
Stronger Security Model of Group Key
Agreement

Jianjie Zhao1, Dawu Gu2, and M. Choudary Gorantla3

1 School of Information Security Engineering, Shanghai Jiao Tong University.
Shanghai 200240, China.

2 Department of Computer Science and Engineering, Shanghai Jiao Tong University.
Shanghai 200240, China.

3 Society for Electronic Transactions and Security, CIT Campus, Taramani, Chennai
600113, India.

jjzhao81@gmail.com,dwgu@sjtu.edu.cn,mc.gorantla@gmail.com

Abstract. In PKC 2009, Gorantla, Boyd and González Nieto presented
a nice result on modelling security for group key agreement (GKA) pro-
tocols. They proposed a novel security model (GBG model) that better
supports the adversaries’ queries than previous models for GKA pro-
tocols by considering KCI resilience. However, ephemeral key leakage
attack resistance has been left outside the scope of the GBG model.
In this paper, we demonstrate an ephemeral key leakage on an existing
GKA protocol which has been shown secure in the GBG model. We then
extend the GBG model by allowing the adversary greater attack pow-
ers of leaking ephemeral keys in GKA protocol session. We also apply
the well known NAXOS trick to propose an improvement to an existing
GKA protocol, which can resist the ephemeral key leakage attack. The
security of the improved protocol has been argued under the our new
model.

Keywords: Group key agreement; Ephemeral key leakage attack; Se-
curity model; Provable security

1 Introduction

Recent rapid development in networking and related mass communication media
and digital technology opens the extensive possibilities for group applications.
Group applications represent a special case of multi-party applications where
the participants have some unifying relationship concerning their rights, respon-
sibility and application goals [1]. There are many well-known forms of group
applications such as digital conferences, text-based group communication, file
and data sharing etc. On the other hand, security is increasingly important for
these applications where group members want to prevent outsiders from obtain-
ing communication content which sometimes are confidential or sensitive. The
detailed information on the security issue for group applications can be obtained
in [1].
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Group key establishment is an information security process that enables users
establish a session key known only to them. This session key can be applied for
subsequent cryptographic usage. Group key establishment can be divided in two
different classes: group key distribution (GKD) and group key agreement (GKA).
The main characteristic of a GKD protocol is that it needs some trusted party
(either a third party or a group member) and some trusted transport channel. In
contrast, GKA protocol allows all participants to establish the session key where
no party is needed to choose as the key generator and distributor and no secure
channel is required. In this paper, we restrict our research to GKA protocols.

Although there are many security models [2–8] for two or three-party key
agreement protocols, the formal model proposed by Bresson, Chevassut, Pointcheval
and Quisquater [9], which we refer to as the BCPQ model, is the first secu-
rity model for GKA protocols. Following the work of Bresson, Chevassut and
Pointcheval [10] (BCP model) that extended the BCPQ model to the dynamic
membership case, they [11] revised the BCP model to meet the internal state
information reveal resistance (BCP+) model. However, these models do not con-
sider any malicious behaviour by the participants themselves. In CCS 2005, Katz
and Shin [12] proposed a security model for GKA protocol, which provide the
first formal treatment of security of GKA in the presence of malicious partic-
ipants. Bohli, González-Vasco and Steinwandt [13] (BGS model) and Bresson
and Manulis [14] (BM model) later proposed two extensions of the KS model
under different corruption models. Additionally, the BGS and BM model deal
with the issue of contributiveness in the presence of malicious insiders.

All the models above provide definitions that consider the requirements on
indistinguishability of computed group keys and forward secrecy. However, as
discussed by Gorantla et al. [15] the above security notions do not provide the key
compromise impersonation (KCI) resilience. To demonstrate the importance of
considering resistance to KCI attacks for GKA protocols, the authors presented
KCI attacks on the protocols of Boyd and González Nieto [16], Al-Riyami and
Paterson [17] and Bresson et al. [18]. They then proposed a new model (GBG
model) by taking KCI resilience into account and also showed that the protocol
of Bohli et al. [13] (BGS protocol) to be secure in the GBG model.

Inspired by Manulis et al.’s recent work [19] where the authors pointed out
that the GKA security models have so far not considered leakage of ephemeral
keys, we augment the GBG model by considering ephemeral key leakage. In our
new model, we allow the adversary to reveal any long-term key and ephemeral
key of participants involved except for both long-term key and ephemeral key of
one of the participants of the test session. We then improve the BGS protocol
and show that it is secure in the new model. More specially, we have the following
results:

1. A stronger security model for GKA protocols. By updating the definitions
of adversary queries and notion of freshness of the GBG model, we propose a new
model for GKA protocols which provides the adversary more attack capabilities
than those in the earlier models.
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2. An attack on the BGS protocol and its improvement. We first show that the
BGS protocol is not secure in our new security model. To avoid this drawback, a
solution where the ephemeral secret result will be generated by the hash function
of the long-term key and the ephemeral key is put forward. This technique is
known as the NAXOS trick in the literature [20].

3. A straightforward security proof in the new model. Under some well-studied
assumptions, we prove the improved BGS protocol is secure in our new model.

We begin with a brief review of the GBG model in Section 2.1 and discuss
the attack not covered by their definition in Section 2.2, then we give a simple
ephemeral key leakage attack on the BGS protocol using this security flaw in
the remainder of this section. Section 3 introduces our extended GBG model. In
Section 4, we present an improved version of the BGS protocol which can resist
the attack discussed in Section 2.2. The formal security argument is given in
Section 5.

2 The GBG model and the BGS protocol

In this section, we overview the GBG model briefly and point out that the
ephemeral key leakage attack is not covered by it. Then we present this attack
on the BGS protocol which is provably secure in the GBG model.

