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Abstract

A signature scheme is fully leakage resilient (Katz and Vaikuntanathan, ASIACRYPT ’09) if
it is existentially unforgeable under an adaptive chosen-message attack even in a setting where
an adversary may obtain bounded (yet arbitrary) leakage information on all intermediate values
that are used throughout the lifetime of the system. This is a strong and meaningful notion of
security that captures a wide range of side-channel attacks.

One of the main challenges in constructing fully leakage-resilient signature schemes is deal-
ing with leakage that may depend on the random bits used by the signing algorithm, and
constructions of such schemes are known only in the random-oracle model. Moreover, even in
the random-oracle model, known schemes are only resilient to leakage of less than half the length
of their signing key.

In this paper we construct the first fully leakage-resilient signature schemes without random
oracles. We present a scheme that is resilient to any leakage of length (1 − o(1))L bits, where
L is the length of the signing key. Our approach relies on generic cryptographic primitives,
and at the same time admits rather efficient instantiations based on specific number-theoretic
assumptions. In addition, we show that our approach extends to the continual-leakage model,
recently introduced by Dodis, Haralambiev, Lopez-Alt and Wichs (FOCS ’10), and by Brakerski,
Tauman Kalai, Katz and Vaikuntanathan (FOCS ’10). In this model the signing key is allowed
to be refreshed, while its corresponding verification key remains fixed, and the amount of leakage
is assumed to be bounded only in between any two successive key refreshes.
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1 Introduction

One of the main goals of research in the foundations of cryptography is designing systems that
withstand adversarial behavior. Given a cryptographic task, such as public-key encryption, one
must formalize an attack model specifying a class of adversaries, and define a notion of security
capturing what it means to break the system. Within such a framework, it is then possible to
rigorously analyze the security of cryptographic systems.

Starting with the seminal work of Goldwasser and Micali [GM84], various and increasingly
strong attack models and notions of security have been proposed. Over the years, however, theo-
reticians and practitioners began to notice that a large class of realistic attacks, called side-channel
attacks, are not captured by the existing models. In such attacks, the adversary may learn some
additional information about the internal secret state of a system, by measuring various proper-
ties resulting from specific physical implementations (e.g., timing information, detection of internal
faults, electromagnetic radiation, power consumption etc. [BS97, BDL97, Koc96, KJJ99]). As
a result, it has become an important research agenda to extend the standard models to capture
such side-channel attacks, and to design cryptographic systems whose security guarantees can be
rigorously analyzed and clearly stated in these stronger models. Our work focuses on the model
of memory attacks, and its bounded-leakage and continual-leakage variants, which we describe next
(several other models are described in Section 1.2).

Memory attacks: bounded-leakage and continual-leakage. The model of memory attacks
was introduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09]. Its main premise is that
the adversary can learn arbitrary information about the secret state of a system, subject only to
the constraint that the amount of information learned is somehow bounded. More precisely, the
adversary can adaptively select arbitrary poly-time computable functions fi : {0, 1}∗ → {0, 1}λi
and learn the value of fi applied to the internal state of the system, subject only to some constraint
on the output sizes λi.

The work of [AGV09] assumes that there is an a priori determined leakage bound λ, which
bounds the overall amount of information learned by the adversary throughout the entire lifetime
of the system to be

∑
i λi ≤ λ. We call this the bounded leakage model. Usually the leakage bound

λ is also related to the secret-key size, so that a relatively large fraction λ/|sk| of the secret key
can be leaked. A great deal of research has gone into devising various cryptographic primitives in
this model, such as public-key and identity-based encryption schemes, signature schemes, and more
(see [NS09, KV09, ADW09, ADN+10, LPS10, BG10, DHL+10b] ).

A drawback of the bounded-leakage model is that, if a system is being used continually for a
sufficiently long time, then the amount of leakage observed by the attacker may exceed any a-priori
determined leakage bound. Hence, we would like to bound the rate of leakage rather than the overall
amount of leakage. If we do not bound the overall leakage, then any static piece of information
that stays unmodified on the system can eventually be fully recovered by the adversary. Hence the
secret keys of such systems must be periodically refreshed. Recently, Dodis et al. [DHL+10a] and
Brakerski et al. [BTK+10] suggested the continual-leakage model, in which a scheme periodically
self-refreshes its internal secret key, while the corresponding public key remains fixed. In this
model, only the amount of leakage seen by the adversary in between any two successive refreshes
is assumed to be a priori bounded by some leakage bound λ.1 However, there is no a-priori bound
on the overall amount of information seen by the adversary throughout the lifetime of the system.

We note that in both the bounded-leakage model and the continual-leakage model the adversary

1If the time between refreshing is fixed, we can think of this as bounding the rate of leakage.
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may be able to learn partial, but yet arbitrary, information on the entire secret key. This is
in contrast with other models, where either the leakage is assumed to be of “low complexity”
(such as AC0 circuits) [ISW03, FRR+10], or certain secret values are assumed to be leak-free
[MR04, DP08, Pie09, FKP+10, GR10, JV10].

Leakage-resilient signature schemes. In this paper we study the security of signature schemes
in the bounded-leakage and continual-leakage models. Signature schemes in the bounded-leakage
model were proposed by Alwen, Dodis, and Wichs [ADW09] and by Katz and Vaikuntanathan
[KV09], who focused mainly on leakage of (only) the signing key of the scheme. Specifically, a
signature scheme is leakage-resilient in the bounded-leakage model if it is existentially unforgeable
against an adaptive chosen-message attack [GMR88] even when adversarially chosen functions of the
signing key are leaked in an adaptive fashion. Signature schemes satisfying this notion of security
were constructed both based on generic cryptographic primitives in the standard model [KV09]
and based on the Fiat-Shamir transform [FS86] in the random-oracle model [KV09, ADW09].

Although this notion of leakage resilience already captures some attacks, it does not fully capture
general leakage attacks, which may depend on the entire internal state of the system. In particular,
the problem is that both of the signature scheme constructions from [KV09, ADW09] are randomized
and hence the internal state includes, in addition to the secret-key, all of the random coins used
by the signing algorithm.2 The prior schemes may therefore be vulnerable to leakage-attacks that
(also) depend on this randomness.

This was already noted by Katz and Vaikuntanathan [KV09], who put forward the stricter
notion of a fully leakage-resilient signature schemes (in the bounded-leakage model). This notion
requires a signature scheme to remain existentially unforgeable under an adaptive chosen-message
attack even when the adversary obtains bounded leakage information on all intermediate values
used by the signer throughout the lifetime of the system, including the secret-keys and internal
random coins (the notion can be naturally extended to the continual-leakage model [DHL+10a,
BTK+10]). This stronger notion seems to better capture real attacks, relying on e.g. timing or
power consumption patterns, since these likely do depend on the internal randomness.

Currently, however, the known constructions of fully leakage-resilient signature schemes are
proven secure only in the random-oracle model [ADW09, BTK+10, DHL+10a, KV09]. Moreover,
even in the random-oracle model, known schemes are either resilient to leakage of at most half
the length of the signing key [ADW09, DHL+10a, KV09], or require refreshing of the signing
key after every few invocation of the signing algorithm, even when no leakage occurs [BTK+10]
(this is required even in the bounded-leakage model, where refreshing is not part of the typical
functionality). In the standard model, only constructions of “one-time” signatures3 from [KV09]
are known to be fully leakage resilient.

1.1 Our Contributions

We construct the first fully leakage-resilient signature schemes without random oracles. We first
present a scheme in the bounded-leakage model that is resilient to any leakage of (1− o(1))L bits,

2No known deterministic or public-coin constructions of leakage-resilient signatures are known. Without leakage,
the signing algorithm of any signature scheme can be made deterministic by using, as its random coins, the output of
a pseudorandom function (PRF) applied to the message, where the seed of the PRF is made part of the secret key.
However, in the setting of key leakage, this transformation may no longer be secure since the seed to the PRF can
also leak.

3Such schemes can only be used to sign a single message (or, more generally, some a priori bound t on the number
of messages). The amount of leakage-resilience is Θ(L/t) bits, and thus degrades with t.
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where L is the bit-length of the signing key. Our scheme is based on generic cryptographic primi-
tives, and is inspired by the approach of Katz and Vaikuntanathan [KV09] (although their scheme
is resilient to leakage from the signing key only). Moreover, we show that our construction can be
instantiated based on specific number-theoretic assumptions to yield a rather efficient scheme.

We then extend our approach to the continual-leakage model by relying on any continual leakage-
resilient one-way relation, a primitive recently introduced by Dodis, Haralambiev, Lopez-Alt and
Wichs [DHL+10a]. The amount of leakage that can be tolerated between any two successive
refreshes of the signing key depends on the leakage resilience of the underlying one-way relation.4 In
turn, instantiating our scheme with existing constructions of such one-way relations from [DHL+10a,
BTK+10] yields schemes that are resilient to any leakage of length (1 − o(1))L bits based on the
Symmetric External Diffie-Hellman (SXDH) assumption, and (1/2 − o(1))L bits based on the
Decisional-Linear assumption.

Finally, we note that our approach yields the first separation between the bounded-leakage model
and the noisy-leakage model, which was formalized by Naor and Segev [NS09] and later refined by
Dodis et al. [DHL+10a, Definition 7.2]. Noisy leakage is a realistic generalization of bounded
leakage, in which the leakage is not necessarily of bounded length, and it is only guaranteed that
the secret key still has some min-entropy even given the leakage. This settles an open problem
posed by Naor and Segev.

1.2 Related Work

Various constructions of leakage-resilient signature schemes have been proposed so far. In this
section we describe the different leakage models and discuss the security guarantees that are satisfied
by these constructions. In what follows we denote by L the bit-length of the signing key.

The limited-complexity leakage model. Some of the initial works in leakage-resilient cryp-
tography concentrated on specific and limited forms of leakage. Ishai et al. [ISW03] showed how
to securely implement any efficiently computable function in the presence of an adversary who can
probe the values of a constant number of wires. Faust et al. [FRR+10] demonstrated a related
construction allowing leakage functions with bounded output, belonging to a low complexity class,
such as AC0. Unfortunately, to accommodate such generality in the underlying function, construc-
tions of this type so far handled only weak forms of leakage, which seem rather far from capturing
many known side-channel attacks.

The “only computation leaks” model. Micali and Reyzin [MR04] introduced a model in
which the complexity of leakage functions is unrestricted, the overall amount of leakage is un-
bounded, but leakage is assumed to only occur on values currently accessed during a computation.
Explicitly, in each step of computation, the adversary can adaptively select a polynomial-time leak-
age function f with bounded output to be applied to current active values. Values are active in
a computation step if they are accessed by the cryptographic system; all other values stored in
memory but not accessed during the time-step are assumed to be leak-free for the step. This model
lends itself to techniques that split a computation into two halves, maintaining only one half as

4As in [DHL+10a, BTK+10], our schemes are also resilient to leakage of logarithmic length from the random
bits used by the refreshing algorithm. We note that this property is directly inherited from the underlying one-way
relation, and our approach does not introduce any further limitations. Specifically, instantiating our scheme with any
continual leakage-resilient one-way relation that can tolerate leakage of length λ bits from the refreshing algorithm
results in a signature scheme with the same guarantee.
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active in any given time-step, as proposed by Dziembowski and Pietrzak [DP08, Pie09] within the
construction of leakage-resilient stream ciphers.

Faust et al. [FKP+10] constructed a stateful, tree-based signature scheme in the “only computa-
tion leaks” model based on any 3-time secure signature scheme. Their construction can handle `/3
bits of leakage per signature, where the underlying scheme is resilient to ` bits of leakage overall.
Implementing this with currently known constructions for the underlying scheme yields leakage
resilience approaching L/36 bits, based on one-way functions.

Goldwasser and Rothblum [GR10] recently presented a way to compile any cryptographic al-
gorithm into one that resists leakage bounded by a constant fraction of the secret key size in the
“only computation leaks” model, based on the DDH assumption and the existence of a simple secure
hardware component. Using different techniques, Juma and Vahlis [JV10] showed how to encap-
sulate a secret key and compute on it in a leakage-resilient fashion within the “only computation
leaks” model using fully homomorphic encryption and leak-free hardware tokens.

The “only computation leaks” paradigm is powerful in the sense that it allows any efficiently
computable leakage functions, and a large amount of overall leakage. However, it rests on the
assumption that values not immediately being used in computation are completely leak-free, which
is not always valid. Specifically, this model does not capture known attacks in which inactive values
in memory are still vulnerable, such as the cold-boot attacks of Halderman et al. [HSH+08] (see
also the improvements of Heninger and Shacham [HS09]), or measurements which can detect the
physical processes used to maintain values in memory.

The bounded-leakage model. In the bounded-leakage model, as discussed above, signature
schemes resilient to leakage depending only on the signing key have been constructed in the random-
oracle model [ADW09] and in the standard model (i.e., without random oracles) [KV09], handling
leakage of up to (1 − o(1))L bits (see also the work of Dodis et al. [DHL+10b] that focuses on
efficient instantiations of such schemes).

Many-time signature schemes resistant to leakage from the entire secret state have been con-
structed only in the random-oracle model. Alwen et al. [ADW09] and Katz and Vaikuntanathan
[KV09] presented a scheme using the Fiat-Shamir transform [FS86] with any second-preimage resis-
tant function. Both works concurrently proposed the same scheme, but leakage of randomness was
only analyzed in the latter [KV09]. Due to the use of the Fiat-Shamir transform, the construction
is only resilient to leakage approaching length L/2. A more efficient version, allowing the same
amount of leakage, was given by Dodis et al. [DHL+10b].

The only existing constructions of fully leakage-resistant signatures in the standard model are
a pair of one-time signature schemes due to Katz and Vaikuntanathan [KV09]. Their first scheme
is based on the existence of any one-way function, and is resilient to any leakage of length less than
L/4 bits. The second is based on specific number-theoretic assumptions, and is resilient to any
leakage of length less than L/2 bits. Both schemes extend to t-time schemes with leakage less than
Θ(L/t). Since these schemes have a deterministic signing algorithm, the secret state of the signer
consists only of the secret key, and thus full leakage-resilience simply reduces to the weaker notion
of resilience against key leakage.

The continual-leakage model. Notions of leakage-resilient signatures were naturally extended
to the continual-leakage setting by Dodis et al. [DHL+10a] and Brakerski et al. [BTK+10], as
described above. Dodis et al. [DHL+10a] presented two signature schemes in the continual-leakage
model by using their abstracted concept of a continual leakage-resilient one-way relation together
with known schemes from the bounded-leakage model. The first scheme is a modified version of
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the scheme of Katz and Vaikuntanathan [KV09], and is resilient to leakage only from the signing
key. Their second scheme uses the Fiat-Shamir transform in the random-oracle model, and allows
up to L/2 bits of leakage in each round from the entire current secret state of the signer.

