
A Suite of Identity Based Aggregate Signatures and a
Multi-Signature Scheme from RSA

S. Sharmila Deva Selvi, S. Sree Vivek!, C. Pandu Rangan!

Theoretical Computer Science Laboratory,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,
Chennai, India.

{sharmila,svivek}@cse.iitm.ac.in, prangan@iitm.ac.in.

Abstract. Fully aggregateable identity based signature schemes without prior communication
between the signing parties is an interesting issue in identity based cryptography. On this
front, we identify that deterministic identity based signature schemes lead to full aggregation of
signatures without the aforementioned overhead. Inspired by Shamir’s identity based signature
scheme, we propose a deterministic identity based signature scheme which is also based on
RSA. Based on this newly proposed deterministic identity based signature scheme, we design
a suite of four identity based aggregate signature schemes with different properties. The first
two schemes are deterministic identity based aggregation signature schemes, supporting full
aggregation for general and ordered sequential aggregation respectively. The third and fourth
schemes are non-deterministic aggregate signature schemes, supporting full aggregation for
general and ordered sequential aggregation respectively. We formally prove the schemes to be
existentially unforgeable in the random oracle model. We also propose an efficient identity
based multi-signature scheme which achieves aggregation in one round.

Keywords: Identity Based Dererministic Signature, Aggregate Signature, Full Aggregation, Ran-
dom Oracle Model, Provable Security.

1 Introduction

The concept of Identity Based Cryptosystem (IBC) was introduced by Adi Shamir [19] in 1984.
The distinguishing characteristic of identity based cryptography is the ability to use any string, that
uniquely identifies the user in the system as his public key. In particular, this string may be the
email address, telephone number, or any publicly available parameter that is unique to that user. The
corresponding private key can only be derived by a trusted Private Key Generator (PKG) who uses a
master secret key, for deriving the private key of users. Identity based cryptosystem removes the need
for senders to verify the receiver’s public key before sending out an encrypted message or verifying
a signature. It provides a more convenient alternative to conventional Public Key Infrastructure
(PKI) based system. Since 1984, several identity based signature (IBS) schemes have been proposed
[20] [10] [22] [14]. Different variations such as proxy, group, ring, threshold signatures, have been
proposed in the identity based settings depending on various practical applications.

In several real-life situations, it is advantageous to handle a collection of signed documents to-
gether rather than handling them in isolation. It is not hard to visualize such a scenario in Bank
transactions, legal document processing (archiving and communicating) in a legal firm, digital attes-
tation related application and so on. In all the above applications, generating, storing and transmit-
ting a large number of signed documents arise naturally. An Aggregate Signature Scheme combines
several signed documents, say σ1, . . . , σt on messages m1, . . . ,mt by users U1, . . . , Ut and produces
a single signed document σagg where size of σagg is substantially smaller than sum of the sizes of
! Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication

and Computation sponsored by Department of Information Technology, Government of India

σi’s. Thus, the communication cost can be significantly reduced if we transmit σagg instead of trans-
mitting σ1, . . . , σt individually. A similar remark holds good even for storage requirements when we
archive σagg (instead of σ1, . . . , σt).

Various Forms of Aggregate Signatures: The underlying signature scheme may be PKI based
or identity based. In the PKI based setting aggregation is easily achieved for example [8], [2]. However,
aggregation of identity based signatures are far difficult and subtle, we will see the details below.
Aggregation Using Deterministic Signature Schemes: A generic deterministic signature can be rep-
resented as σ = 〈M〉, where M is just the encryption of the message digest with the private key of
the signer. Let σi be the signature generated by user Ui on the message mi, for i = 1 to t. Here,
|{σi, . . . , σt}| = t, but |U1, . . . , Ut| = k, where 1 ≤ k ≤ t. That is, we allow a user to generate
several signatures on different messages. In particular, when k = 1,the aggregation scheme works on
t signatures on t different messages generated by a single user. Let σagg be the aggregate signature.
In general, naive or direct aggregation will lead to σagg, where |σagg| = O(t + k). If |σagg| is O(k),
i.e., if the size of σagg depends only on the number of users and not on the number of messages, then
it is called partial aggregation. If |σagg| is independent of both t and k and if its size is proportional
to the size of a single signature of the scheme, then it is called full aggregation. Till date, [13] is the
only identity based signature scheme that produces deterministic signature. Even though the scheme
in [13] produces deterministic signatures, the private key in their scheme uses random values and
this value is to be sent along with the aggregate signatures; which makes it partially aggregateable
according to our classification. Moreover, the scheme in [13] uses bilinear pairing. To the best of our
knowledge, there is no deterministic identity based aggregate signature scheme which achieves full
aggregation.
Aggregation Using Non-Deterministic Signature Schemes: The generic format of a non-deterministic
signature is σ = 〈K, R,M〉, where K is the nonce (random value) used for generating the private key
of the signer, R is the random value used for generating the signature and M is the encryption of
the message digest with the private key of the signer and the random values. Let σi = 〈Ki, Ri,Mi〉,
for 1 ≤ i ≤ t be a collection of t signature to be aggregated. The presence of t independent random
values pose some specific problems in the aggregation process. Besides, the independent random
values (Ri’s), Ki’s used in the generation of private keys of the users may also challenge the process of
aggregation. Thus we need to formulate the aggregation of non-deterministic signatures in (slightly)
different flavors than deterministic signatures.

Let σagg = 〈Kagg, Ragg,Magg〉 denote the aggregation of t signatures σi = 〈Ki, Ri,Mi〉, for
1 ≤ i ≤ t, generated by U1, . . . , Ut respectively. We let |{U1, . . . , Ut}| = k, where 1 ≤ k ≤ t to
allow the possibility of some users generating more than one signed document. We further assume,
without loss of generality, that {K1, . . . ,Kt} = k (The number of random values used in generating
the private keys of the k distinct users participating in the aggregation process), {R1, . . . , Rt} = t
(the number of random values used in the generation of the signature) and {M1, . . . ,Mt} = m (the
number of message digests encrypted with the private key in the aggregate signature).

A naive clubbing of t non-deterministic signatures generated by k signers will lead to a signature
of size O(k+ t+m). In this scenario, there is no advantage what so ever. Consider that an aggregate
signature σagg of σi = 〈Ki, Ri,Mi〉, for 1 ≤ i ≤ t is in one of the the following forms:

– σagg = 〈K1, . . . Kk, R1, . . . , Rt,Magg〉 - The random values Ki’s and Ri’s are propagated in full
without any compression but the third components are all combined to form Magg. The size of
the aggregate signature is |σagg| = O(k + t).

– σagg = 〈R1, . . . , Rt,Magg〉 - There are no Ki’s and Ri’s are propagated in full without any
compression but the third components are all combined to form Magg. The size of the aggregate
signature is |σagg| = O(t).

