reach the last state, we output a match.

We remark that Υ can be easily constructed in time O(m2) by comparing p against itself at every
alignment. P1 constructs its automaton Γp based on Υ. It first sets |Q| = |p|+1 and constructs the
transition table ∆ as follows: for all i ∈ {1, . . . ,m}, ∆(qi−1×pi)→ qi and ∆(qi−1×(1− pi))→ Υ(i)
where Υ(i) denotes the ith entry in Υ (we denote the labels of the states in Q by the sequential
integers starting from 1 to m + 1. This way, if there is no matching prefix in the ith entry, the
automaton goes back to the initial state q1). P1 concludes the construction by setting F = qm.

Now, we need a way for P1 and P2 to jointly compute the result of running the automaton on
P2’s text, such that no information is revealed about either the text or the automaton (besides
knowing if the final state is accepting or not). In the next section we show a general protocol
to perform such a secure and oblivious evaluation of an automaton. The protocol works for any
automaton (not just a KMP one) and therefore can be of independent interest. After showing the
automata evaluation protocol, we also show how to prove in zero-knowledge that the automaton
P1 constructs is a correct KMP automaton.

3.2.1 Secure Oblivious Automata Evaluation

In this section we present a secure protocol for oblivious automata evaluation in the presence of
malicious adversaries. In this functionality P1 inputs a description of an automaton Γ, and P2

inputs a string t. The result of the protocol is that P1 receives Γ(t), while P2 learns nothing.
Formally, we define this problem via the functionality

FAUTO : (Γ = (Q,Σ,∆, q0, F), t) 7→
{

(accept, λ) if Γ(t) ∈ F
(no-accept, λ) otherwise

where λ is the empty string (denoting that P2 does not receive an output) and Γ(t) denotes the
final state in the evaluation of Γ on t. For this protocol, we consider a binary alphabet. It therefore
holds that the transition table contains |Q| rows and two columns. Furthermore, we assume that
the names of the states are the integers {1, . . . , |Q|}. For simplicity, we assume that |Q| and |F | are
public. This is due to the fact that this information is public anyway when reducing the problem of
pattern matching into oblivious polynomial evaluation. For the sake of generality we note making
|F | private again can be easily dealt by having P1 send a vector of encryptions for which the ith
encryption is a zero encryption only if qi /∈ F . Otherwise, it is an encryption of qi (this can be
verified using a simple zero-knowledge proof). The final verification can be done by checking set
membership using techniques from below.

Recall that our starting point is the protocol from [14] which was the first to use oblivious
automata evaluation, secure in the honest-but-curious setting. Their idea is to have the parties
share the current machine state, such that by the end of the kth iteration the party with the
automaton knows a random string rk, whereas the party with the input for the automaton learns
qk + rk. The parties complete each iteration by running an oblivious transfer in which the next

15

state is now shared between them. The fact that the parties are honest-but-curious significantly
simplifies their construction.

Unfortunately, we cannot see any natural way to extend their technique to the malicious adver-
sary case (even when using oblivious transfer that is resilient to malicious attacks). Coping with
such behavior is much more challenging, starting with requiring a proof that a valid automaton is
indeed used, and verifying that the intermediate computations do not leak any information about
the parties’ inputs. Thus, our construction takes a different approach.

A high level description. we begin by briefly motivating our construction; see Figure 4 as
well. At the beginning of the protocol P1 and P2 jointly generate a public-key (G,E,D) for
the threshold El Gamal encryption scheme (denoted by the sub-protocol πKEY). Next, party P1

encrypts its transition table ∆ and the set of accepting states F , and sends it to P2. Note that
this immediately allows P2 to find the encryption of the next state c1 = ∆(1, t1), by selecting it
from the encrypted matrix. P2 re-randomizes this encryption and shows it to P1. The protocol
continues in this fashion for ` iterations (the length of the text).3

P1(Q, {0, 1},∆, q0, F) P2(t1 . . . , t`)

1n −→
(pk, sk1)←− πKEY

←− 1n

−→ (pk, sk2)

for all j ∈ {1, . . . , |Q|}
and i ∈ {0, 1} {

cj,i = Epk(∆(j, i))

}
j,i

{Epk(f)}f∈F -
→ ZKPOK of ∆, F →

For every iteration ξ :
let cξ−1 = Epk(∆(1, (t1, . . . , tξ−1)))

∧ C = {cξ−1/j}j ∧ C′ = {cj,tξ}j
∧ π is a permutation

� π(C), π(C′)

chooses a permutation π′
π′(π(C)), π′(π(C′)) -

↔ masking permuted C ↔

↔ threshold decryption
of masked vector

↔
-

finds index of next state

�
cξ = Epk(∆(1, t1, . . . , tξ))

← ZK of validity ←

Finally, verify if c`
is an accepting state

Figure 4: A high-level diagram of πAUTO.

At the outset of each iteration the parties know a randomized version of the encryption of the
current state, and their goal is to find an encryption of the next state. Informally, at iteration i,
P2 selects from the matrix the entire encrypted column of all possible |Q| next states for its input
ti (as it only knows an encryption of the current state). Then, using the homomorphic properties

3Unfortunately, these iterations are not independent and thus cannot be employed in parallel. This is due to the
fact that the parties must start every iteration with an encryption of the current state. Nevertheless, we show in
Section 4 how to minimize the number of rounds into O(|Q|) when performing a secure text search, which is typically
quite small.

16

of El Gamal , the parties obliviously select the correct next state; this stage involves the following
computations. Let cξ−1 denote an encryption of ∆(1, t1, . . . , tξ−1). Then the parties compute first
the set C = {cξ−1/cj,ε}j , where {cj,ε}j correspond to encryptions of the labels in Q; see below
for more details. Note that only one ciphertext in this set will be an encryption of 0, and that
indicates the position corresponding to the current state. The protocol concludes by the parties
jointly checking if the encrypted state that is produced within the final iteration is in the encrypted
list of accepting states.

There are several technical challenges in constructing such a secure protocol. In particular the
identification of the next encrypted state without leaking additional information requires a couple
of rounds of interaction between the parties in which they mask and permute the ciphertext vector
containing all possible states, in order to “destroy any link” between their input and the next
encrypted state. Moreover, in order to protect against malicious behavior, zero-knowledge proofs
are included at each step to make sure parties behave according to the protocol specifications.

We are now ready to present a formal description of our protocol. But, as a final remark we
note that due to technicalities that arise in the security proof, our protocol employs an unnatural
masking technique, where instead of multiplying or adding a random value to each encryption, it
uses both. The reason for this becomes clear in the proof.

Protocol πAUTO:

• Inputs: The input of P1 is a description of an automaton Γ = (Q, {0, 1},∆, q0, F), and the input of
P2 is a binary string t = t1, . . . , t`.