2.1 Overview of GBG model

The GBG model [15] provides a formal security assurance to GKA protocols.
We give a high-level overview of the GBG model in this subsection.

Participants. A GKA protocol runs in a network of multiple interconnected
participants where each participant is activated to run sessions for itself and its
peers. As a result, participants in such a session establish a key called a session
key. We denote the participant set by 𝒰 = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝑛} and the protocol may
be run among any subset of these parties. In a GKA protocol, each participant
may execute a polynomial number of protocol instances in parallel. We refer to
the 𝑖-th instance of 𝑈 ∈ 𝒰 as

∏𝑖
𝑈 .

Adversary model. The communication network is assumed to be fully con-
trolled by an adversary 𝑀 , that is, it may eavesdrop, delay, alter and insert
messages during the process of the protocol at will. We define the security of a
GKA protocol by a series of games between a challenger and the adversary 𝑀
(an outsider adversary or a malicious insider) in which the adversary must solve
a challenge on a test session. In this games, 𝑀 is allowed to select the identities
of all the honest participants and ask the following queries in any sequence.

– Execute(
∏𝑖

𝑈 ). The adversary makes this query to obtain the protocol mes-

sages that were exchanged during the honest execution (
∏𝑖

𝑈 ) of the protocol.
This query models the passive attacks.
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– Send(
∏𝑖

𝑈 ,𝑚). The adversary makes this query to obtain the message that

the instance
∏𝑖

𝑈 would generate on receipt of the message 𝑚.

– RevealKey(
∏𝑖

𝑈 ). The adversary makes this query to obtain the session key

established at the accepted instance
∏𝑖

𝑈 .
– Corrup(𝑈). The adversary makes this query to obtain the long-term key of

the participant 𝑈 .
– RevealState(

∏𝑖
𝑈 ). The adversary makes this query to obtain the inter-

nal state of (
∏𝑖

𝑈 ). We assume that the internal state is erased once
∏𝑖

𝑈

has accepted. Hence, a RevealState query to an accepted instance returns
nothing.

– Test(
∏𝑖

𝑈 ). Only one query of this type is allowed for the adversary. Provided

that
∏𝑖

𝑈 is accepted, the adversary 𝑀 can make this query at any time.
To respond to this query, a random bit 𝑏 ∈ {0, 1} is secretly selected. If

𝑏 = 1, then the real session key established at (
∏𝑖

𝑈 ) is returned. Otherwise, a
uniformly chosen random value from the session key distribution is returned.

We now define the AKE security, the MA security and the Contribu-
tiveness based on the definitions of partner and freshness.

Definition 1 (Partner). Informally, an instance
∏𝑖

𝑈 is said to be accepted
if it goes into an accept state after receiving the last expected protocol message,
that is, when an instance accepts, it holds a session key, a session identifier
sid and a partner identifier pid. The information of whether an instance has
terminated with acceptance or not is assumed to be known to the adversary.
Two instances

∏𝑖
𝑈 and

∏𝑗
𝑈 ′ at two different parties 𝑈 and 𝑈 ′ respectively are

considered partnered iff

1. Both the instances have accepted.
2. The session identifiers of

∏𝑖
𝑈 and

∏𝑗
𝑈 ′ are the same.

3. The partner identifiers of
∏𝑖

𝑈 and
∏𝑗

𝑈 ′ are the same.

Definition 2 (Freshness). An instance
∏𝑖

𝑈 is fresh if the following condi-
tions hold:

1. The instance
∏𝑖

𝑈 or any its partner has not been asked a RevealKey query
after their acceptance.

2. The instance
∏𝑖

𝑈 or any its partner has not been asked a RevealState
query before their acceptance.

3. If
∏𝑗

𝑈 ′ is a partner of
∏𝑖

𝑈 and 𝑀 asked Corrupt (𝑈 ′), then any message

that 𝑀 sends to
∏𝑖

𝑈 on behalf of
∏𝑗

𝑈 ′ must come from
∏𝑗

𝑈 ′ intended to∏𝑖
𝑈 .

Definition 3 (AKE security). In Stage 1, an adversary 𝑀𝐴𝐾𝐸 against the
AKE security notion is allowed to make all the queries defined above. 𝑀𝐴𝐾𝐸

makesTest query to an instance
∏𝑖

𝑈 at the end of Stage 1 and is given a challenge
key 𝐾𝑏. It can continue asking queries in Stage 2. Finally, 𝑀𝐴𝐾𝐸 outputs a bit
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𝑏′ and wins the AKE security game if (1) 𝑏 = 𝑏′; (2) the instance
∏𝑖

𝑈 that was
asked Test query remained fresh till the end of 𝑀𝐴𝐾𝐸 ’s execution. We define
the advantage of 𝑀𝐴𝐾𝐸 in winning the AKE security game as 𝐴𝑑𝑣𝑀𝐴𝐾𝐸

=
∣2 ⋅ 𝑃𝑟[𝑏′ = 𝑏]− 1∣. A protocol is called AKE secure if 𝐴𝑑𝑣𝑀𝐴𝐾𝐸

is negligible in
the security parameter 𝑘.