In both the cases the non-deterministic aggregate signature scheme is said to achieve partial aggre-
gation.

If all the three parts are fully aggregated, i.e. σagg = 〈Kagg, Ragg,Magg〉 or there is no randomness
involved in generation of the private keys of the signers, i.e. σagg = 〈Ragg,Magg〉, then the scheme is

said to achieve full aggregation, i.e. the size of σagg is proportional to the size of a single signature
and is independent of number of signers or signatures. To the best of our knowledge, there is one
provably secure identity based aggregate signature scheme [21] which achieves partial aggregation
and four identity based aggregate signature schemes, which achieve full aggregation, namely [11],
[12], [4] and [1].
Ordered Sequential vs Sequential vs General: Apart from the above classification, aggregate sig-
natures can be classified into three further subtypes, namely Ordered Sequential, Sequential and
General aggregate signatures. An Ordered Sequential aggregation is a type of aggregation where, the
signatures from different signers are aggregated one by one and the order of the signer in the list
of signers play a role in the verification of the signature. The aggregate signature will not be valid
if the order of the signers is not considered during generation/verification. This type of aggregate
signature can be used to find the path travelled by the data packets from source to destination in
routing by using a single aggregate signature. In sequential aggregation, the signature is aggregated
in any order but the aggregation process is carried out by aggregating the signatures one after the
other, where each signer aggregates his signature to the previously aggregated signature. Here, the
order of the signer have no role to play during the signature generation/verification process. General
aggregation is the most common way of aggregating signatures, which is done by any user called the
aggregator (one of the signers or any third party). The aggregator collects the signature from all the
signers and generates the aggregate signature. The second and third type of aggregate signatures
find applications in wireless network, where the major constraint is communication complexity, the
use of efficient aggregate signature helps in reducing the amount of data to be communicated.

Usually, in sequential aggregation, the number of interactions (rounds) between the signers is
linear with the number of signers participating in the aggregation. This is because, the aggregation is
done linearly, i.e. the ith signer signs the ith message and aggregates it with the signature aggregated
so far by i − 1 signers and sends the newly formed aggregate signature to the i + 1th signer, for
1 ≤ i ≤ t. The situation in general aggregation is slightly different. Here, the signature is aggregated
by an aggregator after collecting all the individual signatures. The interaction between the signers
and the aggregator is not counted to be a round in general aggregation. However, if there is any
sort of communication between the signers before generating the individual signature, then they
are counted as rounds in the protocol. Since there are no, general aggregation schemes without any
communication among the signers in the identity based setting (to the best of our knowledge), it is
an interesting issue to look at.

Identity based Multi-Signature: A Multi-Signature scheme combines several signed documents,
say σ1, . . . , σt on a single message m by different users U1, . . . , Ut and produces a single signed
document σagg where size of σagg is substantially smaller than sum of the sizes of σi’s.
Related Work: Many well known PKI based aggregate signatures are available in the literature [8,
16, 2, 17, 18]. However, as the focus of this paper is on identity based aggregate signature scheme, we
will not compare the PKI based schemes with ours. Most of the efficient aggregate signature schemes
in the PKI setting are deterministic [8, 2, 17]. The first identity based aggregate signature scheme
that achieves full aggregation was proposed in [11] by Cheng et al. Their scheme uses bilinear pairing
and requires large setup cost because the signers essentially broadcast their individual random values
to form a single random value. Moreover, the fact that the signature cannot be generated until all
of the signers contribute in the first round, makes the scheme less practical. Gentry et al. proposed
another scheme in [12], based on bilinear maps and the security of the scheme relies on the Gap Diffie
Hellman problem. The weakness of the scheme is that, the signers of a given aggregate signature
must agree on a common random value which was never used by any of the users before to generate
a signature. If the signer ever re-uses a random value in two different aggregate signatures, a total
break (private key of the users are revealed) of the system is possible. Recently, Boldyreva et al.
[5] proposed a sequential aggregate signature scheme (in-fact, the security of their original schemes
[4] and [6] were flawed due to the assumption used to prove them was actually not hard to solve
in polynomial time, as pointed out by Hwang et al. [15]). Their new scheme [5] was based on the
hardness of a CDH-type problem that raised from their scheme and uses bilinear pairings. The first

RSA based identity based aggregate signature scheme was proposed by Bagherzandi et al. [1]. This
scheme uses two rounds of communication between the signers to generate a full aggregate signature,
where the first round is to commit the random value shares (again by broadcasting the individual
commitments as in [11]) and the second round is the aggregate signature generation round. Their
scheme uses equivocable commitments and hence looses its generality and becomes less practical
because of the overhead involved in broadcasting the commitments.

There are three well known identity based multi-signature schemes [12] [3] and [1] in the literature.
The scheme in [12] is based on bilinear pairing and the security of the scheme relies on the Gap -
Diffie Hellman assumption. The schemes in [3] and [1] are based on RSA assumption and constructs
IBMS with 3 and 2 rounds of communication (broadcast) among the signers respectively.

Our contribution: It is possible to achieve full aggregation in deterministic identity based signa-
tures because there is no random values involved in generating the signature, provided the private
key generation protocol is not a randomized algorithm. It is well known that Boneh et al.’s aggregate
signature scheme [8] in the PKI based setting achieves full aggregation. We try to explore the direc-
tion of designing a deterministic identity based signature scheme based on RSA. It is quite natural
to design such a scheme from RSA and as a consequence, we propose a deterministic identity based
signature scheme based on RSA and extend it to various other aggregate signature schemes in this
paper.

We propose a secure deterministic identity based (i.e. the same signature is generated for a given
message, even if the signature algorithm is invoked for multiple number of times. Examples are
available in the PKI setting: [9], FDH-RSA) signature scheme, which is based on RSA. Based on
this signature, we propose four identity based aggregate signature schemes, whose securities are also
based on RSA assumption. The first two schemes are deterministic identity based aggregate signature
schemes, for general aggregation and ordered sequential aggregation respectively. The third and
fourth schemes produce non-deterministic signatures, for general aggregation and ordered sequential
aggregation respectively. Our scheme achieves full aggregation in the identity based setting, which
makes it more interesting. Our first scheme affirmatively settles the open problem by Hwang et al.
in [15], which is to design an identity based aggregate signature scheme without the requirement of
a common random value being established before the aggregate signature is generated. Moreover,
our schemes are more efficient than the scheme in [1], because aggregation can be done in a single
round in our schemes where as the scheme in [1] requires two rounds of communication between the
signers. Our schemes are based on RSA and we prove the security of our schemes in the random
oracle model. One of the key features of our deterministic signature scheme is that it is possible
to convert one aggregate signature scheme with a particular property, to a scheme with another
property in the suite, by just altering the definition of a single hash function (namely, H2(.)). We
also propose an identity based multi-signature scheme (IBMS), which does not require any prior
communication between the signers to generate the multi-signature. Thus our scheme turns out to
be more efficient when compared to all the existing schemes. .

