
Constant Round Non-Malleable Protocols using One Way
Functions

Vipul Goyal
Microsoft Research, India

Email: vipul@microsoft.com

1 Introduction

Since the work of Dolev, Dwork and Naor [DDN91], obtaining non-malleable protocols with small round
complexity has been an important goal. The first constant round constructions of non-malleable commit-
ments and zero-knowledge were given in the breakthrough work of Barak [Bar02] (building in turn on the
techniques from [Bar01]). An improved construction was later obtained by Pass and Rosen [PR05b]. These
construction require making use of so called non-black-box techniques which in turn build on expensive
machinery like the PCP theorem. Since then, non-malleable commitments (and zero-knowledge) have been
obtained based on sub-exponential or non-standard assumptions in constant rounds [PPV08, PW10] or un-
der one way functions but in super constant number of rounds [LP09, Wee10]. To date there are no known
constructions of constant round non-malleable commitments or zero-knowledge using black-box simulation
under any standard polynomial time hardness assumption.

We resolve this open question in this work and provide constant round constructions for both non-
malleable commitments as well zero-knowledge using only one way functions. Our first construction
for non-malleable commitment schemes makes use of the one-way function in a non-black-box way and
achieves the strong notion of non-malleability w.r.t. commitment. This construction can be easily modified
to obtain a construction satisfying non-malleability w.r.t. opening while making only a black-box use of the
one-way function. Our construction and the proof of security is relatively short and simple. Our primary
technique is to have different “levels” of non-malleability in the left and right interaction by means of paral-
lel repetition. A very rough intuition is as follows. Consider a man-in-the-middle adversaryM . In the right
interaction,M is required commit to and then answer a “large” number of randomly generated “puzzles”.
However in the left interaction,M is getting a commitment and then an answer to only a “small” number of
random puzzles. Thus, it must follow that in the right interaction,M must be able to compute the answer to
a relatively large number of puzzles on its own (without any help from the left interaction). Our techniques
involve the analysis of a basic protocol block which is used naturally in the design of larger cryptographic
protocols; hence we believe that our techniques are of independent interest and might be useful elsewhere.
More details about our construction and the intuition can be found in section 3.

2 Preliminaries

We roughly follow the Lin et al [LPV08] definition of non-malleable commitments. In the real interaction,
there is a man-in-the-middle adversaryM interacting with a committer C (such that the value C is commit-
ting to is ν) in the left session and interacting with a receiver R in the right session. Let mimM

〈C,R〉(v, z)
denote a random variable that describes the value ν̃ theM commits to the right execution and the view of
M in the full experiment.

1

In the simulated experiment, a simulator S directly interacts with R . Let simS
〈C,R〉(1

k, z) denote the
random variable describing the value ν̃ committed to by S and the output view of S .

If the tag tag for the left interaction is equal to the tag ˜tag for the right interaction, the value ν̃ committed
to in the right interaction is defined to be ⊥ in both experiments.

Definition 1 (Non-Malleable Commitments) [LPV08] A commitment scheme 〈C,R〉 is said to be non-
malleable if for every PPT man-in-the-middle adversaryM , there exists a EPPT simulator S such that the
following ensembles are computationally indistinguishable:

{mimM
〈C,R〉(v, z)}ν∈{0,1}k,k∈N,z∈{0,1}∗

{simS
〈C,R〉(1

k, z)}ν∈{0,1}k,k∈N,z∈{0,1}∗

We also define the notion of one sided non-malleable commitments where we only consider interactions
where the tag tag for the left interaction is smaller than the tag ˜tag for the right interaction (if tag ≥ ˜tag ,
the value ν̃ committed to in the right interaction is defined to be ⊥ in both experiments).

Building Blocks. We shall make use of Naor’s statistically binding commitment scheme and denote it by
comσ. In addition, we shall make use of a constant round (computational) zero-knowledge argument based
on any OWF. We denote such a protocol by ZK . Let k be the security parameter.

3 Construction of Non-Malleable Commitments

3.1 Basic Construction

In this section, we describe our basic protocol for “small” tags with one sided non-malleability. They can be
extended to the general case by relying on techniques from [PR05b, PR05a]. We assume that each execution
has a tag tag ∈ [2n]. Denote by ` the value k · tag . Let comσ(m) denote a commitment to the message m
with the first message σ under the statistically binding commitment scheme of Naor. Whenever we need to
be explicit about the randomness used to generate the commitment, we denote it as comσ(m; r) where r is
the said randomness.

The commitment scheme 〈C,R〉 between a committer C trying to commit to ν and a receiverR proceeds
as follows.

Commitment Phase.

0. Initialization Message. The receiverR generates the first message σ of the Naor commitment scheme
and sends it to C .

Primary Slot

1. The committer C generates ` pairs of random strings {α0
i , α

1
i }i∈[`] (with length of each string de-

termined by the security parameter). C further generates commitments of these strings {A0
i =

comσ(α
0
i), A

1
i = comσ(α

1
i)}i∈[`] and sends them to R (C uses fresh randomness to generate each

commitment).

2. The receiverR generates and sends to C a random `-bit challenge string ch = (ch1, . . . , ch`).

3. The committer C sends to R the values αch11 , . . . , αch`` . Note that C does not send the openings
associated with the corresponding commitments.