Definition 4 (MA security). An adversary 𝑀𝑀𝐴 against the MA security
notion is allowed to make all the queries defined above.𝑀𝑀𝐴 violates the mutual
authentication property of the GKA protocol if at some point during the protocol
run, there exists an uncorrupted instance

∏𝑖
𝑈 that has accepted with a session

key 𝑠𝑘𝑖𝑈 and another party 𝑈 ′ ∈ 𝑝𝑖𝑑𝑖𝑈 that is uncorrupted at the time
∏𝑖

𝑈 accepts
such that

1. There is no instance
∏𝑗

𝑈 ′ with (𝑝𝑖𝑑𝑗𝑈 ′ , 𝑠𝑖𝑑
𝑗
𝑈 ′) = (𝑝𝑖𝑑𝑖𝑈 , 𝑠𝑖𝑑

𝑖
𝑈 ) or

2. There is an instance
∏𝑗

𝑈 ′ with (𝑝𝑖𝑑𝑗𝑈 ′ , 𝑠𝑖𝑑
𝑗
𝑈 ′) = (𝑝𝑖𝑑𝑖𝑈 , 𝑠𝑖𝑑

𝑖
𝑈 ) that has ac-

cepted with 𝑠𝑘𝑗𝑈 ′ ∕= 𝑠𝑘𝑖𝑈 .

We define the probability of 𝑀𝑀𝐴 in winning the MA security game as
𝐴𝑑𝑣𝑀𝑀𝐴 . A protocol is said to provide mutual authentication in the presence of
insiders if 𝐴𝑑𝑣𝑀𝑀𝐴

is negligible in 𝑘.
Definition 5 (Contributiveness [14]). An adversary 𝑀𝐶𝑜𝑛 against the

contributiveness notion is allowed to make all the queries defined above. It op-
erates in two stages prepare and attack as follows:

prepare. 𝑀𝐶𝑜𝑛 queries the instance
∏

and outputs some state information
𝜁 along with a key 𝑘.

At the end of prepare stage, a set
∑

is built such that
∑

consist of uncor-
rupted instances which have been asked either Execute or Send queries.

attack. On input (𝜁,
∑

), 𝑀𝐶𝑜𝑛 interacts with the instances of
∏

as in the
prepare stage.

At the end of this stage𝑀𝐶𝑜𝑛 outputs (𝑈, 𝑖) and wins the games if an instance∏𝑖
𝑈 at an uncorrupted party 𝑈 has terminated accepting 𝑘 with

∏𝑖
𝑈 ∕∈ ∑

.
We define the probability of 𝑀𝐶𝑜𝑛 in winning the above game as 𝐴𝑑𝑣𝑀𝐶𝑜𝑛

. A
protocol is said to provide contributiveness property in the presence of insiders
if 𝐴𝑑𝑣𝑀𝐶𝑜𝑛

is negligible in 𝑘.

2.2 An attack not covered by the GBG model

We focus on Condition 2 in the definition of “Freshness” (Definition 2) and point
out an attack which may compromise the security of GKA protocols proven
secure in the GBG model. According to this condition, the GBG model does not
allow the adversary to make RevealState query against the test session which
it wants to attack. In other words, the GBG model does not provide any security
guarantees for a session if the ephemeral key of either party has been leaked.
To avoid such an attack (we call this attack the ephemeral key leakage (EKL)

attack), GBG model assumes that the internal state should be erased after
∏𝑖

𝑈

has accepted. However, this restriction prevents the adversary from revealing
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the ephemeral keys of participants during the protocol execution process, that
is, the GBG model restricts the adversary’s ability to attack the objective GKA
protocol using the revealed ephemeral key during the protocol execution process.
Next, we will present a concrete EKL attack on the BGS protocol which has been
shown secure in the GBG model.

2.3 EKL attack on BGS protocol

The BGS protocol [13] proposed by Bohli et al. has been shown to satisfy their
definitions of outsider and insider security. We briefly review the protocol here.

Round 1:
Computation

1. Each 𝑈𝑖 chooses 𝑘𝑖
𝑅← {0, 1}𝑘, 𝑥𝑖

𝑅← ℤ𝑞 and computes 𝑦𝑖 = 𝑔𝑥𝑖 . 𝑈𝑛

additionally computes 𝐻(𝑘𝑛).
2. Each 𝑈𝑖 except 𝑈𝑛 sets 𝑀𝐼

𝑖 = 𝑘𝑖∥𝑦𝑖, while 𝑈𝑛 sets 𝑀𝐼
𝑛 = 𝐻(𝑘𝑛)∥𝑦𝑛.

3. Each 𝑈𝑖 computes a signature 𝜎𝐼
𝑖 on 𝑀𝐼

𝑖 ∥𝑝𝑖𝑑𝑖.
Broadcast
Each 𝑈𝑖 broadcasts 𝑀

𝐼
𝑖 ∥𝜎𝐼

𝑖 .
Check
Each 𝑈𝑖 checks all signatures 𝜎𝐼

𝑗 of incoming messages 𝑀𝐼
𝑗 ∥𝜎𝐼

𝑗 for 𝑗 ∕= 𝑖.
Round 2:

Computation
1. Each 𝑈𝑖 computes 𝑡𝐿𝑖 = 𝐻(𝑦𝑥𝑖

𝑖−1), 𝑡
𝑅
𝑖 = 𝐻(𝑦𝑥𝑖

𝑖+1), 𝑇𝑖 = 𝑡𝐿𝑖 ⊕ 𝑡𝑅𝑖 and

𝑠𝑖𝑑 = 𝐻(𝑝𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛−1∥𝐻(𝑘𝑛)). 𝑈𝑛 additionally computes 𝑚𝑎𝑠𝑘𝑛 = 𝑘𝑛 ⊕ 𝑡𝑅𝑛 .
2. Each 𝑈𝑖 except 𝑈𝑛 sets 𝑀𝐼𝐼

𝑖 = 𝑇𝑖∥𝑠𝑖𝑑𝑖 while 𝑈𝑛 sets
𝑀𝐼𝐼

𝑛 = 𝑚𝑎𝑠𝑘𝑛∥𝑇𝑛∥𝑠𝑖𝑑𝑛.
3. Each 𝑈𝑖 computes a signature 𝜎𝐼𝐼

𝑖 on 𝑀𝐼𝐼
𝑖 .