Brakerski et al. [BTK+10] also presented two signature schemes in this model. The first scheme
is based on the one of Katz and Vaikuntanathan [KV09] as in [DHL+10a], and is resilient to leakage
only from the signing key. The second scheme is in the random-oracle model, and is secure against
leakage from the entire secret state of the signer. The amount of leakage that can be tolerated is
(1/2− o(1))L bits per key update based on the Linear assumption, and (1− o(1))L bits based on
the somewhat non-standard SXDH assumption. In their scheme, each signature leaks information
about the secret key, regardless of whether the adversary makes leakage queries. This continual
leakage of information through signature queries means the signing key must be refreshed after
every few invocation of the signing algorithm. Thus, the construction does not yield a scheme in
the bounded-leakage model, where refreshing is not part of the typical functionality of a signature
scheme, and is less efficient in the continual-leakage model.

1.3 Overview of Our Approach

In this section we present an overview of our approach for constructing fully leakage-resilient sig-
nature schemes. We focus here on our construction in the bounded-leakage model, as it already
emphasizes the main ideas underlying our approach, and we refer the reader to Section 7 for an
overview of our construction in the continual-leakage model. We begin by describing more clearly
the notion of a fully leakage-resilient signature scheme in the bounded-leakage model. Then, we
briefly describe the leakage-resilient signature scheme of Katz and Vaikuntanathan [KV09], which
serves as our starting point, and explain the main challenges in constructing fully leakage-resilient
signature schemes. The main part of this overview then focuses on our construction.

Modeling fully leakage-resilient signature schemes. A signature scheme is fully leakage-
resilient in the bounded-leakage model if it is existentially unforgeable against an adversary that
can obtain both signatures on any message of her choice, and bounded leakage information on all
intermediate values used by the signer throughout the lifetime of the system.

This is formalized by considering an experiment that involves a signer and an adversary. First,
the signer invokes the key-generation algorithm and obtains a verification key vk and a signing key
sk. At this point, a value state is initialized to contain the random coins that were used by the
key-generation algorithm. The adversary is given the verification key vk and can adaptively submit
two types of queries: signing queries, and leakage queries. A signing query consists of a message m,
and is answered by invoking the signing algorithm with the signing key and the message. Following
each such query, the random coins that were used by the signing algorithm are added to the state.
A leakage query consists of a leakage function f , and is answered by applying f to the value state.
The leakage functions have to be efficiently computable, and the sum of their output lengths has
to be upper bounded by a predetermined parameter λ. The adversary is successful if she outputs
a pair (m∗, σ∗), where m∗ is a message with which she did not issue a signing query, and σ∗ is a
valid signature on m∗ with respect to vk. We refer the reader to Section 3 for a formal definition.

The Katz-Vaikuntanathan scheme. The Katz-Vaikuntanathan signature scheme [KV09] relies
on a second-preimage resistant (SPR) function F : {0, 1}µ(n) → {0, 1}κ(n) (for some κ(n) < µ(n)),
a CPA-secure public-key encryption scheme, and a (unbounded simulation-sound) NIZK proof

6



system.5 The signing key is a random x ∈ {0, 1}µ(n), and the verification key is a triplet (y =
F(x), pk, crs), where pk is a public key for the encryption scheme, and crs is a common-reference
string for the proof system. A signature on a message m consists of a ciphertext c which is an
encryption of m||x using pk, and a proof that the ciphertext c is indeed an encryption of m||x′, for
some x′ ∈ F−1(y).6

This scheme is leakage resilient in the bounded-leakage model. That is, it satisfies the weaker
variant of the above notion of security, where the leakage is allowed to depend on the signing key
only. The security of the scheme is based on three main properties:

1. A typical verification key has many possible secret keys. Specifically, the set F−1(y) is of size
roughly 2µ(n)−κ(n).

2. The “real” signatures of the scheme are computationally indistinguishable from “fake” signa-
tures, which are statistically independent of the signing key. This follows from the semantic
security of the encryption scheme and from the zero knowledge of the proof system. Specif-
ically, a “fake” signature on a message m can be produced by encrypting m||0n, and then
using the NIZK simulator to generate the proof.

3. Given the decryption key corresponding to pk, any valid forgery produced by the adversary
can be used to extract a preimage x′ of y. This follows from the soundness of the proof
system, which guarantees that the adversary’s forgery is a “real” signature7 and therefore the
corresponding ciphertext can be decrypted to a valid preimage x′.

These three properties are used to prove the security of the scheme as follows. Assume there
is an adversary that breaks the scheme. Then, given a random pre-image x of y, we can run this
adversary and (by the third property) extract some valid preimage x′ from the adversary’s signing
forgery with a reasonable probability. This would break second-preimage resistance of F as long as
we can argue that x′ 6= x. To do so, we use the second property to replace “real signatures” with
“fake signatures” without affecting the probability of recovering some valid preimage x′. But now,
the signing queries do not reveal any additional information about x, given y. So the only correlated
information on x that the adversary sees is the value y = F (x) of size κ(n) and the leakage of size
λ. Therefore, if λ ≤ µ(n) − κ(n) − ω(log(n)), then the adversary has (information theoretically)
super-logarithmic uncertainty about the value of x and hence the probability of extracting x′ = x
from her forgery is negligible.

The main challenges. The security proof of the Katz-Vaikuntanathan scheme relies on the
argument that, given many signatures of chosen messages and λ bits of leakage from the signing
key x, the value x is still hard to guess by the adversary. However, when the leakage may depend
also on the randomness used by the signing algorithm, this is no longer true, and in fact the scheme
is insecure in general. The main problem is that, in the above argument, we crucially used the
ability to switch “real” signatures for “fake” signatures. This step, in turn, relied on the security

5A function F is second-preimage resistant if, given a random input x it is hard to find x′ 6= x such that F(x′) = F(x).
See Definition 2.2 in Section 2. We note that when F is only assumed to be a one-way function, the scheme may
not always be resilient to leakage, but it is nevertheless existentially unforgeable under an adaptive chosen-message
attack. In this case the scheme can be viewed as a variant of the Bellare-Goldwasser signature scheme [BG89].

6Katz and Vaikuntanathan show that it is actually possible to encrypt only x (instead of m||x), and include m as
a label in the statement that is proved using the NIZK proof system. However, for making this informal description
more intuitive, we consider here an encryption of both m and x.

7 In fact, a stronger notion called simulation-soundness is required, because the adversary gets to see several fake
proofs before generating her signature.
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of the encryption scheme and the zero-knowledge property of the proofs. However, we cannot rely
on these properties if the adversary can also leak on the random coins of the encryption scheme
and the proof system! Consider, for example, an instantiation of the scheme with a CPA-secure
encryption scheme defined as Encpk(m||x) = (Enc′pk(s),PRG(s) ⊕ (m||x)), where Enc′ is secure
encryption scheme, and PRG is a pseudorandom generator that is applied on a random seed s.
Leaking the seed s, whose length may be arbitrarily shorter then λ, completely reveals the signing
key x. A similar instantiation for the proof system can be shown to have a similar effect when the
leakage may depend on the randomness used by the prover.8

Our approach. A natural observation is that the above problems can be avoided if the “real”
and “fake” signatures cannot be distinguished even given the random coins used to generate them.
Remember that fake signatures are statistically independent of the secret key x, while real signatures
allow us to extract some preimage using an appropriate trapdoor (decryption key).

The first idea toward achieving the above is to replace the (unbounded simulation-sound) NIZK
proof system with a statistical non-interactive witness-indistinguishable (SNIWI) argument system.
On one hand we relax the (unbounded simulation-sound) zero knowledge property to witness indis-
tinguishability, and on the other hand we require that proofs generated using different witnesses are
statistically indistinguishable from each other. In particular, this guarantees that even a correctly
generated proof is statistically independent of the witness (in our case the signing key x) used to
generate it.

The harder part lies in getting an encryption scheme where the ciphertexts are independent of
the message (in our case, the signing key x) that they encrypt. In particular, this clearly contradicts
the decryptability of a ciphertext. We could imagine using known lossy encryption schemes, where
the encryption key pk can be generated in one of two indistinguishable modes: “injective” mode
which allows for decryptability, and “lossy” mode where ciphertexts statistically hide the message.
But remember that we need to satisfy the following two properties simultaneously: (1) the ability
to answer the adversary’s signing queries with fake signatures that reveal no information about
x, (2) the ability to extract a witness x′ from the adversary’s forgery. By setting the pk to be in
either injective or lossy mode, we can achieve either property, but not at the same time! The main
tool used in resolving this conflict is to design a partitioned-lossy encryption scheme, where the
encryption of some messages is lossy while that of others is injective.

A selectively-unforgeable signature scheme. For the reader’s intuition, we first show how
to achieve a weaker notion of signature security that we refer to as selective unforgeability under
a chosen-message attack. For this notion, we assume the adversary specifies the message m∗ on
which she plans to forge a signature in advance, before receiving the verification key. The signing
queries and leakage are still adaptive.

To achieve this notion of security, we introduce the concept of an all-lossy-but-one (ALBO)
public-key encryption scheme. This is a tag-based public-key encryption scheme, where the encryp-
tion procedure takes as input a tag t in addition to the message. The key-generation procedure
takes as input a special tag t∗ and produces a key pair (pk, sk) such that encrypting under the tag
t∗ allows for efficient decryption with sk, but encryption under any other tag t 6= t∗ statistically

8Note that even a leakage function with only one output bit can be easily used to distinguish an encryption of
m||x from an encryption of m||0n, or to distinguish the prover of the proof system from the simulator of the proof
system. Thus, technically speaking, it seems that at no point in time during the various experiments of the security
proof it is possible to change the way signing queries are answered.
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hides the encrypted message. We call t∗ the injective tag, and any other tag a lossy tag.9 The only
computational requirement is that the public key hides the injective tag t∗ that was used for its
generation.

We now modify the Katz-Vaikuntanathan signature scheme by using an ALBO encryption
scheme instead of a standard CPA-secure scheme. To sign m, we encrypt (only) the signing key
x under the tag t = m. We use a SNIWI argument system instead of a simulation-sound NIZK
to generate the proof. To argue security, we note that since the adversary’s forgery message m∗ is
chosen ahead of time, we can generate the encryption key pk such that t∗ = m∗ is the only injective
tag, without affecting the adversary’s ability to forge – this change is indistinguishable even given
full view of the signing key x and randomness of signing. Now we are in a situation where all the
signing queries for m 6= m∗ yield signatures which are statistically independent of the signing key
x, while the forgery can be used to extract some preimage x′. Therefore, we can argue as before:
the bounded leakage on the secret key x and randomness of signing is short enough that x must
have entropy left given this leakage, and therefore the outcome x′ = x is unlikely.

The full scheme. So far we described our approach as leading to the rather weak notion of
selective unforgeability under a chosen-message attack. Our actual scheme is fully leakage-resilient
according to the stronger notion that was discussed in the beginning of this section (i.e., where the
adversary is allowed to adaptively choose m∗ after seing vk and responses to all signing and leakage
queries).

We note that, in the random-oracle model, there is a simple generic transformation from selec-
tive security to full security by signing the output of the random oracle applied to the message.
Alternatively, in the standard model, there is a simple transformation with exponential security
loss by simply “guessing” the forgery: this can yield fully secure schemes under some exponential
hardness assumptions by using complexity-leveraging. Lastly, there is a completely generic trans-
formation due to [BT10] (abstracting a non-generic approach of [HW09]) by hashing the message
with a chameleon hash function [KR00] and signing each prefix of the hash separately. Unfortu-
nately, this results in long signatures. All of these generic techniques also work in the setting of
full-leakage resilience. We present an alternative that does not suffer from the above disadvantages.

For our actual scheme, we follow the approach of Boneh and Boyen [BB04] for transforming
selectively-secure identity-based encryption schemes into fully secure ones using an admissible hash
function (see Section 2.6). This relies on a slightly more refined “partitioning strategy” than the
“all-but-one” strategy used for the selectively-secure scheme. In particular, we introduce the notion
of a R-lossy public-key encryption scheme. This is a generalization of an ALBO encryption scheme
where the set of possible tags is partitioned into injective tags and lossy tags according to a relation
R (in particular, there may be more than one injective tag). The main idea of this approach is
to ensure that, with polynomial probability, all of the adversary’s signing queries will fall into the
“lossy” partition, while the forgery falls into the “injective” partition.

1.4 Paper Organization

In Section 2 we introduce some preliminaries and notation. Section 3 contains a discussion on the
models of leakage resilience considered in this paper. In Section 4 we define and construct R-lossy
public-key encryption schemes, a tool used in our constructions. Section 5 contains the construction
and security proof of our signature scheme in the bounded-leakage model. In Section 6 we present
a specific instantiation of our scheme based on the Linear assumption. In Section 7 we extend our

9We note that our notion is the opposite of the notion of an all-but-one lossy trapdoor function, where there is
one lossy tag and all the other tags are injective.
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scheme to the continual-leakage model. Finally, in Section 8 we discuss several concluding remarks
and open problems.

2 Preliminaries

In this section we present some basic notions, definitions, and tools that are used in our construc-
tions.

2.1 Statistical Distance, Min-Entropy, and Average Min-Entropy

The statistical distance between two random variables X and Y over a finite domain Ω is defined
as SD (X,Y ) = 1

2

∑
ω∈Ω |Pr [X = ω] − Pr [Y = ω] |. We say that two variables are ε-close, and

write X ≈ε Y , if their statistical distance is at most ε. The min-entropy of a random variable
X is H∞ (X) = − log(maxx Pr [X = x]). Dodis et al. [DOR+08] formalized the notion of average
min-entropy that captures the remaining unpredictability of a random variable X conditioned on
the value of a random variable Y , which is defined as follows:

H̃∞ (X|Y ) = − log
(
Ey←Y

[
2−H∞(X|Y=y)

])
.

The following bound on average min-entropy was proved in [DOR+08]:

Lemma 2.1 ([DOR+08]). For any random variables X, Y and Z, if Y has at most 2λ possible
values then

H̃∞ (X|Y,Z) ≥ H̃∞ (X|Z)− λ .

2.2 The DDH, SXDH, and d-Linear Assumptions

Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a security parameter
1n, and outputs a triplet (G, p, g) where G is a group of order p that is generated by g ∈ G, and p
is an n-bit prime number.

The decisional Diffie-Hellman assumption. The decisional Diffie-Hellman (DDH) assump-
tion is that the ensembles {(G, g1, g2, g

r
1, g

r
2)}n∈N and {(G, g1, g2, g

r1
1 , g

r2
2 )}n∈N are computationally

indistinguishable, where (G, p, g) ← GroupGen(1n), and the elements g1, g2 ∈ G and r, r1, r2 ∈ Zp
are chosen independently and uniformly at random.