2

4. Verification Message. Define ` strings {αi}i∈[`] such that αi = α0
i ⊕ α1

i for all i ∈ [`]. C generates `
commitments Bi = comσ(ν;αi) for i ∈ [`] and sends them to R . (That is, randomness αi is used to
generate the i-th commitment to ν).

5. Consistency Proof. The committer C and the receiver R now engage in a zero-knowledge argument
protocol ZK where C proves toR that the above commit phase is “valid”. That is, there exist values
ν̂, {α̂i, α̂0

i , α̂
1
i }i∈[`] such that for all i:

• α̂0
i ⊕ α̂1

i = α̂i, and,

• commitments A0
i and A1

i are valid commitments to the strings α̂0
i and α̂1

i respectively under
some random tape, and,

• commitment Bi is a valid commitment to ν̂ under the random tape α̂i.

Decommitment Phase. The committer C simply reveals the committed value ν and the randomness used
in the commitment phase. The receiverR checks if the commitment phase was run honestly using the above
randomness (including making sure its a “valid” commit phase). If so,R takes the value committed to be ν
and ⊥ otherwise.

Lemma 1 The commitment scheme 〈C,R〉 is computationally hiding and statistically binding (in the stand
alone setting).

The proof is this lemma is straightforward and we only provide a sketch. To prove computational hiding,
we consider the following hybrid experiments. We first start simulating the protocol ZK in the final step of
the commitment phase. Next, for each i ∈ [`], we replace the commitments {A0

i , A
1
i } to be commitments

to random strings (as opposed to shares of the string αi used later as randomness to generate Bi). Finally,
for each i ∈ [`], we change the commitment Bi to be a commitment to a random string (as opposed to a
commitment to ν). Hence in the final hybrid, the transcript of the commitment stage contains no information
about the value ν being committed to. Statistical binding follows from the statistical binding property of the
commitment scheme com.

Theorem 1 The commitment scheme 〈C,R〉 is a one sided non-malleable commitment scheme against a
synchronizing adversary.

PROOF. To prove the above theorem, we construct a standalone machine S such that the ensem-
bles {mimM

〈C,R〉(v, z)}ν∈{0,1}k,k∈N,z∈{0,1}∗ and {simS
〈C,R〉(1

k, z)}ν∈{0,1}k,k∈N,z∈{0,1}∗ (call these dist1
and dist2 respectively) are computationally indistinguishable. Our S works as follows. It starts an in-
teraction withM by simply honestly committing to the value 0 in the left interaction and relaying messages
betweenM andR in the right interaction. We claim that such a machine S satisfies the required property.

Towards contraction, assume that there exists a distinguisherD which can distinguish between these two
distribution with an advantage at least r(k) ≥ 1

poly(k) for infinitely many value of k. That is, Pr[D(dist1) =
1] ≥ 1

2 + r(k), or in other words,

Pr[D(dist1) = 1]− Pr[D(dist2) = 1] ≥ 2r(k) (1)

Fix any such generic k. Now consider the real experiment in which the adversary M interacts with
a committer C in the left interaction and with a receiver R in the right one. We shall now show how to
construct an extractor E which takes as input the view ofM in such an experiment and outputs the value
ν̃ committed by M in the right interaction with probability at least 1 − r(k) without rewinding C (i.e.,
having access to the value and the random coins used by C in the left interaction). It is easy to show that

3

this violates the (standalone) computational hiding of the commitment scheme 〈C,R〉 . This is because
by equation 1, the value ν̃ committed by M on the right in the real experiment is distinguishable with
noticeable probability from when the value 0 is being committed to in the left interaction even conditioned
on the extractor succeeding in outputting ν̃ . Thus, all that remains to show is an extractor that succeeds
with probability at least 1 − r(k). For simplicity, the analysis of our extractor is conditioned on the event
that given the completed main thread, there is exactly one value ν̃ (6= ⊥) consistent with the transcript of
the right interaction. By the soundness of the protocol ZK , the failure probability of the extractor increases
by at most an additive negligible term in the general case. We assume that the adversaryM is deterministic
without loss of generality.

Extractor Description and Analysis Let `(k) = k · tag and ˜̀(k) = k · ˜tag . Observe that ˜̀(k) −
`(k) ≥ k. Throughout the description below, we denote the messages of the left execution as in the above
protocol description; the notation in the right execution is augmented with “tildes” (e.g., Abi would refer to
a commitment on the left while Ãbi denotes a commitment in the right interaction).

The extractor E works as follows. It gets as input a transcript of the honestly executed left and right
interactions; we refer to this collective interaction transcript as the “main thread”. IfM aborts before the
main thread was complete, E does not need to extract and simply halts1. Otherwise, E rewinds M up to
k ˜̀(k)
r(k)3

. For j ∈ [k
˜̀(k)
r(k)3

], do the following.

• E rewinds the right interaction to the beginning of the step 2 of the protocol. It generates a new random
challenge c̃h[j] ∈ {0, 1}˜̀(k), sends it toM and receives the challenge ch[j] ∈ {0, 1}`(k) for the left
interaction fromM .

• E now prepares a response to the challenge ch[j] on its own since it is not allowed to rewind the
committer C and make additional queries. Consider the set of commitments on the left already “re-
covered” in the main thread (i.e., the ` commitments Abi such that their value was asked byM and
given by C in the main thread itself). Now, the challenge ch[j] induces a selection of ` commitments
on the left. Consider any such selected commitment Abi . If its value was recovered in the main thread,
E uses that value to prepare the response. Otherwise, E simply chooses a random string and uses that
in the response in place of its value. Such a simulated response is sent toM .