Broadcast
Each 𝑈𝑖 broadcasts 𝑀

𝐼𝐼
𝑖 ∥𝜎𝐼𝐼

𝑖 .
Check
1. Each 𝑈𝑖 verifies the incoming the signatures 𝜎𝐼𝐼

𝑗 on the corresponding

message 𝑀𝐼𝐼
𝑗 for each 𝑗 ∈ [1, 𝑛] and 𝑗 ∕= 𝑖 also checks that 𝑇1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑇𝑛

?
= 0.

2. Each 𝑈𝑖 for 𝑖 < 𝑛, extracts 𝑘𝑛 = 𝑚𝑎𝑠𝑘𝑛 ⊕ 𝑇1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑇𝑖−1 ⊕ 𝑡𝐿𝑖 and checks
the commitment 𝐻(𝑘𝑛) sent in Round 1 for the 𝑘𝑛 extracted.

Key Computation
Each 𝑈𝑖 computes the session key 𝑠𝑘 = 𝐻(𝑝𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛).

Fig. 1. BGS protocol

Let 𝒰 = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝑛} be the set of the parties who want to establish the
session key. Suppose that the group members are ordered in a logical ring with
𝑈𝑖−1 and 𝑈𝑖+1 being the left and right neighbors of 𝑈𝑖 for 1 ≤ 𝑖 ≤ 𝑛, 𝑈0 = 𝑈𝑛

and 𝑈𝑛+1 = 𝑈1. During the initialization phase, a cyclic group 𝔾 of prime order
𝑞, an arbitrary generator 𝑔 of 𝔾 and the description of a hash function 𝐻 that
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maps to {0, 1}𝑘 are chosen. Each party is assumed to have a long-term key pair
for public signature. Figure 1 shows the execution process after initialization
phase.

We show that BGS protocol is vulnerable to the EKL attack. Without loss
of generality, we assume that the ephemeral key of 𝑈𝑖 is leaked, an adversary
𝑀 can compute 𝑡𝐿𝑖 = 𝐻(𝑦𝑥𝑖

𝑖−1) and 𝑡𝑅𝑖 = 𝐻(𝑦𝑥𝑖
𝑖+1) in Round 2. Using the public

𝑚𝑎𝑠𝑘𝑛, 𝑇1, 𝑇2, ⋅ ⋅ ⋅ , 𝑇𝑖−1 and its own 𝑡𝐿𝑖 , 𝑀 will extract 𝑘𝑛 = 𝑚𝑎𝑠𝑘𝑛 ⊕ 𝑇1 ⊕ 𝑇2 ⊕
⋅ ⋅ ⋅⊕𝑇𝑖−1⊕ 𝑡𝐿𝑖 and 𝑠𝑘 = 𝐻(𝑝𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛). In this way, 𝑀 easily win the AKE
game by selecting the test session at 𝑈𝑖.

A straightforward solution is to delete 𝑥𝑖 of participant 𝑈𝑖 during the protocol
execution process, but it is infeasible. In more specific terms, it is impossible for
𝑈𝑖 to delete 𝑥𝑖 after Round 1, since 𝑈𝑖 has to use 𝑥𝑖 in Round 2 to compute 𝑡𝐿𝑖
and 𝑡𝑅𝑖 ; if 𝑈𝑖 deletes 𝑥𝑖 after Round 2, the unavoidable leakage of 𝑥𝑖 during the
first round could destroy the security of BGS protocol.

Note: It is worthy of being mentioned that BGS protocol is secure in GBG
model since according to the principle of GBG model, all the ephemeral 𝑥𝑖s
will be erased after the corresponding session completed. Here we would like to
reiterate that the attack not covered in the GBG model.

3 Extended GBG model

We now present our extended GBG (eGBG) model.

Participants. A GKA protocol runs in a network of multiple interconnected
participants where each participant is activated to run sessions for itself and
its peers. As a result, participants in such a session establish a session key. We
denote the participant set by 𝒰 = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝑛} and the protocol may be run
among any subset of these parties. In a GKA protocol, each participant may
execute a polynomial number of protocol instances in parallel. We refer to the
𝑖-th protocol instance at 𝑈 ∈ 𝒰 as

∏𝑖
𝑈 .

Adversary model. The communication network is assumed to be fully con-
trolled by an adversary 𝑀 , that is, it may eavesdrop, delay, alter and insert
messages during the process of the protocol at will. We define the security of a
GKA protocol by a series of games between a challenger and the adversary 𝑀
(an outsider adversary or a malicious insider) in which the adversary must solve
a challenge on a test session. In this games, 𝑀 is allowed to select the identities
of all honest participants and issue the following queries in any sequence.

– Execute(
∏𝑖

𝑈 ). The adversary makes this query to obtain the message that

were exchanged during the honest execution (
∏𝑖

𝑈 ) of the protocol. This
query models the passive attacks.

– Send(
∏𝑖

𝑈 ,𝑚). The adversary makes this query to obtain the message that

the instance
∏𝑖

𝑈 would generate on receipt of the message 𝑚.
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– RevealKey(
∏𝑖

𝑈 ). The adversary makes this query to obtain the session key

established at the accepted
∏𝑖

𝑈 .
– Long-termKeyReveal(𝑈). The adversary makes this query to obtain the

long-term key of the participant 𝑈 .
– EphemeralKeyReveal(

∏𝑖
𝑈 ). The adversary makes this query to obtain

the ephemeral key of 𝑈 in the 𝑖-th run.
– Test(

∏𝑖
𝑈 ). Only one query of this form is allowed for the adversary. Provided

that
∏𝑖

𝑈 is accepted, the adversary 𝑀 can make this query at any time. To
respond to this query, a random bit 𝑏 ∈ {0, 1} is selected. If 𝑏 = 1, then the
real session key is returned. Otherwise, a random value uniformly chosen
from the session key distribution is returned.

