
Fully Secure (Hierarchical) Predicate Encryption for

All Predicates

Angelo De Caro Vincenzo Iovino∗

Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni,
Università di Salerno, 84084 Fisciano (SA), Italy.
{decaro,iovino,giuper}@dia.unisa.it.

September 17, 2010

Abstract

Predicate encryption is an important cryptographic primitive that has found wide applica-
tions as it allows for fine-grained key management.

In a predicate encryption scheme, the owner of the master secret key can derive a secret key
SkP for every predicate P (represented, for example, by a Boolean formula or circuit). Similarly,
when encrypting plaintext M , the sender can specify an attribute vector ~x for the ciphertext
Ct. Then, key SkP can decrypt all ciphertexts Ct with attribute vector ~x such that P (~x) = 1.

In the literature, several constructions have been proposed for either specific notable predi-
cates (e.g., inner product and hidden vector) or for general predicates. Constructions for specific
predicates which guarantee the security of the plaintext M as well as the security of the attribute
vector ~x are known but no general construction is known which gives security guarantees also
for the attribute vectors.

In this paper, we give the first fully secure implementation for any predicate that guarantees
the security of the plaintext and of the attribute. Specifically, the owner of the master secret key
can derive a secret key SkP for any efficiently computable predicate P . Secret key SkP can then
be used to decrypt all ciphertexts Ct with attribute vector ~x that satisfy P ; that is, P (~x) = 1.

In proving the full security of our constructions we depart from the paradigm of dual en-
cryption system introduced in [Waters – Crypto 2009] and develop a new proof technique which
could be of independent interest.

Keywords: predicate encryption, HVE, Hierarchical HVE, CNF, full security, pairing-based cryptogra-

phy.

∗Work done while visiting the Department of Computer Science of The Johns Hopkins University.

1

Contents

1 Introduction and related work 3

2 CNF and Hidden Vector Encryption 4
2.1 Hidden Vector Encryption . 5
2.2 CNF Encryption . 5
2.3 Security definition for HVE and CNF . 6

3 Reducing CNF to HVE 7

4 Composite Order Bilinear Groups and Complexity Assumptions 8

5 Constructing HVE 10
5.1 Security of our HVE scheme . 11

5.1.1 Description of Game0 . 11
5.1.2 Proof of indistinguishability of GameReal and Game0 11
5.1.3 Description of Gamek, for 1 ≤ k ≤ q . 12
5.1.4 Proof of indistinguishability of Gamek−1 and Gamek 12
5.1.5 Gameq gives no advantage . 14

6 Hierarchical HVE 14
6.1 Security definition for HHVE . 15
6.2 Our construction for HHVE . 16
6.3 Security of our HHVE scheme . 17

6.3.1 Description of Game0 . 17
6.3.2 Proof of indistinguishability of GameReal and Game0 17
6.3.3 Description of Gamek for 1 ≤ k ≤ q . 18
6.3.4 Proof of indistinguishability of Gamek−1 and Gamek 19
6.3.5 Gameq gives no advantage . 23

7 Open problems and future work 24

8 Acknowledgements 24

A From Predicate-only to Full-fledged schemes 27

B Generic Security of Our Complexity Assumptions 27

2

1 Introduction and related work

Predicate encryption is an important cryptographic primitive that has been recently studied [2, 4,
5, 7] and that has found wide applications as it allows for fine-grained key management. Roughly
speaking, in a predicate encryption scheme for predicate Q the owner of the master secret key Msk
can derive secret key Sk~y, for any vector ~y. In encrypting plaintext M , the sender can specify an
attribute vector ~x and the resulting ciphertext Ct can be decrypted only by using keys Sk~y such that
Q(~y, ~x) = 1. A predicate encryption scheme thus gives the owner of the master secret key control
on which ciphertexts can be decrypted and this allows her to delegate the decryption of different
types of messages (as specified by the attribute vector) to different entities. Several constructions
for specific predicates have been given, starting from the equality predicate of [2], to the hidden
vector predicate of [4] and to the inner product predicate of [7].

Along a different line of research, authors have considered construction of predicate encryption
for all predicates. That is, the owner of the master secret key can derive a secret key SkP for
every predicate P (represented, for example, by a Boolean formula or circuit) and SkP can decrypt
all ciphertexts Ct with attribute vector ~x such that P (~x) = 1. The previous case corresponds
to the predicate P (·) = Q(~y, ·). General constructions have been first given by [5] (for monotone
predicates, and then extended to non-monotone predicates by [12]) and more recently by [8, 11]. The
general constructions given in [5, 8] guaranteed the semantic security of only the plaintext encrypted
by a ciphertext Ct and did not give any security guarantee for the attribute vector ~x. This extra
security property is very important for the applications and was guaranteed, in the selective model,
by the constructions for specific predicates of [4, 7]. The selective model restricted the adversary
to declare its challenges before seeing the public key and issuing any query. Following the recent
breakthrough of [16, 9] that gave fully secure implementation of Identity Based Encryption (and
of its hierarchical version), Lewko et al. [8] gave fully secure implementation for the inner product
predicate.

Our results. In this paper, we give a fully secure implementation for all efficiently computable
predicates. Specifically, the owner of the master secret key can derive a secret key SkP for any
efficiently computable predicate P and SkP can then be used to decrypt all ciphertexts Ct with
attribute vector ~x for which P (~x) = 1. In our construction the ciphertext guarantees the security
of the plaintext and of the attribute vector.

Our main result is obtained in two steps. Our first step consists in constructing a fully secure
implementation of hidden vector encryption schemes, a special predicate first considered by [4]. In
a HVE scheme, the ciphertext attributes are vectors ~x = 〈x1, . . . , x`〉 over alphabet {0, 1}, keys
are associated with vectors ~y = 〈y1, . . . , y`〉 over alphabet {0, 1, ?} and we consider the Match(~x, ~y)
predicate which is true if and only if, for all i, yi 6= ? implies xi = yi.

Our secure implementation of HVE is proved fully secure under non-interactive constant sized
(that is, independent of ` and of the running time of the adversary) assumptions on bilinear groups of
composite order. We note that the master secret key and the ciphertexts consist of ` group elements
whereas a key for vector ~y has one group element for each component yi 6= ?. Our encryption and
key generation procedure are also efficient as they both require O(`) group operations and no
bilinear mapping evaluation.

Further, we give a construction of Hierarchical HVE in which the holder of Sk~y (the key for
vector ~y) can create (and give to a third party) the key for any vector ~w that is obtained by
instantiating some of the ? entries of ~y to 0 or 1. Also, our construction of HHVE is fully secure under
non-interactive, constant sized (that is independent of ` and the running time of the adversary)

3

assumptions on bilinear groups of composite order. In addition, our construction for HHVE results
in keys and ciphertexts consisting of O(`) group elements independently on the length of the
delegation path.

We can extend our constructions to a general alphabet Σ, at the cost of expanding the public
and master secret key by a factor proportional |Σ|, which can be considered to be constant for most
applications. The size of ciphertexts and secret keys does not depend on Σ. Finally, we stress that
for our application to any predicate (see second step below), a binary alphabet suffices.

Our second step consists in a polynomial deterministic black-box reduction of the construction
for any predicate represented by a formula in 3CNF to HVE scheme. Roughly speaking, it is
well known that any polynomial size circuit can be represented by a polynomial size formula in
conjunctive normal form in which every clause contains exactly 3 literals. Then we show that any
formula Φ in 3CNF with m clauses over n variables can be associated with a vector ~y ∈ {0, 1, ?}`
with m non-? entries for ` = O(n3). Moreover we show how to encode a truth assignment z for n
variables by a vector ~x ∈ {0, 1}` such that Match(~x, ~y) = 1 if and only if the assignment encoded
by ~x satisfies the formula encoded by ~y. Finally, we prove that our reduction preserves full security
and thus we can apply it to our construction of the HVE. The key for a formula of m clauses
contains exactly m group elements.

Proof technique. We achieve full security by means of a new proof technique that departs from
the dual encryption methodology [16] and, in our opinion, results in a simplified proof and we
expect there be further applications of our technique. Let us now briefly review our technique.
The first step in our proof technique consists in projecting the public key to a different subspace
in such a way to make it independent from the challenge ciphertext. Here, it is possible to view a
similarity with the technique of Peikert and Waters [13] but unlike their approach, in our case the
change in the public key does not affect the distribution of the challenge ciphertext which is still
created like in the real game. Our technique then proceeds to show that the secret keys do not help
the adversary. It does so by proving that, in the view of the adversary, the valid secret keys are
indistinguishable from keys which are random in a subgroup. More precisely, they continue to be
valid in the subgroup where the public key was projected, and are random in the other subgroups.

Related Work. We point out that [7] gave a reduction of CNF to inner product which however
has two major drawbacks that makes it inapplicable to our setting. First of all, the reduction is
exponential in the number of variables. In addition, the reduction seems to be tailored for the
selective model and does not seem to preserve full security.

An implementation of fully secure HVE can also be derived from the fully secure construction
of inner product of [8] using the reduction of [7]. The resulting scheme could be thus combined
with our reduction to obtain a scheme for 3CNF. We point though that the construction for HVE
derived from [8] has a master secret key of quadratic size and the construction adds a quadratic
slowdown to the time complexity of the key generation and of the encryption algorithm. Similar
considerations can be made for the recent construction of inner product of [11].