• E receives the response corresponding to c̃h[j] fromM in the right interaction. If there is an index i
s.t. α̃0

i ⊕ α̃1
i (where one of (α̃0

i , α̃
1
i) was recovered during the main thread while the other received as

part of the current response in rewinding j) allows for opening of the commitment B̃i, E recovers the
committed value ν̃ from B̃i. If not, E goes to the beginning of this loop.

If at the end of k
˜̀(k)
r(k)3

rewindings, E still was not successful in outputting the value ν̃ (due toM aborting
or not revealing the correct values for the commitments), it aborts and outputs Ext Fail . The fact that E
runs in probabilistic polynomial time is straightforward to prove since r(k) ≥ 1

poly(k) . We now analyze the
probability of E outputting Ext Fail .

Lemma 2 The probability that the extractor E outputs Ext Fail is bounded by r(k) for large enough k.

PROOF. We first establish three different categories of the main thread (each satisfying a different
property) for which the probability (over the random coins used in the rewinds) of E outputting Ext Fail
is noticeable. We will call them “bad” main threads. Keep in mind that E never output Ext Fail for main

1If in an interaction, the parties C or R terminate the protocol due to an obvious cheating by M , we also consider it as M
aborting.

4

threads which are incomplete (i.e., in whichM already aborted). We define a prefix of the main thread as
the transcript of the steps 0 and 1 of the left and the right interaction (i.e., up to the stage whereM is waiting
for a challenge from the right). For a particular prefix, let p denote the probability that M completes the
real experiment without aborting (i.e., the probability is taken over the random coins used by C and R after
step 1 of the interaction).

It is convenient to introduce the notion of a fraction of main threads. By the fraction of main threads
with a particular property being f , we mean the probability that E receives a completed main thread with
that property is f (over the random coins of the entire experiment). We choose three arbitrary constants
C1, C2, C3 such that 1

C1
+ 1

C2
+ 1

C3
≤ 3

4 . Note that these constants could in fact be the same and arbitrarily
big. However we choose to use three constants for the sake of making the connections between the different
parts of proof more clear.

Lemma 3 The fraction of main threads for which p < r(k)
C1

is bounded by r(k)
C1

. We call these threads as
main threads of type bad1.

PROOF. The proof of this lemma is straight forward. Pr[main thread is of type bad1] ≤ Pr[main thread has
a prefix with p < r(k)

C1
]·Pr[main thread is completed | p < r(k)

C1
] ≤ 1 · r(k)C1

Now for a given main thread, we define the dependent set of commitment S as the following subset of
commitments in the right interaction. Intuitively, the dependent set of commitments can be thought of as the
commitments in the right interaction which were constructed by mauling one of the commitment from the
unrecovered set of commitments in the left interaction (and hence, to reveal their value correctly with “good”
probability,M has to get the correct value from a commitment in the unrecovered set of commitments).

Definition 2 (Dependent Set of Commitments) S is the dependent set of commitments of a main thread
iff the following two conditions are satisfied. Denote by ch the challenge by M in the left interaction in
this main thread. The probabilities below are over the random coins of the experiment after the prefix
completion.

1. For every commitment Ãbi in S, the probability that the commitment is selected byR AND its value is
revealed correctly byM is at least r(k)3C1

(for this prefix).

2. The probability that the commitment Ãbi is selected byR AND its value is revealed correctly byM on
the right is less than r(k)

2C2
˜̀(k)

conditioned on the event that the challenge byM in the left interaction
is ch.

Observe that the first probability in the above definition is dependent only on what the prefix in the main
thread is, while, the second one depends on the prefix as well as what the left challenge ch appearing in the
main thread is. Both these probabilities values are well defined for a given main thread. Let |S| denote the
number of commitments in the set S.

Lemma 4 |S| > `+ log2 k for at most a r(k)
C2

+ negl(k) fraction of the main threads. Call these threads as
main threads of type bad2.

5

Intuition. The above lemma constitutes the “core of the intuition” regarding why the protocol (and the
extractor) works. To understand this lemma, consider the following “explicit” attack by the adversary.
Each commitment on the right is “dependent” on a set (or possibly just one) of commitments on the left.
This means that the commitment on the right was constructed byM by mauling this set of commitments
on the left. The probability that a correct value is revealed by M for this commitment on the right is
“negligible” if all of these left commitment values are not asked by M (and is “noticeable” otherwise)2.
Now lets look at commitments in the unrecovered set on the left in the main thread. Could it be that a
large number of commitments on the right are “dependent” on the commitments in the unrecovered set?.
A simple combinatorial argument shows that this cannot be the case. To start with, observe that if a large
number of commitments on the right are dependent on a particular commitment on the left, with high
probability, that commitment has to be selected by M in the main thread (and hence it will not be in the
unrecovered set). On the other hand, if only a small number of commitments on the right are dependent on
a particular commitment on the left, overall the number of commitments dependent on the commitments in
the unrecovered set may remain “small”.