Summary of State of the Art: In summary, aggregate signature schemes can be classified based
on their attributes and properties as follows:

{
Deterministic

Non−Deterministic

}
×

{
Partial

Full

}
×






OrderedSequential
Sequential
General






The following table shows the current state of the art in the research of identity based aggregate
signatures which achieves full aggregation and are provably secure in the random oracle model.

Property Agg Sign Agg Hard Sign Rounds Agg
. Sign Cost Verify Prob Type Mode
Schemes Len (/ user) (t users) (D/ND) (G/OS

/S)
[11] 2|G| 3[M] 2[P]+t[M] CDH ND 2 G
[1] 2|Z∗

n|+ |κ| 2[E] t[E] RSA ND 2 G
+|log(l)|

[5] 3|G| 7[M] 6[P]+t[M] CDH-type ND - S
[12] 2|G|+|Z∗

q | 5[M] 3[P]+t[M] GAP-DH ND - S

Table-1: Summary of existing IBAS schemes.

The following table summarizes the current state of the art in the research of identity based multi-
signatures provably secure in the random oracle model.

Property Agg Sign Agg Hard Sign Rounds
. Sign Cost Verify Prob Type
Schemes Len (/ user) (t users) (D/ND)

[12] 2|G| 3[M] 3[P] GAP-DH ND 1
[3] |Z∗

n|+ κ 1[E] 2[E] RSA ND 3
[1] 2|Z∗

n|+|κ| 4[E] 5[E] RSA ND 2

Table-2: State of the art survey of IBMS schemes

The terms used in the table are explained here. IB- Identity Based System, PKI PKI Based System,
SO- Standard Model, RO- Random Oracle Model, PS- Provably Secure, NK- Status Not Known,
ND - Nondeterministic Signature, D- Deterministic Signature, G- General aggregation, OS- Or-
dered Sequential Signature, S- Sequential Signature, κ is the security parameter of the scheme,
[E]-Exponentiation in Z∗

n, [M]- Scalar Point Multiplication in G, [P]- Bilinear Pairing Operation,
Gap-DH- Gap-Diffie-Hellman, [GT M]- Exponentiation in GT and WSS- Waters Signature Scheme.
Computational Assumption: We review the computational assumption related to the protocols
we discuss.
The Strong RSA Problem: Given a randomly chosen RSA modulus n and a random c ∈ Z∗

n,
finding b > 1 and a ∈ Z∗

n, such that c ≡ ab mod n is the strong RSA problem.
The Strong RSA Assumption: The advantage of any probabilistic polynomial time algorithm F
in solving the strong RSA problem in Z∗

n is defined as:

AdvsRSA
F = Pr

[
F(p, q, n, c) → {a, b} | (a ∈ Z∗

n, b > 1) ∧ (c ≡ ab mod n)
]

The strong RSA Assumption is that, for any probabilistic polynomial time algorithm F , the advan-
tage AdvsRSA

F is negligibly small.

2 Generic Model

In this section, we describe the generic frame work for a identity based signature scheme and an
aggregate signature scheme. An identity based aggregate signature scheme (IBAS) consists of fol-
lowing six algorithms. The frame work of a deterministic identity based signature scheme (D-IBS)
consists of the first four algorithms described below, namely Setup, KeyGen, Sign and Verify. If
the signature scheme is deterministic the signature σ will not be randomized, i.e. the signature for
a message is always the same.

– Setup: The private key generator (PKG) provides the security parameter κ as the input to
this algorithm, generates the system parameters params and the master private key msk. PKG
publishes params and keeps msk secret.

– KeyGen: The user Ui provides his identity IDi to PKG. The PKG runs this algorithm with
identity IDi, params and msk as the input and obtains the private key Di. The private key Di

is sent to user Ui through a secure channel.
– Sign: For generating a signature on a message mi, the user Ui provides his identity IDi, his

private key Di, params and message mi as input. This algorithm generates a valid signature σi

on message mi by user Ui.
– Verify: This algorithm on input a signature σ on message m by user U with identity IDi checks

whether σ is a valid signature on message m by IDi. If true it outputs “V alid”, else it outputs
“Invalid”.

– AggregateSign: On receiving the various signatures (σi)i=1 to t from different users (Ui)i=1 to t,
any third party or one of the signers can run this algorithm and generate the aggregate signature
σagg for the set of 〈message, identity〉 pairs (mi, IDi)i=1 to t.
Note: For sequential aggregation, each user contribute in the generation of aggregate signature
by aggregating his own signature to the aggregate signature generated by the signers so far.

– AggregateVerify: This algorithm on input of an aggregate signature σagg, the list for (mi, IDi)i=1 to t

and the params checks whether σagg is a valid aggregate signature on mi by IDi for all i = 1
to t. If true, it outputs “V alid”, else outputs “Invalid”.

3 Security Model

3.1 Existential Unforgeability

We define the security model for the existential unforgeability of an IBAS scheme under chosen-
identity and chosen-message attack in this section. An IBAS scheme is secure against existential
forgery under chosen-identity and chosen-message attack if no probabilistic polynomial time algo-
rithm F has non-negligible advantage in the following game.

– Setup phase: The challenger C runs the setup algorithm and generates the system public
parameters params and the master secret key msk. Now, C gives params to the forger F and
keeps msk secret. F gives the target identity IDT and the target message m∗ on which F indents
to forge.

– Training phase: After the setup is done, F starts interacting with C by querying the various
oracles provided by C in the following way:
• Random oracles: Hash functions listed in the params for any arguments, the response will

be given by C treating each hash function as a random function.
• KeyGen oracle: When F makes a query with IDi as input, C outputs Di, the private key

of IDi to F , provided C knows the private key for the queried identity. It should be noted
that F should not query the private key corresponding to IDT

• Signing oracle: When F makes a signing query with IDi, message mi, C outputs a valid
signature σi on mi by IDi. F is also allowed to query the signature corresponding to the
identity IDT on any other message m where m *= m∗.
Note: It should be noted that Aggregate sign oracle is not required for the adversary because
aggregation is a public process and any third party who has t signatures can combine all
the signatures to form an aggregate signature. Thus, the forger F can always generate the
aggregate signature after querying t individual signatures. However, in a sequential aggrega-
tion F sends a so far aggregated signature σagg along with a message, identity pair (mi, IDi)
and requests for the aggregate signature. C generates the current aggregate signature σagg

and sends it to F .
– Forgery phase: F outputs an aggregate signature σagg for signatures (σi)i=1 to t from the users

(IDi)i=1 to t on messages (mi)i=1 to t where, at least one identity in the list of identities is the
target identity, i.e. IDT ∈ {IDi}i=1 to t, for which the private key was not queried by F and the
message corresponding to IDT is m∗. The forger F wins the game if σagg is a valid aggregate

signature and F has not queried for the signature corresponding to (IDT ,m∗) pair from the sign
oracle.

