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like bent functions.
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1. Introduction

A number of research works in symmetric cryptography are devoted to problems
of resistance of various ciphering algorithms to the fast correlation attacks (on
stream ciphers) and the linear cryptanalysis (on block ciphers) and to the analysis
of various classes of approximating functions and constructions of functions with the
best resistance to such approximations. Some general classes of Boolean functions
play a central role with this respect: the class of bent functions [13], i.e., of Boolean
functions of an even number of variables that have the maximum possible Hamming
distance from the set of all affine functions (see for instance [4]), its subclasses of
homogeneous bent functions [12], hyper-bent functions [14], and generalizations of
the notion: semi-bent functions [5], Z-bent functions [8], negabent functions [11],
etc.

In this paper we investigate constructions of the so called semi-bent functions.
The term of semi-bent function has been introduced by Chee, Lee and Kim at
Asiacrypt’ 94. These functions have been previously investigated under the name
of 3-valued almost optimal Boolean functions in [2]. Also, they are particular
cases of the so-called plateaued functions [15]. Semi-bent functions are studied
in cryptography because, besides having low Hadamard transform which provides
protection against fast correlation attacks [10] and linear cryptanalysis [9], they
can possess desirable properties in addition to the propagation criterion and low
additive autocorrelation, such as resiliency and high algebraic degree.

The paper is organized as follows. In section 2, we fix our main notation and
recall the necessary background. Next, in section 3, we consider how to construct
semi-bent Boolean functions from bent functions.

2. Notation and preliminaries

For any set E, we will denote E \ {0} by E? and the cardinality of E by #E.
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• Boolean functions and polynomial forms:
Let n be a positive integer. A Boolean function f on F2n is an F2-valued function
over the Galois field F2n of order 2n (or over the vector space Fn

2 but in this pa-
per we shall always endow this vector space with the structure of field, thanks to
the choice of a basis of F2n over F2). The weight of f , denoted by wt(f), is the
Hamming weight of the image vector of f , that is, the cardinality of its support
Supp(f) := {x ∈ F2n | f(x) = 1}.
For any positive integer k, and for any r dividing k, the trace function from F2k to
F2r , denoted by Trk

r , is the mapping defined as: ∀x ∈ F2k , T rk
r (x) :=

∑ k
r−1
i=0 x2ir

.
In particular, the absolute trace over F2 is the function Trn

1 (x) =
∑n−1

i=0 x
2i

.

Recall that, for every integer r dividing k, the trace function Trk
r satisfies the

transitivity property, that is, Trk
1 = Trr

1 ◦ Trk
r .

Every non-zero Boolean function f defined over F2n has a (unique) trace expansion
of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2n−1)

called its polynomial form, where Γn is the set of integers obtained by choosing
one element in each cyclotomic coset of 2 modulo 2n − 1, o(j) is the size of the cy-
clotomic coset of 2 modulo 2n−1 containing j, aj ∈ F2o(j) and, ε = wt(f) modulo 2.

• Niho power functions:
Let n = 2m be an even integer. Recall that a positive integer d (always under-

stood modulo 2n−1) is said to be a Niho exponent, and xd is a Niho power function,
if the restriction of xd to F2m is linear or in other words d ≡ 2j (mod 2m − 1) for
some j < n. As we consider Trn

1 (xd), without loss of generality, we can assume that
d is in the normalized form, with j = 0, and then we have a unique representation
d = (2m − 1)s+ 1 with 2 ≤ s ≤ 2m.

• Walsh transform, bent, semi-bent and hyper-bent functions:
Let f be a Boolean function on F2n . Its “sign” function is the integer-valued
function χ(f) := (−1)f . The W alsh Hadamard transform of f is the discrete
Fourier transform of χf , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑

x∈F2n

(−1)f(x)+Trn
1 (ωx).

Bent functions [13] can be defined as follows:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if
χ̂f (ω) = ±2

n
2 , for all ω ∈ F2n .

Semi-bent functions [5, 6] can be defined as follows, for n even and for n odd:

Definition 2. Let n be an even integer. A Boolean function f : F2n → F2 is said
to be semi-bent if if χ̂f (ω) ∈ {0,±2

n+2
2 }, for all ω ∈ F2n .