PROOF. For a given prefix, consider a set S for a challenge ch such that |S| > `+ log2 k. Now consider
the random challenge c̃h given by R in the right interaction. Probability (over choice of c̃h) that the set of
commitments selected by c̃h and the set S are disjoint is at most 1

2`+log2 k
. In more detail, this probability is

either 0 or 1
2|S|

; 0 when S has a pair of “conflicting” commitments (Ã0
i , Ã

1
i) and 1

2|S|
otherwise since each

commitment in S is selected independently with probability 1
2 .

Now note that there are at most 2` possibilities for such a set S depending upon the choice of challenge
ch ∈ {0, 1}`. Taking the union bound over all such sets, we get that the probability that the set of commit-
ments selected by c̃h is disjoint with any such set S (with |S| > `+ log2 k) is at most 2`

2`+log2 k
= negl(k).

Next observe that by the second condition of the definition 2, the probability that for some Ãbi ∈ S,M
revealed the correct value in the right interaction in the main thread is bounded by r(k)

C2
(by a union bound

over all Ãbi ∈ S given that |S| cannot exceed 2˜̀(k)). Now we have the following:
Pr[main thread is of type bad2] ≤ Pr[c̃h does not select any commitment in S] + Pr[main thread is

completed | c̃h selects a commitment in S]
Pr[main thread is of type bad2] ≤ negl(k) + Pr[∃Ãbi ∈ S s.t. M revealed the correct value of Ãbi in

main thread]
Hence, the fraction of main threads of type bad2 is bounded by r(k)

C2
+ negl(k)

Looking ahead, the intuition for the rest of the proof should be clear. This lemma shows that there are at
most `+log2 k commitments on the right which are “dependent” on the left commitments whose value E did
not recover in the main thread. However the total number of commitments on the right is 2· ˜̀> 2(`+log2 k)
(since ˜tag > tag). Hence, there should exists at least one pair of commitments on the right such thatM can
correctly compute both the committed values (without asking for values unrecovered in the main thread).
If that is the case, E is successful is extracting the value ν̃ committed on the right without any “additional
queries” on the left.

Definition 3 (Strictly Dependent Set of Commitments) G is the strictly dependent set of commitments
for a main thread iff the following two conditions are satisfied.

1. For every commitment Ãbi in G, the probability that the commitment is selected byR AND its value is
revealed correctly byM is at least r(k)3C1

(for this prefix).

2We are abusing the terms negligible and noticeable for the purpose of this intuition.

6

2. The probability that the commitment Ãbi is selected by E in a rewinding AND its value is revealed

correctly byM on the right is less than r(k)3

50˜̀(k)2C1C2C3
(i.e., the probability in the experiment where

M gets random strings in places of left commitment values unrecovered in the main thread).

Observe that the first probability in the above definition is dependent only on what the prefix in the main
thread is, while, the second one depends on the prefix as well as the left challenge ch appearing in the main
thread. We now prove the following lemma.

Lemma 5 G 6⊆ S for at most r(k)C3
fraction of the main threads. Call these threads as main threads of type

bad3.

Intuition. Continuing the intuition from the last lemma, consider now the following scenario. The adver-
saryM somehow is able to use two (or more) commitments on the left to construct a commitment on the
right such that the following happens. TheM asks for exactly one of these two values in the left interaction
(as part of its challenge ch). IfM gets access to any one of these two values, it is able to correctly reveal
the value of the commitment on the right with noticeable probability. However, if the value asked on the
left is provided at random,M correctly reveals the value on the right with only negligible probability. We
show that such a scenario contradicts the hiding property of the commitment scheme. Getting the intuition
closer to the statement we prove in the lemma, suppose there is a commitment on the right which is correctly
revealed with noticeable probability in the presence of correct values from the unrecovered set of commit-
ment as well as in the absence of values from unrecovered set of commitments. However if the values from
the unrecovered set are given randomly, the value of this commitment on the right is correctly revealed only
with negligible probability. Then, we can construct an adversary to contradict the hiding property of the
commitment scheme.

PROOF. We prove the above by contradiction. Assume that for at least a fraction r(k)
C3

of the main threads,

there exists a commitment Ãbi in G but not in S. This means the following 3 conditions are true for this
main thread (where the probabilities are taken over the random coins of the experiment after the prefix
completion):

1. If the values of the commitments in the unrecovered set are given correctly on the left,M reveals the
correct value in Ãbi on the right with “large” probability (i.e., at least r(k)3C1

)

2. If the value of the commitments in the unrecovered set are given randomly on the left (i.e., the response
is simulated), M reveals the correct value in Ãbi on the right with “small” probability (i.e., smaller
than r(k)3

50˜̀(k)2C1C2C3
)

3. Conditioned on the event thatM does not ask any of the values from the unrecovered set of commit-
ments (i.e., its challenge on the left is ch w.r.t. which S and G are defined), M reveals the correct
value in Ãbi on the right with “large” probability (i.e., at least r(k)

2C2
˜̀(k)

)

We now construct an adversary A to show that the above conditions violate the (computational) hiding
property of the commitment scheme com. Consider the following experiment between the adversary A and
an external challenger Chal .

1. A starts the execution of M and gives it honestly the messages in the right session. The messages
received fromM in the left session are forwarded to Chal and its reply is forwarded to A until the
protocol is completed till step 3 (on both left and right interactions).