AdvIBAS
F = {Pr[F(V erify(σagg) = valid)}

Note: During the Forgery Phase for D-IBS, F outputs an identity based signature σ∗ which is a valid
signature on message m∗ by the identity IDT and F has not queried for the signature corresponding
to (IDT ,m∗) pair from the sign oracle.

4 Deterministic Identity Based Signature Scheme (D-IBS)

Inspired by Shamir’s identity based signature scheme, we propose a new deterministic identity based
signature scheme. We also prove the scheme to be existentially unforgeable under chosen-message
and chosen-identity attack in the random oracle model. We use the notation Zodd

n to represent the
odd numbers from [3, n]. Throughout the paper, in order to choose a random odd number from
the range [3, n], we randomly pick an element in Zn and check whether it is odd, if it is odd, we
accept it, else we subtract 1 from the chosen number. These numbers are represented as Zodd

n . The
deterministic identity based signature scheme consists of the following algorithms:

– Setup(κ): The PKG generates params and msk by performing the following:
• Chooses two primes p and q, such that p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also

primes.
• Computes n = pq and the Euler’s totient function φ(n) = (p− 1)(q − 1).
• Chooses e ∈R Zodd

n , such that |e| = |n|/4 and compute d such that ed ≡ 1 mod φ(n).
• It also chooses two cryptographic hash functions H1 : {0, 1}∗ × {0, 1} → Z∗

n and H2 :
{0, 1}∗ × {0, 1}∗ → Zodd

n .
• Now, PKG publicizes the system parameters, params = 〈n, e, H1,H2〉 and keeps the factors

of n, namely p, q and d as the master secret key msk.
– KeyGen(IDi): The user Ui provides his identity IDi to PKG. The PKG performs the following

to find out the private key of the corresponding user:
• Compute gi0 = H1(IDi, 0) and gi1 = H1(IDi, 1).
• Compute di0 = (gi0)d and di1 = (gi1)d.
• The private key Di = 〈di0, di1〉 is sent to user Ui through a secure channel.

– Sign(m, IDi, Di): To generate a deterministic signature on a message m, the user Ui performs
the following:
• Computes h = H2(m, IDi).
• Computes σ = di0(di1)h.

Now, σ is the signature on m by user Ui with identity IDi.
– Verify(m,σ, IDi): In order to verify the validity of a signature σ with respect to the identity

IDi and message m, the verifier performs the following:
• Computes gi0 = H1(IDi, 0) and gi1 = H1(IDi, 1).
• Computes h′ = H2(m, IDi).
• Checks whether σe ?= gi0(gi1)h′

• If the above check holds, outputs “V alid”, otherwise outputs “Invalid”.

Correctness of verification:

L.H.S = σe= (di0(di1)h′
)e = (gd

i0(gd
i1)h′

)e = gi0(gi1)h′
= R.H.S

Existential Unforgeability of D-IBS:

Theorem 1. Our identity based signature scheme (D-IBS) is EUF-D-IBS-CMA secure in the ran-
dom oracle model under chosen-message and chosen-identity attack, if the strong RSA problem is
intractable in Z∗

n, where p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: Suppose a forger F is capable of breaking the EUF-D-IBS-CMA security of the D-IBS scheme
and a challenger C is challenged with an instance of the strong RSA problem say 〈n, c ∈ Z∗

n〉, where
n is a composite number with two big prime factors p and q, also (p−1)/2 and (q−1)/2 are primes.
C can make use of F to compute a and b such that c ≡ ab mod n, by playing the following interactive
game with F .
Setup: C begins the game by setting up the system parameters as in the D-IBS scheme. C takes n
as in the instance of the strong RSA problem, chooses e ∈R Zodd

n , such that |e| = |n|/4 and sends
params = 〈n, e〉 to F . C also designs the two hash functions H1 and H2 as random oracles OH1 and
OH2 . C maintains two lists L1 and L2 in order to consistently respond to the queries to the random
oracles OH1 and OH2 respectively. Since, the proof is under selective-identity and selective-message
attack, F provides the target identity IDT and the target message m∗ to C, on which F F indents
to forge.
Training Phase: F performs a series of queries to the oracles provided by C. The descriptions of
the oracles and the responses given by C to the corresponding oracle queries by F are described
below. For the sake of simplicity, we assume that OH1(.) oracle is queried with IDi as input, before
any other oracle is queried with the corresponding identity, as one of the input parameters.
Oracle OH1(IDi, l ∈ {0, 1}): For answering the OH1 query, C checks whether a tuple of the form
〈IDi, l, dil, gil〉 exists in list L1 if so returns the corresponding gil as the response. If a tuple does
not exist, C checks whether IDi

?= IDT .

– If IDi *= IDT , then C performs the following:
• Chooses dil ∈R Z∗

n.
• Computes gil = (dil)e.

– If IDi = IDT , then C performs the following:
• If l = 0, then C does the following:

∗ Chooses r ∈R Zeven
n (r is stored by C for access in other oracles.)

∗ Sets gil = c−r (Note that c is taken from the strong RSA instance).
∗ The corresponding dil is set to be ”− ”. That is, gT0 = c−r and dT0 = ”− ”

• If l = 1, then C does the following:
∗ Sets gil = c (Note that c is taken from the strong RSA instance).
∗ The corresponding dil is set to be ”− ”. That is, gT1 = c and dT1 = ”− ”

– Stores the tuple 〈IDi, l, dil, gil〉 in list L1 and returns gil as the response.

Remark: Note that C has not computed the private keys for IDT , but this will not cause any
problem as C need not hand over the private keys of IDT to F . For all other identities, C has proper
private and public key.
Oracle OH2(mi, IDi): To respond to this query, C checks whether a tuple of the form 〈mi, IDi, ri, hi〉
exists in list L1, if so returns the corresponding hi as the response. If a tuple does not exist, C checks
whether mi

?= m∗ and IDi
?= IDT .

– If mi *= m∗ and IDi *= IDT , then C performs the following:
• Chooses hi ∈R Zodd

n and sets ri = ”− ”.
– If mi *= m∗ and IDi = IDT , then C performs the following:

• Chooses ri ∈R Zodd, such that |ri| ≤ |n|/4.
• Computes hi = eri + r.

– If mi = m∗ and IDi = IDT , then C performs the following:
• Computes hi = r +1 and sets ri = ”− ”. (Note that r is chosen by C during the OH1 query)

– C adds the tuple 〈mi, IDi, ri, hi〉 in list L1 and returns the corresponding hi as the response.