We now define the notion of freshness according to the same definition of
partnership in the GBG model.

Definition 6 (Freshness). An instance
∏𝑖

𝑈 is fresh if the following condi-
tions hold:

1. The instance
∏𝑖

𝑈 or any its partner has not been asked a RevealKey query
after their acceptance.

2. The instance
∏𝑖

𝑈 or any its partner has not been asked a Long-termKeyR
eveal query and a EphemeralKeyReveal query simultaneously before
their acceptance. That is, the adversary is allowed to reveal any subset of
four pieces of secret information (the long-term keys and the ephemeral keys
of the participant and its partner) which does not contain both the long-term
and ephemeral keys of one party.

3. If
∏𝑗

𝑈 ′ is a partner of
∏𝑖

𝑈 and 𝑀 asked Long-termKeyReveal (𝑈 ′), then
any message that 𝑀 sends to

∏𝑖
𝑈 on behalf of

∏𝑗
𝑈 ′must come from

∏𝑗
𝑈 ′

intended to
∏𝑖

𝑈 .

The description of the AKE security, MA security and Contributive-
ness are the same as that in the GBG model in Section 2.1.

Compared to the GBG model, we

1. Replace the RevealState query with the EphemeralKeyReveal by which
the adversary can get the ephemeral key of the instance

∏𝑖
𝑈 . At the same

time, we remove the limitation of the original GBG model where once (
∏𝑖

𝑈 )
has accepted the internal state is erased.

2. Replace the Corrupt query with the Long-termKeyReveal to give the
adversary the power to reveal the long-term keys.

3. Modify the Condition 2 in the notion of “freshness” to expand the attack
scope of the adversary.

Remark 1. In many security models, when the adversary corrupts an honest
party, it takes full control over this party and reveals all its secret information.
In the GBG model, since the Corrupt query just simulates the long-term key
leakage attack, we change the tag of this query to capture the adversarial ability
more accurately. The role of Long-termKeyReveal in our model is the same
as that of Corrupt in the GBG model.
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Overall, eGBG model extends the adversarial capabilities to the following
extent: we allow the adversary to reveal any subset of the long-term keys and
ephemeral keys of

∏𝑖
𝑈 and its partner which does not contain both the long-term

and ephemeral keys of one party.

4 BGS+ protocol

To construct a GKA protocol which is secure in eGBG model, we modify some
details of the original BGS protocol and get BGS+ protocol.

4.1 Description of BGS+ protocol

We first introduce some notation that will be used in the rest of the paper.
𝒰 = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝑛}: The set of the parties who want to establish the session

key. We also suppose that the group members are ordered in a logical ring.
𝑝, 𝑞, 𝑔: Two large primes 𝑝 and 𝑞 with 𝑞∣(𝑝 − 1), and a generator 𝑔 of group

𝔾 with order 𝑞.
𝑘: The security parameter in this protocol.
(𝑝𝑘𝑖, 𝑠𝑘𝑖): The long-term key pair of the participant 𝑈𝑖 which is used for the

signature.
𝑘𝑖, 𝑥𝑖: The ephemeral keys pair of the participant 𝑈𝑖.
𝐻 : {0, 1}∗ → {0, 1}𝜆: Hash function modelled as a random oracle, where 𝜆

is another security parameter.
𝐻1/𝐻2 : {0, 1}∗ → 𝑍𝑞/𝑍𝑝: Hash functions modelled as random oracles.
𝑆𝐾: Session key established by the participants.
This protocol aims to establish a confidential communication. The detailed

description can be seen in Fig.2. Note that we drop the operator “mod𝑝” for
clarity.

4.2 Some design principles

The most significant difference between BGS protocol and ours is that we use
𝑥𝑖 = 𝐻1(𝑠𝑘𝑖, 𝑥𝑖) instead of 𝑥𝑖 as the ephemeral intermediate result to generate
𝑦𝑖, 𝑡

𝐿
𝑖 and 𝑡𝑅𝑖 . This benefit of doing so is obvious: since we will destroy 𝑥𝑖 after

getting the needed values, this method avoid the possibility that the ephemeral
secret state will be obtained by the adversary during the protocol execution
process. On the other hand, even if the adversary gets the ephemeral key 𝑥𝑖, it
can not obtain the 𝑥𝑖 yet since it has to get the long-term key 𝑠𝑘𝑖 at the same
time, but it is not allowed to reveal the long-term key and the ephemeral key
simultaneously in eGBG model.

5 Security Analysis

Now, we prove that BGS+ protocol achieves the AKE security goal, the MA
security goal and the Contributiveness under reasonable and well-defined
intractability assumptions.
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Round 1:
Computation

1. Each 𝑈𝑖 chooses 𝑥𝑖
𝑅← ℤ𝑞 and computes 𝑥𝑖 = 𝐻1(𝑠𝑘𝑖, 𝑥𝑖) and 𝑦𝑖 = 𝑔𝑥𝑖 .

After obtaining 𝑦𝑖, 𝑈𝑖 destroys 𝑥𝑖.
2. Each 𝑈𝑖 sets 𝑀

𝐼
𝑖 = 𝑦𝑖∥𝑝𝑖𝑑.