2 CNF and Hidden Vector Encryption

In this section we give formal definitions for Hidden Vector Encryption (HVE) and CNF Encryption
and their security properties and then show how to reduce CNF Encryption to HVE.

4

Following [14], for sake of simplicity we present predicate-only definitions and schemes instead
of full-fledged ones (see [7]). In Appendix A we will show how to extend our schemes to full-fledged
version in a simple way. Also, we present our construction for the binary alphabet, but as outlined
in [6], it is possible to modify the construction for larger alphabets without a penalty in the length
of the key or the ciphertext.

2.1 Hidden Vector Encryption

Let ~x be vector of length ` over the alphabet {0, 1} and ~y vector of the same length over the
alphabet {0, 1, ?}. Define the predicate Match(~x, ~y) = TRUE if and only if for any i ∈ [`], it
holds that xi = yi or yi = ?. That is, the two vectors must match only in the positions j where
yj 6= ?. This predicate is called Hidden Vector Encryption (henceforth, abbreviated in HVE) and
was introduced in [4]. This predicate has like very special case Anonymous IBE but it has many
other applications. For a full account of the applications, see [4].

A Hidden Vector Encryption scheme is a tuple of four efficient probabilistic algorithms (Setup,
Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1`): takes as input a security parameter λ and a length parameter ` (given in unary),
and outputs the public parameters Pk and the master secret key Msk.

KeyGen(Msk, ~y): takes as input the master secret key Msk and a vector ~y ∈ {0, 1, ?}`, and outputs
a secret key Sk~y.

Encrypt(Pk, ~x): takes as input the public parameters Pk and a vector ~x ∈ {0, 1}` and outputs a
ciphertext Ct.

Test(Pk,Ct,Sk~y): takes as input the public parameters Pk, a ciphertext Ct encrypting ~x and a
secret key Sk~y and outputs Match(~x, ~y).

Correctness of HVE. For correctness we require that for all pairs (Pk,Msk) output by Setup(1λ, 1`),
it holds that for vectors ~x ∈ {0, 1}` and ~y ∈ {0, 1, ?}`, we have that

Test(Pk,Encrypt(Pk, ~x),KeyGen(Msk, ~y)) = Match(~x, ~y)

except with negligible in λ probability.

2.2 CNF Encryption

A CNF Encryption scheme is a tuple of four efficient probabilistic algorithms (Setup, Encrypt,
KeyGen, Test) with the following semantics.

Setup(1λ, 1n): takes as input a security parameter λ and the number n of variables (given in
unary), and outputs the public parameters Pk and the master secret key Msk.

KeyGen(Msk,Φ): takes as input the master secret key Msk and a formula Φ in 3CNF and outputs
a secret key SkΦ.

Encrypt(Pk, ~z): takes as input the public parameters Pk and a truth assignment ~z for n variables
and outputs a ciphertext Ct.

Test(Pk,Ct,SkΦ): takes as input the public parameters Pk, a ciphertext Ct and a secret key SkΦ

and outputs TRUE iff and only if the ciphertext is an encryption of a truth assignment ~z
that satisfies Φ.

5

Correctness of CNF Encryption. For correctness we require that for all pairs (Pk,Msk) output
by Setup(1λ, 1n), it holds that for any truth assignment z for n variables, for any formula Φ in 3CNF
over n variables we have that the probability that

Test(Pk,Encrypt(Pk, z),KeyGen(Msk,Φ)) 6= Satisfy(Φ, z)

is negligible in λ.

2.3 Security definition for HVE and CNF

We start by defining the security game GameReal between an adversary A and a challenger C for
HVE. GameReal consists of a Setup phase and of a Query Answering phase. In the Query Answering
phase, the adversary can issue any number of Key Queries and one Challenge Construction query
and at the end of this phase A outputs a guess. We stress that key queries can be issued by A even
after he has received the challenge form C. More precisely, we have the following description.

Setup. C runs the Setup algorithm on input the security parameter λ and the length parameter
` (given in unary) to generate public parameters Pk and master secret key Msk. C starts the
interaction with A on input Pk.

Key Query Answering. Upon receiving a query for vector ~y, C returns KeyGen(Msk, ~y).

Challenge Construction. Upon receiving the pair (~x0, ~x1), C picks random η ∈ {0, 1} and returns
Encrypt(Pk, ~xη).

At the end of the game, A outputs a guess η′ for η. We say that A wins the game if η = η′

and for all ~y for which A has issued a Key Query, it holds Match(~x0, ~y) = Match(~x1, ~y) = 0. The
advantage AdvAHVE(λ) of A is defined to be the probability of winning minus 1/2.

Definition 2.1 An Hidden Vector Encryption scheme is secure if for all probabilistic polynomial
time adversaries A, we have that AdvAHVE(λ) is a negligible function of λ.

For CNF encryption, we have a similar game GameReal which can be described in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ and the number n of
variables (given in unary) to generate public parameters Pk and master secret key Msk. C starts
the interaction with A on input Pk.

Key Query Answering. Upon receiving a query for formula Φ, C returns KeyGen(Msk,Φ).

Challenge Construction. Upon receiving the pair (z0, z1) of truth assignments over n variables,
C picks random η ∈ {0, 1} and returns Encrypt(Pk, zη).

At the end of the game, A outputs a guess η′ for η. We say that A wins the game if η = η′

and, for all Φ for which A has issued a Key Query, it holds that Satisfy(Φ, z0) = Satisfy(Φ, z1) = 0.
The advantage AdvACNF(λ) of A is defined to be the probability of winning minus 1/2.

Definition 2.2 A CNF Encryption scheme is secure if for all probabilistic polynomial time adver-
saries A, we have that AdvACNF(λ) is a negligible function of λ.

Remark 2.3 It is trivial to observe that no scheme can be secure if the adversary is allowed to
receive a secret key that discriminates between the two challenges. For example, no HVE scheme
is secure if the adversary has a key for ~y such that Match(~y, ~x0) = 0 and Match(~y, ~x1) = 1.

6

In our security definition though, we add the extra constraint that the adversary cannot request
keys which satisfy both challenges. That is, for HVE, we do not allow A to request keys for vectors
~y such that Match(~y, ~x0) = Match(~y, ~x1) = 1 and, for CNF, we do not allow A to request keys for
formulae Φ that are satisfied by both z0 and z1. We share this limitation on the security model
with [8] and, to the best of our knowledge, it is an open problem to design a scheme that is secure
without this extra constraint.

3 Reducing CNF to HVE

In this section we show how to construct a CNF Encryption scheme from an HVE scheme. We
consider formulae Φ in 3-CNF over n variables in which each clause C ∈ Φ contains exactly 3
distinct variables. We further assume that a formula does not contain repeated clauses. We call
such a clause admissible and denote by C the set of all admissible clauses over the n variables
x1, . . . , xn and set Mn = |C|. Notice that Mn = Θ(n3). We also fix a canonical ordering of the
clauses in C.

Let ~z ∈ {0, 1}n be a truth assignment to n variables and Φ a 3-CNF formula over the n variables.
Define the predicate Satisfy(~z,Φ) = TRUE if and only if the truth assignment ~z satisfy the formula
Φ.

Let HVE = (SetupHVE,KeyGenHVE,EncryptHVE,TestHVE) be an HVE scheme and construct a
CNF scheme CNF = (SetupCNF, KeyGenCNF,EncryptCNF,TestCNF) in the following way:

SetupCNF(1λ, 1n): the algorithm runs the SetupHVE algorithm on input 1λ and 1Mn and returns its
output.

KeyGenCNF(Msk,Φ): The key generation algorithm constructs vector ~y ∈ {0, 1, ?}Mn in the follow-
ing way: For each i ∈ {1, . . . ,Mn} the algorithms sets:

yi =

{
1, if Ci ∈ Φ;

?, otherwise.

We denote this transformation by FEncode(Φ). Then the key generation algorithm returns
SkΦ = KeyGenHVE(Msk, ~y).

EncryptCNF(Pk, ~z): The algorithm constructs vector ~x ∈ {0, 1}Mn in the following way: For each
i ∈ {1, . . . ,Mn} the algorithms sets:

xi =

{
1, if Ci is satisfied by ~z;

0, if Ci is not satisfied by ~z.

We denote this transformation by AEncode(~z). Then the encryption algorithm returns

Ct = EncryptHVE(Pk, ~x).

TestCNF(SkΦ,Ct): The algorithm runs the TestHVE algorithm on input SkΦ and Ct and returns its
output.

Correctness follows from the observation that for formula Φ and assignment ~z, we have that
Match(AEncode(~z),FEncode(Φ)) = 1 if and only if Satisfy(Φ, ~z) = 1.

7

Let us now verify that the reduction preserves full security. Let A be an adversary for our
CNF Encryption scheme that tries to break the scheme for n variables and consider the following
adversary B for HVE that uses A as a subroutine and tries to break an HVE scheme with ` = O(n3)
by interacting with challenger C. B receives a public key Pk for HVE and passes it to A (notice that
a randomly chosen public key for HVE has the same distribution of a randomly chosen public key
for CNF). Whenever A asks for the key for formula Φ, B constructs ~y = FEncode(Φ) and asks C for
a key Sk~y for ~y and returns it to A. When A asks for a challenge by providing truth assignments
~z0 and ~z1, B simply computes ~x0 = AEncode(~z0) and ~x1 = AEncode(~z1) and gives the pair (~x0, ~x1)
to C. B then returns the challenge ciphertext obtained from C to A. Finally, B outputs A’s guess.