The d-Linear assumption. Boneh, Boyen, and Shacham [BBS04] introduced the Linear as-
sumption, intended to take the place of DDH in groups where DDH is easy (specifically, in bilinear
groups). They showed that the hardness of DDH implies that hardness of Linear, but at least in
generic groups (see, for example, [JN03, Sho97]), Linear remains hard even if DDH is easy. The DDH
and Linear assumptions naturally generalize to the family of d-Linear assumptions [Kil07, Sha07],
where for every d ≥ 1 the d-Linear assumption is that the ensembles{(

G, g1, . . . , gd, gd+1, g
r1
1 , . . . , g

rd
d , g

∑d
i=1 ri

d+1

)}
n∈N{(

G, g1, . . . , gd, gd+1, g
r1
1 , . . . , g

rd
d , g

rd+1

d+1

)}
n∈N ,

are computationally indistinguishable, where (G, p, g) ← GroupGen(1n), and the elements g1, . . . ,
gd+1 ∈ G and r1, . . . , rd+1 ∈ Zp are chosen independently and uniformly at random.
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Note that DDH is the 1-Linear assumption, and that Decisional Linear is the 2-Linear assump-
tion. These assumptions are progressively weaker: the hardness of d-Linear implies the hardness
of (d+ 1)-Linear, but in generic groups (d+ 1)-Linear remains hard even if d-Linear is easy.

The SXDH assumption. Some parts of our construction will rely on bilinear groups containing
a pairing e : G1 × G2 → G3. In this case, the DDH (1-Linear) assumption can only hold for
some asymmetric pairings where the groups G1,G2 are different from each other and there is no
efficient homomorphism between them. In other words, when dealing with bilinear group, the
DDH assumption is a strong assumption which may only hold in restricted settings. We therefore
use the pairing-terminology, calling it SXDH (symmetric external DDH) to distinguish from the
non-pairing setting. On the other hand, the weaker d-Linear assumptions for d ≥ 2 are believed to
hold for most cryptographically-used bilinear groups. Therefore, when using bilinear groups, it is
preferable to build schemes under the Decisional-Linear assumption d = 2, or higher values of d.

2.3 Second-Preimage Resistance

A family of efficiently computable functions is a pair of polynomial-time algorithms (KeyGen,F),
where KeyGen is a probabilistic algorithm that on input 1n outputs a description s ∈ {0, 1}∗ of
a function F(s, ·) : {0, 1}µ(n) → {0, 1}κ(n). Such a family is second-preimage resistant (SPR) if
given a randomly chosen input x ∈ {0, 1}µ(n) and a description of a randomly chosen function
s ← KeyGen(1n), it is computationally infeasible to find an input x′ ∈ {0, 1}µ(n) such that x′ 6= x
and F(s, x) = F(s, x′). This is a weakening of the notion of a family of universal one-way hash
functions introduced by Naor and Yung [NY89], in which the input x is allowed to be chosen in an
adversarial manner (but still independently of the function description s).

Definition 2.2 (Second-preimage resistance). A family F = (KeyGen,F) of efficiently computable
functions is second-preimage resistant if for any probabilistic polynomial-time algorithm A is holds
that

Pr

[
Fs(x

′) = Fs(x) ∧ x′ 6= x

∣∣∣∣ s← KeyGen(1n), x← {0, 1}µ(n)

x′ ← A(s, x)

]
< ν(n) ,

for some negligible function ν(n), where the probability is taken over the choice of x ← {0, 1}µ(n)

and over the internal randomness of KeyGen and A.

In addition, we say that F = (KeyGen,F) is a family of public-coin second-preimage resistant
functions, if it satisfies Definition 2.2 even when the algorithm A takes as input also the internal
randomness that was used by KeyGen(1n) for sampling the function. We refer the reader to [HR04]
for more details on public-coin hash functions.

For any integer functions µ(n) and κ(n) that are polynomially related, the existence of universal
one-way hash functions (and therefore also of second-preimage resistant functions) with domain
{0, 1}µ(n) and range {0, 1}κ(n) is known to be equivalent to that of one-way functions [Rom90].
As noted by Katz and Vaikuntanathan [KV09], standard constructions of universal one-way hash
functions are public coin. In practice, such public-coin functions can be constructed rather easily
from various number-theoretic assumptions. For example, if the discrete log problem is hard in some
group G of prime order p, the family of functions fg1,...,gk : Zkp → G defined as fg1,...,gk(x1, . . . , xk) =∏k
i=1 g

xi
i is second-preimage resistant (and even collision resistant), where g1, . . . , gk ∈ G are chosen

uniformly and independently at random by the key-generation algorithm.
We note that for public-coin SPR functions, there is actually no need for an explicit key-

generation algorithm. Without loss of generality one can define a single function F′r(x) = (r,Fs(x)),
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where s = KeyGen(1n; r), and this is also SPR with the same amount of “lossiness” as the family
F .

2.4 Statistical Non-Interactive Witness-Indistinguishable Argument Systems

A non-interactive argument system for a language L with witness relation RL is a triplet of algo-
rithms (CRSGen,P,V), where CRSGen is an algorithm generating a common reference string crs,
and P and V are the prover and verifier algorithms, respectively. The prover takes as input a triplet
(crs, x, w), where (x,w) ∈ RL, and outputs a proof π. The verifier takes as input a triplet (crs, x, π)
and either accepts or rejects. In this paper we consider a setting where all three algorithms run in
probabilistic polynomial time. The two requirements of an argument system are completeness and
soundness with respect to efficient cheating provers. Informally, for every (x,w) ∈ RL the prover
generates proofs that are always accepted by the verifier, and for every x /∈ L any efficient cheating
prover has only a negligible probability of convincing the verifier to accept. An argument system
is called statistical witness indistinguishable if for any x ∈ L and any two witnesses w0 6= w1 such
that (x,w0), (x,w1) ∈ RL, the proofs generated by P(crs, x, w0) and P(crs, x, w1) are statistically
indistinguishable given the common reference string.

Definition 2.3 (SNIWI argument system). A statistical non-interactive witness-indistinguishable
argument system for a language L with witness relation RL is a triplet of probabilistic polynomial-
time algorithms (CRSGen,P,V) such that the following properties hold:

1. Perfect completeness: For every (x,w) ∈ RL it holds that

Pr [V(crs, x,P(crs, x, w)) = 1] = 1 ,

where crs ← CRSGen(1n), and the probability is taken over the internal randomness of
CRSGen, P, and V.

2. Adaptive soundness: For every probabilistic polynomial-time prover P∗ it holds that

Pr [V(crs, x, π) = 1 ∧ x 6∈ L | crs← CRSGen(1n), (x, π)← P∗(1n, crs)] < ν(n) ,

for some negligible function ν(n)

3. Statistical witness indistinguishability: There exists a probabilistic polynomial-time al-
gorithm CRSGenWI such that:

• The distributions {CRSGen(1n)} and {CRSGenWI(1
n)} are computationally indistin-

guishable.

• For any triplet (x,w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL, the distributions
{crs,P(crs, x, w0)} and {crs,P(crs, x, w1)} are statistically indistinguishable, when crs←
CRSGenWI(1

n).

For our construction we are interested in SNIWI argument systems for NP. Such an argument
system is implied by the construction of Groth, Ostrovsky and Sahai [GOS06] that satisfies the
stronger notion of a perfect non-interactive zero-knowledge argument system. Their construction
can be based on the hardness of either the Decisional Subgroup problem [BGN05] or the Deci-
sional Linear problem [BBS04]. As pointed out by Groth et al. we note that in their Linear-based
construction the algorithm CRSGen admits oblivious sampling (specifically, the distribution of the
common reference string is statistically-close to the uniform distribution), which is a technical
property that is required for our construction in the bounded leakage model.
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2.5 Lossy Public-Key Encryption

A lossy public-key encryption scheme is a public-key encryption scheme in which public keys can
be generated in two modes that are computationally indistinguishable: an injective mode in which
ciphertexts can be decrypted using a corresponding secret key, and a lossy mode in which ciphertexts
statistically hide the encrypted messages. Lossy public-key encryption was recently found useful
for various applications (see, for example, [BHY09, KN08, PVW08]), and its existence was shown
to be equivalent to 2-move statistical semi-honest oblivious transfer via rather simple and efficient
black-box reductions [HLO+09]. In particular, this implies that it can be realized based also on
any other primitive that is known to imply such oblivious transfer protocols, including in particular
homomorphic encryption, 2-move private information retrieval, and lossy trapdoor functions. Thus,
lossy public-key encryption schemes can be constructed based on the hardness of various number-
theoretic problems, such as Decisional Diffie-Hellman (and, more generally, Decisional d-Linear),
Quadratic Residuosity, Composite Residuosity, Learning With Errors, and more.

Definition 2.4 (Lossy PKE). A lossy public-key encryption scheme is a 4-tuple of probabilistic
polynomial-time algorithms (KeyGen0,KeyGen1,Enc,Dec) such that:

1. Lossy key generation: KeyGen0(1n) outputs a public key pk.

2. Injective key generation: KeyGen1(1n) outputs a secret key sk and a public key pk.

3. Lossiness under lossy keys: For every public key pk produced by KeyGen0(1n), and for
every two messages m0,m1 ∈ {0, 1}`(n), the statistical distance between the distributions
Encpk(m0) and Encpk(m1) is negligible in n.

4. Decryption under injective keys: For every message m ∈ {0, 1}`(n) it holds that

Pr [Decsk(Encpk(m)) = m] > 1− ν(n) ,

for some negligible function ν(n), where (sk, pk)← KeyGen1(1n), and the probability is taken
over the internal randomness of KeyGen1, Enc and Dec.

5. Indistinguishability of injective and lossy public keys: The two ensembles {pk : pk ←
KeyGen0(1n)}n∈N and {pk : (sk, pk) ← KeyGen1(1n)}n∈N are computationally indistinguish-
able.

For our application we need to be able to obliviously sample public descriptions that are compu-
tationally indistinguishable from those produced by KeyGen0 and KeyGen1. Specifically, we require
that the public descriptions that are produced by KeyGen0 and KeyGen1 are computationally indis-
tinguishable from the uniform distribution. This holds, for example, in the construction of Peikert
et al. [PVW08] (based on the DDH assumption – see also [BHY09]), and in the constructions re-
sulting from the lossy trapdoor functions of Peikert and Waters [PW08] (based on the DDH and
LWE assumptions) and of Freeman et al. [FGK+10] (based on the d-Linear assumption).

2.6 Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen [BB04] to convert
a natural selectively-secure identity-based encryption scheme into a fully-secure one. In this paper
we use such hash functions in a similar manner to convert a selectively-secure signature scheme
(where the adversary declares the message to be forged ahead of time, before receiving the verifica-
tion key) into a fully secure one. The main idea of an admissible hash function is that it allows the
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reduction in the proof of security to secretly partition the message space into two subsets, which we
will label as red (R) and blue (B), such that there is a noticeable probably that all of the messages
in the adversary’s signing queries will be in the blue set, but the forgery will be on a message in
the red set. This is useful if the simulator can efficiently answer signing queries in the blue set, yet
break some hard problem given a valid forgery on a message from the red set. Our exposition and
definition of admissible hash function follow that of Cash, Hofheinz, Kiltz, and Peikert [CHK+10].

For K ∈ {0, 1,⊥}τ(n), we define the function FK : {0, 1}τ(n) → {R, B} which “colors” the space
{0, 1}τ(n) of tags in the following way:

FK(y) :=

{
R if ∀ i ∈ {1, . . . , τ(n)} : Ki = yi or Ki = ⊥
B otherwise

For any u = u(n) < τ(n), we let Ku,n denote the uniform distribution over {0, 1,⊥}τ(n) con-
ditioned on exactly u positions having ⊥ values. (Note, if K is chosen from Ku,n, then the map
FK(·) colors exactly 2u values red.) We would like to pick a distribution Ku,n for choosing K so
that, there is a polynomial probability for any set of tags y0, . . . , yq of y0 being colored “red” and
all other tags being colored “blue”. Unfortunately, this cannot happen if we allow all tags. Instead,
we will need to rely on a special hash function the maps messages x to tags y.

Let H = {Hn}n∈N be a hash-function ensemble, where each H ∈ Hn is a polynomial-time
computable function H : {0, 1}∗ → {0, 1}τ(n). For each H ∈ Hn, we define the function
FK,H : {0, 1}∗ → {R, B}, which “colors” the space {0, 1}∗ according to FK,H(x) = FK(H(x)).

Definition 2.5 (Admissible hash function [BB04, CHK+10]). We say that H is an admissible
hash-function ensemble if for every H ∈ H there exists a set badH of string-tuples such that the
following two properties hold:

• For every probabilistic polynomial-time algorithm A there exists a negligible function ν(n)
satisfying

Pr[(x0, . . . , xq) ∈ badH | H ← Hn, (x0, . . . , xq)← A(1n, H)] ≤ ν(n) .

• For every polynomial q = q(n) there is a polynomial p = p(n) and an efficiently computable
u = u(n) such that, for every H ∈ Hn and (x0, . . . , xq) 6∈ badH with x0 6∈ {x1, . . . , xq}, we
have:

Pr
K←Ku,n

[FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xq) = B ] ≥ 1

p(n)
.

We note that for the application to identity-based encryption [BB04, CHK+10] the bad sets
badH are required to be efficiently recognizable, but this is not required for our application. In
addition, we say that H is a public-coin admissible hash-function ensemble, if it satisfies Definition
2.5 even when the algorithm A takes as input also the internal randomness that was used by
KeyGen(1n) for sampling the function.

The work of Boneh and Boyen [BB04] shows how to construct admissible hash functions from
collision-resistant hash functions. Moreover, if the underlying collision-resistant hash functions are
public coin, then so are the resulting admissible hash functions. As already mentioned in Section
2.3, public-coin collision-resistant hash functions can be constructed rather easily from various
number-theoretic assumptions.
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3 Modeling Leakage-Resilient Signature Schemes

A signature scheme is a triplet (KeyGen,Sign,Verify) of probabilistic polynomial-time algorithms
with syntax:

• (vk, sk)← KeyGen(1n) outputs a verification key and signing key.

• σ ← Signsk(m) signs a message m using the singing key sk.

• Verifyvk(m,σ) ∈ {0, 1} outputs a bit deciding wether σ is a valid signature for m.

We require perfect correctness, which states that for any valid key pair (vk, sk) output by KeyGen
and any message m ∈ {0, 1}∗ we have Verifyvk(m,Signsk(m)) = 1.

We now define fully-leakage-resilient signature security in the two different models: the bounded-
leakage model (see Section 3.1) and the continual-leakage model (see Section 3.2).