• Auxiliary Inputs: |Q| and |F | for P2, ` for P1, and the security parameter 1n for both.

• Conventions: We assume that the parties jointly agree on a group G of prime order q and a generator
g for the threshold El Gamal encryption scheme. Both parties check every received ciphertext for
validity, and abort if an invalid ciphertext is received.

We also make the following modification: recall that the transition table ∆ is defined as ∆(j, i) which
denotes the state that follows state j if the input letter is i. We add a column to ∆ labeled by ε: we
define ∆(j, ε) = j (the reader can think of it as the “label” of the jth row of the transition table).

Since we are assuming a binary alphabet, unless written differently, j ∈ {1, . . . , |Q|} and i ∈ {ε, 0, 1}.
Finally we assume that the initial state is labeled 1.

• The protocol:

1. El Gamal key setup:

(a) Party P1 chooses a random value r1 ←R Zq and sends party P2 the value g1 = gr1 . It proves
knowledge of r1 using πDL.

(b) Party P2 chooses a random value r2 ←R Zq and sends party P1 the value g2 = gr2 . It proves
knowledge of r2 using πDL. The parties set pk = 〈G, q, g, h = g1 · g2〉 (i.e., the secret key is
(r1 + r2) mod q).

2. Encrypting P1 transition table and accepting states:

(a) P1 encrypts its transition table ∆ under pk component-wise; ∆E =
{
cj,i = Epk(∆(j, i))

}
j,i

.

Notice that cj,ε is an encryption of the state j. P1 also sends the list of encrypted accepting
states denoted by E(F) = {Epk(f)}f∈F .

(b) For every encryption 〈c1, c2〉 ∈ ∆E ∪ E(F), P1 proves the knowledge of logg c1 using πDL.

(c) Proving the validity of the encrypted transition matrix. P1 proves that ∆E is a set of
encryptions for values from the set {1, . . . , |Q|}. It first sorts the encryptions according
to their encrypted values, denoted by c1, . . . , c3·|Q|. P1 multiplies every encryption in this
set with a random encryption of 0, sends it to P2 and proves: firstly that this vector
is a permutation of ∆E , using πPERM, further that c̄i = ci/ci−1 ∈ {Epk(0), Epk(1)} by

17

proving that either (pk, c̄i) or (pk, c̄i/Epk(1)) is a Diffie-Hellman tuple, and finally that∏
i c̄i = Epk(|Q|). P1 also decrypts c3·|Q| (note that this encryption always denotes an

encryption of |Q|).
3. First iteration:

(a) P2 chooses the encryption of the next state c1,t1 = Epk(∆(1, t1)). It then defines c1 =
c1,t1 ·G Epk(0), i.e. a random encryption of the next state and sends it to P1.

(b) P2 proves that Dsk(c1) ∈ {Dsk(c1,0), Dsk(c1,1)} using the zero-knowledge proof πENC for
m = 1.

4. Iterations {2, . . . , `}: for every ξ ∈ {2, . . . , `}, let cξ−1 denote the encryption of ∆(1, (t1, . . . , tξ−1));
the parties continue as follows:

(a) Subtracting the current state from the state labels in ∆: The parties compute the
vector of encryptions C = {cξ−1/cj,ε} for all j. Note that only one ciphertext will denote
an encryption of 0, and that indicates the position corresponding to the current state.

(b) P2 permutes C and column tξ:

– P2 computes C ′ = {cj,tξ ·G Epk(0)} for all j (note that C ′ corresponds to column tξ in
the transition matrix – i.e. the encryptions of all the possible next states given input
bit tξ) and sends C ′ to P1. It also proves that C ′ were computed correctly using πENC.

– P2 also chooses a random permutation π over {1, . . . , |Q|} and sends P1, a randomized
version of {π(C), π(C ′)} (i.e. the ciphertexts are not only permuted but also randomized
by multiplication with Epk(0)). The parties engage in a zero-knowledge proof πPERM for
which P2 proves that it computed this step correctly.

(c) P1 permutes π(C) and column tξ: Let C2
π, C

′2
π denote the permuted columns that P2

sent. If P1 is accepts the proof πPERM it continues similarly by permuting and randomizing
C2
π, C

′2
π using a new random permutation π′. P1 proves its computations using πPERM.

(d) Multiplicative masking: Let C1
π, C

′1
π denote the permuted columns from the above step.

Recall that C1
π corresponds to the permuted ε column from the transition matrix, which

denotes the labels of the states minus the label of the current state. Then the parties
take turn in masking C1

π as follows. For every 〈cj,a, cj,b〉 ∈ C1
π, P2 chooses x ←R Zq and

computes c′j = 〈cxj,a, cxj,b〉. It then proves that (G, cj,a, cxj,a, cj,b, cxj,b) is a Diffie-Hellman
tuple using πDDH. Notice that the ciphertext that denotes an encryption of 0 value (i.e. an
encryption of g0), will not be influenced by the masking, while the others are mapped to a
random value. P1 repeats this step and masks the result.

(e) Additive masking: Let C̃1, C̃2 denote the masked columns from the above step. Recall

that C̃1 corresponds to the permuted ε column from the transition matrix, which has by now
been masked by both parties. Then P2 chooses |Q| random values µ1, . . . , µ|Q| and encrypts

them; γi = Epk(µi). It also computes c̄i = (c̃i ·G γi) ·G Epk(0) for every c̃i ∈ C̃1, and proves
in zero-knowledge that the masking is correct by proving that for every i the ciphertext〈 c̄i,a

c̃i,a · γi,a
,

c̄i,b
c̃i,b · γi,b

〉
is an encryption of zero, using πDDH. Notice that the ciphertext c̃i that denotes an encryption
of 0 (i.e. an encryption of g0), is now mapped to the ciphertext c̄i that contains an encryption
of µi. The others are mapped to random values. P1 repeats this step and masks the result.

(f) Decrypting column ε: Let C = [c̄1, . . . , c̄|Q|] denote the masked vector computed in
the previous step. The parties decrypt it using their shared knowledge of sk. In par-
ticular, for every c̄j ∈ C in which c̄j = 〈c̄j,a, c̄j,b〉, P1 computes c′j = c̄r1j,a and proves
that (G, g, gr1 , c′j , c̄j,a) is a Diffie-Hellman tuple. Next P2 computes c′′j = c̄r2j,a and proves
that (G, g, gr2 , c′′j , c̄j,a) is a Diffie-Hellman tuple. The parties decrypt c̄j by computing
Dsk(c̄j) = c̄j,b/(c

′
j · c′′j).

18

Each party Pi sends its additive shares; µPi1 , . . . , µPi|Q|, and proves their correctness via πDDH.