We observe that B’s simulation is perfect. Indeed, we have that if for all A’s queries Φ we
have that Satisfy(Φ, ~z0) = Satisfy(Φ, ~z1) = 0, then all B’s queries ~y to C also have the property
Match(~y, ~x0) = Match(~y, ~x1) = 0. We can thus conclude that B’s advantage is the same as A’s.

Hierarchical HVE and Hierarchical CNF. In a Hierarchical CNF scheme the owner of the
secret key for formula Φ can derive secret keys for formulae that can be obtained from Φ by adding
extra clauses. The derivition does not need the master secret key. A similar reduction shows that
one can construct HCNF Encryption schemes starting from Hierarchical HVE. We omit further
details.

4 Composite Order Bilinear Groups and Complexity Assumptions

Composite order bilinear groups were first used in Cryptography by [3] (see also [1]). We suppose
the existence of an efficient group generator algorithm G which takes as input the security parameter
λ and outputs a description I of a bilinear setting. The description I of the bilinear setting consists
of I = (N,G,GT , e) where G and GT are cyclic groups of order N , and e : G2 → GT is a map with
the following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective cyclic
groups. We require that the group operations in G and GT as well as the bilinear map e are
computable in deterministic polynomial time in λ. In our construction we will make hardness
assumptions for bilinear settings whose order N is product of four distinct primes each of length
Θ(λ). For an integer m dividing N , we let Gm denote the subgroup of G of order m. From the fact
that the group is cyclic, it is easy to verify that if g and h are group elements of co-prime orders
then e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our constructions.

We are now ready to give our complexity assumptions.

The first assumption that we state is a subgroup-decision type assumption for bilinear settings
with groups of order product of four primes. Specifically, Assumption 1 posits the difficulty of
deciding whether an element belongs to one of two specified subgroups, even when generators
of some of the subgroups of the bilinear group are given. More formally, we have the following
definition.

For a generator G returning bilinear settings of order product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

A3 ← Gp3 , A13 ← Gp1p3 , A12 ← Gp1p2 , A4 ←∈ Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 .

8

and set D = (I, A3, A4, A13, A12). We define the advantage of an algorithm A in breaking Assump-
tion 1 to be

AdvA1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 1 We say that Assumption 1 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA1 (λ) is a negligible function of λ.

Our second assumption can be seen as the Decision Diffie-Hellman Assumption for composite
order groups. Specifically, Assumption 2 posits the difficult of deciding if a triple of elements
constitute a Diffie-Hellman triplet with respect to one of the factors of the order of the group, even
when given, for each prime divisor p of the group order, a generator of the subgroup of order p.
Notice that for bilinear groups of prime order the Diffie-Hellman assumption does not hold. More
formally, we have the following definition.

For a generator G returning bilinear settings of order product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β ← Zp1 , T2 ← Gp1p4

and set T1 = Aαβ1 ·D4 and D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4). We define the advantage of an

algorithm A in breaking Assumption 2 to be

AdvA2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 2 We say that Assumption 2 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA2 (λ) is a negligible function of λ.

Assumption 3 is a generalization of Assumption 2 in the sense it posits the difficult of deciding
if two triplets sharing an element are both Diffie-Hellman (looking at the formal definition below,

the two triplets are the one composed of elements whose Gp1 parts are respectively (Aα1 , A
β
1 , A

αβ
1)

and (Aγ1 , A
αβ
1 , Aαβγ1)) given a third related Diffie-Hellman triplets (composed of elements whose Gp1

parts are respectively (Aαγ1 , Aβ1 , A
αβγ
1)). More formally, we have the following definition.

For a generator G returning bilinear settings of order N product of four primes, we define
the following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4, E4, F4, G4 ← Gp4 , α, β, γ ← Zp1 , T2 ← Gp1p4

and set T1 = Aαβ1 ·G4 and D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4, A

γ
1 ·D4, A

αγ
1 ·E4, A

αβγ
1 ·F4). We

define the advantage of an algorithm A in breaking Assumption 3 to be

AdvA3 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 3 We say that Assumption 3 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA3 (λ) is a negligible function of λ.

It is easy to see that Assumption 3 implies Assumption 2. In Appendix B, we prove that
Assumption 1 and Assumption 3 hold in the generic group model.

9

5 Constructing HVE

In this section we describe our construction for an HVE scheme. We assume without loss of
generality that the vectors ~y of the keys have at least two indices i, j such that yi, yj 6= ?.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization by running a generator algorithm G on input 1λ. The setup
algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1}, the

algorithm chooses random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk =
[g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y

ai = 0. For i ∈ S~y, the

algorithm chooses random Wi ∈ Gp4 (the Wi are chosen by raising g4 to a random power) and sets

Yi = g
ai/ti,yi
12 Wi.

The algorithm returns the tuple (Yi)i∈S~y
. Notice that here we used the fact that S~y has size at least

2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 (the Zi are chosen by raising g3 to a random power) and sets

Xi = T si,xiZi,

and returns the tuple (Xi)i∈[`].

Test(Ct, Sk~y): The test algorithm computes

T =
∏
i∈S~y

e(Xi, Yi).

It returns TRUE if T = 1, FALSE otherwise.

Correctness It is easy to verify the correctness of the scheme.

Remark 5.1 Let Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Msk = [g1 · g2, g4, (ti,b)i∈[`],b∈{0,1}] be a pair
of public parameter and master secret key output by the Setup algorithm and consider Pk′ =
[N, g3, (T

′
i,b)i∈[`],b∈{0,1}] and Msk′ = [ĝ1·g2, g4, (ti,b)i∈[`],b∈{0,1}] with T ′i,b = ĝ

ti,b
1 ·R′i,b for some ĝ1 ∈ Gp1

and R′i,b ∈ Gp3. We make the following easy observations.

1. For every ~y ∈ {0, 1, ?}`, the distributions KeyGen(Msk, ~y) and KeyGen(Msk′, ~y) are identical.

2. Similarly, for every ~x ∈ {0, 1}`, the distributions Encrypt(Pk, ~x) and Encrypt(Pk′, ~x) are iden-
tical.

10

5.1 Security of our HVE scheme

In this section we prove the security of our HVE scheme. To prove security of our HVE scheme,
we rely on Assumptions 1 and 2. For a probabilistic polynomial-time adversary A which makes q
queries for KeyGen, our proof of security will be structured as a sequence of q + 2 games between
A and a challenger C. The first game, GameReal, is the real HVE security game described in
the previous section. The remaining games, called Game0, . . . ,Gameq, are described (and shown
indistinguishable) in the following sections.

5.1.1 Description of Game0

Game0 is like GameReal, except that C uses g2 instead of g1 to construct the public parameters Pk
given to A. Specifically,

Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e) with known
factorization by running a generator algorithm G on input 1λ. C chooses random g1 ∈ Gp1 , g2 ∈
Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For each i ∈ [`] and b ∈ {0, 1}, C chooses random

ti,b ∈ ZN and Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
2 · Ri,b and T ′i,b = g

ti,b
1 · Ri,b. Then C sets Pk =

[N, g3, (Ti,b)i∈[`],b∈{0,1}], Pk
′ = [N, g3, (T

′
i,b)i∈[`],b∈{0,1}], and Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}]. Finally,

C starts the interaction with A on input Pk.

Key Query Answering. On a query for vector ~y, C returns the output of KeyGen on input ~y and
Msk.

Challenge Construction. C picks one of the two challenge vectors provided by A and encrypts
it with respect to public parameters Pk′.

5.1.2 Proof of indistinguishability of GameReal and Game0

Lemma 5.2 Suppose there exists a PPT algorithm A such that AdvAGameReal
−AdvAGame0 = ε. Then,

there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and, depending
on the nature of T , simulates GameReal or Game0 with A. This suffices to prove the Lemma.

Setup. B starts by constructing public parameters Pk and Pk′ in the following way. B sets
g3 = A3, g12 = A12, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈
ZN and sets Ti,b = T ti,b and T ′i,b = A

ti,b
13 . Then B sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Msk =

[g12, g4, (ti,b)i∈[`],b∈{0,1}], and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] and starts the interaction with A on

input Pk.

Key Query Answering. Whenever A asks to see the secret key Sk~y associated with vector ~y,
B runs algorithm KeyGen on input Msk and ~y.

Challenge Construction. The challenge is created by B by picking one of the two vectors
provided by A, let us call it ~x, and by encrypting it by running the Encrypt algorithm on input ~x
and Pk′.

This concludes the description of algorithm B.

11

Now suppose T ∈ Gp1p3 , and thus it can be written as T = h1 · h3 for h1 ∈ Gp1 and h3 ∈ Gp3 .
This implies that Pk received in input by A in the interaction with B has the same distribution
as in GameReal. Moreover, by writing A13 as A13 = ĥ1 · ĥ3 for ĥ1 ∈ Gp1 and ĥ3 ∈ Gp3 which is
possible since by assumption A13 ∈ Gp1p3 , we notice that that Pk and Pk′ are as in the hypothesis

of Remark 5.1 (with g1 = h1 and ĝ1 = ĥ1). Therefore the answers to key queries and the challenge
ciphertext given by B to A have the same distribution as the answers and the challenge ciphertext
received by A in GameReal. We can thus conclude that, when T ∈ Gp1p3 , C has simulates GameReal
with A.