Oracle OKeyGen(IDi): C checks whether tuples of the form 〈IDi, 0, di0, gi0〉 and 〈IDi, 1, di1, gi1〉
exists in the list L1, if so returns the corresponding di0 and di1 as the private keys corresponding to
the identity IDi.
Oracle OSign(mi, IDi): C checks whether IDi

?= IDT and performs the following to generate the
signature on mi by IDi:

– If IDi *= IDT , then C knows the private key corresponding to IDi, so C performs the signing
algorithm to generate σi as per the protocol after querying OH2(mi, IDi) oracle.

– If mi *= m∗ and IDi = IDT , then C performs the following:
• Makes an oracle query to the OH2 oracle as OH2(mi, IDi). The result obtained from the

oracle query is hi = eri + r.
• Retrieves the corresponding ri from the list L2.
• Computes σi = cri as the signature.

Note that if mi = m∗ and IDi = IDT , then it is an invalid sign oracle query.
– Sends σi as the signature on the message mi by identity IDi.

The verification of a signature is done by checking whether σe
i

?= gi0(gi1)hi . We need to verify only
the case when IDi *= IDT because in other cases, the signature is generated as per the protocol.
The simulated signature generated by the above oracle passes the verification test as shown below:

L.H.S = σe
i = crie

R.H.S = gi0(gi1)hi= c−rceri+r = crie

Since L.H.S = R.H.S, the simulated signature passes the verification test.
Forgery Phase: At the end of the Training Phase , F produces a forged signature σ∗ on the
message m∗ as if signed by the user with identity IDT . C checks whether it is a valid signature and
returns a = σ∗ and b = e as the solution for the strong RSA problem.
Correctness: Below, we show that the a returned by C is a valid solution for the strong RSA problem,
such that c = ab mod n.

– The public keys corresponding to IDT , i.e. H1(IDT , 0) and H1(IDT , 1) are set to be 〈c−r, c〉 by
C while F performed the OH1(IDT , .) queries (We stress that c is taken from the strong RSA
problem instance).

– Let d be such that d ≡ e−1 mod φ(n), where e is the master public key.
Note: Now, in terms of the public key values and the value d, the private key values dT0 and
dT1 are c−rd and cd respectively. However, these values cannot be computed explicitly by C as
C has no way of computing d. That is why C has set ” − ” for these unknowns in OH1 oracle
queries. Thus, the values dT0 = c−rd and dT1 = cd used in the proof are only hypothetical.

– Let cd = x. Thus, dT0 = x−r and dT1 = x.
– Recall that C has set the hi value corresponding to OH2(m∗, IDT) query to be r + 1.
– Now, σ∗ = dT0(dT1)H2(m

∗,IDT) = x−rxr+1 = x and (σ∗)e = xe = (cd)e = cde = c.
– Thus, C have solved c = ab mod n, with a = σ∗ and b = e.

Note: Here, the e(= b) was selected by C and σ∗(= a) is output by F . Hence, the equation c = ab

mod n can be solved for any odd b by choosing b as e of the public parameter and setting a to be
σ∗ produced by F . !
Remark: The above proof is with respect to selective-identity and selective-message attacks. How-
ever, the unforgeability of the scheme can also be proved with respect to adaptive chosen message
and identity attacks.

5 A Suite of Identity Based Aggregate Signature schemes from RSA
(IBAS)

We propose the new identity based aggregate signature (IBAS) schemes in this section. Each scheme
is followed by the proof for existential unforgeability.
Intuition behind the schemes: Our identity based aggregate signature schemes are motivated
from Boneh et al.’s aggregate signature [8]. Their scheme is in the PKI settings and the signature
is deterministic in nature. A deterministic signature does not have a randomization component and
therefore, the signature becomes short. Gentry et al.’s [12] scheme was non-deterministic and uses

random values for each signature. In order to establish a common random value, the signers have
to participate in a communication round before generating an aggregate signature. If the signature
scheme does not have random values, then the signature can be easily aggregated, which we learn
from [8]. Thus, we tried to instantiate a deterministic identity based signature scheme and extend
it to aggregate signature scheme to achieve full aggregation. Naturally, RSA based constructs suit
well in the design of deterministic identity based signature scheme. We have constructed one in the
preceding section.

5.1 Deterministic General IBAS (IBAS-I)

Our first IBAS scheme is a deterministic identity based aggregate signature scheme, which supports
general aggregation, i.e. the order of the signer is not explicitly used for verification and hence,
the order of signing cannot be traced. The scheme consists of six algorithms, out of which Setup,
KeyGen, Sign and Verify are identical to that of D-IBS scheme. We explain the AggregateSign
and AggregateVerify algorithms below:

– AggregateSign: This algorithm takes as input a set of t signatures {σi}i=1 to t and the corre-
sponding message identity pairs 〈mi, IDi〉, such that ∀i = 1 to t, 〈σi〉 is the valid signature by
the user with identity IDi on message mi. The aggregation is done as follows:

σagg =
t∏

i=1

σi

The identity based aggregate signature is σagg and the corresponding list of message identity
pairs is L = {mi, IDi}i=1 to t.

– AggregateVerify: This algorithm takes the identity based aggregate signature σagg and the
corresponding list of message identity pairs, L = {mi, IDi}i=1 to t and performs the verification
as follows:
• For all i=1 to t

Compute gi0 = H1(IDi, 0)
Compute gi1 = H1(IDi, 1)
Compute h′i = H2(mi, IDi)

• If σe
agg

?=
t∏

i=1
(gi0(gi1)h′

i), then outputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward.

Security Proof for IBAS-I:
In this section, we prove the security of our identity based aggregate signature scheme (IBAS-I).

We show that if a polynomial time bounded forger exists, who can break our scheme with non-
negligible advantage ε, then it is possible to construct an algorithm that solves the strong RSA
problem with the same advantage.
Existential Unforgeability of IBAS-I:

Theorem 2. Our identity based aggregate signature scheme (IBAS-I) is EUF-IBAS-I-CMA secure
in the random oracle model under chosen-message and chosen-identity attack, if the strong RSA
problem is intractable in Z∗

n, where p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: The proof of this scheme is some what similar to that of the EUF-D-IBS-EUF proof. The
major difference between the proofs of a deterministic identity based signature scheme and an identity
based aggregate signature scheme is the aggregate signature oracle. Aggregate oracle is trivial in the
case of general aggregation. The adversary obtains the individual signatures from the sign oracle
and aggregates all the signature to form an aggregate signature. Below, we provide the sketch of the
proof for IBAS-I scheme.

The EUF-IBAS-I-CMA game is an interactive game between the challenger C and a forger F .
The setup and training phases are same as that of the EUF-D-IBS-EUF proof. At the end of the
training phase, the forger F generates the aggregate signature σ∗agg for signatures (σi)i=1 to t from
the users (IDi)i=1 to t on messages (mi)i=1 to t where, at least one identity in the list of identities is
the target identity, i.e. IDT ∈ {IDi}i=1 to t, for which the private key was not queried by F and the
corresponding message is m∗.