The parties chooses the index j for which there exists Dsk(c̄j) = µP1
j + µP2

j (with high
probability there will be only one such index).

5. Checking output: After the `th iteration we have that c` denotes the encryption of ∆(1, t). To
check if this is an accepting state or not without revealing any other information (in particular
which state it is) the parties do the following:

(a) They compute the ciphertext vector CF = {c`/c}c∈E(F). Notice that ∆(1, t) is accepting if
and only if one of these ciphertexts is an encryption of 0.

(b) P2 masks the ciphertexts as in Steps 4d and 4e. Let C ′F be the resulting vector.

(c) P2 randomizes and permutes C ′F . It also proves correctness using πPERM. Let C ′′F be the
resulting vector.

(d) The parties decrypt all the ciphertexts in C ′′F with the result going only to P1. In other
words, for every ciphertext c = 〈ca, cb〉 ∈ C ′′F , the party P2 sends c′a = cr2a and proves
that (G, g, gr2 , ca, c′a) is a Diffie-Hellman tuple. This information allows P1 to decrypt the
ciphertexts. P1 accepts if one of the decryptions equals one of the additive masks of P2.

Before turning to the security proof we show that if both parties are honest then P1 outputs
Γ(t) with probability negligibly close to 1. The reason for that is due to the fact that in every
iteration ξ, the parties agree on the correct encrypted next state; cξ, with probability close to 1
(since the probability that there exists more than one element in C that is an encryption of zero is
negligible).

We continue with the following claim,

Theorem 8 Assume that πDL, πDDH, πENC and πPERM are as described above and that (G,E,D) is
the semantically secure El Gamal encryption scheme. Then πAUTO securely computes FAUTO in the
presence of malicious adversaries.

Intuitively it should be clear that the automaton and the text remain secret, if the encryption
scheme is secure. However, a formal proof of Theorem 8 is actually quite involved. Consider
for example, the case of the proof in which P1 is corrupted and we need to simulate P2. The
simulator is going to choose a random input and run P2’s code on it. Then to prove that this view
is indistinguishable we need a reduction to the encryption scheme. A straightforward reduction
does not work for the following reason: in order for the simulator to finish the execution correctly
it must “know” the current state, at every iteration i; but when we do a reduction to El Gamal
we need to plug in a ciphertext for the current state for which we do not know a decryption, and
this prevents us from going forward to iteration i+ 1. A non-trivial solution to this problem is to
prove that the real and simulated views are indistinguishable via a sequence of hybrid games, in
which indistinguishable changes are introduced to the way the simulator works, but still allowing
it to finish the simulated execution.

As for the case that P2 is corrupted, the proof is rather simple mainly because P2 does not receive
an output. Specifically, the simulator extracts P2’s input in every iteration using the extractor for
πENC.
Proof: We separately prove security in the case that P1 is corrupted and the case that P2 is
corrupted. Our proof is in a hybrid model where a trusted party computes the ideal functionalities
for RDL, RDDH and RPERM.

Party P1 is corrupted. Let A denote an adversary controlling P1. We construct a simulator S
as follows,

19

1. S is given a description of an automaton Γ = (Q, {0, 1},∆, q0, F) and A’s auxiliary input and
invokes A on these values.

2. S completes the key setup stage as the honest P2 would. It receives the input from the ideal
computation of RDL, i.e. the value r1 used by P1 in the key setup.

3. S receives from A the encryptions ∆E and E(F) and verifies its proofs for a valid automaton.
If the verification fails S sends ⊥ to the trusted party for FAUTO and halts.

4. S receives the inputs for the ideal computations of RDL; where for every 〈c1, c2〉 ∈ ∆E∪E(F),
A sends ((G, g, 〈c1, c2〉), t). S first verifies that c1 = gt and sends ⊥ to the trusted party for
FAUTO in case it does not hold, otherwise it defines A’s input as follows. For every cj,i ∈ ∆E

it sets sk′ = tj,i (that denotes the witness of cj,i for πDL) and computes ∆(j, i) = Dsk′(cj,i).
4

S computes the set of accepting states F the same way (as A may send encryptions of invalid
accepting states, S records only the valid states that correspond to values within [1, . . . , Q]).
If the recorded set ∆ does not constitute a valid transition matrix, S outputs fail.

5. S sends Γ = (Q, {0, 1},∆, q0, F) to its trusted party, where ∆ and F are as recorded in Step 4
of the simulation. If it receives back the message “accept” it chooses an arbitrary string
t′ = t′1 . . . t

′
` for which Γ(t′) ∈ F . Else it chooses a string t′ such that Γ(t′) is not an accepting

state.

6. S completes the execution as the honest P2 would on this input. Specifically, in the first
iteration, S chooses c1,t′1 and sends A, c1 = c1,t′1 · Epk(0). It then emulates the trusted party
for RDDH and hands A the value 1 for proving that it computed c1 correctly.

7. In every iteration ξ, S plays the role of the honest P2, emulating the ideal computations for
RPERM and RDDH.

8. S outputs whatever A does.

We first note that S outputs fail with negligible probability due to the negligible soundness of
the proof. In particular, if A sends an encryption of a value not in [1, . . . , Q] then the proof fails
since either there exists an index i in which c̄i is not an encryption of zero or one, or c3·|Q| is not
an encryption of |Q| (where the decryption of c3·|Q| is needed to prevent from A to use a sequence
of |Q| labels that do not correspond to [1, . . . , |Q|]). Next we show that the output distribution of
A in the hybrid and the simulated executions are computationally indistinguishable. Recall that
S plays against A with input t′ so that Γ(t) ∈ F if and only if Γ(t′) ∈ F where t is the input of
the real P2. The intuition of the proof follows from the security of El Gamal, where the adversary
should not be able to distinguish between an encrypted path of the automaton that was computed
relative to t or t′. Formally, we define a sequence of hybrid games and denote by the random

variable H
A(z)
` (Γ = (Q, {0, 1},∆, q0, F), t, n) (for a fixed n) the output of A in hybrid game H`.

Recall that the difference between the simulated and the real executions is due to the fact that
S enters t′ = t′1 . . . , t

′
` whereas P2 enters t = t1 . . . , t`. Assume for contradiction the existence of

a distinguisher circuit D between the real and simulated execution. A natural hybrid argument

4We exploit here the symmetry of El Gamal where instead of decrypting using the original secret-key, the simulator
decrypts using the discrete logarithm of c1 as follow. Let c = 〈c1, c2〉 and let t denotes logg c1, then S computes c2/h

t

where h ∈ pk. Note that c2 = ht ·m and thus we get the correct decryption. Note also that at this point S knows the
secret key so it can decrypt directly, but in some of our hybrid arguments we will make a reduction to the security
of the encryption scheme, and in this case S will not know the secret key.