Let us discuss now the case T ∈ Gp2p3 . In this case, Pk provided by B has the same distribution
as the public parameters produced by C in Game0. Therefore, C is simulating Game0 for A.

This concludes the proof of the lemma. 2

5.1.3 Description of Gamek, for 1 ≤ k ≤ q

Each of these games is like Game0, except that the first k key queries issued by A are answered
with keys whose Gp1 parts are random. The remaining key queries (that is, from the (k + 1)-st to
the q-th) are answered like in the previous game. The Gp2 parts of all the answers to key queries
are like in Game0. More precisely, in Gamek, the Setup phase and the Challenge Construction are
like in Game0 and the Key Query phase is the following.

Key Query Answering. C answers the first k key queries in the following way. On input vector
~y, for i ∈ S~y, C chooses random ai, ci ∈ ZN under the constraint that

∑
i∈S~y

ai = 0 and random
Wi ∈ Gp4 . C sets, for i ∈ S~y,

Yi = gci1 · g
ai/ti,yi
2 ·Wi.

The remaining q − k queries are answered like in Game0.

5.1.4 Proof of indistinguishability of Gamek−1 and Gamek

Lemma 5.3 Suppose there exists a PPT algorithm A such that AdvAGamek−1
−AdvAGamek

= ε. Then,
there exists a PPT algorithm B with advantage at least ε/(2`) in breaking Assumption 2.

Proof. We show a PPT algorithm B which receives (I, A1, A2, A3, A4, A
α
1 · B4, A

β
1 · C4) and T

and, depending on the nature of T , simulates Gamek−1 or Gamek with A. This suffices to prove
the Lemma.
B starts by guessing the index j such that the j-th bit y(k)

j of the k-th query ~y(k) is different
from ? and different from the j-th bit xj of the challenge vectors provided by A that C uses to
construct the challenge ciphertext. Notice that the probability that B correctly guesses j and y(k)

j

is at least 1/(2`), independently from the view of A. Notice that, if during the simulation this is
not the case, then B aborts the simulation and fails. We next describe and prove the correctness
of the simulation under the assumption that B’s initial guess is correct. Notice that if the initial
guess is correct xj and y(k)

j are uniquely determined and it holds that xj = 1− y(k)

j .

Setup. B sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 · A2. For each i ∈ [`] \ {j}
and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g

ti,b
2 ·Ri,b. Moreover, B

chooses random tj,xj ∈ ZN , Rj,xj ∈ Gp3 , r
j,y

(k)
j

∈ ZN and R
j,y

(k)
j

∈ Gp3 and sets

Tj,xj = g
tj,xj
2 ·Rj,xj T

j,y
(k)
j

= g

r
j,y

(k)
j

2 ·R
j,y

(k)
j

.

12

Notice that by assumption xj 6= y(k)

j . B then sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}].
In addition, for each i ∈ [`] \ {j} and b ∈ {0, 1} and B chooses random R′i,b ∈ Gp3 and sets

T ′i,b = g
ti,b
1 · R′i,b. Moreover B chooses random Rj,xj and sets T ′j,xj = g

tx,xj
1 · R′j,xj . The value of

T ′
j,y

(k)
j

remains unspecified. As we shall see below, in answering key queries, B will implicitly set

T ′
j,y

(k)
j

= g
1/β
1 ·R′

j,y
(k)
j

for a random R′
j,y

(k)
j

∈ Gp3 .

B starts the interaction with A on input Pk. Notice that Pk has the same distribution as the
public parameters seen by A in Gamek−1 and Gamek.

Key Query Answering. For the first k − 1 queries B proceeds as follows. Let ~y be the input
vector. For i ∈ S~y, B chooses random ai such that

∑
i∈S~y

ai = 0, random zi ∈ ZN , and random

Wi ∈ Gp4 . Then, for i ∈ S~y \ {j}, B computes

Yi = gzi1 · g
ai/ti,yi
2 ·Wi.

If yj = xj then B sets

Yj = g
zj
1 · g

aj/tj,yj
2 ·Wj

otherwise if yj 6= ? then B sets

Yj = g
zj
1 · g

aj/rj,yj
2 ·Wj .

Also notice that the first k− 1 answers produced by B have the same distribution as the first k− 1
answers seen by A in Gamek−1 and Gamek.

Let us now describe how B answers the k-th query the vector ~y(k) . Let h be an index such that
h 6= j and y(k)

h 6= ?; such an index always exists by our assumption that all keys are for vectors
with at least two entries different from ?. Also we remind the reader that y(k)

j = 1− xj .
Let S = S~y \ {j, h}. For each i ∈ S, B chooses random ai ∈ ZN and Wi ∈ Gp4 and sets

Yi = g
ai/t

i,y
(k)
i

12 ·Wi.

B chooses random a′j ∈ ZN and Wj ,Wh ∈ Gp4 and sets

Yj = T · g
a′j/rj,y(k)

j

2 ·Wj

and

Yh = (Aα1B4)
−1/t

h,y
(k)
h · g

−s/t
h,y

(k)
h

1 · g
−(s+aj)/t

h,y
(k)
h

2 ·Wh,

where s =
∑

i∈S ai. This terminates the description of how B handles the k-th key query. Let us

now verify that when T = Aαβ1 ·D4 then B’s answer to the k-th key query is like in Gamek−1. By
our settings, we have that

Yj = g

α/t′
j,y

(k)
j

1 · g
a′j/rj,y(k)

j

2 ·D4 ·Wj

with t′
j,y

(k)
j

= 1/β. By the Chinese Remainder Theorem, there exists aj ∈ ZN such that

aj ≡ α mod p1

aj ≡ a′j mod p2

13

and t
j,y

(k)
j

∈ ZN such that

t
j,y

(k)
j

≡ t′
j,y

(k)
j

mod p1

t
j,y

(k)
j

≡ r
j,y

(k)
j

mod p2

and thus Yj and Yh can be written as

Yj = g
aj/t

j,y
(k)
j

12 · (D4 ·Wj) and Yh = g
ah/t

h,y
(k)
h

12 ·Wh

where ah = −(s+ aj). Therefore we have that
∑

i∈S~y
ai = 0 and we can conclude that the answer

to the k-th query of A is distributed as in Gamek−1.
On the other hand if T is random in Gp1p4 then the Gp1 parts of the Yi’s are random and thus

the answer to the k-th query of A is distributed as in Gamek.

Let us now briefly discuss how B handles the l-th key queries for l = k + 1, . . . , q. First of all
notice that if the j-th bit of the l-th query vector is equal to xj then B has all the ti,yi ’s needed
for running algorithm KeyGen. On the other hand, if this is not the case then, by the previous

settings, tj,yj ≡ 1/β mod p1. Therefore B can use Aβ1 ·C4 = g
1/tj,yj
1 ·C4 that is part of the instance

of Assumption 2 that B has to break. We can conclude that the answers provided by B to A’s last
q − k queries have the same distribution as in Gamek and Gamek−1.

Challenge Construction. The challenge is created by running algorithm Encrypt on input the
randomly chosen challenge vector ~x and public parameters Pk′. Notice that under the assumption
that B has correctly guessed xj and thus xj = 1 − y(k)

j , Pk′ contains all the values needed for
computing an encryption of ~x. Also notice, that the challenge ciphertext is distributed exactly like
in Gamek−1 and Gamek.

2

5.1.5 Gameq gives no advantage

We observe that in Gameq the Gp1 part of the challenge ciphertext is the only one depending on η.
However, the elements of the public parameters Pk given as input to the adversary in Gameq have
no Gp1 part and moreover the answer to the key queries have random and independent Gp1 part.
Therefore we can conclude that for all adversaries A, AdvAGameq = 0. We have thus proved.

Theorem 5.4 If Assumptions 1 and 2 hold for generator G, then the HVE scheme presented is
secure.

6 Hierarchical HVE

We start by giving the definition of Hierarchical HVE (see also [15],[10]). Given ~y, ~w ∈ {0, 1, ?}`,
we say that ~w is a delegation of ~y, in symbols ~w ≺ ~y, iff for each i ∈ [`] we have yi = ? or yi = wi.
For example 〈1, 0, 1, ?〉 ≺ 〈1, 0, ?, ?〉. Notice that ≺ imposes a partial order on {0, 1, ?}`.

A Hierarchical HVE scheme (HHVE) consists of five efficient algorithms (Setup, Encrypt, Key-
Gen, Test, Delegate). The semantics of Setup, Encrypt, KeyGen and Test are identical to those given
for HVE. The delegation algorithm has the following semantics.

Delegate(Pk,Sk~y, ~y, ~w): takes as input ~y, ~w ∈ {0, 1, ?}` such that ~w ≺ ~y and secret key Sk~y for ~y
and outputs secret key Sk~w for ~w.

14

Correctness of HHVE. We require that for pairs (Pk,Msk) output by Setup(1λ, 1`), for all
y ∈ {0, 1, ?}`, keys Sk~y computed by KeyGen on input Msk, for all ~w ≺ ~y and all delegation paths
~w = ~wn ≺ ~wn−1 ≺ . . . ≺ ~w0 = ~y of length n ≥ 0 with Sk~wi

= Delegate(Pk, Sk~wi−1
, ~wi−1, ~wi) for

i ∈ [n], and all ~x ∈ {0, 1}` we have that the probability that

Test(Pk,Encrypt(Pk, ~x),Sk~w) 6= Match(~x, ~w)

is negligible in λ.