3. Each 𝑈𝑖 computes a signature 𝜎𝐼
𝑖 on 𝑀𝐼

𝑖 .
Broadcast
Each 𝑈𝑖 broadcasts 𝑀

𝐼
𝑖 ∥𝜎𝐼

𝑖 .
Round 2:

Check
Each 𝑈𝑖 checks all signatures 𝜎𝐼

𝑗 of incoming messages 𝑀𝐼
𝑗 ∥𝜎𝐼

𝑗 for 𝑗 ∕= 𝑖.
Computation
1. Each 𝑈𝑖 computes 𝑥𝑖 = 𝐻1(𝑠𝑘𝑖, 𝑥𝑖), 𝑡

𝐿
𝑖 = 𝐻2(𝑦

𝑥𝑖
𝑖−1), 𝑡

𝑅
𝑖 = 𝐻2(𝑦

𝑥𝑖
𝑖+1) and

𝑇𝑖 = 𝑡𝐿𝑖 ⊕ 𝑡𝑅𝑖 .

2.Each 𝑈𝑖 chooses 𝑘𝑖
𝑅← {0, 1}𝑘. Then 𝑈𝑖 except 𝑈𝑛 computes 𝑀𝐼𝐼

𝑖 = 𝑇𝑖∥𝑘𝑖.
𝑈𝑛 computes 𝑚𝑎𝑠𝑘𝑛 = 𝑘𝑛 ⊕ 𝑡𝑅𝑛 and 𝐻2(𝑘𝑛) and sets 𝑀𝐼𝐼

𝑛 = 𝑚𝑎𝑠𝑘𝑛∥𝑇𝑛∥𝐻2(𝑘𝑛).
After this step, each 𝑈𝑖 destroys 𝑥𝑖, 𝑡

𝐿
𝑖 and 𝑡𝑅𝑖 , 𝑈𝑛 additionally destroys 𝑘𝑛.

3. Each 𝑈𝑖 computes a signature 𝜎𝐼𝐼
𝑖 on 𝑀𝐼𝐼

𝑖 .
Broadcast
Each 𝑈𝑖 broadcasts 𝑀

𝐼𝐼
𝑖 ∥𝜎𝐼𝐼

𝑖 .
After Round 1 and Round 2

Check
1. Each 𝑈𝑖 verifies the incoming the signatures 𝜎𝐼𝐼

𝑗 on the corresponding

message 𝑀𝐼𝐼
𝑗 for each 𝑗 ∈ [1, 𝑛] and 𝑗 ∕= 𝑖 also checks that 𝑇1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑇𝑛

?
= 0.

2. Each 𝑈𝑖 for 𝑖 < 𝑛, computes 𝑥𝑖 = 𝐻1(𝑠𝑘𝑖, 𝑥𝑖) and 𝑡𝐿𝑖 = 𝐻2(𝑦
𝑥𝑖
𝑖−1),

extracts 𝑘𝑛 = 𝑚𝑎𝑠𝑘𝑛 ⊕ 𝑇1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑇𝑖−1 ⊕ 𝑡𝐿𝑖 and checks the commitment 𝐻2(𝑘𝑛)
sent in Round 2 for the 𝑘𝑛 extracted. If so, each 𝑈𝑖 computes
𝑠𝑖𝑑 = 𝐻2(𝑝𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛−1∥𝐻2(𝑘𝑛)).

Key Computation
Each 𝑈𝑖 computes the session key 𝑆𝐾 = 𝐻(𝑠𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛).

Fig. 2. BGS+ protocol
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Theorem 1 (AKE security). Let 𝐻1, 𝐻2 and 𝐻 be three random oracles
and the signature scheme used in GBS+ is UF-CMA secure, 𝑀𝐴𝐾𝐸 denotes an
adversary that has the ability to perform the oracle queries mentioned in Section
3. Then BGS+ is AKE secure if the CDH assumption holds in 𝐺. Furthermore,
suppose 𝑀𝐴𝐾𝐸 has an advantage 𝐴𝑑𝑣𝐴𝐾𝐸

𝐵𝐺𝑆+(𝑀𝐴𝐾𝐸) to break AKE security of
BGS+ by activating at most 𝑙 sessions for each party, then there is a CDH
problem solver 𝑊 that can solve the CDH problem in polynomial time with an
advantage 𝐴𝑑𝑣𝐶𝐷𝐻

𝐵𝐺𝑆+(𝑊 ) and

𝐴𝑑𝑣𝐴𝐾𝐸
𝐵𝐺𝑆+(𝑀𝐴𝐾𝐸) ≤ 𝑞2𝑠+𝑞𝐻2

2𝑘−1 +
𝑞2𝐻1

𝑞 +
𝑞2𝐻2

𝑝 +
𝑞2𝐻
2𝜆

+ 2𝑛2 ⋅ 𝐴𝑑𝑣𝑆𝑖𝑔
𝐵𝐺𝑆+ + 2𝑛𝑙 ⋅

𝐴𝑑𝑣𝐶𝐷𝐻
𝐵𝐺𝑆+(𝑊 ), where 𝑛 is the number of parties; 𝐴𝑑𝑣𝑆𝑖𝑔

𝐵𝐺𝑆+ denotes the advantage
of a polynomial adversary against the UF-CMA security of the signature; 𝑞𝐻1 ,
𝑞𝐻2

and 𝑞𝐻 are the maximum number of times of hash queries 𝐻1, 𝐻2 and 𝐻,
respectively; 𝑞𝑠 represents the maximum number of queries to the Send oracles
asked by the adversary.

Proof. In this proof, we incrementally define a sequence of games starting
at the real execution 𝐺0 and ending up at game 𝐺5 where the adversary has no
advantage. Each game addresses a different security aspect. For each game 𝐺𝑖,
we define 𝑆𝑢𝑐𝑐𝑖 (𝑖 = 0, 1, ⋅ ⋅ ⋅ , 5) as the event that 𝑀𝐴𝐾𝐸 wins the game.