20

implies that there must exist an iteration i in which D distinguishes between an execution on
the input t̃i = t′1 . . . , t

′
i−1, ti, . . . , t` and an execution on the input t̃i+1 = t′1 . . . , t

′
i, ti+1, . . . , t`.

Our goal will be to show that for any i the views of those two executions are computationally
indistinguishable.

Game H0: The simulated execution, as described above.
We begin with the following intermediate game, as it may hold that the automaton accepts the

real and the simulated inputs but not the hybrid’s strings, or vice-versa.

Game H′0: In this game there is no trusted party and no honest P2. Instead, we define a new
simulator S ′ which is given the real input t of party P2 and evaluates the automaton on t by itself.
Furthermore, S ′ runs exactly like S in H0 using t′ as its input except for the last step, when P1

checks the output, it changes the way it masks. Remember that in Step 4e for every ciphertext
c ∈ C̃1, party P2 (as well as the simulator S) sends the values {µj}j , {γj}j and {c̄j}j , and proves
correctness via πDDH. Then the simulator S ′ publishes a set of masks that is independent of C̄.
That is, in Step 4e, for every j, S ′ sends a random µj that is independent of γj , and then proves
that the collection of these encryptions was computed correctly by emulating the ideal execution of
RDDH. Nevertheless, S ′ computes the set of encryptions {c̄j}j consistently with the masks {µj}j .
We note that this game is required as it may be that the automaton’s outputs on the hybrid strings
may not be consistent with its output on t (and t′).

The output distributions in games H0 and H′0 are computationally indistinguishable via a reduc-
tion to the hardness of DDH. Assume, for contradiction, the existence of a distinguisher circuit D
for H0 and H′0. Construct a distinguisher circuit Dddh that distinguishes between a Diffie-Hellman

tuple and a a non Diffie-Hellman tuple.5 Dddh receives a tuple c = 〈g, h, (h11, h12), . . . , (h
|Q|
1 , h

|Q|
2)〉

and works as follows. It first sets h = pk by sending the value h/gr1 in the key setup phase. Next
it chooses random masks (µ1, . . . , µ|Q|) and computes ĥi2 = hi2 · µi and γi = 〈hi1, ĥi2〉 for all i. Dddh

completes the execution using these values. Note that Dddh is able to decrypt in Step 5d even
without the knowledge of the discrete logarithm of its “share” h/gr1 , as it knows the decrypted
values and the share of the adversary. Then the output distribution generated by Dddh is either
identical to the simulation or to the current game.

Next, we prove that every two consecutive executions on t̃i and t̃i−1 are computationally in-

distinguishable. Formally, we denote by the random variable H
A(z),i
` (Γ = (Q, {0, 1},∆, q0, F), t, n)

(for a fixed n and i) the output of A in the hybrid game Hi
`. We focus on the ith iteration for the

following sequence of games,

Game Hi
0: In this game the simulator behaves as in H′0, but enters the string t̃i as its input. Note

that when i = ` this game is identical to game H′0.

Game Hi
1: In this game the simulator Si1 publishes a set of masks that is independent of C̄ as in

game H′0 above.

Game Hi
2: The simulator Si2 is identical to Si1 except that it uses the bit ti in Step 4b of the

protocol instead of t′i, that is Si2 sends to A column {cj,ti}j instead of column {cj,t′i}j . Notice that

the rest of the execution is unchanged. In particular, Si2 behaves exactly as in the previous game
placing random ciphertexts and masks in Step 4e. Also, it still concludes iteration i with ci (which
denotes the next state as computed in the ith iteration) equal ∆(1, t′1, . . . , t

′
i−1, t

′
i) as in the previous

hybrid game (therefore ignoring the fact that ti was entered previously).

5We consider a game where a distinguisher D is given a tuple of the form 〈g, h, (h1
1, h

1
2), . . . , (h`1, h

`
2)〉 where for all

i, 〈g, h, hi1, hi2〉 is either a Diffie-Hellman tuple or not. In particular, D outputs its guess and wins the game if its guess
is correct. The hardness of this game can be reduced to the hardness of DDH using a standard hybrid argument.

21

Due to the fact that the only difference between Hi
2 and Hi

1 is which vector Si2 sends to A in
Step 4b, clearly the adversary views in these two games are computationally indistinguishable via
a reduction to the semantic security of El Gamal .

Game Hi,k
2 for k = 1, ..., `− i: This is a series of `− i games. For ease of notation, let Si,02 = Si2

and Hi,0
2 = Hi

2. We are going to show that Hi,k
2 is indistinguishable from Hi,k+1

2 .

The simulator Si,k2 in game Hi,k
2 is identical Si,k−12 except that in Step 4b of iteration i + k, it

does not send the permuted vector C ′ of column ti+k, but rather it modifies it into a new vector
C ′′ for which it replaces the entry in position ∆(1, t′1, . . . , t

′
i−1, t

′
i, . . . , ti+k−1) with the state value

∆(1, t′1, . . . , t
′
i−1, ti, . . . , ti+k−1).

The views of the adversary in games Hi,k
2 and Hi,k+1

2 are computationally indistinguishable via
a reduction to the semantic security of El Gamal (since we are modifying the distribution of the
plaintexts in the permuted column).

Game Hi
3: The simulator Si3 is identical to Si,`−i2 except that it modifies Step 4b of iteration i+ 1

(not i like before). Recall that in this step P2 sends a randomized and permuted version of C, the
vector of ciphertexts that contains 0 in the current state location. In game Hi

2 the current state
location at iteration i + 1 is ∆(1, t′1, . . . , t

′
i−1, t

′
i). The simulator Si3 instead sends a vector which

has an encryption of 0 in location ∆(1, t′1, . . . , t
′
i−1, ti), and random ciphertexts everywhere else. It

emulates the RPERM ideal functionality to simulate the zero-knowledge proof.
Again the adversary’s views in games Hi

2 and Hi
3 are computationally indistinguishable, via the

semantic security of El Gamal .

Game Hi
4: The simulator Si4 identical to Si3 except that in Step 4f of the ith iteration it decrypts

according to ∆(1, t′1, . . . , t
′
i−1, ti). More specifically: the simulator extracts the permutation used

by P1 in Step 4c, and therefore knows in which position j the state ∆(1, t′1, . . . , t
′
i−1, ti) should be

in Step 4d. For that position the simulator will then claim that c̄j encrypts the same value as γj
by simulating πDDH (recall that, since game Hi

1, all the masks and ciphertexts are random.)
In this case, the adversary’s views in games Hi

3 and Hi
4 are identical, as the simulator is “cheat-

ing” in the selection of c̄j in both.