3.1 The Bounded-Leakage Model

A signature scheme is fully leakage-resilient (FLR) in the bounded-leakage model if it is existentially
unforgeable against an adversary that can obtain both signatures on any message of her choice, and
bounded leakage information on all intermediate values used by the key-generation algorithm and
the signer throughout the lifetime of the system. To model this, we define a variable state which
includes all secret-state used by the system so far. Initially, we set state to be the random-coins of
the KeyGen algorithm (note that we do not need to explicitly add sk to the state, since it can be
easily computed from it by any leakage function). On each signing query made by the adversary,
we append the random-coins of the signing algorithm to the state. The adversary can leak arbitrary
information about state as long as the amount is overall-bounded.

Definition 3.1 (FLR security — bounded leakage). A signature scheme Π = (KeyGen, Sign,Verify)
is λ-fully-leakage-resilient in the bounded-leakage model if for any probabilistic polynomial-time
adversary A it holds that Pr

[
Successλ-FLR

Π,A (n)
]

is negligible in n, where the event Successλ-FLR
Π,A (n) is

defined via the following experiment:

1. Sample r ← {0, 1}∗, compute (vk, sk) = KeyGen(1n; r), and set state = {r}.

2. The adversary A receives as input the pair (1n, vk), and can adaptively query a signing oracle
and a leakage oracle that are defined as follows:

• Signing queries. The signing oracle receives as input a message mi, samples ri ←
{0, 1}∗, and then computes σi ← Signsk(mi; ri). It updates state := state ∪ {ri} and
outputs σi.

• Leakage queries. The leakage oracle receives as input a description of an efficiently
computable function fj : {0, 1}∗ → {0, 1}λj , and outputs fj(state). We call λj the
output length of the j-th leakage function.

3. The adversary A outputs a pair (m∗, σ∗).

4. Successλ-FLR
Π,A (n) denotes the event in which:

• Verifyvk(m
∗, σ∗) = 1.

• m∗ was not queried to the signing oracle.

• The sum of output lengths of all leakage functions is at most λ(n).
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3.2 The Continual-Leakage Model

In the continual-leakage model, a signature scheme also includes an additional “key-refresh algo-
rithm” sk′ ← Refreshpk(sk), which the signer can use at any point in time to refresh his signing
key. Each new signing key sk′ produced by the key-refresh algorithm is functionally equivalent
to the original key. We imagine a setting where the signer periodically updates her signing key,
while the adversary is continuously leaking information about the state of the system. We model
this with as an attack which consists of arbitrarily many leakage epochs, during each of which the
adversary can learn an additional λ bits of information about the current state of the system. In
the beginning of the first epoch, the set state consists of just the signing key sk produced by key-
generation algorithm. During each epoch, the adversary can adaptively issue signing queries, where
the randomness of signing algorithm is appended to the set state, and leakage queries for up to λ
bits of information about the state. At any point in time the adversary can move to the next epoch
by issuing a key-refresh query, which results in the set state being reset10 to sk ← Refreshpk(sk).
Notice that, since there is no bound on the number of epochs, there is also no bound on the overall
amount of leakage the adversary can learn during the attack game.

Definition 3.2 (CFLR security — continual leakage). A signature scheme Π = (KeyGen,Refresh,
Sign,Verify) is λ-fully-leakage-resilient in the continual-leakage model (CFLR) if for any probabilis-
tic polynomial-time adversary A it holds that Pr

[
Successλ-CFLR

Π,A (n)
]

is negligible in n, where the

event Successλ-CFLR
Π,A (n) is defined via the following experiment:

1. Sample (vk, sk)← KeyGen(1n), and set state := sk and L = 0.

2. The adversary A receives as input the pair (1n, vk), and can adaptively issue the following
types of queries:

• Signing queries. The signing oracle receives as input a message mi, samples ri ←
{0, 1}∗, and then computes σi ← Signsk(mi; ri). It updates state := state ∪ {ri} and
outputs σi.

• Leakage queries. The leakage oracle receives as input a description of an efficiently
computable function fj : {0, 1}∗ → {0, 1}λj . If L+ λj ≤ λ(n) then it outputs fj(state),
and updates L := L+ λj. Otherwise it outputs ⊥.

• Key-refresh queries. On a key-refresh query, the signing key is refreshed by sampling
sk′ ← Refreshpk(sk) and setting sk := sk′. In addition, we reset state := sk and L := 0.

3. The adversary A outputs a pair (m∗, σ∗).

4. Successλ-FLR
Π,A (n) denotes the event in which:

• Verifyvk(m
∗, σ∗) = 1.

• m∗ was never queried to the signing oracle.

Note that our definition for the continual-leakage model does not consider leakage of the random-
ness used by the key-generation algorithm11 or the key-refresh algorithm. We could define a stronger
definition which also allows some leakage from these algorithms. As shown in [BTK+10] and
[DHL+10a], any scheme that satisfies the basic definition (as stated) with some super-logarithmic

10The necessary requirement that the state is reset models the ability of the honest parties to erase/overwrite their
prior signing key and the randomness used in prior executions during a key refresh.

11This is in contrast to our bounded-leakage definition, which does consider such leakage.
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λ(n), is also generically secure if an additional O(log(n)) bits are leaked about the randomness
of key-generation and each of the key-refresh executions. However, it remains an important open
problem to come up with a specific scheme that beats the above generic bounds and allows for
super-logarithmic leakage. Therefore, to keep the definition simple, we do not consider these forms
of leakage in Definition 3.2.

4 R-Lossy Public-Key Encryption

In this section we introduce the notion of anR-lossy public-key encryption scheme. Informally, such
a scheme is a tag-based public-key encryption scheme where the set of possible tags is partitioned
into two subsets: injective tags, and lossy tags. When a message is encrypted under an injective
tag, the resulting ciphertext can be correctly decrypted using the secret key. On the other hand,
when encrypted under a lossy tag, the ciphertext statistically hides the message. The partitioning
of the tags in defined by a binary relation R ⊆ K × T : the key-generation algorithm receives as
input an initialization value K ∈ K and this partitions the set tags T so that t ∈ T is injective
if and only if (K, t) ∈ R. More, formally, we require that the relation R ⊆ K × T consists of a
sequence of efficiently (in n) recognizable sub-relations Rn ⊆ Kn × Tn.

The only computational requirement of an R-lossy public-key encryption scheme is that the
public key of the encryption scheme hides the initialization value K. That is, public keys produced
by different initialization values are computationally indistinguishable.

Definition 4.1 (R-lossy PKE). Let R ⊆ K×T be an efficiently computable binary relation. An R-
lossy public-key encryption scheme is a triplet of probabilistic polynomial-time algorithms (KeyGen,
Enc,Dec) such that:

1. Key generation: For any initialization value K ∈ Kn, the algorithm KeyGen(1n,K) outputs
a secret key sk and a public key pk.

2. Decryption under injective tags: For any initialization value K ∈ Kn and tag t ∈ Tn
such that (K, t) ∈ Rn, and for any message m ∈ {0, 1}`(n), it holds that

Pr
[
Dectsk(Enc

t
pk(m)) = m

]
> 1− ν(n) ,

for some negligible function ν(n), where (sk, pk) ← KeyGen(1n,K), and the probability is
taken over the internal randomness of KeyGen, Enc and Dec.

3. Lossiness under lossy tags: For any initialization value K ∈ Kn and tag t ∈ Tn such
that (K, t) /∈ Rn, for every pair (sk, pk) of keys produced by KeyGen(1n,K), and for every
two messages m0,m1 ∈ {0, 1}`(n), the distributions Enctpk(m0) and Enctpk(m1) are statistically
indistinguishable.

4. Indistinguishability of initialization values: For every sequence {(Kn,K
′
n)}n∈N such that

Kn,K
′
n ∈ Kn, the two ensembles {pk : (sk, pk) ← KeyGen(1n,Kn)}n∈N and {pk : (sk, pk) ←

KeyGen(1n,K ′n)}n∈N are computationally indistinguishable.

As with the other primitives that are used in our construction, we need to be able to obliviously
sample public keys in a way that is computationally indistinguishable from those produced by
KeyGen(1n, ·). Specifically, we require that there exists a sequence of initialization values {Kn}n∈N
such that the ensemble {pk : (sk, pk) ← KeyGen(1n,Kn)}n∈N is computationally indistinguishable
from the uniform distribution over {0, 1}∗. Note that by the indistinguishability of initialization
values property defined above, this in fact holds for every sequence {Kn}n∈N.
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For our constructions of fully leakage-resilient signature schemes we consider two relations: the
equality relation REQ, and the more general “bit-matching” relation RBM that is defined below.

The relation REQ. The relation REQ is the equality relation for binary tags of length τ(n) bits.
That is, Kn = Tn = {0, 1}τ(n), and (K, t) ∈ REQ

n if and only if K = t. An REQ-lossy encryption
is just an all-but-one-lossy (ALBO) public-key encryption scheme, a primitive discussed in the
introduction. In this case there is one injective tag, corresponding to the value of K used during
initialization, and all the other tags are lossy.

The relation RBM. The bit-matching relation RBM is a generalization of equality, which allows
for more complex partitions. For Kn = {0, 1,⊥}τ(n), Tn = {0, 1}τ(n) define (K, t) ∈ RBM

n ⊆ Kn×Tn
iff for every i ∈ {1, . . . , τ(n)} it holds that Ki = ti or Ki = ⊥. That is, given some fixed initialization
value K, the set of injective tags t are exactly those whose bits match K in all positions i for which
Ki 6= ⊥. Notice that, if K does not contain any ⊥ symbols, then there is a single injective tag
t = K and all other tags are lossy. Therefore RBM-lossy encryption is a strict generalization of
REQ-lossy encryption.

In our signature scheme construction, the RBM-lossy encryption will be used in combination
with an admissible hash function (discussed in Section 2.6). The admissible hash function gives
us a way to map messages to encryption tags such that, with high probability over an appropriate
distribution of K, all signing queries map to lossy tags while the forgery maps to an injective tag.

Constructions. We propose two constructions of RBM-lossy public-key encryption schemes12.
Our first construction is rather generic and is based on any lossy public-key encryption scheme
(recall Section 2.5). In turn, this implies RBM-lossy public-key encryption schemes can be based on
a variety of number-theoretic assumptions. Our second construction is based on a specific number-
theoretic assumption (the DDH assumption13) and is significantly more efficient than our generic
construction.

4.1 A Generic Construction of RBM-Lossy PKE from Lossy PKE

Let Π = (KeyGen0,KeyGen1,Enc,Dec) be any lossy public-key encryption scheme. The key-
generation algorithm of our RBM-lossy public-key encryption scheme samples τ(n) pairs of public
keys of the scheme Π. Each such pair is of one out of three possible types according to the symbols
of the initialization value K ∈ {0, 1,⊥}τ(n). For every 1 ∈ {1, . . . , τ(n)}, if Ki = 0 then the i-th pair
consists of a lossy key and an injective key, if Ki = 1 then the i-th pair consists of an injective and a
lossy key (i.e., the order is reversed), and if Ki = ⊥ then i-th pair consists of two injective keys14. A
message is encrypted under a tag t ∈ {0, 1}τ(n) by using a τ(n)-out-of-τ(n) (information-theoretic)
secret-sharing scheme to share the message, and then encrypting the i-th share using one of the
keys from the i-th pair of keys according to the i-th bit of t. More formally, consider the following
encryption scheme Π′ = (KeyGen′,Enc′,Dec′):

• Key generation: On input 1n and an initialization value K = K1 · · ·Kτ(n) ∈ {0, 1,⊥}τ(n),
for every 1 ≤ i ≤ τ(n) the algorithm KeyGen′ produces a pair ((ski,0, pki,0), (ski,1, pki,1)) as
follows:

12We note that rather straightforward variants of these constructions yieldREQ-lossy public-key encryption schemes.
13Our construction easily generalizes to rely on the d-Linear assumption for any d ≥ 1.
14Observe that if the underlying lossy encryption scheme allows oblivious sampling of public keys, then so does our

construction.
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– If Ki = 0 then it samples pki,0 ← KeyGen0(1n), (ski,1, pki,1) ← KeyGen1(1n), and sets
ski,0 = ⊥.

– If Ki = 1 then it samples (ski,0, pki,0) ← KeyGen1(1n), and pki,1 ← KeyGen0(1n), and
sets ski,1 = ⊥.

– If Ki = ⊥ then it samples (ski,0, pki,0)← KeyGen1(1n) and (ski,1, pki,1)← KeyGen1(1n).

It then outputs the pair (sk, pk) defined as

sk =
(
K, {(ski,0, ski,1)}τ(n)

i=1

)
pk =

(
{(pki,0, pki,1)}τ(n)

i=1

)
• Encryption: On input a public key pk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n) and

a message m ∈ {0, 1}`(n), the algorithm Enc′ uses a τ(n)-out-of-τ(n) (information-theoretic)
secret-sharing scheme to compute shares (m1, . . . ,mτ(n)) of m, and outputs a ciphertext c
defined as

c =
(
Encpk1,t1 (m1), . . . ,Encpkτ(n),tτ(n)

(mτ(n))
)

• Decryption: On input a secret key sk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n)

and a ciphertext c = (c1, . . . , cτ(n)), the algorithm Dec′ proceeds as follows. If (K, t) /∈ RBM

(i.e., t is a lossy tag) then it outputs ⊥. Otherwise (i.e., t is an injective tag), for every
1 ≤ i ≤ τ(n) it computes mi = Decski,ti (ci), and uses the reconstruction procedure of the
secret sharing scheme to output the message m corresponding to the shares (m1, . . . ,mτ(n)).

Theorem 4.2. If Π = (KeyGen0,KeyGen1,Enc,Dec) is a lossy public-key encryption scheme, then
Π′ = (KeyGen′,Enc′,Dec′) is an RBM-lossy public-key encryption scheme.

Proof. Indistinguishability of initialization values follows directly from the indistinguishability of
lossy and injective public keys of the underlying lossy encryption scheme via a straightforward
hybrid argument. The correctness of the decryption algorithm under injective tags follows from
the fact that when encrypting a message under an injective tag t (i.e., for every i ∈ {1, . . . , τ(n)}
it holds that Ki 6= ti), each share of the message is encrypted under an injective public key of the
underlying lossy encryption scheme. Lossiness of encryption under lossy tags follows from the fact
that when encrypting a message under any lossy tag t (i.e., there exists some i ∈ {1, . . . , τ(n)} for
which Ki = ti), at least one of the shares is encrypted using a lossy public key. This guarantees
that the ciphertext corresponding to this share is statistically indistinguishable from an encryption
of any other share under the same lossy public key. Thus, the τ(n)-out-of-τ(n) (information-
theoretic) secret-sharing scheme implies that encryptions of any two messages under any lossy tag
are statistically indistinguishable.