7

2. Now the Chal provides to A a total of M = 25˜̀(k)2C1C2C3

r(k)3
candidate tuples for the values in the

unrecovered set of commitments on the left. Exactly one of the candidate tuples has correct values
for all the commitments in the unrecovered set. All the values in the rest of the candidate tuples are
generated by Chal randomly. The goal of A would be guess which of the M tuples is the correct one.
A is not allowed any further interaction with Chal (including running the protocol beyond step 3).

3. A proceeds as follows. It selects a commitment Ãbi from the right interaction as a guess for a commit-
ment in G− S (if one exists).

4. A now rewindsM exactly M times. In the i-th rewind,M gives a challenge ch[i] on the left (if it
aborts at any point, we move on the next rewinding). To construct the response, for the commitments
in the unrecovered set picked by ch[i], A uses the values in the i-th candidate tuple. Observe that for
exactly one rewind, the response given by A would be correct and in all other cases, it would be the
simulated response as given by the extractor E when it rewinds.

5. Now we consider the case where the following happens. In the main thread, the commitment Ãbi was
selected by A and a value α̃bi was received. There is exactly one rewind (say index ind), such that the
commitment Ãbi was selected by A AND a value α̃bi [ind] = α̃bi was received. If that is the case, A
outputs the index ind to Chal as its guess for the correct value tuple. In all other cases, A aborts and
outputs ⊥.

We now analyze the success probability of A . Let E denote the event that main thread is of type bad3
and E1 denote the event (E AND Ãbi ∈ (G− S)).

Pr[A outputs the correct guess] ≥ Pr[E] · Pr[E1|E] · Pr[correct value α̃bi for Ãbi appears in the main
thread |E1] · Pr[correct value α̃bi appears in the rewind with correct response |E1] · Pr[correct value α̃bi does
not appear in any rewind with simulated response |E1]

(Note that the last 3 probability terms are results of experiments run with independent random coins and
hence are independent)

Pr[A outputs the correct guess] ≥ r(k)

C3
· 1

2˜̀(k)
· r(k)

2C2
˜̀(k)

· r(k)
3C1

· 1
2

(Note that the expected number of times correct value α̃bi appears in simulated responses is
r(k)3

50˜̀(k)2C1C2C3
· (25

˜̀(k)2C1C2C3

r(k)3
− 1) < 1

2 , hence at least with probability 1
2 , there are 0 such appearances)

Pr[A outputs the correct guess] ≥ r(k)3

24˜̀(k)2C1C2C3

(2)

Now we have the following claim:

Claim 1 In the above experiment, assuming the commitment scheme com is computationally hiding, the
probability of any PPT A outputting the correct guess is bounded by r(k)3

25˜̀(k)2C1C2C3
+ negl(k).

Proof Sketch. The proof of this claim relies on a straight forward hybrid argument3. In the i-th hybrid
experiment, in the chosen tuple (out of M tuples) Chal keeps the values for the first i unrecovered com-
mitments to be random and the rest correct. In the `(k)-th hybrid, clearly the probability of A winning is

3since Chal provides just the committed values and not any opening to the commitments, there are no issues related to “selected
opening attacks” etc (see [BHY09] and the reference therein)

8

exactly 1
M since the chosen tuple distribution is identical to the rest. Hence, there should exists a hybrid i in

which the probability ofA winning changes by a noticeable amount from the last hybrid. Then it can shown
that the hiding property of the commitment scheme com can be broken with a noticeable advantage.

The above claim is in contradiction to the equation 2. This concludes the proof of lemma 5.

Concluding the Analysis. We now conclude the proof of lemma 2. The rest of the proof is quite straight-
forward. Very roughly, we have already established that there are only a “small” number of commitments on
the right (i.e., commitments in set G) which go from being correct with “large” probability (given a correct
response on the left) to being correct only with “small” probability (given a simulated response on the left).
Thus, there are sufficiently large number of commitments on the right such that given a simulated response,
they are revealed correctly byM (thus implying success for the extractor E). Details follow.

As earlier, for the prefix of the given main thread, let p denote the probability thatM completes the main
thread (i.e., the real experiment) without aborting (i.e., the probability is taken over the random coins after
step 1). For the given main thread, let q denote the probability of E succeeding in extracting in a rewinding
using a simulated response. Since E rewindsM k ˜̀(k)

r(k)3
times,

Pr[E aborts] ≤ p · (1− q)
k ˜̀(k)

r(k)3

(Exact equality may not be satisfied because M may abort even before prefix completion.) Now this
value is noticeable only if q = o(r(k)

3

˜̀(k)
), or, in other words, q < r(k)3

50˜̀(k)
C1C2C3. Now, Pr[E aborts] ≤

Pr[main thread is of type bad1 or bad2 or bad3] + Pr[E aborts | main thread is neither of these 3 types].
To compute the second term, we first compute q for the main thread. Note that the main thread being not

of type bad2 or bad3 implies that |G| ≤ `+log2 k (since |S| ≤ `+log2 k andG ⊆ S). Also, since the main
thread is not of type bad1, there are at most O(log(k)) commitments in the right interaction for which the
probability of getting asked on the right (which happens with probability 1

2) AND revealed correctly byM
is less than r(k)

3C1
(otherwise, it is easy to show that p < r(k)

C1
). Or in other words, there are at least 2˜̀−log(k)2

commitments on the right with probability of getting asked and revealed correctly is at least r(k)
3C1

. Out of
these, at most ` + log2 k are in G. Hence, (for large enough k) there are at least ˜̀+ 1 commitments, or in
other words at least one pair of commitments on the right, such that the probability that such a commitment
is selected by E in a rewinding andM reveals the correct value is at least r(k)3

50˜̀(k)
C1C2C3. This means for

such a main thread, q ≥ r(k)3

50˜̀(k)
C1C2C3. Thus,

Pr[E aborts] ≤ r(k)

C1
+
r(k)

C2
+
r(k)

C3
+ negl(k)

Pr[E aborts] ≤ 3

4
r(k) + negl(k)

This completes the proof.