Game Hi
5: The simulator Si5 identical to Si4 except that it modifies Step 4b of iteration i+ 1 (not

i) by reversing the actions of Si3. In other words this time the randomized and permuted version
of C (the vector of ciphertexts that contains 0 in the current state location) is computed correctly
according to ∆(1, t′1, . . . , t

′
i−1, ti).

The adversary’s views in games Hi
4 and Hi

5 are computationally indistinguishable, via a reduction
to the semantic security of El Gamal .

Game Hi,k
6 for k = `−i−1, ..., 0: This is a series of `−i games. For ease of notation, let Si,`−i6 = Si5

and Hi,`−i
6 = Hi

6. We are going to show that Hi,k
6 is indistinguishable from Hi,k+1

6 .

The simulator Si,k6 in game Hi,k
6 is identical Si,k+1

2 except that in Step 4b of iteration i + k, it

really sends the permuted vector C ′ of column ti+k (therefore reversing the actions of Hi,k
2 where

this column had been modified.)

The views of the adversary in games Hi,k
6 and Hi,k+1

6 are computationally indistinguishable via
a reduction to the semantic security of El Gamal (since we are modifying the distribution of the
plaintexts in the permuted column).

Game Hi
7: We conclude with a game in which simulator Si7 which behaves exactly like Si,06 , except

that it computes the masks and ciphertexts in Step 4e as in the real execution. Clearly, by the

22

same indistinguishability argument for Hi
1, the views of the adversary in games Hi,0

6 and Hi
7 are

computationally indistinguishable, because of the security of El Gamal .
It is also easy to see that the game Hi

7 is identical to the simulated game in which the simulator
enters t̃i = t′1 . . . , t

′
i−1, ti, . . . , t`, i.e. Hi−1

0

This concludes the proof for the case when P1 is corrupted.

Party P2 is corrupted. This case is much simpler because P2 does not learn anything, so that
is needed is to make sure that the automaton input by P1 remains secret, insuring P1’s privacy is
preserved. Intuitively, the simulator enters an arbitrary automaton with the appropriate number
of states and plays the role of the honest P1. Moreover, it extracts the adversary’s input within
the zero-knowledge proof of knowledge πENC. Formally, let A denote an adversary controlling P2,
we construct a simulator S for P1 as follows,

1. S is given a string t1, . . . , t` and A’s auxiliary input and invokes A on these values.

2. S completes the key setup stage as the honest P1 would.

3. S encrypts an arbitrary automaton Γ′ = (Q′, {0, 1},∆′, q0, F ′) with |Q′| = |Q| and |F ′| = |F |
and sends its encryption.

4. In every iteration ξ, S fixes tξ by extracting it from the proof of knowledge πENC that A runs
in Step 4b (for the first iteration S extracts t1 in Step 3b).

5. S completes the execution as the honest P1 would on this input.

6. S outputs whatever A does.

The only difference between this simulated execution and the hybrid execution is within the
fact that the simulation runs on a different encrypted automaton. Therefore the reduction is almost
immediate to the security of the El Gamal encryption scheme. More formally, recall that the parties
carry out a decryption in Step 4f and Step 5d, where the later decryptions are only viewed by P1.
Therefore our goal is to prove that privacy is preserved in spite of these decryptions. We denote by

the random variable H
A(z)
` (Γ = (Q, {0, 1},∆, q0, F), t, n) (for a fixed n) the view of A in the hybrid

game H`.

Game H0: The simulated execution.

Game H1: In this game we define a new simulator S1 that is identical to simulator S except as
follows. Recall that in Step 4f where the parties decrypt column ε, it includes one encryption of
zero; czero and random encryptions, then S1 “decrypts” czero into a random value. Furthermore,
it randomly chooses an encryption other than czero and “decrypts” it into zero. More formally
when decrypting czero = 〈c1zero, c2zero〉, S1 sends a random element in G instead of (c1zero)

r1 where
r1 denotes its share within sk. In addition, it randomly chooses an encryption c = 〈c1, c2, 〉 and
sends A, c2/(c1)

r2 where r2 denotes A’s share within sk. Now, assuming that A replies with the
respective values (c1zero)

r2 and cr21 , the result of the decryption process yields a random element in
G and g0, respectively.

The adversary views in H0 and H1 are computationally indistinguishable via a reduction to
the hardness of DDH. Before constructing a distinguisher, we note that if the DDH problem is
hard, then it is also hard to distinguish between a mixed pair of a Diffie-Hellman tuple and a
non-Diffie-Hellman tuple of the specific form (g, h, gr1 , hr1 , gr2 , hr

′
2) and a tuple that is giving in

the opposite order using a standard hybrid argument. Now, a distinguisher Dddh that receives a

23

tuple 〈h, h1, h2, h3, h′2, h′3〉 continues as follows. It uses h1 as its secret key share (with h being the
generator), and sets czero = 〈h2, h3〉 and c = 〈h′2, h′3〉 (note that these encryptions are the result
of the masking in Step 4d that are determined by S1). Finally, in Step 4f it “decrypts” czero into
h3/(h2)

r2 and the ciphertext c into h′3/(h
′
2)
r2 .

Now, if 〈h, h1, h2, h3〉 is a Diffie-Hellman tuple and 〈h, h1, h2, h3〉 is a non-Diffie-Hellman tuple
then A’s view is as in the previous game, whereas in case it is not a Diffie-Hellman tuple A’s view
is as in this current game. Thus the indistinguishability between these games can be reduced to
solving the DDH problem.

Game H2: In this game there is no trusted party and no honest P1. Instead, we define a new
simulator S2 which is given the real input Γ = (Q, {0, 1},∆, q0, F) of party P1 and encrypts in
Step 2 of the protocol the transition table ∆ and the set F instead of ∆′ and F ′.

The views of the adversary in these two games are computationally indistinguishable via a
reduction to the semantic security of El Gamal . Informally, a distinguisher DE can be constructed
as follows. DE sends its oracle two descriptions of automata Γ and Γ′ and forwards A the oracle’s
response. Note that DE is able to decrypt correctly in Step 4f as it sets the permuted vectors in
Step 4c.

Note that the differences between game H2 and the hybrid executions are in Steps 4d and 4f
(as defined in game H1). We conclude that these executions are computationally indistinguishable
via a reduction to the hardness of DDH similarly to the reduction presented above.