We use the game hopping technique based on the failure events and bridging
steps suggested by Shoup [21]. Consider an event E that may occur during the
adversary 𝑀𝐴𝐾𝐸 ’s execution such that E is detectable by the simulator, E is
independent of 𝑆𝑢𝑐𝑐𝑖, 𝐺𝑖 and 𝐺𝑖+1 are identical unless E occurs, then we have

∣𝑃𝑟[𝑆𝑢𝑐𝑐𝑖+1]− 𝑃𝑟[𝑆𝑢𝑐𝑐𝑖]∣ ≤ 𝑃𝑟[E]. (1)

Game 𝐺0. This game corresponds to the real execution. In the game, we
don’t modify the simulation of the oracles, all the instances modeled as the real
execution in the random oracle model. By the definition, we have

𝐴𝑑𝑣𝐴𝐾𝐸
𝐵𝐺𝑆+(𝑀𝐴𝐾𝐸) = ∣2 ⋅ 𝑃𝑟[𝑆𝑢𝑐𝑐0]− 1∣. (2)

Game 𝐺1. This game is as the same as the game 𝐺0 except that the simu-
lation fails if the event Forge happens.

The event Forge occurs when the adversary 𝑀𝐴𝐾𝐸 successfully forgery of one
of the honest parties’ signatures. According to the analysis in Gorantla et al.’s
work [15], if the case happens, it will contradict against the assumption that the
signature scheme in BGS+ protocol is UF-CMA secure.

We denote 𝐴𝑑𝑣𝑆𝑖𝑔
𝐵𝐺𝑆+ be the advantage of a polynomial adversary against

the UF-CMA security of the signature, since the probability that 𝑀𝐴𝐾𝐸 doesn’t
get the long-term key of the target party is ≥ 1

𝑛 and the probability of 𝑀𝐴𝐾𝐸

outputting a valid forgery on behalf of the target party is also ≥ 1
𝑛 , we have

𝐴𝑑𝑣𝑆𝑖𝑔
𝐵𝐺𝑆+ ≥ 1

𝑛2 , then

𝑃𝑟[𝑆𝑢𝑐𝑐1]− 𝑃𝑟[𝑆𝑢𝑐𝑐0] ≤ 𝑃𝑟[Forge] ≤ 𝑛2 ⋅𝐴𝑑𝑣𝑆𝑖𝑔
𝐵𝐺𝑆+. (3)

Game 𝐺2. In this game, we simulate all oracles in 𝐺1, except that we halt
all executions in which the event Collision occurs.
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The event Collision occurs when the random oracles 𝐻1, 𝐻2 and 𝐻 produce
collisions for any of their own inputs. According to the birthday paradox, the
probability of collisions in output of 𝐻1 and 𝐻2 oracles are at most 𝑞2𝐻1

/(2𝑞)
and 𝑞2𝐻2

/(2𝑝) respectively where 𝑞𝐻𝑖 for 𝑖 = 1, 2 denotes the maximum number
of queries to 𝐻𝑖. Similarly, the probability of collision in output of 𝐻 oracle is
at most 𝑞2𝐻/2𝜆+1, where 𝑞𝐻 is the maximum number of times of hash queries 𝐻.
Consequently,

∣𝑃𝑟[𝑆𝑢𝑐𝑐2]− 𝑃𝑟[𝑆𝑢𝑐𝑐1]∣ ≤ 𝑃𝑟[Collision] ≤ 𝑞2𝐻1

2𝑞
+

𝑞2𝐻2

2𝑝
+

𝑞2𝐻
2𝜆+1

. (4)

Game 𝐺3. This game is as the same as the previous game except that the
simulation fails if the event Repeat occurs.

The event Repeat occurs when different parties choose the same random value
𝑘𝑖 as their own shares. Let 𝑞𝑠 be the maximum number of queries to the Send

oracles asked by the adversary, then 𝑃𝑟[Repeat] ≤ 𝑞2𝑠
2𝑘
. Therefore, we have

∣𝑃𝑟[𝑆𝑢𝑐𝑐3]− 𝑃𝑟[𝑆𝑢𝑐𝑐2]∣ ≤ 𝑃𝑟[Repeat] ≤ 𝑞2𝑠
2𝑘

. (5)

Game 𝐺4. In this game, we change the simulation of queries to the Send
query. This time, we change the way we compute the value 𝑦𝑖−1 in some manner
(we will describe these ways subsequently) to replace 𝑦𝑖−1 when the adversary
makes the corresponding Send query. Then we will have

∣𝑃𝑟[𝑆𝑢𝑐𝑐4]− 𝑃𝑟[𝑆𝑢𝑐𝑐3]∣ ≤ 𝑛𝑙𝑞𝐻2 ⋅𝐴𝑑𝑣𝐶𝐷𝐻
𝐵𝐺𝑆+(𝑊 ). (6)

Proof. By assuming a successful adversary against this game, we can con-
struct a CDH solver 𝑊 .

There is only difference between 𝐺3 and 𝐺4 in the way to generate 𝑦𝑖−1 and
𝑦𝑖 for a session, we will show the difference between the current game and the
previous one is negligible as long as the CDH assumption holds.

First, the CDH solver 𝑊 obtains CDH tuple (𝑔, 𝑔𝑎, 𝑔𝑏). As the real execution,
𝑊 randomly select a party 𝑈𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) and a session executed by it as
the test session. When the corresponding Send query is asked, the CDH solver
sets 𝐴 = 𝑦𝑖−1 and 𝐵 = 𝑦𝑖 and returns 𝐴 and 𝐵 to 𝑈𝑖. For other queries, 𝑊
returns as 𝐺3.