3.2 Getting Full-Fledged Non-Malleable Commitments

The construction in the previous section can now be extended to get constant round full-fledged non-
malleable commitments based only one a one way function. This can be done by simple application of
known techniques. We provide more details here.

We first construct a full-fledged (i.e., “two” sided) non-malleable commitment scheme for small tags
(i.e., tag ∈ [2n]) against a synchronizing adversary. This can be done very similar to the construction by
Pass and Rosen [PR05b]. Denote by `[a] the value k · tag and by `[b] the value k · (2n− tag). The idea is to

9

have two slots (each representing a rewinding opportunity) such that for exactly one of these slots, the “tag
being used on the right” is larger than the one on the left. The extractor will now rewind this slot and extract
the value ν. The protocol 〈C1, R1〉 is as follows.

0. Initialization Message. The receiverR generates the first message σ of the Naor commitment scheme
and sends it to C .

1. Primary Slot a

(a) The committer C generates `[a] pairs of random strings {α0
i [a], α

1
i [a]}i∈[`[a]] (with length of

each string determined by the security parameter). C further generates commitments of these
strings {A0

i [a] = comσ(α
0
i [a]), A

1
i [a] = comσ(α

1
i [a])}i∈[`[a]] and sends them toR (C uses fresh

randomness to generate each commitment).
(b) The receiver R generates and sends to C a random `[a]-bit challenge string ch[a] =

(ch1[a], . . . , ch`[a][a]).

(c) The committer C sends to R the values αch1[a]1 [a], . . . , α
ch`[a]
`[a] [a]. Note that C does not send the

openings associated with the corresponding commitments.

2. Primary Slot b

(a) The committer C generates `[b] pairs of random strings {α0
i [b], α

1
i [b]}i∈[`[b]] (with length of each

string determined by the security parameter). C further generates commitments of these strings
{A0

i [b] = comσ(α
0
i [b]), A

1
i [b] = comσ(α

1
i [b])}i∈[`[b]] and sends them to R (C uses fresh ran-

domness to generate each commitment).
(b) The receiver R generates and sends to C a random `[b]-bit challenge string ch[b] =

(ch1[b], . . . , ch`[b][b]).

(c) The committer C sends to R the values αch1[b]1 [b], . . . , α
ch`[b]
`[b] [b]. Note that C does not send the

openings associated with the corresponding commitments.

3. Verification Message. Define `[a] strings {αi[a]}i∈[`[a]] such that αi[a] = α0
i [a] ⊕ α1

i [a] for all
i ∈ [`[a]]. C generates `[a] commitments Bi[a] = comσ(ν;αi[a]) for i ∈ [`[a]] and sends them to
R . (That is, randomness αi[a] is used to generate the i-th commitment to ν). Similarly compute
commitments Bi[b], i ∈ [`[b]] in an analogous way and send them toR .

4. Consistency Proof. The committer C and the receiver R now engage in a zero-knowledge argument
protocol ZK where C proves to R that the above commit phase is “valid”. That is, both the above
primary slots and the verification message are correctly executed with the same value ν.

Decommitment Phase. The committer C simply reveals the committed value ν and the randomness used
in the commitment phase. The receiverR checks if the commitment phase was run honestly using the above
randomness (including making sure its a “valid” commit phase). If so,R takes the value committed to be ν
and ⊥ otherwise.

Proof Sketch. The proof of security of the above construction remains essentially identical to that of our
basic construction. Keep in mind thatM is a synchronizing adversary. Assume that tag 6= ˜tag . This means
that either `[a] < ˜̀[a] or `[b] < ˜̀[b]. In the former case, the extractor E performs its rewindings for the
primary slot a (by giving simulated responses for the challenges of M on the left). In the latter case, E
rewinds the primary slot b assuming the messages before start of primary slot b as the prefix of the protocol.
In both cases, the proof of security (and in particular the proof of all of our 3 key lemmas bounding the
fraction of bad main threads) remains essentially identical.

10

Proving many-many security of the above non-malleable commitment scheme. To prove that our
scheme is a many-many or concurrent non-malleable commitment scheme (for tags of length log(n) + 1),
we first focus on proving one-many security. There are several right executions with tags ˜tag1, . . . , ˜tagm
and a left execution with tag tag . The interesting case is when ˜tag i 6= tag for all i ∈ [m]. Our idea is to
simply apply the extractor E one by one for all m sessions. More precisely, ∀i ∈ [m]:

• Define a machineM i which “emulates” all the right sessions except session i on its own and exposes
the i-th session to an outside receiverR i.

• Run the extractor on the machineM i giving it as input the left view as in the main thread and the
right view of the i-th session in the main thread.