Efficiency. We present an analysis of our protocol and compare its efficiency to the generic
protocols of [17, 15] for secure two-party computation in the presence of malicious adversaries.
In [17], Jarecki and Shmatikov revisit the problem of constructing a protocol for securely computing
any two-party Boolean circuit and present a new variant of Yao’s protocol [5] on committed inputs
using a public-key scheme. The protocol however requires a common reference string (CRS) which
consists of a strong RSA modulus. To the best of our knowledge, there are currently no efficient
techniques for generating a shared strong RSA modulus without incorporating an external help.
In [15], the scheme uses binary cut-and-choose strategy, so it requires running s copies in parallel
of Yao’s protocol, where s is a statistical security parameter that must be large enough so that

2 ∗ 2
−s
17 is sufficiently small.

Note first that a circuit that computes FAUTO would require O(`Q logQ) gates. We note that
there is a circuit of size O(`Q) that computes a Q-state automaton over a binary input of size `,
but this circuit depends on the automaton, and therefore cannot be used in this context. Since we
want to preserve the secrecy of the automaton, we need a circuit that takes as input any Q-state
automaton and `-bit string, and computes the automaton on the input string. This accounts for
the extra logQ factor.

Thus, our protocol improves the computational complexity over the generic solution by a factor
of n logQ or logQ operations compared to [15] and [17] respectively.6 In comparison to [17, 15],
we have the following:

1. Rounds of communication: Our protocol runs O(`) rounds where ` is the length of the text.
This round complexity is inherent from the fact that the parties cannot initiate a new iteration
before completing the previous one. By applying known techniques, the round complexity
can be reduced into O(m) (i.e., the length of the pattern) by breaking the text into blocks of

6Although we are not presenting it here, our protocol works also when the input string is over a larger alphabet.
This would account for another |Σ| factor improvement where Σ is the size of the alphabet.

24

size 2`; see Section 4 for more details. We note that the length of the pattern is typically very
small, usually up to a constant. An additional improvement can be achieved if some leakage
is allowed. In particular, since the number of rounds are determined by the length of the
pattern, the text can be broken into smaller blocks and the output would be combined out of
these results. This means that additional information about the text is released, as now it is
possible to identify appearances in the text that correspond to substring of the input pattern.
Finally, we note that the round complexity of [17, 15] is constant.

2. Asymmetric computations: The overall number of exponentiations in protocol πVALIDAUTO,
including the zero-knowledge proofs is O(m · `). As for the analysis of the protocol of [15],
the number of such computations depends on the number of oblivious transfer executions,
which is bounded by max(4n, 8s) where n denotes the input’s size of P2, and the number of

commitments 2ns(s + 1), where s must be large enough so that 2 ∗ 2
−s
17 is sufficiently small.

Finally, the protocol of [17] requires O(|C|) such operations. However, after carefully exam-
ining these costs, it seems that the parties compute approximately 720 RSA exponentiations
per gate, where the number of gates is O(m · `). This is probably impractical. Furthermore,
the protocol of [17] also requires a security parameter, usually of size of at least 1024, since
it assumes the strong RSA assumption. Consequently, all the public-key operations are per-
formed over groups modulus this value (or higher, such as N2). In contrast, our protocol
uses the El Gamal encryption scheme which can be implemented over elliptic curve group,
typically, using only 160 bits for the key size.

3. Symmetric operations: We also consider the approximate number of symmetric computations
that are required for the computation of the protocol of [15] (these computations are required
due to the usage of a symmetric encryption scheme). Then their protocol requires O(s|C|+
s2 · n) such computations.

4. Bandwidth: Finally, we consider the communication complexity. In our protocol, the parties
send each other O(m · `) encryptions. The bandwidth of the protocol in [17] is similar (again,
with relatively high constants), whereas in [15] the bandwidth is O(s|C|+s2n) symmetric-key
encryptions. A recent paper by Pinkas et al. [16] showed that communication is the major
bottleneck when implementing the malicious protocol of [15].

Finally, we note that implementing a circuit that solves the basic pattern matching problem may be
significantly harder than implementing our protocol. We conclude the comparison by saying that
based on the above our protocol offers an alternative efficient solution for computing the automata
evaluation functionality.

Dealing with arbitrary size alphabet. Protocol πAUTO can be naturally extended for the case
arbitrary size alphabet by simply have P1 send a larger table with a row for each letter. The
rest of the protocol is naturally modified. Note that this will introduce a |Σ| overhead to the
communication and computation costs, where Σ is the alphabet.

25

3.2.2 A Zero-Knowledge Proof of Knowledge for RVALIDAUTO

In this section we present a zero-knowledge proof of knowledge for the relation RVALIDAUTO defined
by:

((
{Qi,j , ri,j}i,j

)
,
(
{ci,j}i,j , pk

))
7→


(λ, 1)

∀i, j ci,j = Epk(Qi,j ; ri,j) and
{Qi,j}i,j is a valid KMP automaton

(λ, 0) otherwise

where i ∈ {0, 1}, j ∈ {1, . . . , |Q|}. This proof is needed in Protocol πPM to ensure the validity of the
encrypted automaton that P1 sends. We remark that it is unnecessary for this proof to be a proof of
knowledge, as the knowledge extraction of the automaton can be performed within protocol πAUTO;
formally described in Section 4. Nevertheless, for the sake of modularity we consider this property
here as well. Our proof is modular with the zero-knowledge proof for the following language,

LNZ = {(G, g, q, h, h1, h2) | ∃ (m 6= 0, r) s.t. α = gr, β = hrgm}

An efficient proof πNZ can be found in [21].
Essentially, this proof is focused on showing the automaton corresponds to a valid string p =

p1, . . . , p|Q|−1 and is computed correctly according to table Υ; formally defined in Section 3.2. That
is, for every prefix p1, . . . , pj of p the prover proves that there exists an index i ∈ {0, 1} in which
the encryption ci,j corresponds to the table value Υ(j + 1). Recalling that the proof must not leak
any information about p, these checks must be performed obliviously of the prefix. We therefore
conduct a brute force search on the matched prefix of every suffix in which ultimately, the verifier
accepts only if the conditions for RVALIDAUTO are met. For simplicity, our proof is not optimized; see
below for further discussion. We now continue with the formal description of our proof πVALIDAUTO

and its proof of security,

Protocol 2 (zero-knowledge proof of knowledge πVALIDAUTO for RVALIDAUTO):

• Joint statement: A public-key pk and a collection {ci,j}i,j of |Q| sets, each set is of size 2 which
corresponds to a row in the transition matrix ∆.

• Auxiliary input for the prover: A collection {Qi,j , ri,j}i,j of Q sets, each set is of size 2, such
that ci,j = Epk(Qi,j ; ri,j) for all i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.

• Auxiliary inputs for both: A prime p such that p − 1 = 2q for a prime q, the description of a
group G of order q for which the DDH assumption holds, and a generator g of G.

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort
if an invalid ciphertext is received. Unless written differently, i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.