6.1 Security definition for HHVE

Our security definition follows [15] and requires that no PPT adversary A has non-negligible ad-
vantage over 1/2 in game GameReal against a challenger C. GameReal consists of the Setup Phase
followed by a Query Phase. The Query Phase consists of several Key Queries and one Challenge
Construction Query. We stress that the Challenge Construction Query is not necessarily the last
query of the Query Phase. More precisely, we have the following game.

Setup. C runs the Setup algorithm on input the security parameter λ and the length parameter
` (given in unary) to generate public parameters Pk and master secret key Msk. C starts the
interaction with A on input Pk.

Key Queries. Key queries can be of three different types. C answers these queries in the following
way. C starts by initializing the set S of private keys that have been created but not yet given to
A equal to ∅.

• Create. To make a Create query, A specifies a vector ~y ∈ {0, 1, ?}`. In response, C creates a
key for ~y by running the KeyGen algorithm on input Msk and ~y. C adds this key to the set S
and gives A only a reference to it, not the actual key.

• Delegate. To make a Delegate query, A specifies a reference to a key Sk~y in the set S and a
vector ~w ∈ {0, 1, ?}` such that ~w ≺ ~y. In response, C makes a key for ~w by executing the
Delegate algorithm on input Pk, Sk~y, ~y and ~w. C adds this key to the set S and again gives
A only a reference to it, not the actual key.

• Reveal. To make a Reveal query, A specifies an element of the set S. C gives the corresponding
key to A and removes it from the set S. We note that A needs no longer make any delegation
queries for this key because it can run the Delegate algorithm on the revealed key by itself.

Challenge Construction. To make a Challenge Construction query, A specifies a pair ~x0, ~x1 ∈
{0, 1}`. C answers by picking random η ∈ {0, 1} and returning Encrypt(Pk, ~xη).

At the end of the game, A outputs a guess η′ for η. We say that A wins if η = η′ and for all ~y
for which A has seen a secret key, it holds that Match(~x0, ~y) = Match(~x1, ~y) = 0. The advantage
AdvAHHVE(λ) of A is defined to be the probability that A wins the game minus 1/2. We are now
ready for the following definition.

Definition 6.1 A Hierarchical Hidden Vector Encryption scheme is secure if for all probabilistic
polynomial time adversaries A, we have that AdvAHHVE(λ) is a negligible function of λ.

Notice that in our security definition the adversary can see keys only for vectors ~y that do not
match either of the two challenges. We share this limitation with [8].

15

6.2 Our construction for HHVE

In this section we describe our construction for an HHVE scheme. As in HVE, we assume without
loss of generality that the vectors ~y of the keys have at least two indices i, j such that yi, yj 6= ?.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3, R ∈ Gp3 , g4 ∈ Gp4 and sets
g12 = g1 · g2. Then, for each i ∈ [`] and b ∈ {0, 1}, the setup algorithm chooses random ti,b ∈ ZN
and Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 ·Ri,b.

The public parameters are Pk =
[
N, g3, g4, g1 ·R, (Ti,b)b∈{0,1},i∈[`]

]
and the master secret key is

Msk =
[
g12, (ti,b)b∈{0,1},i∈[`]

]
.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. For each i ∈ [`], the key generation
algorithm chooses random ai ∈ ZN such that

∑
i∈[`] ai = 0 and random Ri ∈ Gp4 . For i /∈ S~y and

b ∈ {0, 1}, the algorithm chooses random Ri,b ∈ Gp4 . Then for each i ∈ [`], the key generation
algorithm sets

Yi =

{
g
ai/ti,yi
12 ·Ri, for i ∈ S~y;
gai12 ·Ri, for i /∈ S~y;

and, for each i 6∈ S~y and b ∈ {0, 1},

Di,b = g
ai/ti,b
12 ·Ri,b.

Finally the key generation algorithm returns the key Sk~y =
[
(Yi)i∈[`], (Di,b)i/∈S~y ,b∈{0,1}

]
.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN and Z ∈ Gp3 and, for each
i ∈ [`], random Zi ∈ Gp3 . The algorithm sets X0 = (g1R)s ·Z and, for each i ∈ [`], Xi = (Ti,xi)

sZi.
The algorithm returns the ciphertext

Ct =
[
X0, (Xi)i∈[`]

]
.

We stress that, unlike the HVE, a ciphertext for HHVE contains element X0.

Test(Ct, Sk~y): The test algorithm computes

T = e(X0,
∏
i/∈S~y

Yi) ·
∏
i∈S~y

e(Xi, Yi).

It returns TRUE if T = 1, FALSE otherwise.

Delegate(Pk, Sk~y, ~y, ~w): On input a secret key Sk~y =
[
(Y ′i)i∈[`], (D

′
i,b)i/∈S~y ,b∈{0,1}

]
for vector ~y, the

delegation algorithm chooses random z ∈ ZN . For i ∈ S~w, the algorithm chooses random Ri ∈ Gp4

and, for i /∈ S~w and b ∈ {0, 1}, random Ri,b ∈ Gp4 .
The delegation algorithm for i ∈ S~w computes Yi as

Yi =

{
Y ′zi Ri, if yi 6= ?;

D′zi,wi
Ri, if yi = ?.

Finally, for i /∈ S~w and b ∈ {0, 1}, the delegation algorithm sets

Di,b = D′zi,bRi,b,

16

and returns the key Sk~w =
[
(Yi)i∈[`], (Di,b)i/∈S~w,b∈{0,1}

]
.

Notice that, for vectors ~y and ~w such that ~w ≺ ~y, the distribution of the key Sk~w for ~w output
by KeyGen on input Msk and ~w, and the distribution of the key for ~w output by Delegate on input
Pk, a key Sk~y, ~y and ~w coincide. Therefore, the correctness of the scheme for keys generated by
KeyGen is sufficient for proving correctness for every key.

Furthermore, any delegation path starts from a secret key for a vector ~y created by running
KeyGen. For any such a ~y and for any delegation path ~w = ~w0 ≺ ~w1 ≺ . . . ≺ ~wn−1 ≺ ~wn = ~y,
the distribution of the keys for ~w, obtained by following the delegation path, is identical to the
distribution of the keys for the same vector obtained by delegation directly from ~y.

Notice also that the distributions of (Sk~y,Sk~w) when Sk~w is generated by KeyGen or by Delegate
do differ. This makes the security proof more involved.

Correctness It is easy to verify the correctness of the scheme.

Remark 6.2 Notice that the observations of the Remark 5.1 apply also to the pairs (Pk,Msk) and
(Pk′,Msk′) output by the KeyGen algorithm of the HHVE scheme and differing in the base g1 and
ĝ1 of the Gp1 part.

6.3 Security of our HHVE scheme

To prove security of our HHVE scheme, we rely on static Assumptions 1 and 3. For a probabilistic
polynomial-time adversary A which makes q Reveal key queries, our proof of security will be
structured as a sequence of q + 2 games between A and a challenger C. The first game, GameReal,
is the real HHVE security game described in the previous section. The remaining games, called
Game0, . . . ,Gameq, are described (and shown indistinguishable) in the following.

6.3.1 Description of Game0

Game0 is like GameReal, except that C uses g2 instead of g1 to construct the public parameters Pk
given to A. Specifically,

Setup. C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , R, g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1}, C
chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
2 · Ri,b and T ′i,b = g

ti,b
1 · Ri,b, Then C

sets Pk = [N, g3, g4, g1 ·R, (Ti,b)b∈{0,1},i∈[`]] and Pk′ = [N, g3, g4, g1 ·R, (T ′i,b)b∈{0,1},i∈[`]]. C starts the
interaction with A on input Pk.

Key Query. Like in GameReal.

Challenge construction. C picks one of the two challenge vectors provided by A and encrypts it
with respect to public parameters Pk′.

6.3.2 Proof of indistinguishability of GameReal and Game0

Lemma 6.3 Suppose there exists a PPT algorithm A such that AdvAGameReal
−AdvAGame0 = ε. Then,

there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and, depending
on the nature of T , simulates GameReal or Game0 with A. This suffices to prove the Lemma.

17

Setup. B starts by constructing public parameters Pk and Pk′ in the following way. B sets g3 =
A3, g12 = A12, g4 = A4 and, for i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and sets Ti,b =

T ti,b and T ′i,b = A
ti,b
13 . ThenB sets Pk = [N, g3, g4, A13, (Ti,b)i∈[`],b∈{0,1}], Msk = [g12, (ti,b)i∈[`],b∈{0,1}],

Pk′ = [N, g3, g4, A13, (T
′
i,b)i∈[`],b∈{0,1}], and S = ∅ and starts the interaction with A on input Pk.

Notice that Pk has the same distribution of the public parameters seen by A in GameReal and
Game0.

Query Answering. B handles the A’s queries in the following way.

• Create. B handles a Create query on vector ~y by setting Sk~y = KeyGen(Msk, ~y). Then, B add
Sk~y to S an gives A a reference to Sk~y.

• Delegate. B handles a Delegate query on secret key Sk~y, vector ~y and ~w such that ~w ≺ ~y, by
setting Sk~w = Delegate(Pk,Sky, ~y, ~w). Then, B add Sk~w to S an gives A a reference to Sk~w.