It is to be noted that all the signatures except the signature corresponding to IDT in the aggregate
signature σ∗agg can be generated by C, since C knows the private keys corresponding to those identities.
Thus, C generates all other signatures and divides them from σ∗agg. The resulting value along with
the value of master public key set by C will be the solution for the strong RSA problem similar to
that of EUF-D-IBS-EUF proof. !

5.2 Deterministic Ordered Sequential IBAS (IBAS-II)

IBAS-II is a deterministic identity based aggregate signature scheme, which supports ordered se-
quential aggregation, i.e. the order of the signer is used explicitly for verification and hence, the order
of signing could be traced. The scheme consists of six algorithms, out of which Setup, KeyGen,
Sign and Verify are identical to that of D-IBS scheme. There is a slight modification in the sign
and verify algorithms alone which we explain below, where as we present the full description of both
AggregateSign and AggregateVerify algorithms:

– Sign and Verify are same as that of D-IBS with the modification in the parameters of the
hash function H2(.), which takes the list Li of signers who has participated in the aggregation
process so far (i.e. h = H2(Li)). Thus, we change the definition of this hash function to be
H2 : {0, 1}∗ → Zodd

n .
– AggregateSign: The first user generates the signature σ1 as per the Sign algorithm and passes

this signature to the next signer, who aggregates his own signature to the received one and sends
it as the aggregate signature to the next signer. This process continues until there are no signers
left out. Li is the list of message, identity pair of the users, which is upgraded on the fly, each
time a new signature is aggregated. Initially, the list is empty (L = 〈〉), when the first signer
generates his signature, the list is appended with the message, identity pair of the first signer.
The description of the sequential aggregate algorithm follows:
When executed by the first signer this algorithm is same as that of the simple Sign algorithm.
The output of the first signer will be σ(1)

agg = σ1 and L1 = 〈(m1, ID1)〉.

All subsequent executions (i.e. the signer is not the first signer) are performed as follows. Let i
be the index of the current signer:
• The ith signer updates the list as Li = Li−1 ∪ (mi, IDi).
• Computes his own signature σi on the message mi (It should be noted that the hash com-

putation of H2 includes the list Li in it, i.e. H2(Li)).
• Checks whether σ(i−1)

agg is a valid aggregate signature by executing the verification procedure
below.

• If it is valid, computes σ(i)
agg = σ(i−1)

agg σi.
If i = t then the identity based aggregate signature σagg is σ(t)

agg and the corresponding list of
message, identity pair is L = 〈(m1, ID1), . . . , (mt, IDt)〉.

– AggregateVerify: This algorithm takes the identity based aggregate signature σagg and the
corresponding list of message, identity pairs, L = 〈(m1, ID1), . . . , (mt, IDt)〉 and performs the
verification as follows:
• For all i=1 to t

Compute gi0 = H1(IDi, 0)
Compute gi1 = H1(IDi, 1)
Compute h′i = H2(Li) (Where, Li = 〈(m1, ID1), . . . , (mi, IDi)〉)

• If σe
agg

?=
t∏

i=1
(gi0(gi1)h′

i) then outputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward.

Security Proof for IBAS-II:
In this section, we prove the security of our identity based aggregate signature scheme (IBAS-II).

We show that if a polynomial time forger exists, who can break our scheme with non-negligible
advantage ε, then it is possible to construct an algorithm which solves the strong RSA problem with
the same advantage.
Existential Unforgeability of IBAS-II:

Theorem 3. Our identity based aggregate signature scheme (IBAS-II) is EUF-IBAS-II-CMA secure
in the random oracle model under chosen-message and chosen-identity attack, if the strong RSA
problem is intractable in Z∗

n, where p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: This proof is similar to that of EUF-IBAS-I-CMA. The forger F interacts with the challenger C
as in the EUF-IBAS-II-CMA game. At the end of the interaction, F produces an aggregate signature
σ∗agg. This aggregate signature should be generated with the following constraints:

– σ∗agg should be generated with a list L which contains (IDT ,m∗) as one of the entries.
– The individual signature corresponding to (IDT ,m∗) should not have been queried to the sign

oracle.

If the aggregate signature is generated by F , satisfying the above constraints, then C can divide the
signatures corresponding to all other identities except IDT and submit the resulting value and e,
the master public key as the solution for the strong RSA problem, as in the previous proof. !

5.3 Non-Deterministic General IBAS (IBAS-III)

The third scheme IBAS-III is a non-deterministic identity based aggregate signature scheme, with
general aggregation. The scheme consists of six algorithms, out of which Setup, KeyGen, Sign
and Verify are identical to that of IBAS-II scheme. The scheme is non-deterministic in nature, i.e.
different signatures are generated for the same message when the sign algorithm is invoked more than
once. Randomization is achieved by applying the technique in [7], where a random value is added to
the signature in such a way that it cannot be altered and the random value is send along with the
signature. The functionality of IBAS-III is similar to that of Gentry et al.’s [12] scheme, where the
first user chooses a random value and this value is propagated to the consequent signers. It should
be noted that the order of signers is not preserved in this signature scheme. Yet, the aggregation
will be efficient if it is performed sequentially, because the random value should be propagated to
each and every user before signing. As mentioned earlier, Gentry et al.’s [12] scheme is not secure
if the same random value is used again for signing two different messages. This weakness is not
observed in our scheme, making it superior that [12]. We describe the sequential aggregation here,
but it should be noted that the sequential operation can be overcome if the first signer broadcasts
the random value to all the signers in advance or if the random value is generated by hashing a
common session identifier among the signers. There is a slight modification in both AggregateSign
and AggregateVerify algorithms which we describe below:

– Sign and Verify are same as that of D-IBS. It should be noted that the parameters of the hash
function H2, includes the random value chosen by the first signer in the aggregation process
(i.e. h = H2(mi, IDi, r)). Therefore, we change the definition of this hash function to be H2 :
{0, 1}∗ × {0, 1}∗ × Z∗

n → Zodd
n .

– AggregateSign: When executed by the first signer, this algorithm generates the signature as
follows:
• Chooses r ∈R Z∗

n.

• Computes h1 = H2(m1, ID1, r).
• Computes σ(1)

agg = d10(d11)h1 .
• The aggregate signature send by the first signer is σagg = 〈r, σ(1)

agg〉 and the list L1 =
〈m1, ID1〉.

All subsequent executions (i.e. the current signer is not the first signer) are performed as follows:
• The ith signer computes his own signature σi on the message mi (Signature is generated

according to the standard signing procedure described for D-IBS. It should be noted that
the computation of H2 hash function includes the random value chosen by the first signer
in it, i.e. H2(mi, IDi, r)).