4.2 A More Efficient Construction of RBM-Lossy PKE Based on DDH

We now present a specific DDH-based scheme with better efficiency than the generic construction
from Section 4.1. In this scheme, the public key still consists of τ(n) pairs, where τ(n) is the length
of the tags, but each ciphertext consists of only two group elements. This scheme satisfies the
requirements of Definition 4.1 with overwhelming probability over the internal randomness of the
key-generation algorithm (oblivious sampling of public keys is always guaranteed), which will be
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sufficient for the security of our constructions in this paper. We refer to a scheme that satisfies this
slightly weaker guarantee as an almost-always R-lossy public-key encryption scheme.

Let GroupGen be a probabilistic polynomial-time algorithm that takes a security parameter 1n

as input and outputs a triplet (G, p, g), where G is a group of order p generated by g ∈ G, and p is
an n-bit prime number. Consider the following encryption scheme ΠDDH = (KeyGenDDH,EncDDH,
DecDDH):

• Key generation: On input 1n and an initialization value K = K1 · · ·Kτ(n) ∈ {0, 1,⊥}τ(n),
the algorithm KeyGenDDH samples (G, p, g) ← GroupGen(1n), together with a uniformly dis-
tributed element h ← G. Then, for every 1 ≤ i ≤ τ(n) it samples αi,0, βi,0, αi,1, βi,1 ← Zp
uniformly and independently at random, and continues as follows:

– If Ki = 0 then it sets αi,1 = βi,1.

– If Ki = 1 then it sets αi,0 = βi,0.

– If Ki = ⊥ then it sets αi,0 = βi,0 and αi,1 = βi,1.

Finally, for every 1 ≤ i ≤ τ(n) and b ∈ {0, 1} it sets (ui,b, vi,b) =
(
gαi,b , hβi,b

)
, and outputs

the pair (sk, pk) defined as

sk =
(
K, {(αi,0, βi,0) , (αi,1, βi,1)}τ(n)

i=1

)
pk =

(
g, h, {(ui,0, vi,0) , (ui,1, vi,1)}τ(n)

i=1

)
• Encryption: On input a public key pk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n)

and a message m ∈ G, the algorithm EncDDH chooses r, r′ ∈ Zp uniformly and independently
at random, computes

ut =

τ(n)∏
i=1

ui,ti , vt =

τ(n)∏
i=1

vi,ti , c1 = grhr
′
, c2 = (ut)

r(vt)
r′ ·m ,

and outputs the ciphertext (c1, c2).

• Decryption: On input a secret key sk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n)

and a ciphertext c = (c1, c2), the algorithm DecDDH proceeds as follows. If (K, t) /∈ RBM

(i.e., t is a lossy tag) then it outputs ⊥. Otherwise (i.e., t is an injective tag), it outputs the
message m defined as

m = c2 ·
(
c
∑τ(n)
i=1 αi,ti

1

)−1

.

Theorem 4.3. Assuming the hardness of the DDH problem, then ΠDDH = (KeyGenDDH,EncDDH,
DecDDH) is an almost-always RBM-lossy public-key encryption scheme for tags of length τ(n) ≤
log p− ω(log n).

Proof. Indistinguishability of initialization values follows directly from the hardness of the DDH
problem and a standard hybrid argument. In addition, (perfect) correctness of the decryption
algorithm under injective tags follows from the fact that for any injective tag t = t1 · · · tτ(n) (i.e.,
for every i ∈ {1, . . . , τ(n)} it holds that Ki 6= ti) it holds that αi,ti = βi,ti for every i ∈ {1, . . . , τ(n)}.
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Therefore, for any ciphertext (c1, c2) that is produced by encrypting a message m under an injective
tag t it holds that

c2 ·
(
c
∑τ(n)
i=1 αi,ti

1

)−1

= (ut)
r(vt)

r′ ·m ·

((
grhr

′
)∑τ(n)

i=1 αi,ti

)−1

=

τ(n)∏
i=1

ui,ti

rτ(n)∏
i=1

vi,ti

r′

·m ·

((
grhr

′
)∑τ(n)

i=1 αi,ti

)−1

=

τ(n)∏
i=1

gαi,ti

rτ(n)∏
i=1

hβi,ti

r′

·m ·

((
grhr

′
)∑τ(n)

i=1 αi,ti

)−1

=

τ(n)∏
i=1

gαi,ti

rτ(n)∏
i=1

hαi,ti

r′

·m ·

((
grhr

′
)∑τ(n)

i=1 αi,ti

)−1

=
(
grhr

′
)∑τ(n)

i=1 αi,ti ·m ·

((
grhr

′
)∑τ(n)

i=1 αi,ti

)−1

= m .

Finally, we prove that lossiness under lossy tags holds with probability at least 1− 2τ(n)/p over the
internal randomness of the key-generation algorithm. Fix an initialization value K ∈ {0, 1,⊥}τ(n),
and a lossy tag t ∈ {0, 1}τ(n) (i.e., there exists some i ∈ {1, . . . , τ(n)} for whichKi = ti). Then, there
exists some i ∈ {1, . . . , τ(n)} for which the values αi,ti and βi,ti are uniformly and independently
chosen, and therefore the values ut and vt as defined by the encryption algorithm are indepen-
dently and uniformly distributed in G. Thus, with probability 1 − 1/p, it holds that (g, h, ut, vt)
is not a DDH tuple (i.e., logg(ut) 6= logh(vt)). In this case, the elements grhr

′
and (ut)

r(vt)
r′ are

also independently and uniformly distributed in G over the choice of r and r′ (see, for example,
[PVW08, Lemma 4]). This implies that a ciphertext (c1, c2) encrypted under a lossy tag t carries
no information on the message. This holds for any specific lossy tag t, and therefore a union bound
guarantees that this holds for all lossy tags with probability at least 1− 2τ(n)/p.

5 A Signature Scheme in the Bounded-Leakage Model

In this section we present a fully leakage-resilient signature scheme in the bounded-leakage model
(see Definition 3.1). We use the following primitives in a generic manner:

• Let F = (KeyGenSPR,F) be a family of public-coin second-preimage resistant functions Fs(·) :
{0, 1}µ(n) → {0, 1}κ(n) for some κ(n) < µ(n).

• Let H be a public-coin admissible hash function ensemble.

• Let E = (KeyGenRBM ,Enc,Dec) be an RBM-lossy public-key encryption scheme.

• Let Π = (CRSGen,P,V) be a SNIWI argument system for the language

L = {(s, y, pk, t, C) : ∃x, ω st C = Enctpk(x;ω) and Fs(x) = y} .
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We assume that the distribution of public keys and common-reference strings produced by the
algorithms KeyGenRBM and CRSGen, respectively, are computationally indistinguishable from the
uniform distribution over {0, 1}∗.15 Define the signature scheme S = (KeyGen, Sign,Verify):

• Key generation: On input 1n, the algorithm KeyGen samples a uniformly distributed x←
{0, 1}µ(n), a function description s ← KeyGenSPR(1n) from the SPR family, and computes
y = Fs(x). Then, it samples a description of an admissible hash function H ← Hn, and
samples pk ← {0, 1}∗ and crs← {0, 1}∗ to be used as a public key for theRBM-lossy encryption
scheme and a common-reference string for the SNIWI argument system, respectively. It
outputs the signing key sk = x and the verification key vk = (s, y,H, pk, crs).

• Signing: On input messagem, the algorithm Sign computes an encryption C = Enc
H(m)
pk (x;ω)

of x under the tag H(m) using fresh randomness ω. Then, it invokes the prover of the
argument system to obtain a proof π ← P(crs, (s, y, pk,H(m), C), (x, ω)), and outputs the
signature (C, π).

• Verifying: On input message m and signature σ = (C, π), the algorithm Verify invokes the
verifier of the argument system and outputs 1 if and only if V(crs, (s, y, pk,H(m), C), π) = 1.

Theorem 5.1. Assuming the existence of the schemes F , H, E and Π with properties described
above, the scheme S = (KeyGen,Sign,Verify) is λ-fully-leakage-resilient in the bounded-leakage
model for any λ = µ(n)−κ(n)−ω(log n). The relative leakage is given by λ/|sk| ≈ (1−κ(n)/µ(n)) =
(1− o(1)) for an appropriate choice of κ(n) = o(µ(n)).

Before turning to the formal proof of Theorem 5.1 we first provide a high-level outline of the
main ideas. Suppose there is an adversary who breaks the security of the scheme. We can then
use the adversary to break the security of the SPR function as follows. Choose a random crs for
the SNIWI argument honestly, and a (pk, sk) pair for RBM-lossy public-key encryption using an
initialization value K sampled from an appropriate distribution (dictated by the admissible hash
function, depending on the number of signing queries the adversary makes). Given a random
challenge x from the SPR challenger, we embed y = F(x), crs, pk into the verification key and
then run the forging adversary, using x to answer all its signing/leakage queries. If the adversary’s
forgery is on a message m∗ that corresponds to a injective tag of the encryption scheme, then we use
sk to decrypt a (hopefully second preimage) x′ from the adversary’s forged signature. We argue
that, with polynomial probability, we do recover a second preimage x′ 6= x, using the following
steps:

• Using the partitioning argument of Boneh-Boyen [BB04], there is a noticeable probability
that the all of the adversary’s signing queries correspond to “lossy” tags while the forgery
corresponds to an “injective” tag. Here we rely on the property that the initialization value K
is hidden by the public-key. We call an execution where the above occurs a “good execution.”

• In a good execution, the adversary’s forgery can be decrypted to a valid preimage x′ ∈ F−1(y),
by the soundness of the SNIWI argument.

• Information theoretically, the probability of x′ = x in a good execution is negligible, since
the adversary just doesn’t have enough information about x. That is, the signature-query
responses are independent of x, and the leakage-query responses and the verification key y
are too short. This is formalized with an entropy argument.

15 More generally, we just require “oblivious”sampling, but we will assume uniform distribution for simplicity. See
Section 2.
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In terms of efficiency, in Section 6 we present a specific efficient instantiation of the scheme
based on the 2-linear assumption (the case of a general d ≥ 1 is deferred to the full version of this
paper). In particular, the signature length will consist of a constant number of group elements.
However, our verification keys are rather large, consisting of Ω(n) group elements.

Proof of Theorem 5.1. Fix a probabilistic polynomial-time adversary A, and let q = q(n)
be a polynomial upper bound on the number of signing queries made by A in any execution.
Without loss of generality we assume that A always submits q signing queries, and we denote
them by m1, . . . ,mq. Let Ku,n be the distribution from Definition 2.5 for the appropriate setting of
u = u(n) corresponding to q. The proof consists of a sequence of experiments. We analyze several
events within the context of these experiments; events with the same name but different subscript
are defined analogously, but within the context of the experiment indicated by the subscript.

Experiment 0: This is the original experiment in the definition of λ-fully-leakage-resilience, as
described in Section 3. Note that the initial state is state = {x, rs, rH , pk, crs}, where rs and
rH denote the randomness used to generate s and H, respectively. In this experiment we also
sample K ← Ku,n, but this value is not used by the challenger in any way.

Let Forge0 be the event that the signature (C∗, π∗) produced by A at the conclusion of Ex-
periment 0 is valid, and that m∗ 6= mi for every i ∈ {1, . . . , q}. In addition, let CorrectHash0 be
the event that all signature queries m1, . . . ,mq made by A during the course of Experiment 0 fall
into the set of “Blue” tags defined by K, while the forged message m∗ falls into the set of “Red”
tags. That is, in the notation of Section 2.6, it holds that FK,H(m1) = · · · = FK,H(mq) = B and
FK,H(m∗) = R.

Claim 5.2. There exists a polynomial p(n) such that

Pr[Forge0 ∧ CorrectHash0] ≥ Pr[Forge0]/p(n)− negl(n) .

Proof. Using the notation of Definition 2.5, let Bad be the event (m∗,m1, . . . ,mq) ∈ badH . Then
Definition 2.5 clearly implies that Pr[Bad] ≤ negl(n). Let p(·) be as in Definition 2.5. Then

Pr[Forge0 ∧ CorrectHash0] ≥ Pr[Forge0 ∧ CorrectHash0 ∧ ¬Bad]

≥ Pr[Forge0 ∧ ¬Bad] Pr[CorrectHash0 | Forge0 ∧ ¬Bad]

≥ (Pr[Forge0]− negl(n))/p(n) (5.1)

Where equation 5.1 follows by the definition of admissible hash functions, and since the choice of
K in this experiment is independent of the events Forge0 and Bad.

Experiment 1: Modify Experiment 0 as follows. The key-generation algorithm does not sam-
ple pk for encryption obliviously. Instead, it uses the value K and samples (pk, skE) ←
KeyGenRBM(1n,K). Note that from the adversary’s point of view the initial state remains
state = {x, rs, rH , pk, crs}. Define the events Forge1 and CorrectHash1 analogously to ex-
periment 0. (In the sequel, events with the same name but different subscripts are defined
identically, except that they occur in the context of the experiment corresponding to the
subscript).

Claim 5.3. Pr[Forge1 ∧ CorrectHash1] ≥ Pr[Forge0 ∧ CorrectHash0]− negl(n).
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Proof. This follows by the “indistinguishability of initialization values” property of the RBM-lossy
public-key encryption scheme. That is, even if revealed our choice of K to the adversary, it is
impossible to distinguish between the case where pk is chosen obliviously (experiment 0) and where
it is chosen using the initialization value K (experiment 1).

Define the event Extract1 to be the event that Forge1 and CorrectHash1 hold and, in addition,
the signature σ∗ = (C∗, π∗) on the message m∗ produced by A at the conclusion of Experiment 1

is such that x′ = Dec
H(m∗)
skE

(C∗) satisfies Fs(x
′) = y.

Claim 5.4. Pr[Extract1] ≥ Pr[Forge1 ∧ CorrectHash1]− negl(n).

Proof. Follows by the adaptive soundness of the SNIWI argument. That is, when Forge1 ∧
CorrectHash1 occurs but Extract1 does not, the proof π∗ is that of a false statement.

Define the event SameExtract1 to be the event that Extract1 occurs and that x′ = x, where

x′ = Dec
H(m∗)
skE

(C∗) is the extracted value and x is the secret-key used by the challenger.

Claim 5.5. Pr[SameExtract1] ≥ Pr[Extract1]− negl(n).

Proof. Follows by the second pre-image resistance (SPR) of (KeyGen,F). That is, if the probability
of Extract1 ∧ ¬SameExtract1 occurring is noticeable, than we can break the SPR-security by using
the SPR-challenge (s, x) to run Experiment 1 and recovering x′ 6= x such that Fs(x) = Fs(x

′) from
the adversary’s forgery (with noticeable probability) .

Experiment 2: Modify how the crs of the SNIWI argument system is generated, by using the
procedure CRSGenWI(1

n) (see Definition 2.3) instead of obliviously sampling the crs (which
corresponds to CRSGen(1n)).

Claim 5.6. Pr[SameExtract2] ≥ Pr[SameExtract1]− negl(n).

Proof. Follows by the computational indistinguishability of the distributions CRSGen(1n) and
CRSGenWI(1

n).