The probability that the extractor fails can be computed by a union bound over the m right sessions
(and can be made smaller than 1

poly(k) for any polynomial function poly(k) as in the previous section).
Following [LPV08], we get that the above construction is also a many-many non-malleable commitment
scheme. Hence we get the following lemma.

Lemma 6 The commitment scheme 〈C1, R1〉 is a many-many non-malleable commitment scheme against
synchronizing adversaries for tags of length log(n) + 1 (i.e., tag ∈ [2n]).

Handing tags of length n. A many-many non-malleable commitment scheme for tags of length log(n)+1
directly leads to a one-one non-malleable commitment scheme for tags of length n using the so called
“DDN LOG N trick” [DDN91, LP09]. A construction for many-many non-malleable commitment scheme
for tags of length n can also be directly obtained by a single step of non-malleability amplification from
[LP09, Wee10]. In particular, we make a direct use of the following result from [Wee10].

Proposition 1 (Proposition 3.1 in [Wee10]) Given a one-many commitment scheme 〈C1, R1〉 for tags of
length log(n) + 1 w.r.t. synchronizing adversaries, there exists another one-many (and hence many-many)
commitment scheme 〈C2, R2〉 for tags of length n w.r.t. synchronizing adversaries with only an additive
constant increase in the round complexity.

Security against Non-Synchronizing Adversaries. As is generally the case, once security against syn-
chronizing adversaries is obtained, it is easy to extend it to obtain security even against a non-synchronizing
adversary. A general result along these lines has been claimed by Wee [Wee10]. That is, [Wee10] presents a
simple and general transformation of non-malleable commitment schemes that are secure against synchro-
nizing adversaries into one that are secure against arbitrary scheduling strategies using one way functions
with only an additive constant increase in round complexity. Applying this transformation to the com-
mitment scheme 〈C2, R2〉 (from proposition 1 yields a constant round non-malleable commitment scheme
using only one way functions.

However since the details of this transformation are not yet available to us, we also provide an alternative
protocol to get security against non-synchronizing adversaries.The protocol is a modification of the commit-
ment scheme 〈C1, R1〉 (for tags of length log(n) + 1). We first provide some intuition behind the modified
protocol. Consider a non-synchronizing adversary M . Our earlier proof (for synchronizing adversaries)
runs into problems only when in the left interaction, M asks for the verification message before finishing
the two primary slots in the right interaction. In this case, the proof of lemma 5 does not go through. This
is since it relies on the inability of an adversary to distinguish between a correct value tuple from an incor-
rect value tuple for the unrecovered set of commitments. However given the verification message, indeed
it is easy to explicitly distinguish the correct value tuple from an incorrect one. Thus to make our proof of

11

security go through, we add additional “secondary slots” each of which represents a rewinding opportunity.
IfM asks for the verification message on the left before finishing the two primary slots on the right (in the
main thread), it will be possible to exploit these additional rewinding opportunities on the right (such that
M does not ask for messages in the left interaction while E is rewinding such slots).

Assume that the zero-knowledge protocol ZK has czk rounds of interaction between the prover and the
verifier. The protocol 〈C3, R3〉 proceeds as follows.

• Initialization Message: Identical to protocol 〈C1, R1〉 .

• Primary Slot a: Identical to protocol 〈C1, R1〉 .

• Primary Slot b: Identical to protocol 〈C1, R1〉 .

• czk + 1 Secondary Slots: For all j ∈ [czk + 1], do the following.

1. The committer C generates k pairs of random shares {ν0i [j], ν1i [j]}i∈[k] of the string ν (i.e.,
ν = ν0i [j] ⊕ ν1i [j] for all i). C further generates commitments of these strings {C0

i [j] =
comσ(ν

0
i [j]), C

1
i [j] = comσ(ν

1
i [j])}i∈[k] and sends them toR .

2. The receiver R generates and sends to C a random k-bit challenge string ch[j] =
(ch1[j], . . . , chk[j]).

3. The committer C sends to R the committed shares νch1[j]1 [j], . . . , νchkk [j] along with the corre-
sponding openings.

• Verification Message: Identical to protocol 〈C1, R1〉 .

• Consistency Proof: The committer C and the receiver R now engage in a zero-knowledge argument
protocol ZK where C proves to R that the entire commit phase above is “valid”. That is, both the
primary slots, the czk + 1 secondary slots and the verification messages are correctly executed with
the same value ν.

PROOF. We consider following two different interleavings in the main thread:

• Case 1: The verification message in the left interaction appears before the end of two primary
slots in the right interaction. This case constitutes the new part of our proof where the secondary
slots will be useful. Observe that when this case happens:

– Since the verification message appears after the secondary slots, all the secondary slots in the left
interaction are executed (along with the verification message) before the primary slot b finishes
on the right.

– Consider the point where the primary slot b in the right interaction finishes. There are at most
czk message remaining in the left interaction (i.e., message of the ZK protocol) and czk + 1
secondary slots remaining in the right interaction.

– Hence, there exists at least one secondary slot in the right interaction such that during its execu-
tion, there are no message in the left interaction (pigeon-hole principle). Call this the secondary
slot j.