• Reveal. B simply removes the requested secret key from S and gives it to A.

Challenge Construction. The challenge is created by B by picking one of the two vectors
provided by A, let us call it ~x, and by encrypting it by running the Encrypt algorithm on input ~x
and Pk′.

Let us write A13 as A13 = ĥ1 · ĥ3 for ĥ1 ∈ Gp1 and ĥ3 ∈ Gp3 .
Now suppose T ∈ Gp1p3 , and thus T = h1 · h3 for h1 ∈ Gp1 and h3 ∈ Gp3 . Notice that Pk and

Pk′ are as in the hypothesis of Remark 6.2 (with g1 = h1 and ĝ1 = ĥ1) and thus the challenge given
by C to A has the same distribution as an encryption of ~x with Pk. We can thus conclude that in
this case C has simulated GameReal with A.

Let us discuss now the case T ∈ Gp2p3 . In this case the public parameters Pk provided by
B have the same distribution as the public parameters produced by C in Game0. Therefore, C is
simulating Game0 for A.

This concludes the proof of the lemma. 2

6.3.3 Description of Gamek for 1 ≤ k ≤ q

The Setup Phase and the Challenge Construction query of each of these games are like in Game0.
The first k Reveal queries issued by A are instead answered by C by returning keys whose Gp1 parts
are random. All remaining Reveal queries are answered like in Game0. We stress that the Gp2 parts
of all answers are like in Game0.

More precisely, t
he Key Query are handled by C in the following way. C starts by initializing the set S to the

empty set and the query counter v and the reveal query counter Rv equal to 0.
• Create(~y): C increments v and, for each i ∈ [`], chooses random av,i ∈ ZN such that∑`

i=1 av,i = 0 and adds the tuple (v, ~y, (av,1, . . . , av,`)) to the set S.

C returns v to A.

• Delegate(v′, ~w): For Delegate key query on vector ~w, C increments v and adds the tuple
(v, ~w, v′) to the set S.

C returns v to A.

18

• Reveal(v′): Suppose entry v′ in S refers to key Sk~w which is the the result of a delegation
path ~w = ~w0 ≺ ~w1 ≺ . . . ≺ ~wn = ~y of length n ≥ 0 starting from key Sk~y created as result of
the v′′-th Create key query.

C chooses random z ∈ ZN and, for each i ∈ [`], random ci ∈ ZN and Ri ∈ Gp4 . Moreover for
each i /∈ S~w and b ∈ {0, 1}, C chooses random Ri,b ∈ Gp4 .

C increments Rv. If Rv ≤ k, then for each i ∈ [`], C sets

Yi =

{
gci1 · g

zav,i/ti,wi
2 ·Ri, if i ∈ S~w;

gci1 · g
zav,i
2 ·Ri, if i /∈ S~w;

and, for each i /∈ S~w and for each b ∈ {0, 1}, C sets

Di,b = gci1 · g
zav,i/ti,b
2 ·Ri,b.

If instead Rv > k, then for each i ∈ [`], C sets

Yi =

{
g
zav,i/ti,wi
12 ·Ri, if i ∈ S~w;

g
zav,i
12 ·Ri, if i /∈ S~w;

and, for each i /∈ S~w and for each b ∈ {0, 1}, C sets

Di,b = g
zav,i/ti,b
12 ·Ri,b.

Finally, C returns the key Sk~w consisting of the Yi’s and the Di,b’s.

6.3.4 Proof of indistinguishability of Gamek−1 and Gamek

Lemma 6.4 Suppose there exists a PPT algorithm A such that AdvAGamek−1
−AdvAGamek

= ε. Then,
there exists a PPT algorithm B with advantage at least ε/(2`) in breaking Assumption 3.

Proof. We show a PPT algorithm B which receives (I, A1, A2, A3, A4, A
α
1 · B4, A

β
1 · C4, A

γ
1 ·

D4, A
αγ
1 · E4, A

αβγ
1 · F4) and T and, depending on the nature of T , simulates Gamek−1 or Gamek

with A. This suffices to prove the Lemma.
B starts by guessing the index j such that the j-th bit y(k)

j of the k-th Reveal query ~w(k) is
different from ? and different from the j-th bit xj of the challenge vectors provided by A that
B uses to construct the challenge ciphertext. Notice that such an index j always exists and that
the probability that B correctly guesses j and w(k)

j (and thus xj = 1 − w(k)

j) is at least 1/(2`),
independently from the view of A. Notice that, if during the simulation this is not the case, then
B aborts the simulation and fails. We next describe and prove the correctness of the simulation
under the assumption that B’s initial guess is correct.

Setup. B sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 ·A2.
B chooses random R ∈ Gp3 and, for i ∈ [`] \ {j} and b ∈ {0, 1}, B chooses random ti,b ∈ ZN

and Ri,b ∈ Gp3 . Then B sets Ti,b = g
ti,b
2 · Ri,b. Moreover, B chooses random t

j,1−w(k)
j

, r
j,w

(k)
j

∈ ZN

and R
j,1−w(k)

j

, R
j,w

(k)
j

∈ Gp3 and sets T
j,1−w(k)

j

= g
t
j,1−w

(k)
j

2 ·R
j,1−w(k)

j

and T
j,w

(k)
j

= g
r
j,w

(k)
j

2 ·R
j,w

(k)
j

.

These settings determine public parameters Pk = [N, g3, g4, g1R, (Ti,b)i∈[`],b∈{0,1}].

19

In addition, for i ∈ [`] \ {j} and b ∈ {0, 1} and for i = j and b = 1 − w(k)

j , B chooses random

R′i,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 · R′i,b. The value of T ′

j,w
(k)
j

remains unspecified. As we shall see

below, B will implicitly set T ′
j,w

(k)
j

= g
1/β
1 ·R′

j,w
(k)
j

for some random R′
j,w

(k)
j

∈ Gp3 .

B starts the interaction with A on input Pk. Notice that Pk has the same distribution as the
public parameters seen by A in Gamek−1 and Gamek.

Key Query. B handles the Create and Delegate queries as prescribed in Gamek−1 and Gamek.
For the Reveal queries B proceeds as follow.
B handles the first k−1 Reveal key queries as follow. Suppose A requests the key for ~w belonging

to a delegation path, of length greater or equal to 0, which starts from the v-th Create key query.
Let S = S~w \ {j}. B chooses random z ∈ ZN and, for i ∈ [`], random ci ∈ ZN and Ri ∈ Gp4 and,
for i /∈ S~w

⋃
{j} and b ∈ {0, 1}, random Ri,b ∈ Gp4 . Then B computes, for each i ∈ [`] \ {j},

Yi =

{
gci1 · g

zav,i/ti,wi
2 ·Ri, if i ∈ S~w;

gci1 · g
zav,i
2 ·Ri, if i /∈ S~w;

and, for each i 6= j and i /∈ S~w
Di,b = gci1 · g

zav,i/ti,b
2 ·Ri,b.

Moreover, if j ∈ S~w then B sets

Yj =

gcj1 · g
zav,j/r

j,w
(k)
j

2 Rj , if wj = w(k)

j ;

g
cj
1 · g

zav,j/tj,xj
2 Rj , if wj = xj .

If instead j 6∈ Sw then B sets

Yj = g
cj
1 · g

zav,j
2 ·Rj , D

j,w
(k)
j

= g
cj
1 · g

zav,j/r
j,w

(k)
j

2 ·R
j,w

(k)
j

, D
j,1−w(k)

j

= g
cj
1 · g

zav,j/tj,xj
2 ·Rj,xj ,

This terminates the description of how B handles the first k − 1 Reveal queries. We observe that
the Gp1 parts of the keys returned in the first k − 1 Reveal queries are random, whereas the Gp2

parts are correctly computed. Therefore, we can conclude that the answer to the first k− 1 Reveal
queries have the same distribution as in games Gamek−1 and Gamek.

Let us now describe how B handles the k-th Reveal key query on a vector ~w(k) belonging to a
delegation path, possibly of length 0, which starts from the v-th Create key query. Let h be an
index such that h 6= j and w(k)

h 6= ?. Such an index always exists by our assumption that all keys
are for vectors with at least two entries different from ?.
B chooses random z ∈ ZN and, for each i ∈ [`], random Ri ∈ Gp4 and, for each i 6= j, h such

that i /∈ S and b ∈ {0, 1}, random Ri,b ∈ Gp4 . Then, for each i ∈ [`] \ {j, h}, B sets

Yi =

{
g
zav,i/ti,wi
12 Ri, if i ∈ S~w(k) ;

g
zav,i
12 Ri, if i /∈ S~w(k) .

Moreover for i 6= {j, h} such that i /∈ S~w(k) and b ∈ {0, 1}, B sets

Di,b = g
zav,i/ti,b
12 ·Ri,b.

20

Finally, B computes s =
∑

i∈[`]\{j,h} av,i and sets

Yj = T z · g
zav,j/r

j,w
(k)
j

2 ·Rj

and

Yh = (Aα1B4)
−z/t

h,w
(k)
h · g

−zs/t
h,w

(k)
h

1 · g
−z(s+aj)/t

h,w
(k)
h

2 ·Rh.

This terminates the description of how B handles the k-th Reveal query.

Suppose now that T = Aαβ1 ·G4 and thus by our settings, we have that

Yj = gzαβ1 · g
zav,j/r

j,w
(k)
j

2 ·G4 ·Rj .