• Notation: We use non-standard notation and write Epk(m) (instead of Epk(gm)) for the encryption
of gm. Using this notation, the El Gamal encryption scheme is additively homomorphic. We note,
however, that using our notation the result of decrypting Epk(m) is gm, i.e., Dsk (Epk(m)) = gm.

• The protocol:

1. For every ci,j = 〈αi,j , βi,j〉, the prover P proves the knowledge of logg αi,j using πDL.

2. For every row ∆j = {cj,0, cj,1}|Q|j=1 in the transition matrix P proves the following:

(a) It first randomly permutes cj,0 and cj,1 and employs πPERM to prove its computations.

26

(b) It proves that there exists b ∈ {0, 1} in which cj,b = Epk(j+1) by proving that (pk, cj,b/Epk(j+
1)) is a Diffie-Hellman tuple.7

(c) P proves the correctness of cj,1−b in two steps: It first proves that it corresponds to a valid
prefix of p〈j−1〉, then it proves the maximality of this prefix (recall that p〈r〉 denotes the rth
length prefix p1, . . . , pr of p).

i. Let |Q| − 1 = m, then the verifier V chooses m random elements uα ←R Zq and sends
{uα}α to P . Next, both parties use the homomorphic properties of the encryption scheme

to compute an encryption vα′,α′′ = Epk(
∑α′′

k=α′ uk · pk) for all α′, α′′ ∈ {1, . . . ,m} with
α′ < α′′. (This set of encryptions is computed once).

ii. Proving the existence of a prefix that matches a suffix of p〈j−1〉: For all 1 ≤
k ≤ j − 1 the parties compute an encryption v′k = (vj−k,j−1

/
v1,k) · (cj,1−b/gk).

P then proves that there exists k for which v′k is a Diffie-Hellman tuple.8 (That is, P
proves that there exists an encryption that corresponds to a zero encryption. The parties
set v′0 = cj,1−b when there is no matching prefix for any suffix of p〈j−1〉 which means
cj,1−b denotes the encryption of the initial state q0.)

iii. Proving that p〈Dsk(cj,b)〉 corresponds to the longest suffix of p〈j−1〉:
Next P proves that there does not exist an index Dsk(cj,1−b) < γ ≤ j − 1 in which
vj−γ,j−1

/
v1,γ = 0 yet cj,1−b/g

γ 6= 0, as this would imply that there exists a larger string
p〈γ〉 that matches a suffix of p〈j−1〉 yet, Dsk(cj,1−b) 6= γ.

– Therefore, for every 1 ≤ k ≤ j − 2 and 2 ≤ k′ ≤ j − 1 the parties compute an
encryption ek,k′ = v′k · (vj−k′,j−1

/
v1,k′) for which P then proves that ek,k′ is not an

encryption of zero using πNZ.

3. If all the proofs are successfully completed, V outputs 1. Otherwise it outputs 0.

Theorem 9 Assume that πDL, πPERM, πDDH and πNZ are as described above and that (G,E,D) is
the semantically secure El Gamal encryption scheme. Then πVALIDAUTO is a computational zero-
knowledge proof of knowledge for RVALIDAUTO with perfect completeness.

Efficiency. Note first that the round complexity of πVALIDAUTO is constant, as the zero-knowledge
proofs can be implemented in constant rounds and run in parallel. As for the number of asym-
metric computations, we note that an optimized construction achieves computation cost of O(m2)
operations. Informally, this is due to the fact that there are m2 distinct encryptions in the set
{vα′,α′′}α′,α′′ . Furthermore, the multiplications computed in Step 2(c)iii can be computed “on
the fly” when the above set is being computed. Thus, we conclude that the overall number of
exponentiations is O(m2).

Proof: We first show perfect completeness. This is derived from the fact that we conduct a brute
force search for the matched prefix of every suffix.

Zero knowledge Let V ∗ be an arbitrary probabilistic polynomial-time strategy for V . Then a
simulator SVALIDAUTO for this proof can be constructed using the simulators SDL, SPERM, SDDH and
SNZ from the corresponding proofs of πDL, πPERM, πDDH and πNZ. That is, SVALIDAUTO invokes V ∗

and plays the role of the honest prover, except that in every zero-knowledge invocation it invokes

7We assume that the parties agree on an encryption of j + 1, including its randomness.
8This proof is a simple extension of the standard proof for RDDH using a general technique. In particular, the

prover separates the challenge it is given by the verifier c into two values; c1 and c2 such that c = c1 ⊕ c2. Assume
w.l.o.g. that it does not have a witness for the first statement, then it always chooses c1 in which it knows how to
complete the proof (similarly to what the simulator for πDDH does), and uses its witness for the other statement to
complete the second proof on a giving challenge c2. Note that the verifier cannot distinguish whether the prover
knows the first or the second witness. See [22] for more details.

27

the appropriate simulator. The executions are computationally indistinguishable via standard
reductions to the security of the zero-knowledge proofs.

Knowledge extraction It remains to show the existence of a knowledge extractor K. Let P ∗x,ζ,ρ
be an arbitrary prover machine where x = ({ci,j}i,j , pk), ζ is an auxiliary input and ρ is P ∗’s
random tape. Basically, the extractor K extracts P∗’s input from the zero-knowledge proof πDL at
the beginning of the protocol. In particular for all i, j, P ∗ proves the knowledge of the randomness
ri,j used for the computation of the ciphertext ci,j . This, in turn, enables K to recover the plaintext
Qi,j as well. It then continues playing the role of the honest verifier and aborts the execution if the
honest verifier does. The fact that we perform a brute force search, combined with the fact that
the randomness {uα}α incorporated by the verifier preclude the event in which equality does not
hold yet the sum of the encryptions amount to the same value.

4 Text Search Protocol with Simulation Based Security

In this section we present our complete and main construction for securely evaluating the pattern
matching functionality FPM defined by

(p, (T,m)) 7→
{

({i | Ti = p}, λ) if |p| = m
({i | Ti = p1 . . . pm}, λ) otherwise

Recall that our construction is presented in the malicious setting with full simulatability and is
modular in the sub-protocols πAUTO and πVALIDAUTO. Having described the sub-protocols incorpo-
rated in the our scheme we are now ready to describe it formally. Our protocol is comprised out
of two main phases: (i) the parties first engage in an execution of πVALIDAUTO for which P1 proves
that it indeed sent a valid KMP automaton (ii) followed by an execution of πAUTO which in an
evaluation of Γ on P2’s private input.