Definition 3. Let n be an odd integer. A Boolean function f : F2n → F2 is said
to be semi-bent if if χ̂f (ω) ∈ {0,±2

n+1
2 }, for all ω ∈ F2n .
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Hyper-bent functions [14] have properties still stronger than bent functions.
More precisely, they can be defined as follows:

Definition 4. A Boolean function f : F2n → F2 (n even) is said to be hyper-bent
if the function x 7→ f(xi) is bent, for every integer i co-prime with 2n − 1.

• The Dillon Partial Spread classes:
The Partial Spread class PS , introduced in [7] by Dillon, is the set of all the sums
(modulo 2) of the indicators of 2

n
2−1 or 2

n
2−1+1 disjoint n

2 -dimensional subspaces of
F2n (disjoint meaning that any two of these spaces intersect in 0 only, and therefore
that their sum is direct and equals F2n). Dillon denotes by PS− (resp. PS+ ) the
class of those bent functions for which the number of n

2 -dimensional subspaces is
2

n
2−1 (resp. 2

n
2−1 + 1).

Dillon exhibits a subclass of PS−, denoted by PSap, whose elements are defined
in an explicit form:

Definition 5. Let n = 2m. The Partial Spread class PSap consists of all functions
f defined over F2n as follows: let g be a balanced Boolean function over F2m (ie.
wt(g) = 2m−1) such that g(0) = 0 (in fact this last condition is not necessary for f
to be bent). Define a Boolean function f from F2m × F2m to F2 as f(x, y) = g(x

y )
( i.e g(xy2m−2)) with x

y = 0 if y = 0.

All the bent functions from the PSap class defined by Dillon [7] are hyper-bent.
They are the functions or the complements of the functions defined over F2n and
whose supports have the form

⋃
u∈S uF?

2m where U is the set {u ∈ F2n | u2m+1 = 1}
and S is a subset of U of size 2m−1.

In the whole paper n = 2m is an (even) integer.

3. Construction of semi-bent functions

Recall [7] that a collection {Ei, i = 1, . . . , 2m + 1} of vector spaces of dimension
m such that:

(1) Ei ∩ Ej = {0} for every i and j,
(2)

⋃2m+1
i=1 Ei = F2n .

is called a spread.

Conjecture 1. We conjecture that, for every spread {Ei, i = 1, . . . , 2m + 1},
there exists a bent Boolean function h defined over F2n such that, for every i, the
restriction of h to Ei is linear.

In the next theorem, we show that the sum of a PSap function and of a bent
function whose restriction to any multiplicative coset of F∗2n is linear is semi-bent.
More generally:

Theorem 1. Let {Ei, i = 1, . . . , 2m + 1} be a spread in F2n and h a Boolean
function whose restriction to every Ei is linear. Let S be any subset of size 2m−1

of {1, . . . , 2m + 1}. Let g be the Boolean function defined over F2n whose support
is
⋃

s∈S E
?
s if #S = 2m−1 or

⋃
s∈S Es if #S = 2m−1 + 1 (note that g is necessarily

in the Partial Spread class PS). If h is bent, then g + h is semi-bent.

Obviously the result remains valid when replacing g by g + 1.
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Proof. Let us compute the Walsh transform of g + h,

∀c ∈ F2n , χ̂g+h(c) = 1 +
2m+1∑
i=1

∑
e∈E?

i

χ(g(e) + h(e) + Trn
1 (ce)).

since
⋃2m+1

i=1 E?
i = F?

2n and E?
i ∩ E?

j = ∅. The Boolean function g is constant on
each set E?

i . Let us denote by gi the value of g on E?
i . Furthermore, we denote by

hi the restriction of h to Ei. Thus

∀c ∈ F2n , χ̂g+h(c) = 1 +
2m+1∑
i=1

χ(gi)
∑

e∈E?
i

χ(hi(e) + Trn
1 (ce))

= 1−
2m+1∑
i=1

χ(gi) +
2m+1∑
i=1

χ(gi)
∑
e∈Ei

χ(hi(e) + Trn
1 (ce))

Now,
∑2m+1

i=1 χ(gi) = 2m + 1− 2#S = 1. Introduce the set I(c) = {i ∈ [1, . . . , 2m +
1] | ∀e ∈ Ei, hi(e) = Trn

1 (ce)}. Thus, since hi is linear on Ei, one has∑
e∈Ei

χ(hi(e) + Trn
1 (ce)) = 2m if i ∈ I(c) and 0 otherwise

Therefore
∀c ∈ F2n , χ̂g+h(c) = 2m

∑
i∈I(c)

χ(gi).