We now want to show that, in Experiment 2, the only information that the adversary learns
about the secret-key x is from the leakage-queries, while the signature queries do not (statistically)
reveal additional information. To do so, we introduce Experiments 2-5. From now on, all of
our arguments will be solely information-theoretic, and hence we do not mind that the following
experiments will no longer be efficient.

Experiment 3: Modify Experiment 2 by changing the response of the signing oracle. For any

ciphertext-plaintext pair (C, z), define Rand
H(m)
pk (C, z) to be the weighted distribution {r :

C = Enc
H(m)
pk (z; r)} of random values which give C as an encryption of z. When responding

to a signing query m, the oracle first generates an encryption C = Enc
H(m)
pk (x; rE) as in the

previous experiments. It then samples a new value for the randomness r′E ← Rand
H(m)
pk (C, x)

and uses this value in the place of rE in the state update process and as the witness for the
proof π. Explicitly, the output signature is (C, π), where

C = Enc
H(m)
pk (x; rE), π = P(crs, (s, y, pk,H(m), C), (x, r′E); rπ),

and the state is updated as state← state ∪ {r′E , rπ}.
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Note that, in the description of Experiment 3, the challenger is no longer efficient. However,
the distribution of this modified experiment is identical to the original; this step merely introduces
the randomness r′E as a function of C and x, as opposed to viewing the ciphertext C as a function
of x and r′E . Therefore we get the following claim.

Claim 5.7. Pr[SameExtract3] = Pr[SameExtract2].

Experiment 4: Again modify the response of the signing oracle, this time replacing the encryp-
tion C of x in each signature with a new encryption C ′ of a uniformly chosen preimage x′ of
y under Fs(·). Explicitly, for each signature query m,

1. Choose x′ uniformly at random subject to Fs(x
′) = y.

2. Sample rE ← {0, 1}∗ and compute C ′ ← Enc
H(m)
pk (x′; rE).

3. Sample r′E ← Rand
H(m)
pk (C ′, x). Note this is with respect to the original x, and if

Rand
H(m)
pk (C ′, x) = ∅ then the experiment terminates.

4. Sample rπ ← {0, 1}∗ and compute π′ = P(crs, (s, y, pk,H(m), C ′), (x, r′E); rπ).

5. Output the signature (C ′, π′), where

C ′ = Encmpk(x
′; rE), π′ = P(crs, (s, y, pk,H(m), C ′), (x, r′E); rπ),

and update state← state ∪ {r′E , rπ}.

Claim 5.8. Pr[SameExtract4] ≥ Pr[SameExtract3]− negl(n).

Proof. Define Viewi be the view of A in Experiment i, consisting of its random coins and observed
values of the verification key, queried signatures, and leakage values.

Let C ← Enc
H(mi)
pk (x) and C ′ ← Enc

H(mi)
pk (x′). Recall that CorrectHash3 implies the adversary’s

signature queries mi correspond to lossy tags for the RBM-lossy scheme. Thus, for each i the
distributions (pk,C) and (pk,C ′) are statistically indistinguishable, say δ close. In particular, this

also implies Rand
H(mi)
pk (C, x) 6= ∅ with overwhelming probability. This indistinguishability remains

true even if the value of x is known.
The remainder of the adversary’s view is composed of the verification key, the proofs πi from the

queried signatures, and the leakage function evaluations Leakage =
⋃
j fj(statej). The verification

key vk = (s, y,H, pk, crs) can be computed purely as a function of x and randomness. And, in
Experiments 3 and 4, the proofs πi and leakage values are computed as a function of vk, x, inde-
pendent randomness rπ, and r′E , which in turn is selected as a function of x and the corresponding
ciphertext C or C ′. For each i the joint distribution (x,C, vk, πi, Leakage) must then be δ-close to
that of (x,C ′, vk, πi, Leakage). If the adversary makes q = poly(n) signature queries, we will then
have (x,View3) ≈qδ (x,View4) Hence, Pr[SameExtract3] ≤ Pr[SameExtract4] + qδ.

Experiment 5: Modify the response of the signing oracle by performing steps 1-4 as in Experi-
ment 4, then continuing as follows. Analogous to the distribution that was defined above for
sampling r′E for the RBM-lossy public-key encryption scheme, let RandH(m)(π, x, rE) be the
weighted distribution {r : π = P(crs, (s, y, pk,H(m), C), (x, rE); r)}.

5. Sample r′π ← RandH(m)(π
′, x, r′E).
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6. Output the signature (C ′, π′), where

C ′ = Encmpk(x
′; rE), π′ = P(crs, (s, y, pk,H(m), C ′), (x, r′E); rπ)

as before, but update state← state ∪ {r′E , r′π} using r′π.

Again, the distribution of experiments 4 and 5 are identical and hence we get the following:

Claim 5.9. Pr[SameExtract5] = Pr[SameExtract4].

Experiment 6: Modify the response of the signing oracle by replacing the proof with one using
witness (x′, rE) instead of (x, r′E). Explicitly, perform steps 1-3 as in Experiment 3, then
continue as follows.

4. Sample rπ ← {0, 1}∗ and compute π′′ = P(crs, (s, y, pk,H(m), C ′), (x′, rE); rπ).

5. Sample r′π ← RandH(m)(π
′′, x, r′E). If RandH(m)(π

′′, x, r′E) = ∅, the experiment termi-
nates.

6. Output the signature (C ′, π′′), where

C ′ = Encmpk(x
′; rE), π′′ = P(crs, (s, y, pk,H(m), C ′), (x′, rE); rπ),

and update state← state ∪ {r′E , r′π}.

Claim 5.10. Pr[SameExtract6] ≥ Pr[SameExtract5]− negl(n).

Proof. The proof is analogous to that of Claim 5.8. Specifically, let

π′ ← P(crs, (s, y, pk,H(m), C ′), (x, r′E); rπ)

π′′ ← P(crs, (s, y, pk,H(m), C ′), (x′, rE); rπ) ,

then by the statistical witness indistinguishability of the argument system, the distributions of
π′ and π′′ are δ-close for some negligible δ, even if x is known. In particular, this implies
RandH(m)(π

′′, x, r′E) 6= ∅ with overwhelming probability. Since the leakage is computed on r′π,
which is selected as a function of the proof and x, the joint distributions of

(x, vk, C ′, π′, Leakage(x, π′)) ≈δ (x, vk, C ′, π′′, Leakage(x, π′′))

must be δ-close. Thus, if the adversary makes q signature queries, we will have (x,View5) ≈qδ
(x,View6), and so View5 ≈qδ View6.

As a final step in the proof, we show that x still possesses high average min-entropy conditioned
on the view of A within Experiment 6.

Claim 5.11. H̃∞ (x|View6) ≥ µ(n)− κ(n)− λ.

Proof. We consider how the average min-entropy of x decreases as the experiment progresses. At
the beginning of the experiment (i.e., before the adversary submits any queries), the view of the
adversary consists of the verification key vk and its own random coins RandCoins. The experiment

proceeds with a series of queries made by A to the leakage and signing oracles. Let View
(j)
6 denote

the view of the adversary within Experiment 6 after j such queries (thus View
(0)
6 = vk||RandCoins,

where || denotes concatenation).
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For each leakage query fj with a λj-bit output, it holds that View
(j)
6 = View

(j−1)
6 ||fj(state),

and therefore Lemma 2.1 guarantees that H̃∞

(
x
∣∣∣View(j)

6

)
≥ H̃∞

(
x
∣∣∣View(j−1)

6

)
− λj . For each

signature query with a message mj , it holds that View
(j)
6 = View

(j−1)
6 ||mj ||σj . First, note that

the message mj is chosen by the adversary as a function of View
(j−1)
6 . Second, note that in Ex-

periment 6, each signature σj is computed as a function of x′ which is independent of x given y.

Therefore, the pair (mj , σj) does not reduce the average min-entropy of x given View
(j−1)
6 That is,

H̃∞

(
x
∣∣∣View(j)

6

)
= H̃∞

(
x
∣∣∣View(j−1)

6

)
. Thus, at the conclusion of Experiment 6 it holds that

H̃∞ (x|View6) ≥ H̃∞

(
View

(0)
6

)
−
∑

λj ≥ H̃∞ (x|vk,RandCoins)− λ .

Now, the random coins RandCoins of the adversary are independent of x, and the same holds for
all components of the verification key vk except y = Fs(x). This means H̃∞ (x|vk,RandCoins) =
H̃∞ (x|Fs(x)). Finally, since Fs(·) : {0, 1}µ(n) → {0, 1}κ(n), we have H̃∞ (x|Fs(x)) ≥ µ(n)− κ(n) by
Lemma 2.1. Hence, it follows that H̃∞ (x|View6) ≥ H̃∞ (x|Fs(x))− λ ≥ µ(n)− κ(n)− λ.

Combining Claims 5.2-5.10 above, if Pr[Forge0] is non-negligible then Pr[SameExtract6] is also
non-negligible. That is, in Experiment 6, A is able to produce a valid signature (C∗, π∗) for

which x = Dec
H(m∗)
skE

(C∗) with non-negligible probability. But, such a signature uniquely deter-
mines the value of x. By Claim 5.11, if λ ≤ µ(n) − κ(n) − ω(log n), then x still has super-
logarithmic average min-entropy given the view of A in Experiment 6, which means this is not
possible even for a computationally unbounded A. Explicitly, from the definition of average min-
entropy, Pr[SameExtract6] ≤ 2−(µ(n)−κ(n)−λ) ≤ 2−ω(logn) = negl(n). Therefore, the event Forge0

occurs with only a negligible probability, and this concludes the proof of Theorem 5.1.

6 An Efficient Instantiation based on the Linear Assumption

In this section we show that our construction, which is based on generic cryptographic primi-
tives, can be instantiated based on specific number-theoretic assumptions to yield a rather efficient
scheme. That is, we demonstrate that our approach is not only of theoretical interest (due to the
argument system for general NP languages), but may also be of practical interest. We follow the
approach of Dodis et al. [DHL+10b] who presented rather efficient instantiations of the leakage-
resilient signature scheme of Katz and Vaikuntanathan [KV09] using the proof system of Groth
and Sahai [GS08]. For our scheme, this means that all of its building blocks have to be instantiated
efficiently, and expressed in a form such that the resulting NP language fits the proof system of
Groth and Sahai. Here we present an instantiation based on the Linear assumption, and we note
that an additional instantiation can be based on the seemingly less standard SXDH assumption as
in [DHL+10b]. In what follows we present Linear-based instantiations of a family of SPR functions,
and of an RBM-lossy public-key encryption scheme. We then briefly describe the proof system of
Groth and Sahai [GS08] that we use as a SNIWI argument system.

We note that our construction can be instantiated with any public-coin admissible hash func-
tion ensemble. As discussed in Section 2.6, such functions can be constructed based on public-coin
collision-resistant hash functions, which in turn can be constructed based on the discrete log as-
sumption in some group G of prime order p (which follows from the Linear assumption).

6.1 A Linear-based Family of SPR Functions

Let GroupGen be a probabilistic polynomial-time algorithm that takes a security parameter 1n as
input and outputs a 5-tuple (G,GT , p, g, e), where G and GT are groups of order p, the group G is
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generated by g, and e : G×G → GT is a bilinear maps. The following family F = (KeyGen,F) of
functions is based on the SPR relation of Dodis et al. [DHL+10b, Appendix C.2.1].

• Key generation: On input 1n the algorithm KeyGen begins by sampling (G,GT , p, g, e)
← GroupGen(1n). Then, it samples s = (h1, . . . , hk(n), h

′
1, . . . , h

′
k(n)) ← G2k(n) uniformly at

random to be used as a public description of a function F(s, ·) : Gk(n) → G2
T .

• Evaluation: On input a public description s of the above form and an input (g1, . . . , gk(n)) ∈
Gk(n), the algorithm F outputs

F
(
s,
(
g1, . . . , gk(n)

))
=

k(n)∏
i=1

e(hi, gi),

k(n)∏
i=1

e(h′i, gi)

 .

The following theorem establishes the SPR security of these functions. The proof is essentially
identical to the security proof of the SPR relation of Dodis et al. [DHL+10b, Claim C.2], and is
therefore omitted.

Theorem 6.1. Assuming the hardness of the decisional Linear problem, then F = (KeyGen,F) is
a family of SPR functions.

6.2 A Linear-based RBM-Lossy Public-Key Encryption Scheme

We present a natural generalization of the scheme described in Section 4.2. Let GroupGen be a
probabilistic polynomial-time algorithm that takes a security parameter 1n as input and outputs a
triplet (G, p, g), where G is a group of order p generated by g ∈ G, and p is an n-bit prime number.
Consider the following encryption scheme ΠLin = (KeyGenLin,EncLin,DecLin):

• Key generation: On input 1n and an initialization value K = K1 · · ·Kτ(n) ∈ {0, 1,⊥}τ(n),
the algorithm KeyGenLin samples (G, p, g)← GroupGen(1n), together with three independently
and uniformly chosen elements g1, g2, g3 ← G. Then, for every 1 ≤ i ≤ τ(n) it samples
αi,0, βi,0, γi,0, αi,1, βi,1, γi,1 ← Zp uniformly and independently at random, and continues as
follows:

– If Ki = 0 then it sets γi,1 = αi,1 + βi,1.

– If Ki = 1 then it sets γi,0 = αi,0 + βi,0.

– If Ki = ⊥ then it sets γi,0 = αi,0 + βi,0 and γi,1 = αi,1 + βi,1.

Finally, for every 1 ≤ i ≤ τ(n) and b ∈ {0, 1} it sets (ui,b, vi,b, wi,b) =
(
g
αi,b
1 , g

βi,b
2 , g

γi,b
3

)
, and

outputs the pair (sk, pk) defined as

sk =
(
K, {(αi,0, βi,0) , (αi,1, βi,1)}τ(n)

i=1

)
pk =

(
g1, g2, g3, {(ui,0, vi,0, wi,0) , (ui,1, vi,1, wi,1)}τ(n)

i=1

)
• Encryption: On input a public key pk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n)

and a message m ∈ G, the algorithm EncLin chooses r, r′, r′′ ∈ Zp uniformly and independently
at random, computes

ut =

τ(n)∏
i=1

ui,ti , vt =

τ(n)∏
i=1

vi,ti , wt =

τ(n)∏
i=1

wi,ti ,
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c1 = gr1g
r′′
3 , c2 = gr

′
2 g

r′′
3 , c3 = (ut)

r(vt)
r′(wt)

r′′ ·m ,

and outputs the ciphertext (c1, c2, c3).

• Decryption: On input a secret key sk of the above form, a tag t = t1 · · · tτ(n) ∈ {0, 1}τ(n)

and a ciphertext c = (c1, c2, c3), the algorithm DecLin proceeds as follows. If (K, t) /∈ RBM

(i.e., t is a lossy tag) then it outputs ⊥. Otherwise (i.e., t is an injective tag), it outputs the
message m defined as

m = c3 ·
(
c
∑τ(n)
i=1 αi,ti

1 c
∑τ(n)
i=1 βi,ti

2

)−1

.