• Checks whether σ(i−1)
agg is a valid aggregate signature by executing the verification procedure

mentioned below.
• If it is valid, computes σ(i)

agg = σ(i−1)
agg σi.

• Updates the list as Li = Li−1 ∪ (mi, IDi)
If i = t then the identity based aggregate signature is σagg = 〈r, σ(t)

agg〉 and the corresponding
list of message, identity pair is L = 〈(m1, ID1), . . . , (mt, IDt)〉.

– AggregateVerify: This algorithm takes the identity based aggregate signature σagg = 〈r, σ(t)
agg〉

and performs the verification as follows:
• For all i=1 to t

Compute gi0 = H1(IDi, 0)
Compute gi1 = H1(IDi, 1)
Compute h′i = H2(mi, IDi, r)

• If (σ(t)
agg)e ?=

t∏
i=1

(gi0(gi1)h′
i), then outputs “V alid” else outputs “Invalid”.

Correctness of verification:

L.H.S = (σ(t)
agg)e= (

t∏
i=1

di0(di1)h′
i)e = (

t∏
i=1

gd
i0(gd

i1)h′
i)e =

t∏
i=1

(gi0(gi1)h′
i) = R.H.S

Security Proof for IBAS-III:
The proof of existential unforgeability of the IBAS-III follows from the proof of IBAS-I. At the

end of the interaction, F produces an aggregate signature σ∗agg. This aggregate signature should be
generated with the following constraints:

– σ∗agg should be generated with a list L which contains (IDT ,m∗) as one of the entries.
– The individual signature corresponding to (IDT ,m∗) should not have been queried to the sign

oracle with the random value r as input to the OH2 oracle.

If the aggregate signature is generated by F , satisfying the above constraints, then C can divide the
signatures corresponding to all other identities except IDT and submit the resulting value and e,
the master public key as the solution for the strong RSA problem, as in the previous proofs. !

5.4 Non-Deterministic Ordered Sequential IBAS (IBAS-IV)

The fourth scheme IBAS-IV is a non-deterministic identity based aggregate signature scheme, with
ordered sequential aggregation that maintains order. The modified AggregateSign and Aggre-
gateVerify algorithms are describe below:

– Sign and Verify are same as that of D-IBS but the parameters of the hash function H2, includes
the random value chosen by the first signer in the aggregation process (i.e. h = H2(Li, r)).
Therefore, we change the definition of this hash function to be H2 : {0, 1}∗ × Z∗

n → Zodd
n .

– AggregateSign: Initially the list L is empty (L = 〈〉). When executed by the first signer, this
algorithm generates the signature as follows:
• Chooses r ∈R Z∗

n.

• Updates the list L1 = 〈m1, ID1〉
• Computes h1 = H2(r,L1).
• Computes σ(1)

agg = d10(d11)h1 .
• The aggregate signature send by the first user σagg = 〈r, σ(1)

agg〉 and L1 = 〈(m1, ID1)〉.
All subsequent executions are performed as follows:
• The ith signer updates the list as Li = Li−1 ∪ (mi, IDi).
• Computes his own signature σ(i)

agg on the message mi (Signature is generated according to
the standard signing procedure described above).

• Checks whether σ(i−1)
agg is a valid aggregate signature by executing the verification procedure

below.
• Computes σ(i)

agg = σ(i−1)
agg σi.

If i = t then the identity based aggregate signature is σagg = 〈r, σ(t)
agg〉.

– AggregateVerify: This algorithm takes the identity based aggregate signature σagg = 〈r, σt
agg〉,

the corresponding list of message, identity pairs, L = 〈(m1, ID1), . . . , (mt, IDt)〉 and performs
the verification as follows:
• For all i=1 to t

Compute gi0 = H1(IDi, 0)
Compute gi1 = H1(IDi, 1)
Compute h′i = H2(r,Li) (Where, Li = 〈(m1, ID1), . . . , (mi, IDi)〉)

• If (σ(t)
agg)e ?=

t∏
i=1

(gi0(gi1)h′
i) then outputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward and is omitted.

Security Proof for IBAS-IV:

The proof of existential unforgeability of the IBAS-IV follows from the proof of IBAS-II. At the
end of the interaction, F produces an aggregate signature σ∗agg. This aggregate signature should be
generated with the following constraints:

– σ∗agg should be generated with a list L which contains (IDT ,m∗) as one of the entries.
– The individual signature corresponding to (IDT ,m∗) should not have been queried to the sign

oracle with the random value r as input to the OH2 oracle.

If the aggregate signature is generated by F , satisfying the above constraints, then C can divide the
signatures corresponding to all other identities except IDT and submit the resulting value and e,
the master public key as the solution for the strong RSA problem, as in the previous proofs. !

6 An Identity Based Multi-Signature scheme from RSA (IBMS)

We propose the new identity based multi-signature (IBMS) schemes in this section.

Intuition behind the scheme: Our basic identity based signature scheme D-IBS is deterministic.
A deterministic signature does not have a randomization component and therefore, the signature
becomes short and hence to construct a multi-signature scheme, it is not required to establish a
common random value. This avoids the communication round before generating an multi-signature.
Thus, our IBMS do not have any communication round, where as the schemes in [3] and [1] have
3 and 2 rounds respectively. The IBMS scheme in [12] is a one round protocol but it depends on
bilinear pairing, which are still more expensive than RSA exponentiation.

6.1 Deterministic IBMS

Our IBMS scheme is a deterministic scheme. The scheme consists of six algorithms, out of which
Setup, KeyGen, Sign and Verify are identical to that of D-IBS scheme. We explain the Multi-
Sign and Multi-Verify algorithms below:

– Multi-Sign: After fixing the identities participating in the protocol, the list L = 〈IDi〉i=1 to t is
generated. Each signer now computes the individual signature as follows:
• Computes h = H2(m,L).
• Computes σ = di0(di1)h.

Now, the aggregator collects the set of t signatures {σi}i=1 to t, the corresponding message m,
the list of identities L = 〈IDi〉, checks whether the signatures 〈σi〉 is valid ∀ i = 1 to t and
aggregates the signatures as follows:

σagg =
t∏

i=1

σi

The identity based aggregate signature is σagg and the corresponding list of message identity
pairs is L = {mi, IDi}i=1 to t.

– Multi-Verify: This algorithm takes the identity based aggregate signature σagg, the corre-
sponding message m and the list of identities L = {IDi}i=1 to t and performs the verification as
follows:
• For all i=1 to t

Compute gi0 = H1(IDi, 0)
Compute gi1 = H1(IDi, 1)

• Compute h′i = H2(m,L)

• If σe
agg

?=
t∏

i=1
(gi0(gi1)h′

i), then outputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward.