Now our extractor E will rewind the secondary slot j in the right interaction and extract the value ν
by giving a different challenge. If during rewinding,M aborts or changes the scheduling to ask for
a message of the ZK protocol (as opposed to its strategy in the main thread), E simply rewinds and

12

tries with a different challenge. It is easy to see that the expected number of rewindings required is a
constant (observe that czk+1 is a constant). Alternatively, given any r(k) = 1

poly(k) , one can construct
an extractor which performs a strict polynomial number of rewinds and succeeds with probability at
least (1− r(k)).

• Case 2: The verification message in the left interaction appears after the end of two primary slots
in the right interaction. Our proof for this case is similar to the case for synchronizing adversaries.
The only different is the consideration that the secondary slots (but not the verification message) in
the left interaction might now appear before the primary slots in the right interaction finish. However
during the rewinds, E does not have to provide the verification message or the final ZK protocol for
consistency (if upon rewinding,M changes its scheduling to ask for such messages, E simply rewinds
again). Hence during the rewinds, E simply runs the required secondary slot with the value 0 (as op-
posed to the real value ν being committed to in the left interaction). If the probability of E outputting
Ext Fail changes by a noticeable amount, one can construct an adversary A to contradict the compu-
tational hiding property of the commitment scheme comσ. In more detail, in the proof of lemma 5,
the challenge Chal and A interact as follows. In addition to interacting with A to complete a primary
slot (and giving candidate tuples), Chal now additionally allows interaction in any polynomial number
of secondary slots as well. Thus, A can rewindM successfully M times; each time interacting with
Chal to complete the secondary slots. Now consider the following two hybrid experiments. In the first
hybrid, Chal has access to the correct value ν and executes the secondary slots honestly. In that case,
essentially the same proof of success of A goes through. In the second hybrid, Chal uses the value 0
(as opposed to ν). By the computational hiding property of scheme comσ, the success probability of
A cannot change by a noticeable amount in the two hybrid.

Thus, the above gives us a non-malleable commitment scheme 〈C3, R3〉 for non-synchronizing adver-
saries for tags of length log(n) + 1. Similar to before, it can be shown that 〈C3, R3〉 is also many-many
non-malleable by applying the extractor on each right session one by one. By applying to DDN LOG N
trick, we get a one-one non-malleable commitment scheme against non-synchronizing adversaries for tags
of length n. A many-many non-malleable commitment scheme for tags of length n against such adver-
saries can be obtained by applying one step of the non-malleability amplification [LP09]. This gives us the
following theorem.

Theorem 2 There exists a constant round many-many non-malleable commitment scheme using only one
way functions.

3.3 Additional Results

Our techniques can be extended to get the following additional results.

Constant Round Multi-Party Computation. Our commitment scheme 〈C3, R3〉 can be modified in a
straightforward way so as to use the underlying one way function (i.e., the commitment scheme comσ) only
in a black-box way. This can be done by essentially removing the step where the committer gives a proof of
consistency of the commitment to the receiver. This allows us to construct commitment scheme for tags of
length n non-malleable w.r.t. opening and making only a black-box use of a one way function. The weaker
security notion so obtained still turns out to be sufficient for application to secure multi-party computation.
By relying on techniques from [LPV09, Wee10], this allows us to obtain the first construction of constant
round secure multi-party computation making only a black-box use of standard cryptographic primitives.

13

Constant Round Non-Malleable Zero-Knowledge. The construction of Lin et al [LPTV10] can be
instantiated based on any non-malleable commitment scheme and gives rise to a constant round non-
malleable zero-knowledge assuming only one way functions (if one requires only one-one non-malleable
zero-knowledge as opposed to concurrent). This immediately gives us a construction of constant round
non-malleable zero-knowledge based only on one way functions. Constant round non-malleable zero-
knowledge constructions can also be obtained by instantiating our commitment scheme using the protocols
in [BPS06, GJO10] at the cost of requiring stronger computational assumptions.

Acknowledgements. We wish to thank Amit Sahai for many useful discussion and suggestions about the
presentation of the proof of security. Thanks also to Abhishek Jain, Rafail Ostrovsky, Omkant Pandey and
Ivan Visconti for useful discussions.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115,
2001.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In FOCS, pages 345–355. IEEE Computer Society, 2002.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages 1–35. Springer, 2009.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero knowledge.
In FOCS, pages 345–354, 2006.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended abstract).
In STOC, pages 542–552. ACM, 1991.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key genera-
tion on the internet in the plain model. In Rabin [Rab10], pages 277–294.

[LP09] Huijia Lin and Rafael Pass. Non-malleability amplification. In Mitzenmacher [Mit09], pages
189–198.

[LPTV10] Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam.
Concurrent non-malleable zero knowledge proofs. In Rabin [Rab10], pages 429–446.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-
malleable commitments from any one-way function. In Ran Canetti, editor, TCC, volume 4948
of Lecture Notes in Computer Science, pages 571–588. Springer, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework
for concurrent security: universal composability from stand-alone non-malleability. In Mitzen-
macher [Mit09], pages 179–188.

[Mit09] Michael Mitzenmacher, editor. Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. ACM, 2009.

14

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions and appli-
cations. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science,
pages 57–74. Springer, 2008.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, pages 563–
572, 2005.

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryptographic
protocols. In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 533–542. ACM, 2005.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 638–655. Springer, 2010.

[Rab10] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in
Computer Science. Springer, 2010.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification.
In FOCS (to appear), 2010.

15