Theorem 6.2. Assuming the hardness of the decisional Linear problem, then ΠLin = (KeyGenLin,
EncLin,DecLin) is an almost-always RBM-lossy public-key encryption scheme for tags of length τ(n) ≤
log p− ω(log n).

Proof. Indistinguishability of initialization values follows directly from the hardness of the deci-
sional Linear problem and a standard hybrid argument. In addition, (perfect) correctness of the de-
cryption algorithm under injective tags follows from the fact that for any injective tag t = t1 · · · tτ(n)

(i.e., for every i ∈ {1, . . . , τ(n)} it holds that Ki 6= ti) it holds that γi,ti = αi,ti + βi,ti for every
i ∈ {1, . . . , τ(n)}. Therefore, for any ciphertext (c1, c2, c3) that is produced by encrypting a message
m under an injective tag t it holds that

c3 ·
(
c
∑τ(n)
i=1 αi,ti

1 c
∑τ(n)
i=1 βi,ti

2

)−1

= (ut)
r(vt)

r′(wt)
r′′ ·m ·

((
gr1g

r′′
3

)∑τ(n)
i=1 αi,ti

(
gr
′

2 g
r′′
3

)∑τ(n)
i=1 βi,ti

)−1

=

τ(n)∏
i=1

ui,ti

rτ(n)∏
i=1

vi,ti

r′τ(n)∏
i=1

wi,ti

r′′

·m ·
(
g
r
∑τ(n)
i=1 αi,ti

1 g
r′

∑τ(n)
i=1 βi,ti

2 g
r′′

∑τ(n)
i=1 (αi,ti+βi,ti )

3

)−1

=

(
g
r
∑τ(n)
i=1 αi,ti

1 g
r′

∑τ(n)
i=1 βi,ti

2 g
r′′

∑τ(n)
i=1 γi,ti

3

)
·m ·

(
g
r
∑τ(n)
i=1 αi,ti

1 g
r′

∑τ(n)
i=1 βi,ti

2 g
r′′

∑τ(n)
i=1 (αi,ti+βi,ti )

3

)−1

= m .

Finally, we prove that lossiness under lossy tags holds with probability at least 1− 2τ(n)/p over the
internal randomness of the key-generation algorithm. Fix an initialization value K ∈ {0, 1,⊥}τ(n),
and a lossy tag t ∈ {0, 1}τ(n) (i.e., there exists some i ∈ {1, . . . , τ(n)} for which Ki = ti). Then,
there exists some i ∈ {1, . . . , τ(n)} for which the values αi,ti , βi,ti , and γi,ti are uniformly and
independently chosen, and therefore the values ut, vt, and wt as defined by the encryption algorithm
are independently and uniformly distributed in G. Thus, with probability 1 − 1/p, it holds that
(g1, g2, g3, ut, vt, wt) is not an instance of the Linear problem (i.e., logg3(wt) 6= logg1(ut)+logg2(wt)).

In this case, the triplet (gr1g
r′′
3 , gr

′
2 g

r′′
3 , (ut)

r(vt)
r′(wt)

r′′) is uniformly distributed in G3 over the
choice of r, r′, and r′′ (this is a natural generalization of [PVW08, Lemma 4]). This implies that
a ciphertext (c1, c2, c3) encrypted under a lossy tag t carries no information on the message. This
holds for any specific lossy tag t, and therefore a union bound guarantees that this holds for all
lossy tags with probability at least 1− 2τ(n)/p.
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6.3 A Linear-based SNIWI Argument System

In this section we briefly review the proof system of Groth and Sahai [GS08] for proving that a
system of equations is satisfiable. We mainly follow the exposition of Dodis et al. [DHL+10b], and
refer the reader to [GS08] for more details. We note that in the Groth-Sahai proof system, there
are two computationally indistinguishable methods for generating the common reference string:
one (called real) that yields perfect soundness, and another (called simulated) that yields perfect
witness indistinguishability. By using the simulated common reference string we can thus use their
system as a SNIWI argument system. We consider here the cases of one-sided multi-exponentiation
equations and one-sided pairing-product equations, as these are the cases that arise from our Linear-
based constructions in Appendices 6.1 and 6.2.

The CRS-generation algorithm. On input 1n the algorithm CRSGen samples (G,GT , p, g, e)←
GroupGen(1n), together with 3 independently and uniformly distributed elements u0, u1, u2 ← G,
and sets

~u1 = (u0, u1, 1)

~u2 = (u0, 1, u2) .

Then, it samples ~u0 ← G3\U and ~u ← U independently and uniformly at random, where U ={(
uα+β

0 , uα1 , u
β
2

)
: α, β ∈ Zp

}
. It outputs crs = (~u0, ~u1, ~u2, ~u).

Dealing with one-sided multi-exponentiation equations. For every equation of the form

k∏
i=1

gχii = g0 ,

where g0, g1, . . . , gk ∈ G are constants, and χ1, . . . , χk ∈ Zp are variables (i.e., the χi’s are the
satisfying assignment), the prover begins by committing to each of the χi’s. The commitment to

each χi ∈ Zp is defined as ~γi = ~uχi
∏2
j=1 ~u

t
(j)
i
j , where ~ti =

(
t
(1)
i , t

(2)
i

)
← Z2

p is sampled uniformly at

random. Then, the prover computes the group elements p1 and p2 that are defined as

pj =
k∏
i=1

g
t
(j)
i
i , j = 1, 2.

In turn, the verifier accepts if and only if for every such equation it holds that

k∏
i=1

E(~γi, gi) = E(~u, g0)

2∏
j=1

E(~uj , pj) ,

where E : G3 × G → G3
T is defined as E((α0, α1, α2), β) = (e(α0, β), e(α1, β), e(α2, β)). Note that

for a set of r such equations with a witness of size k, the proof consists of 3k + 2r group elements.

Dealing with one-sided pairing-product equations. For every equation of the form

k∏
i=1

e(hi, xi) = T ,
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where h1, . . . , hk ∈ G and T ∈ GT are constants, and x1, . . . , xk ∈ G are variables (i.e., the
xi’s are the satisfying assignment), the prover begins by committing to each of the xi’s. The

commitment to each xi ∈ G is defined as ~δi = (xi, 1, 1)
∏2
j=0 ~u

s
(j)
i

j , where ~si =
(
s

(0)
i , s

(1)
i , s

(2)
i

)
← Z3

p

is sampled uniformly at random, and vector multiplication is defined component-wise. Then, the
prover computes the group elements p0, p1, and p2 that are defined as

pj =

k∏
i=1

h
s
(j)
i
i , j = 0, 1, 2.

In turn, the verifier accepts if and only if for every such equation it holds that

k∏
i=1

E(hi, ~δi) = (T, 1, 1)
2∏
j=0

E(pj , ~uj) ,

where E : G × G3 → G3
T is defined as E(α, (β0, β1, β2)) = (e(α, β0), e(α, β1), e(α, β2)). Note that

for a set of r such equations with a witness of size k, the proof consists of 3(k+ r) group elements.

7 A Signature Scheme in the Continual-Leakage Model

In this section, we extend our approach to the continual-leakage model. In order to do this, in
Section 7.1 we first introduce an alternative and more general measure of leakage called “entropy
leakage.” Instead of measuring leakage in terms of the output length of a leakage function, we
look at the entropy loss that such a function causes to a random input. In Section 7.2, we offer a
generalized explanation of our scheme in the bounded-leakage model as a construction of leakage-
resilient signatures from leakage-resilient one-way functions (LR-OWF). This explanation is only
meant to build intuition for our construction in the continual setting, and hence the exposition will
be rather informal. Finally, in Section 7.3, we show that our construction generalizes to constructing
fully leakage-resilient signatures in the continual-leakage model from continuous-leakage-resilient
one-way relations (in the entropy leakage sense), whose instantiations were given in [DHL+10a,
BTK+10].

7.1 Entropy Leakage

So far, we have measured the amount of leakage that the adversary learns from a function f via the
output length of f . We call this length-bounded leakage. However, this is not the most general way
of measuring leakage. As an alternative, we could consider measuring the amount of leakage via
the entropy loss to the input of f , given the output of f . In particular, we want our definitions to
allow long leakage as long as it does not reveal too much useful information. The idea of measuring
the entropy loss of a leakage function is due to Naor and Segev [NS09], but our definition is closer
to that of Dodis et al. [DHL+10a]. In particular, we measure the amount of leakage learned by a
function f : {0, 1}∗ → {0, 1}∗ in terms of the amount of entropy that reduces from the uniform
distribution. As shown in [DHL+10a], this definition has some nice composability properties.

Definition 7.1 (λ-entropy leaky functions). A (possibly randomized) efficiently computable function
f : {0, 1}∗ → {0, 1}∗ is λ-entropy leaky if there exists some (possibly inefficiently computable)
function f ′ such that:

• For all x ∈ {0, 1}∗, f(x) ≈s f ′(x) (over the randomness of f and f ′).
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• For all integers n ≥ 1, H̃∞ (Un | f ′(Un)) ≥ n− λ, where Un is the uniform distribution over
{0, 1}n.

Notice that any function f : {0, 1}∗ → {0, 1}λ is λ-entropy leaky. However, there are clearly
functions which are λ-entropy leaky but whose output lengths can be arbitrarily long. Therefore,
resilience to λ bits of entropy leakage is a seemingly stronger notion of security than resilience to
λ bits of length-bounded leakage (see also the discussion in Section 8). Moreover, this definition
turns out to be more robust in allowing us to reduce the leakage-resilient security of a signature
scheme to that of a leakage-resilient one-way function, which we do next.

7.2 A Generalized Explanation: FLR Signatures from LR-OWFs

Recall that our original signature scheme is based on a second-preimage resistant (SPR) function
(KeyGen,F). The verification key contains an image y = Fs(x) of the secret key, and each signature
is essentially a proof that the signer knows a preimage of y under Fs. The important property
of the SPR family is that one can easily evaluate Fs(x) given x (to generate the verification key),
but an adversary cannot extract a preimage of y, even given “leakage” information on x learned
via leakage and signature queries during the security experiment. It turns out this is the only
property we need. In what follows, we abstract out the role of the SPR family in our construction
to something satisfying the more general notion of a leakage-resilient one-way function, for a class
of leakage that captures these oracle responses. As this section is only meant to provide intuition,
the discussion will be somewhat informal.

LR one-way functions. We define the notion of a leakage-resilient one-way function (LR-OWF)
F in the following way. Given the image y = F(x) of a random value x in the domain, together with
λ bits of leakage on x, it is computationally hard to produce any preimage x′ of y under F. We
can define this notion with respect to either length-bounded leakage or entropy-bounded leakage
(which is more general).

Definition 7.2 (LR-OWF). A collection (KeyGen,F) is a λ-leakage-resilient one-way function (LR-
OWF) with respect to entropy-bounded leakage (respectively, length-bounded leakage) if for any
probabilistic polynomial-time algorithm A and efficiently computable function g which is λ-entropy-
leaky (respectively, has λ-bit outputs) there exists a negligible function ν(·) such that

Pr[Fs(x
′) = y | s← KeyGen(1n), x← {0, 1}µ(n), y = Fs(x), x′ ← A(s, y, g(x))] ≤ ν(n).

It is easy to show (as is implicitly in [ADW09, KV09]) that a second-preimage resistant (SPR)
function with µ(n)-bit inputs and κ(n)-bit outputs is also a λ-leakage-resilient one-way function
for λ(n) = µ(n) − κ(n) − ω(log n). Essentially, this is because a random x has entropy even
given y = Fs(x) and some λ bits of leakage on x. Therefore, if there exists an algorithm that
is able to produce an x′ such that Fs(x

′) = y given only this information, then with noticeable
probability x′ 6= x, and we can use this adversary to break the second-preimage resistance. For
the above argument, it does not matter if we consider entropy-bounded or length-bounded leakage.
Therefore, we get the following observation.

Observation 7.3. An second-preimage resistant function (KeyGen,F) with µ(n)-bit inputs and
κ(n)-bit outputs is a LR-OWF with respect to λ(n)-entropy-bounded leakage, where λ(n) = µ(n)−
κ(n)− ω(log n).
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FLR signatures from LR-OWFs. We now informally explain our signature scheme from the
bounded-leakage model (Section 5) in a slightly more general manner. Recall that our construction
was based on an SPR function (KeyGen,F), where y = Fs(x) was in the verification key and x was
the secret key. To sign a message m, we used a RBM-lossy encryption scheme to encrypt x under
label H(m) and proved that the ciphertext is formed correctly using a SNIWI argument system. In
general, we do not need (KeyGen,F) to be an SPR function, but rather any LR-OWF with respect
to λ-entropy-bounded leakage.

Observation 7.4. The construction from Section 5 is a λ-FLR signature scheme in the bounded-
leakage model, when instantiated with any LR-OWF with respect to λ-entropy-bounded leakage.

The original proof of security (Theorem 5.1) extends naturally to this more general case. To
give the main intuition, let us look at the proof. Once we move from Experiment 0 to Experiment
1, there is a good chance of all the signing queries being “lossy” and the forgery still decrypting to
some x∗ with Fs(x

∗) = Fs(x) = y, where y is in the verification key and x is in the secret key. The
main idea of the rest of the proof is that, if this is the case, then the entire view of the adversary (the
leakage-queries and the signing queries) does not reduce the entropy of x significantly. Therefore,
we can think of the view of the adversary as being “entropy-bounded” leakage (but not “length-
bounded” leakage, since we do not know how to efficiently compress it). A successful forgery in
this setting means the adversary only receives entropy-bounded leakage on x but still manages to
produce (an encryption of) some pre-image x∗, thus breaking one-way security.

Although the above generalization does not seem significant at first, this view of our basic
construction will make it easier to extend to the setting of continuous leakage, which we will do in
the next section.

7.3 Extension to Continuous Leakage

We begin by generalizing the concept of a leakage-resilient one-way function to the continual leakage
setting, following [DHL+10a]. First, we relax the requirement that x is uniformly random and
y = F(x) is a deterministic function of x. Instead, we define a one-way relation (KeyGen,R), where
the KeyGen algorithm generates pairs (y, x) ∈ R simultaneously using internal randomness. The
security property is similar to that of a one-way function: given a randomly generated y and leakage
on x, it should be hard to find x′ such that (y, x′) ∈ R.16 One can keep in mind an example where
x and y are a secret key and public key for a cryptographic system, and (y, x) ∈ R when x is a
proper secret key corresponding to y.