By the Chinese Remainder Theorem, there exists aj ∈ ZN such that

aj ≡ α mod p1

aj ≡ av,j mod p2

and t
j,w

(k)
j

∈ ZN such that

t
j,w

(k)
j

≡ 1/β mod p1

t
j,w

(k)
j

≡ r
j,w

(k)
j

mod p2.

We stress that B does not know aj and t
j,w

(k)
j

∈ ZN and does not need these values to perform its

computation. By setting, ai = av,i for i 6= j, h, ah = −(s+ aj) and by the definition of aj , we can
write Yj and Yh as

Yj = g
zaj/t

j,w
(k)
j

12 · (G4 ·Rj) and Yh = g
zah/t

h,w
(k)
h

12 ·Rh.

Therefore, all the exponents of g12 are equal to the exponents of the key produced by v-th Create
query multiplied by the common a value z and we can conclude that in this case the answer to the
k-th query of A is distributed as in Gamek−1.

On the other hand if T is random in Gp1p4 then the Gp1 parts of the Yi’s are random and
independent thus the answer to the k-th Reveal query of A is distributed as in Gamek.

Let us now describe how B handles the remaining (q − k) Reveal queries. We fix notation by
denoting with ~w the vector for which A asks to reveal the key and we suppose that the key is part
of a delegation path that starts from the key created by the v-th Create key query. We distinguish
two cases depending on whether the key of the k-th Reveal key query is derived from the same
Create key query and start from the the case in which it is not.

In this case, B chooses random z ∈ ZN and, for each i ∈ [`], B chooses random Ri ∈ Gp4 .
Furthermore for each i 6= j such that i ∈ S~w and for each b ∈ {0, 1}, B chooses random Ri,b ∈ Gp4 .
Then B computes

Yi =

{
g
zav,i/ti,wi
12 ·Ri, if i ∈ S;

g
zav,i
12 ·Ri, if i /∈ S;

and, for each i 6= j such that i /∈ S~w and b ∈ {0, 1}, B computes

Di,b = g
zav,i/ti,b
12 ·Ri,b.

21

For index j, B sets

Yj =

(
Aβ1C4

)zav,j
g
zav,j/r

j,w
(k)
j

2 Rj , if wj = w(k)

j ;

g
zav,j/t

j,1−w
(k)
j

12 Rj , if wj = 1− w(k)

j ;

g
zav,j
12 ·Rj , if wj = ?;

Finally, if wj = ? then B sets

D
j,w

(k)
j

=
(
Aβ1C4

)zav,j
· g
zav,j/r

j,w
(k)
j

2 R
j,w

(k)
j

, D
j,1−w(k)

j

= g
zav,j/t

j,1−w
(k)
j

12 ·Rj,xj .

First of all, we stress that B can carry out the above computation, since all needed values have
either been chosen by B as part of the setup or, like Aβ1 ·C4, are part of the challenge instance that
B is trying to solve. By the settings above, by the definition of t

j,w
(k)
j

and aj , by setting ai = av,i

for all i 6= j, we can write Yi for each i ∈ [`] as

Yi =

g
zai
ti,wi
12 ·R′i, if wi ∈ {0, 1};
gzai12 ·R′i, if wi = ?;

for a random R′i ∈ Gp4 . Specifically, R′i = Ri except for index j and for the case wj = w(k)

j . In

this latter case we have R′j = Rj · C
zav,j
4 . By observing that the ai sum up to 0, and that they all

appear multiplied by the same random value z, we can conclude that the Yi’s are distributed as in
Gamek−1 and Gamek. A similar reasoning shows that the Di,b’s are also correctly distributed.

Let us now conclude the proof by discussing the case in which the Reveal key query for ~w is for
a key whose starting point in the delegation path corresponds to the v-th Create key query and it
is the same as the one of the k-th Reveal key query.

Fix an index h 6= j. B chooses random z ∈ ZN and, for i ∈ [`] and b ∈ {0, 1}, random
Ri, Ri,b ∈ Gp4 . Then, for each i 6= j, h, B sets

Yi =

{
(Aγ1D4)zav,i/ti,wi · gzav,i/ti,wi

2 ·Ri, if i ∈ S~w;

(Aγ1D4)zav,ig
zav,i
2 Ri, if i /∈ S~w;

and, for i 6= j, h such that i /∈ S~w, B sets for b ∈ {0, 1}

Di,b = (Aγ1D4)zav,i/ti,b · gzav,i/ti,b2 ·Ri,b.

Moreover, B computes Yj as

Yj =

(
Aαβγ1 F4

)z
· g
zav,j/r

j,w
(k)
j

2 ·Rj , if wj = w(k)

j ;

(Aαγ1 E4)
z/t

j,1−w
(k)
j · g

zav,j/t
j,1−w

(k)
j

2 ·Rj , if wj = 1− w(k)

j ;

(Aαγ1 E4)
z · gzav,j2 ·Rj , if wj = ?.

and, if wj = ?, B computes

D
j,w

(k)
j

= (Aαβγ1 F4)z · g
zav,j/r

j,w
(k)
j

2 ·R
j,w

(k)
j

D
j,1−w(k)

j

= (Aαγ1 E4)
z/t

j,1−w
(k)
j · g

zav,j/t
j,1−w

(k)
j

2 ·R
j,1−w(k)

j

.

22

Finally, B sets s =
∑

i∈[`]\{j,h} av,i, and computes

Yh =

{
(Aαγ1 E4)−z/th,wh · (Aγ1C4)−zs/th,wh · g−z(s+av,j)/th,wh

2 ·Rh, if h ∈ S~w;

(Aαγ1 E4)−z · (Aγ1C4)−zs ·Rh, if h /∈ S~w.

and, if h /∈ S~w, B computes

Dh,b = (Aαγ1 E4)−z/th,b · (Aγ1C4)−zs/th,b · g−z(s+av,j)/th,b
2 ·Rh,b

for b ∈ {0, 1}. This concludes the description of how B replies to the Reveal key queries and we
stress that B can carry out the prescribed computation as all needed values either have been chosen
by B in the setup or are part of the challenge for Assumption 3 that B is trying to break. Let us
now verify that the answer provided by B is correct also in this case.

By the Chinese Remainder Theorem, there exists z′ ∈ ZN such that

z′ ≡ z · γ mod p1

z′ ≡ z mod p2

Again we stress that B does not need to know z′ to perform its computation. By the above settings,
by the definition of t

j,w
(k)
j

and aj , by setting ai = av,i for all i 6= j, h, and by setting ah =
∑

i 6=h aj ,

we can write, for each i ∈ [`], Yi as

Yi =

{
g
z′ai/ti,wi
12 ·R′i, if i ∈ S~w;

gz
′ai

12 ·R′i, if i /∈ S~w; γ

for some random R′i ∈ Gp4 . Therefore, the exponents of g12 are the same as the ones of the key
created as effect of v-th Create key query multiplied by a common value z′. As similar reasoning
holds for the Di,b’s and we can therefore conclude that the answer provided by B has the same
distribution as in Gamek and Gamek−1.

Challenge construction. B creates the challenge ciphertext by running algorithm Encrypt on
input one randomly chosen challenge vector ~x provide by A and public parameters Pk′. Notice
that under the assumption that B has correctly guessed w(k)

j we have that xj 6= w(k)

j , and this Pk′

contains all the values needed for computing an encryption of ~x. Therefore the challenge ciphertext
is distributed exactly like in Gamek−1 and Gamek. 2

6.3.5 Gameq gives no advantage

We observe that in Gameq the Gp1 part of the challenge ciphertext is the only one depending on η.
In addition notice that the g1 ·R3 is the only component of the public parameters which contains a
Gp1 part but it is independent from η. Thus, it gives no advantage to the adversary and moreover
the answer to the key queries have random and independent Gp1 part. Therefore we can conclude
that for all adversaries A, AdvAGameq = 0. We have thus proved.

Theorem 6.5 If Assumptions 1 and 3 hold, then our HHVE scheme is secure.

23

7 Open problems and future work

We leave as a future work the implementation of a symmetric-key version of CNF encryption (see
for example [14]).

As in [8], we proved the security only in the case in which the adversary can request keys
which do not satisfy the challenges (match revealing model). It would be interesting to have a
construction that is secure even when the adversary is allowed to request keys which satisfy both
challenges (match concealing model).

Finally, we mention as an open problem the design of a scheme with a tight security reduction
that does not depend on the running time (and number of queries q) of the adversary.

8 Acknowledgements

The work of the authors has been supported in part by the European Commission through the EU
ICT program under Contract ICT-2007-216646 ECRYPT II.

24

References

[1] Dan Boneh. Bilinear groups of composite order. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji
Okamoto, and Takeshi Okamoto, editors, Pairing-Based Cryptography - Pairing 2007, First
International Conference. Prooceedings, volume 4575 of Lecture Notes in Computer Science,
pages 39–56, Tokyo, Japan, July 2–4, 2007. Springer-Verlag, Berlin, Germany.

[2] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
506–522, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

[3] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in
Computer Science, pages 325–341, Cambridge, MA, USA, February 10–12, 2005. Springer-
Verlag, Berlin, Germany.

[4] Dan Boneh and Brent Waters. Conjunctive, subset and range queries on encrypted data. In
Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392
of Lecture Notes in Computer Science, pages 535–554, Amsterdam, The Netherlands, Febru-
ary 21–24, 2007. Springer-Verlag, Berlin, Germany.