7 Conclusion

In this paper, we have proposed the first deterministic identity based signature scheme, whose
security is based on RSA. We have proposed a suite of four identity based aggregate signature schemes
with different desirable properties. All the schemes proposed in this paper achieve full aggregation
and thus the results are attractive. Our first construct, IBAS-I addressed the open problem posed
by Hwang et al. in [15], which is to design an identity based aggregate signature scheme where the
signers need not have to agree on a common random value. IBAS-II provides sequential aggregation
where the order of the signers is preserved and finds application in tracing the route of packets in
routing. Gentry et al.’s identity based aggregate signature scheme in [12] had the weakness where
in if a signer tactfully re-uses the random value used for signing a message, a total break of the
scheme is possible. Our third scheme IBAS-III is a non-deterministic aggregate signature scheme,
which does not show any weakness of [12] even if the signer uses the same random value several
times. Finally, our fourth scheme IBAS-IV is a non-deterministic scheme which supports sequential
aggregation. We have formally proved the security of our schemes in the random oracle model. We
have also proposed an identity based multi-signature scheme, which is more efficient when compared
to the IBMS schemes based on RSA presented in [3] and [1], where both these scheme require prior
communication between the signers and ours does not. The scheme in [12] is based on bilinear pairing
and thus ours turns out to be more efficient than all the three existing schemes.

The following table summarizes the current state of the art in the research of identity based
aggregate signatures which achieves full aggregation and are provably secure in the random oracle
model. The table includes the communication and computational complexity of our new schemes
IBAS-I, IBAS-II, IBAS-III and IBAS-IV along with the existing schemes.

Property Agg Sign Agg Hard Sign Rounds Agg
. Sign Cost Verify Prob Type Mode
Schemes Len (/ user) (t users) (D/ND) (G/OS

/S)
[11] 2|G| 3[M] 2[P]+t[M] CDH ND 2 G
[1] 2|Z∗

n|+ |κ| 2[E] t[E] RSA ND 2 G
+|log(l)|

[5] 3|G| 7[M] 6[P]+t[M] CDH-type ND - S
[12] 2|G|+|Z∗

q | 5[M] 3[P]+t[M] GAP-DH ND - S
IBAS-I |Z∗

n| 1[E] (t + 1)[E] RSA D 1 G
IBAS-II |Z∗

n| 1[E] (t + 1)[E] RSA D - OS
IBAS-III 2|Z∗

n| 1[E] (t + 1)[E] RSA ND 1 G
IBAS-IV 2|Z∗

n| 1[E] (t + 1)[E] RSA ND - OS

Table-1: State of the art survey of IBAS schemes

The following table summarizes the current state of the art in the research of identity based multi-
signature, provably secure in the random oracle model.

Property Agg Sign Agg Hard Sign Rounds
. Sign Cost Verify Prob Type
Schemes Len (/ user) (t users) (D/ND)

[12] 2|G| 3[M] 3[P] GAP-DH ND 1
[3] |Z∗

n|+ κ 1[E] 2[E] RSA ND 3
[1] 2|Z∗

n|+|κ| 4[E] 5[E] RSA ND 2
IBMS |Z∗

n| 1[E] 2[E] RSA D 1

Table-2: State of the art survey of IBMS schemes

The terms used in both the above tables are explained here. IB- Identity Based System, PKI PKI
Based System, SO- Standard Model, RO- Random Oracle Model, PS- Provably Secure, NK- Status
Not Known, ND - Nondeterministic Signature, D- Deterministic Signature, G- General aggregation,
OS- Ordered Sequential Signature, S- Sequential Signature, κ is the security parameter of the scheme,
[E]-Exponentiation in Z∗

n, [M]- Scalar Point Multiplication in G, [P]- Bilinear Pairing Operation,
Gap-DH- Gap-Diffie-Hellman, [GT M]- Exponentiation in GT and WSS- Waters Signature Scheme.

References

1. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes based on
rsa. In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
480–498. Springer, 2010.

2. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures. In
Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, volume 4596 of
Lecture Notes in Computer Science, pages 411–422. Springer, 2007.

3. Mihir Bellare and Gregory Neven. Identity-based multi-signatures from rsa. In Topics in Cryptology -
CT-RSA 2007, volume 4377 of Lecture Notes in Computer Science, pages 145–162. Springer, 2006.

4. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing. In ACM Conference
on Computer and Communications Security, CCS 2007, pages 276–285. ACM, 2007.

5. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint
Archive, Report 2007/438, 2007, Revised on 21-Feb-2010. http://eprint.iacr.org/.

6. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. New multiparty signature
schemes for network routing applications. ACM Transactions on Information and System Security
(TISSEC), vol.12(no.1):1–39, 2008.

7. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the sdh assumption in
bilinear groups. Journal of Cryptology, vol.21(no.2):149–177, 2008.

8. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 416–432. Springer, 2003.

9. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. Journal of Cryp-
tology, vol.17(no.4):297–319, 2004.

10. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. In
Public Key Cryptography - PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 18–30.
Springer, 2002.

11. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate and verifiably encrypted
signatures from bilinear pairing. In Computational Science and Its Applications - ICCSA 2005,, volume
3483 of Lecture Notes in Computer Science, pages 1046–1054. Springer, 2005.

12. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryptography -
PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

13. Javier Herranz. Deterministic identity-based signatures for partial aggregation. The Computer Journal,
vol-49(no-3):322–330, 2006.

14. Florian Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryp-
tography, volume 2595 of Lecture Notes in Computer Science, pages 310–324. Springer, 2003.

15. Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung. Universal forgery of the identity-based sequential
aggregate signature scheme. In Computer and Communications Security, ASIACCS 2009, pages 157–
160. ACM, 2009.

16. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In Advances in Cryptology - EUROCRYPT
2006, volume 4004 of Lecture Notes in Computer Science, pages 465–485. Springer, 2006.

17. Di Ma. Practical forward secure sequential aggregate signatures. In Proceedings of the 2008 ACM
Symposium on Information, Computer and Communications Security, ASIACCS 2008, pages 341–352.
ACM, 2008.

18. Gregory Neven. Efficient sequential aggregate signed data. In Advances in Cryptology - EUROCRYPT
2008, volume 4965 of Lecture Notes in Computer Science, pages 52–69. Springer, 2008.

19. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO - s4, Lecture Notes in
Computer Science, pages 47–53. Springer, 1984.

20. Zhu Wang, Huiyan Chen, Ding feng Ye, and Qian Wu. Practical identity-based aggregate signature
scheme from bilinear maps. Journal of Shangai Jiatong University, vol-13(no-6):684–687, 2008.

21. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based aggregate signatures from bilinear pairings.
In Cryptology and Network Security, CANS-2005, volume 3810 of Lecture Notes in Computer Science,
pages 110–119. Springer, 2005.

22. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from bilinear
pairings and its applications. In Public Key Cryptography - PKC 2004, volume 2947 of Lecture Notes in
Computer Science, pages 277–290. Springer, 2004.