Now, let us compute the Walsh transform of h :

∀c ∈ F2n , χ̂h(c) =
∑

x∈F2n

χ(h(x) + Trn
1 (cx)) = 1 +

2m+1∑
i=1

∑
e∈E?

i

χ(hi(e) + Trn
1 (ce)).

that is,

χ̂h(c) = 1−(2m+1)+
2m+1∑
i=1

∑
e∈Ei

χ(hi(e)+Trn
1 (ce)) = −2m+2m#I(c) = 2m(#I(c)−1).

If h is bent, then we necessarily have that #I(c) ∈ {0, 2} (because one has χ̂h(c) ∈
{±2m}). The sum

∑
i∈I(c) χ(gi) takes thus its values in {0,±2} proving that g+ h

is semi-bent. �

Remark 1. Under the hypothesis of Theorem 1, if h is not bent but semi-bent then
g + h is bent. Indeed, we have then #I(c) ∈ {1, 3} (because one has χ̂h(c) ∈
{0,±2m+1} and 2m(#I(c) − 1) ≥ −2m). The sum

∑
i∈I(c) χ(gi) is then con-

gruent with 2m modulo 2m+1 proving that g + h is bent, according to Lemma
1 in [3]. But there can not exist a semi-bent function whose restriction to ev-
ery Ei is linear. Indeed, this function having non-negative Walsh transform as
we saw above, we would then have

∑
ω∈F2n

χ̂h(ω) = 2n and Parseval’s relation∑
ω∈F2n

χ̂h
2(ω) = 22n =

(∑
ω∈F2n

χ̂h(ω)
)2

would imply, since each χ̂h(ω) is non-
negative, that for every ω 6= ω′, we have χ̂h(ω)χ̂h(ω′) = 0 and therefore h would
be affine, a contradiction.

We apply now Theorem 1 to the spread {uF2m ; u ∈ U} where U is the multi-
plicative group {u ∈ F2n | u2m+1 = 1}.
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Corollary 2. Let h be a Boolean function whose expression is a sum of Niho power
monomials :

∀x ∈ F2n , h(x) =
L∑

i=1

Trn
1 (aix

di) + Trm
1 (a0x

2m+1)

where di = (2m − 1)si + 1, 2 ≤ si ≤ 2m with si 6= 2m−1 + 1 (in fact, o(di) = m if
si = 2m−1 + 1 and n orherwise), a0 ∈ F2m , ai ∈ F2n for i ∈ {1, · · · , L}. Assume
that h is bent. Let g be any PSap function. Then, g + h is semi-bent.

Proof. Without loss of generality, we assume that the support of g is
⋃

u∈S uF2m

where S is a subset of U of size 2m−1. Since all the exponents in h are Niho power
exponents, the restriction of h to any vector space uF2m is linear. Hence Corollary
2 is a direct consequence of Theorem 1. �

The bivariate version of the spread {uF2m ; u ∈ U} is the spread {Ea ; a ∈
F2m}∪{E′} where Ea = {(au, u), u ∈ F2m} and E′ := {(u, 0), u ∈ F2m} = F2m×{0}:
F2n being identified with F2m × F2m thanks to the choice of a basis (1, w) of F2n

over F2m . It can be directly checked that the Ea’s and E′ are indeed vector spaces
of dimension m, and we have Ea ∩ Eb = {0} for every pair (a, b) such that a 6= b
and E′ ∩ Ea = {0} for every a ∈ F2m . Note that any function g in the PSap class
can be viewed as the indicator of 2m−1 or 2m−1 + 1 of these vector spaces.

Corollary 3. Let g be a function in the PSap class. Let i be any integer co-prime
with m and h(x, y) = Trm

1 (xy2i−1). Then the function g + h is semi-bent.

Indeed, h belongs to the Maiorana-McFarland class of bent functions since the
function y2i−1 is a permutation of F2m , the restriction of h to Ea is linear for every
a and its restriction to E′ is null.

Remark 2. According to [1, Theorem 6], the permutations y2i−1 are the only per-
mutations π such that xπ(x) is linear.

Open problem:
Do there exist spreads which are not linearly equivalent to the spaces uF2m (used
in Corollary 2)?
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