[5] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption
for Fine-Grained Access Control for Encrypted Data. In ACM CCS 06: 13th Conference on
Computer and Communications Security, pages 89–98, Alexandria, VA, USA, October 30 -
November 3, 2006. ACM Press.

[6] Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption with groups of prime or-
der. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography -
Pairing 2008, Second International Conference. Prooceedings, volume 5209 of Lecture Notes in
Computer Science, pages 75–88, Egham, UK, September 1–3, 2008. Springer-Verlag, Berlin,
Germany.

[7] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption Supporting Disjunction,
Polynomial Equations, and Inner Products. In Nigel Smart, editor, Advances in Cryptology
– EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162,
Istanbul, Turkey, April 13–17, 2008. Springer-Verlag, Berlin, Germany.

[8] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages
62–91, French Riviera, France, May 10 –June 3, 2010. Springer-Verlag, Berlin, Germany.

[9] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th Theory of
Cryptography Conference, volume 5978 of Lecture Notes in Computer Science, pages 455–479,
Zurich, Switzerland, February 9–11, 2010. Springer-Verlag, Berlin, Germany.

[10] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-
products. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume

25

5912 of Lecture Notes in Computer Science, pages 214–231, Tokyo, Japan, December 6–10,
2009. Springer-Verlag, Berlin, Germany.

[11] Tatsuaki Okamoto and Katsuyuki Takashima. Fully Secure Functional Encryption with Gen-
eral Relations from the Decisional Linear Assumption. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 191–
208, Santa Barbara, CA, USA, August 15–19, 2010. Springer-Verlag, Berlin, Germany.

[12] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 07: 14th Conference on Computer and Communications Security,
pages 195–203, Alexandria, VA, USA, October 28 - 31, 2007. ACM Press.

[13] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of Computing,
pages 187–196, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

[14] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer
Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 457–473, San Francisco, CA, USA, 2009. Springer-Verlag,
Berlin, Germany.

[15] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming: 35rd International
Colloquium, volume 5126 of Lecture Notes in Computer Science, pages 560–578, Reykjavik,
Iceland, July 7–11, 2008. Springer-Verlag, Berlin, Germany.

[16] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of
Lecture Notes in Computer Science, pages 619–636, Santa Barbara, CA, USA, August 16–20,
2009. Springer-Verlag, Berlin, Germany.

26

A From Predicate-only to Full-fledged schemes

It is easy to extend our schemes to the full-fledged case in the following way. In the schemes for
(Hierarchical) Hidden Vector Encryption we add the value Ω = e(g1, g1)z for a random z to the
public key and add z to the master secret key. In constructing the secret keys, we choose that the
ai’s so that they sum up to z (instead of summing up to 0). In the encryption for a message M ,
we add the element Ω = M · Ωs, where s is the same random values used to compute the other
components of the ciphertext. Then it is easy to see that the the blinding factor Ωs can be obtained
from the keys and the ciphertext. The security of the scheme then requires an extra assumption in
the target group.

B Generic Security of Our Complexity Assumptions

We now prove that, if factoring is hard, our three complexity assumptions hold in the generic
group model. Since Assumption 3 implies Assumption 2, it suffices to prove generic validity for
Assumption 1 and 3 only. We adopt the framework of [7] to reason about assumptions in bilinear
groups G,GT of composite order N = p1p2p3p4. We fix generators gp1 , gp2 , gp3 , gp4 of the subgroups
Gp1 ,Gp2 ,Gp3 ,Gp4 and thus each element of x ∈ G can be expressed as x = ga1p1 g

a2
p2 g

a3
p3 g

a4
p4 , for ai ∈ Zpi .

For sake of ease of notation, we denote element x ∈ G by the tuple (a1, a2, a3, a4). We do the same
with elements in GT (with the respect to generator e(gpi , gpi)) and will denote elements in that
group as bracketed tuples [a1, a2, a3, a4]. We use capital letters to denote random variables and reuse
random variables to denote relationships between elements. For example, X = (A1, B1, C1, D1) is
a random element of G, and Y = (A2, B1, C2, D2) is another random element that shares the same
Gp2 part.

We say that a random variableX is dependent from the random variables {Ai} if there exists λi ∈
ZN such that X =

∑
i λiAi as formal random variables. Otherwise, we say that X is independent

of {Ai}. We state the following theorems from [7].

Theorem B.1 (Theorem A.2 of [7]) Let N =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Xi}, T1, T2 be random variables over G and let {Yi} be random variables over
GT , where all random variables have degree at most t.

Let N =
∏m
i=1 pi be a product of distinct primes, each greater than 2λ. Let {Xi}, T1 and T2

be random variables over G and let {Yi} be random variables over GT . Denote by t the maximum
degree of a random variable and consider the same experiment as the previous theorem in the generic
group model.

Let S := {i | e(T1, Xi) 6= e(T2, Xi)} (where inequality refers to inequality as formal polynomials).
Suppose each of T1 and T2 is independent of {Xi} and furthermore that for all k ∈ S it holds
that e(T1, Xk) is independent of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k and e(T2, Xk) is independent
of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T2, Xi)}i 6=k. Then if there exists an algorithm A issuing at most q
instructions and having advantage δ, then there exists an algorithm that outputs a nontrivial factor
of N in time polynomial in λ and the running time of A with probability at least δ −O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic group model.

Assumption 1. We can express this assumption as:

X1 = (0, 0, 1, 0), X2 = (A1, 0, A3, 0), X3 = (B1, 0, B3, 0), X4 = (0, 0, 0, 1)

27

and
T1 = (Z1, 0, Z3, 0), T2 = (0, Z2, Z3, 0).

It is easy to see that T1 and T2 are both independent of {Xi} because, for example, Z3 does not
appear in the Xi’s. Next, we note that for this assumption we have S = {2, 3}, and thus, considering
T1 first, we obtain the following tuples:

C1,2 = e(T1, X2) = [Z1A1, 0, Z3A3, 0], C1,3 = e(T1, X3) = [Z1B1, 0, Z3B3, 0].

It is easy to see that C1,k with k ∈ {2, 3} is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k. An
analogous arguments apply for the case of T2. Thus the independence requirements of Theorem
B.1 are satisfied and Assumption 1 is generically secure, assuming it is hard to find a nontrivial
factor of N .

Assumption 3. We can express this assumption as:

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0), X4 = (0, 0, 0, 1),
X5 = (A, 0, 0, B4), X6 = (B, 0, 0, C4), X7 = (C, 0, 0, D4), X8 = (AC, 0, 0, E4),
X9 = (ABC, 0, 0, F4)

and
T1 = [AB, 0, 0, G4], T2 = [Z1, 0, 0, Z4].

We note that G4 and Z1 do not appear in {Xi} and thus T1 and T2 are both independent from
them. Next, we note that for this assumption we have S = {1, 4, 5, 6, 7, 8, 9}, and thus, considering
T1 first, we obtain the following tuples:

C1,1 = e(T1, X1) = [AB, 0, 0, 0], C1,4 = e(T1, X4) = [0, 0, 0, G4]
C1,5 = e(T1, X5) = [A2B, 0, 0, G4B4], C1,6 = e(T1, X6) = [AB2, 0, 0, G4C4]
C1,7 = e(T1, X7) = [ABC, 0, 0, G4D4] C1,8 = e(T1, X8) = [A2BC, 0, 0, G4E4]
C1,9 = e(T1, X9) = [A2B2C, 0, 0, G4F4].

It is easy to see that C1,k with k ∈ {4, 5, 9} is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k.
For C1,1, we observe that the only way to obtain an element whose first component contains

AB is by computing e(A5, A6) = [AB, 0, 0, B4C4] but then there is no way to generate an element
whose fourth component is B4C4 and hence no way to cancel that term. Similarly for C1,8, to
obtain an element whose first component contains A2BC the only way is by computing e(A5, A8) =
[A2BC, 0, 0, B4F4] but there is no way to cancel the fourth component B4F4.

For C1,7, we notice that the only way to obtain an element whose first component contains
ABC is by computing e(A1, A9) = [ABC, 0, 0, 0] but then there is no way to generate an element
whose fourth component is G4D4 and hence no way to cancel that term from C1,7.

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem B.1 is satisfied and Assumption 3 is generically

secure, assuming it is hard to find a nontrivial factor of N .

28

	Introduction and related work
	CNF and Hidden Vector Encryption
	Hidden Vector Encryption
	CNF Encryption
	Security definition for HVE and CNF

	Reducing CNF to HVE
	Composite Order Bilinear Groups and Complexity Assumptions
	Constructing HVE
	Security of our HVE scheme
	Description of Game0
	Proof of indistinguishability of GameReal and Game0
	Description of Gamek, for 1 kq
	Proof of indistinguishability of Gamek-1 and Gamek
	Gameq gives no advantage

	Hierarchical HVE
	Security definition for HHVE
	Our construction for HHVE
	Security of our HHVE scheme
	Description of Game0
	Proof of indistinguishability of GameReal and Game0
	Description of Gamek for 1 k q
	Proof of indistinguishability of Gamek-1 and Gamek
	Gameq gives no advantage

	Open problems and future work
	Acknowledgements
	From Predicate-only to Full-fledged schemes
	Generic Security of Our Complexity Assumptions