In order to reduce the round complexity of the protocol, long texts are partitioned into 2m pieces
and are handled separately so that the KMP algorithm is employed on each block independently
(thus all these executions can be run in parallel). That is, let T = t1, . . . , t` then the text is
partitioned into the blocks (t1, . . . , t2m), (tm, . . . , t3m), (t2m, . . . , t4m) and so on, such that every two
consecutive blocks overlap in m bits. This ensures that all the matches will be found. Therefore,
the total number of blocks is `/m.

Details follow,

Protocol πPM

• Inputs: The input of P1 is a binary pattern p = p1, . . . , pm, and the input of P2 is a binary string
T = t1, . . . , t`.

• Auxiliary Inputs: the security parameter 1n, and the input sizes ` and m.

• The protocol:

1. P1 constructs its automaton Γ = (Q,Σ,∆, q0, F) according to the KMP specifications based on
its input p and sends P2 encryptions of the transition matrix ∆ and the accepting states, denoted
by E∆ and EF , respectively (recall that by our conventions q0 = 0, Σ = {0, 1}, Q = [0, . . . ,m],
and F = {qm}).

2. The parties engage in an execution of the zero-knowledge proof πVALIDAUTO for which P1 proves
that Γ was constructed correctly. That is, P1 proves that the set E∆ corresponds to a valid KMP
automaton for a well defined input string of length m. If P2’s output from this execution is 1
the parties continue to the next step. Otherwise P2 aborts.

28

3. P2 sends an encryption of T to P1 and the parties partition T into `/m blocks of length 2m in
which every two consecutive blocks overlap in m bits.

4. The parties engage in `/m parallel executions of πAUTO on these blocks.9 For every 1 ≤ i ≤
`/m, let {outputij}

m+1
j=1 denotes the set of P1’s outputs from the ith execution. Then P1 returns

{j | outputij = ‘‘accept′′}.

Theorem 10 Assume that πAUTO and πVALIDAUTO are as described above and that (G,E,D) is the
semantically secure El Gamal encryption scheme. Then πPM securely computes FPM in the presence
of malicious adversaries.

The security proof for πPM is a combination of the proofs described for for πAUTO and πVALIDAUTO

and is therefore omitted here.

Efficiency. Since the costs are dominated by the costs of πVALIDAUTO, we refer the reader to the
detailed analysis presented in Section 3.2.1. The overall costs are amount to O(m·`+m2) = O(m·`)
since in most cases m << `.

References

[1] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of
Cryptology, 13:2000, 1998.

[2] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of
immoral majority. In CRYPTO 90’: Proceedings of the 10th Annual International Cryptology
Conference on Advances in Cryptology, pages 77–93, London, UK, 1990. Springer-Verlag.

[3] Donald Beaver. Foundations of secure interactive computing. In CRYPTO 91’: Proceedings
of the 11th Annual International Cryptology Conference on Advances in Cryptology, pages
377–391, London, UK, 1991. Springer-Verlag.

[4] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO 91’: Pro-
ceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology,
pages 392–404, 1991. This is preliminary version of unpublished 1992 manuscript.

[5] Andrew Chi-Chih Yao. How to generate and exchange secrets. In SFCS 86’: Proceedings of the
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Washington,
DC, USA, 1986. IEEE Computer Society.

[6] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC 87’:
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 218–
229, New York, NY, USA, 1987. ACM.

[7] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, New York, NY, USA, 2004.

[8] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

9The parties run a slightly modified version of πAUTO where they carry out Step 5 for verifying acceptance m+ 1
times. This is due to the fact that each block potentially contains m + 1 matches. This step can be executed in
parallel for all block locations.

29

[9] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In TCC 07’:
Forth Theory of Cryptography Conference, volume 4392 of Lecture Notes in Computer Science,
pages 575–594. Springer-Verlag, 2007.

[10] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In Ran Canetti, editor, TCC 08’: Fifth
Theory of Cryptography Conference, volume 4948 of Lecture Notes in Computer Science, pages
155–175. Springer-Verlag, 2008.

[11] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[12] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In CRYPTO 85’: Proceedings of the 11th Annual International Cryptology Conference
on Advances in Cryptology, pages 10–18, New York, NY, USA, 1985. Springer-Verlag.

[13] Stanislaw Jarecki and Liu Xiaomin. Efficient oblivious pseudorandom function with applica-
tions to adaptive ot and secure computation of set intersection. In TCC 09’: Sixth Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Science. Springer-Verlag,
2009.

[14] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy preserving
error resilient dna searching through oblivious automata. In CCS 07’: Proceedings of the 14th
ACM conference on Computer and communications security, pages 519–528, New York, NY,
USA, 2007. ACM.

[15] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT 07’: Proceedings of the 26th annual
international conference on Advances in Cryptology, pages 52–78, Berlin, Heidelberg, 2007.
Springer-Verlag.

[16] Schneider Thomas Smart Nigel P. Pinkas, Benny and Stephen C. Williams. Secure two-party
computation is practical. In ASIACRYPT 09’, pages 250–267, Tokyo, Japan, 2009. Springer-
Verlag.

[17] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed
inputs. In EUROCRYPT 07’: Proceedings of the 26th annual international conference on
Advances in Cryptology, pages 97–114, Berlin, Heidelberg, 2007. Springer-Verlag.

[18] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
STOC ’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pages 364–369, New York, NY, USA, 1986. ACM.

[19] Claus P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO 89’:
Proceedings on Advances in cryptology, pages 239–252, New York, NY, USA, 1989. Springer-
Verlag New York, Inc.

[20] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO 92’:
Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryptol-
ogy, pages 89–105, London, UK, 1992. Springer-Verlag.

30

[21] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adver-
saries, 2010.

[22] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO ’94: Proceedings of the 14th Annual
International Cryptology Conference on Advances in Cryptology, pages 174–187, London, UK,
1994. Springer-Verlag.

[23] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle.
In Nigel P. Smart, editor, EUROCRYPT 08’: Proceedings of the 27th annual international
conference on Advances in Cryptology, volume 4965 of Lecture Notes in Computer Science,
pages 379–396. Springer, 2008.

[24] Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertexts. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 07’: 10th International Conference on Practice and Theory in
Public-Key Cryptography, volume 4450 of Lecture Notes in Computer Science, pages 377–392.
Springer, 2007.

[25] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

[26] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor oracle: A new structure
for pattern matching. In SOFSEM ’99: Proceedings of the 26th Conference on Current Trends
in Theory and Practice of Informatics on Theory and Practice of Informatics, pages 295–310,
London, UK, 1999. Springer-Verlag.

[27] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1):2, 2007.

[28] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[29] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

[30] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
mismatches. In SODA 00’, pages 794–803, San Francisco, California, USA, 2000.

[31] M. Sohel Rahman and Costas S. Iliopoulos. Pattern matching algorithms with don’t cares. In
SOFSEM 07’, pages 116–126, 2007.

31