Second, we add an algorithm Refresh that allows us to refresh the secret x. That is, if (y, x) ∈ R
and x′ ← Refresh(x) then (y, x′) ∈ R. The main goal of the refresh algorithm is to allow for continual
leakage on the secret key. The user starts off with a key x0 produced by the key-generation algorithm
and periodically updates it by running xi ← Refresh(xi−1). The adversary can continually receive
partial leakage on every version xi of the key that the user ever creates (so that the total amount
of leakage learned is unbounded). Nevertheless, at no point in this process should the adversary be
able to come up with some x′ such that (y, x′) ∈ R.

Third, we consider “entropy-bounded” rather than “length-bounded” leakage. The formal def-
inition appears below.

Definition 7.5 (CLR-OWR : Similar to [DHL+10a]). A continuous-leakage-resilient one-way
relation (CLR-OWR) consists of three poly-time procedures (KeyGen,Refresh,R) with syntax:

16 In the leak-free setting, any one-way relation (KeyGen,R) can easily be turned into a one-way function
y = KeyGen(r) mapping the random-coins of KeyGen to the value y it produces. In the setting of leakage, this
transformation no longer holds since leakage on r gives more information than leakage on x.
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• Key Generation: KeyGen(1n) outputs a public key y and a secret key x.

• Key Refreshing: Refreshy(x) outputs a refreshed secret key x′.

• Relation Testing: R(y, x) outputs 1 if and only if the pair (y, x) is “valid” and satisfies the
relation.

We say that the relation is continuous leakage resilient with respect to λ-entropy-bounded leakage
if it satisfies the following properties:

Correctness: For any polynomial q = q(n), if we sample (y, x)← KeyGen(1n),
x1 ← Refreshy(x), . . . , xq ← Refreshy(xq−1), then, with overwhelming probability,
R(y, x) = R(y, x1) = . . . = R(y, xq) = 1.

Security: For any PPT adversary A, we have Pr[A wins ] ≤ negl(n) in the following game:

• The challenger chooses (y, x)← KeyGen(1n) and gives y to A.

• The adversary A runs for arbitrarily many leakage rounds i = 1, 2, . . . In each round,
the adversary chooses a leakage-function fi : {0, 1}∗ → {0, 1}∗ and learns fi(xi). The
next-round secret key is sampled as xi+1 ← Refreshy(xi).

• The adversary wins if at some point it produces a value x∗ such that R(y, x∗) = 1 and
each of the leakage-functions fi are λ-entropy-leaky.

The results of [DHL+10a, BTK+10] show how to construct a CLR-OWR under the linear
assumption in bilinear groups.17 We state the results of those works as follows:18

Claim 7.6 ([DHL+10a, BTK+10]). For any constant d, ε > 0 and any polynomial λ(·), there
exist λ(n)-CLR-OWR schemes with relative leakage (ratio of leakage to secret key size) given by
λ/|sk| = 1

d − ε under the d-linear assumption in bilinear groups.

Given a CLR-OWR (KeyGenOWR,Refresh,R), we can naturally generalize our construction of sig-
natures from Section 5. Namely, the CLR-OWR will take the place of the second-preimage resistant
function in the original construction, analogous to the use of the bounded-leakage-resilient one-way
function in the scheme described in the previous subsection. Explicitly, let (KeyGenRBM ,Enc,Dec)
be an RBM-lossy public-key encryption scheme, and let (CRSGen,P,V) be a SNIWI argument sys-
tem for the language

L = {(s, y, pk, t, C) : ∃x, ω st C = Enctpk(x;ω) and R(y, x) = 1}.

Consider the following signature scheme (KeyGen,Refresh, Sign,Verify):

• Key Generation: Sample (pk, ·) ← KeyGenRBM(1n), (y, x) ← KeyGenOWR(1n) and crs ←
CRSGen(1n). Output vk = (crs, pk, y) and sk = x.

• Key Refreshing: Use the Refresh procedure of the CLR-OWR to compute x′ ← Refreshy(x).

• Signing: On input message m, the algorithm Sign computes an encryption C = Encmpk(x;ω)
of x under the tag m using fresh randomness ω. Then, it invokes the prover of the SNIWI
argument system to obtain a proof π ← P(crs, (y, pk,m,C), (x, ω)), and outputs the signature
(C, π).

17Although the main definitions of those works are with respect to length-bounded leakage, they easily extend to
entropy-leakage.

18The stated optimized parameters were obtained by [BTK+10], improving those of [DHL+10a].
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• Verifying: On input message m and signature σ = (C, π), the algorithm Verify invokes the
verifier of the SNIWI argument system and outputs 1 if and only if V(crs, (y, pk,m,C), π) = 1.

Theorem 7.7. Assume that, in the above construction, the relation is a (λ(n)+1)-CLR-OWR, the
encryption is RBM-lossy, and the argument system is a SNIWI. Then the above signature scheme
is λ(n)-fully-leakage-resilient in the continual leakage model.

In terms of efficiency, we note that for any constants d and ε > 0, and any polynomial λ(n), the
d-linear assumption in bilinear groups and Theorem 7.7 imply the existence of λ(n)-fully-leakage-
resilient in the continual leakage model with relative leakage λ(n)/|sk| = 1/d− ε.

Proof of Theorem 7.7. The structure of the proof is essentially identical to the proof of Theorem
5.1. We will refer to the prior proof liberally, with a focus on the main differences. Assume that
an adversary A breaks the signature security with a noticeable probability. We define Experiment
0 to be the continual fully leakage-resilient security game for signatures (see Definition 3.2) and
Experiment 1 to be the modified game where the RBM-lossy encryption scheme is initialized with
an initialization value K ← Ku,n for an appropriate u corresponding to the number of signature
queries q that the attacker makes. This mirrors Experiments 0 and 1 in the proof of Theorem 5.1,
and the same proof shows that these experiments are indistinguishable. We can define the event
Extract1 to occur when:

• All of the signing queries fall into the “blue”/lossy set and the forgery message falls into the
“red”/injective set as defined by the initialization value K. (This corresponds to the event
CorrectHash1 defined in the proof of Theorem 5.1.)

• The ciphertext portion of the forgery decrypts to a valid x∗ for which R(y, x∗) = 1.

As in the proof of Theorem 5.1 (specifically, Claim 5.4), the event Extract1 occurs with a noticeable
probability. We now show how to use an adversary A from Experiment 1 to break the security of
the CLR-OWR. Our reduction B samples the crs of the NIZK and the public/secret key (pk, sk) of
the encryption scheme, as in Experiment 1. Recall that the adversary A expects to run in many
epochs (periods between issuing a key refresh query). The view of A during each epoch i consists
of his random coins together with the signing queries and leakage queries issued during that epoch.
The main idea is that the reduction B can simulate this view for A by learning a single leakage-
function gi on the secret key xi of the CLR-OWR in each epoch. The selection of gi (described
below) will ensure that:

1. The simulation perfectly matches Experiment 1. In particular, the event Extract1 occurs with
polynomial probability.

2. If the event Extract1 occurs, then every function gi queried by B is at most (λ+ 1)-entropy-
leaky.

When the event Extract1 occurs, then B can decrypt the ciphertext portion of A’s forgery to some
correct x∗ such that R(y, x∗) = 1, and win the CLR-OWR security game. Therefore the above two
requirements ensure that this occurs with polynomial probability, which leads to a contradiction.

We are left to describe how B chooses the leakage functions so as to satisfy conditions (1)
and (2). In epoch i, the function gi : {0, 1}∗ → {0, 1}∗ includes, in its description, the entire
view (including the random coins) of the adversary A up to the start of epoch i, along with the
verification key vk = (crs, pk, y) of the signature scheme. The function gi(xi) first checks whether
R(y, xi) = 1 and, if not, returns a 0. Otherwise, it internally runs the code of A for that epoch,
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and uses the current secret key xi (and internal random coins) to answer the leakage queries and
the signing queries. The output of gi consists of all the answers to the various queries asked by A
during the epoch.

It is easy to see that this leakage can be used by B to (perfectly) simulate the epoch to A, so
we satisfy requirement (1). For requirement (2), note that the output length of gi is long (possibly
much longer than the secret key), since it includes the queried signatures. However, when the event
Extract1 occurs, all the signing queries correspond to lossy tags of the encryption scheme, and hence
do not reveal information about x. In particular, we can define an (inefficient) leakage function
g′i so that (for fixed x), gi(x) ≈s g′i(x) are statistically close, and the signature portion of g′i(x)
perfectly hides x given y. This function g′i precisely corresponds to the (inefficiently) generated
responses to signature and leakage queries within Experiment 5 of the proof of Theorem 5.1. As
shown in the proof of Theorem 5.1, the only entropy loss induced by this gi given y is due to the
output corresponding to A’s leakage queries, and not to the signature queries. Our gi reveals 1
extra bit on a uniform string, corresponding to whether the string is of a form x s.t. R(y, x) = 1
for the fixed, hard-coded y. Therefore, since A’s leakage queries were limited to being λ-entropy
leaky, when Extract1 occurs, the function gi is (λ+ 1)-entropy leaky, proving (2).

7.4 Comparison to Scheme of Brakerski et al. [BTK+10]

Our construction in the continual-leakage model shares some similarities with the scheme presented
by Brakerski et al. [BTK+10] in the random-oracle model. But, as we now discuss, the two are
conceptually quite different. A signature in the Brakerski et al. scheme is composed of two parts:
a form of “encryption” of the signing key using lossy trapdoor functions (LTDFs), and a short
non-interactive argument that the encryption is formed correctly. The “encryption” portion of
their signature is formed by applying message-dependent branches of a LTDF to secret shares of
the signing key. Brakerski et al. prove that if the signing key is updated every few signatures, then
this signature scheme satisfies a weak notion of unforgeability, where the adversary is required to
specify the target forgery message prior to learning the verification key. They then use two known
transformations (see [KR00, HW09]) to convert the scheme into one that is unforgeable in the more
standard sense.

In the Brakerski et al. scheme, each signature leaks information about the signing key regardless
of whether the adversary makes leakage queries. Each LTDF encryption as presented reveals an
amount of information equal to the lossy parameter of the LTDF. In addition, each non-interactive
proof is treated entirely as leakage—i.e., revealing information on the signing key equal to its full
length. This framework of leaking information in each signature has some unfortunate consequences.
In order to keep the amount of leakage per signature small enough to maintain security, their
construction requires short-length proofs, which are only known to exist within the random-oracle
model [Kil92, Mic00, BG08]. In addition, since each signature reveals new information on the
current signing key, the signer must update the signing key after every couple signatures, even
if no side-channel leakage occurs. This means their construction does not yield a scheme in the
bounded-leakage model where key refreshing is not a standard part of the model, and that execution
within the continual-leakage model is rather inefficient. Requiring frequent key refreshes thus puts
a strong restriction on the model, as the key-refreshing operation must be performed in a secure,
nearly leakage-free environment.

Using the generic signature transformations to go from weak unforgeability to standard un-
forgeability also induces a drop in the efficiency of their scheme. For instance, one transformation
requires signing each prefix of the original message, thus growing the overall signature size by a
factor of the message length [HW09].
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Our construction avoids these practical issues through two main technical differences. First,
our combination of R-lossy encryption with a SNIWI argument system (in the standard model)
yields signatures which statistically reveals no information about the signing key (see the related
discussion in Section 8). Second, we are able to bypass the generic signature transformations in an
efficient fashion by extending the technique of admissible hash functions [BB04]. Essentially, the
two transformations used by Brakerski et al. are replaced by simply hashing the message with a
special hash function before signing. Using these new techniques, we are able to construct a scheme
that is more efficient, no longer relies on the random-oracle model, and can withstand a greater
fraction of leakage ((1− o(1))L as opposed to (1/2− o(1))L based on the Linear assumption).

8 Concluding Remarks and Open Problems

Deterministic leakage-resilient signatures. An alternative approach for constructing fully
leakage-resilient signature schemes is constructing a signature scheme that is resilient to leakage
from the signing key, and has a deterministic signing algorithm (this is indeed the idea underlying
the fully leakage-resilient one-time signature schemes of Katz and Vaikuntanathan [KV09]). In
general, the signing algorithm of any signature scheme can be made deterministic by using as
its random coins the output of a pseudorandom function applied to the message. This requires,
however, that the signing key will include also the key of the pseudorandom function, and therefore
it is not clear that such a transformation can preserve leakage resilience.

Bounded leakage vs. noisy leakage. In some scenarios it is not always possible to assume
that the total amount of leakage is upper bounded by λ bits, where λ is less than the length of the
secret key. This motivated the approach of Naor and Segev [NS09] (later refined by Dodis et al.
[DHL+10a, Definition 7.2]) who considered the more general notion of noisy leakage, in which the
leakage is not necessarily of bounded length, but is guaranteed to reduce the average min-entropy
of the secret key by at most λ. Although our schemes are secure with respect to bounded leakage,
they are in fact insecure with respect to noisy leakage. This seems to be the first separation between
bounded leakage and noisy leakage, and this settles an open problem posed by Naor and Segev.

Specifically, in our schemes the public key for the RBM-lossy encryption scheme is sampled
obliviously as a uniformly random string pk ∈ {0, 1}∗. For our specific constructions based on the
DDH or Linear assumptions (see Appendices 4.2 and 6.2), this can be easily seen to imply that
with an overwhelming probably all possible tags for the RBM-lossy scheme are lossy. An analysis
almost identical to that presented in the security proofs of our schemes then shows that a leakage
function that simply outputs a signature on any message m∗ is a valid leakage function with respect
to noisy leakage (yet clearly invalid with respect to bounded leakage).

Better relative leakage in the continual-leakage model. Our construction in the continual-
leakage model relies on any continual leakage-resilient one-way relation, and the amount of leakage
that can be tolerated between any two successive refreshes of the signing key depends on the
leakage resilience of the underlying one-way relation. In turn, instantiating our scheme with existing
constructions of such one-way relations yields schemes that are resilient to any leakage of length
(1/2− o(1))L bits based on the Linear assumption [DHL+10a, BTK+10], and of length (1− o(1))L
bits based on the Symmetric External Diffie-Hellman assumption [BTK+10]. An interesting open
problem is to construct continual leakage-resilient one-way relations based on other assumptions, or
with better leakage resilience based on the Linear assumption, and these will immediately improve
our schemes.
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Modeling hard-to-invert leakage for signature schemes. So far signature schemes were
considered with respect to leakage with an information-theoretic guarantee: even after seeing the
leakage, the signing key still has a certain amount of min-entropy. In the setting of public-key
encryption a more general model was formalized by only assuming that the decryption key cannot
be efficiently recovered given the leakage (see [DTL09, DGT+10, GTP+10, BG10] and the references
therein). For signature schemes, however, due to the interaction between the adversary and the
signer, it is not clear how to meaningfully formalize such an attack model. It would be interesting
to formalize hard-to-invert leakage for signature schemes (especially when any intermediate value
may leak, and not only the signing key), and to construct schemes that are leakage resilient in such
a model.
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