Let 𝑃𝑟1(𝑀𝐴𝐾𝐸) be the probability of the event that 𝑀𝐴𝐾𝐸 will select 𝑈𝑖

and the corresponding chosen by 𝑊 as the test session, since there are 𝑛 parties
and each party can active at most 𝑙 sessions, we have 𝑃𝑟1(𝑀𝐴𝐾𝐸) ≥ 1

𝑙𝑛 .
By the definition of freshness, the adversary is allowed to reveal any subset

of long-term keys and ephemeral keys of the parties, but it is not allowed to get
both the long-term keys and ephemeral keys of one party. Special for the party
𝑈𝑖, eGBG model allows the adversary to reveal 𝑠𝑘𝑖 or 𝑥𝑖, but doesn’t allow to
reveal both 𝑠𝑘𝑖 and 𝑥𝑖. Therefore, the CDH solver simulates all oracle queries
without knowing 𝑎 and 𝑏 (𝑎 = 𝑥𝑖 and 𝑏 = 𝑥𝑖−1).

Following the simulation principle above, if 𝑀𝐴𝐾𝐸 successfully violates the
AKE security of BGS+ protocol, it must have obtained 𝑘𝑛 = 𝑚𝑎𝑠𝑘𝑛⊕𝑇1⊕⋅ ⋅ ⋅⊕
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𝑇𝑖−1 ⊕ 𝑡𝐿𝑖 and know the value 𝑡𝐿𝑖 = 𝐻2(𝑦
𝑥𝑖
𝑖−1) = 𝐻2(𝑦

𝑥𝑖−1

𝑖 ). Since we assume 𝐻2

is modeled as a random oracle, to get 𝑡𝐿𝑖 , the only way for 𝑀𝐴𝐾𝐸 is to own 𝑦𝑥𝑖
𝑖−1

(𝑦
𝑥𝑖−1

𝑖 ) and ask Hash query (𝐻2). Once it asks Hash query (𝐻2), it has to leave

the correct 𝑦𝑥𝑖
𝑖−1 (𝑦

𝑥𝑖−1

𝑖 ).

With the probability 𝑃𝑟2(𝑀𝐴𝐾𝐸) ≥ 1
𝑞𝐻2

, 𝑊 can choose the appropriate

𝑦𝑥𝑖
𝑖−1 (𝑦

𝑥𝑖−1

𝑖 ) and solve the CDH problem with the advantage 𝐴𝑑𝑣𝐶𝐷𝐻
𝐵𝐺𝑆+(𝑊 ) in

polynomial time: 𝐶𝐷𝐻(𝐴,𝐵) = 𝐶𝐷𝐻(𝑔𝑎, 𝑔𝑏) = 𝑦𝑥𝑖
𝑖−1 = 𝑦

𝑥𝑖−1

𝑖 = 𝑔𝑎𝑏.

As we can see form the above analysis, we have𝐴𝑑𝑣𝐶𝐷𝐻
𝐵𝐺𝑆+(𝑊 ) ≥ 1

𝑛𝑙𝑞𝐻2
∣𝑃𝑟[𝑆𝑢𝑐𝑐4]−

𝑃𝑟[𝑆𝑢𝑐𝑐3]∣, that is, ∣𝑃𝑟[𝑆𝑢𝑐𝑐4]− 𝑃𝑟[𝑆𝑢𝑐𝑐3]∣ ≤ 𝑛𝑙𝑞𝐻2 ⋅𝐴𝑑𝑣𝐶𝐷𝐻
𝐵𝐺𝑆+(𝑊 ).

Game 𝐺5. This game is as the same as 𝐺4 except that in the test session
the game halts if 𝑀𝐴𝐾𝐸 asks Hash query (𝐻) with the corresponding input
(𝑠𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛). Since there is no useful information about 𝑘𝑛 in Round 2, the
only way for the adversary to getting 𝑘𝑛 is to guess it with the probability 1

2𝑘

and to check it using 𝐻2(𝑘𝑛). Therefore,

∣𝑃𝑟[𝑆𝑢𝑐𝑐5]− 𝑃𝑟[𝑆𝑢𝑐𝑐4]∣ ≤
𝑞2𝐻2

2𝑘
. (7)

On the other hand, if the adversary doesn’t make any Hash query for 𝐻2

with the correct input, it will not have any advantage in distinguishing the real
session key from a random one and so 𝑃𝑟[𝑆𝑢𝑐𝑐5] =

1
2 .

Together with (2)-(7), Theorem 1 is proven.
Theorem 2 (MA security). Let 𝐻1, 𝐻2 and 𝐻 be three random oracles

and the signature scheme used in GBS+ is UF-CMA secure, 𝑀𝑀𝐴 denotes an
adversary that has the ability to perform the oracle queries mentioned in Sec-
tion 3. Then BGS+ is MA secure. Furthermore, the MA advantage of 𝑀𝑀𝐴

𝐴𝑑𝑣𝑀𝐴
𝐵𝐺𝑆+(𝑀𝑀𝐴) is upper bounded by

𝐴𝑑𝑣𝑀𝐴
𝐵𝐺𝑆+(𝑀𝑀𝐴) ≤ ∣𝑛2 ⋅ 𝐴𝑑𝑣𝑆𝑖𝑔

𝐵𝐺𝑆+ +
𝑞2𝑠

2𝑘−1 +
𝑞2𝐻1

𝑞 +
𝑞2𝐻2

𝑝 +
𝑞2𝐻
2𝜆

− 1∣, where
𝑛 is the number of parties; 𝐴𝑑𝑣𝑆𝑖𝑔

𝐵𝐺𝑆+ denotes the advantage of a polynomial
adversary against the UF-CMA security of the signature; 𝑞𝐻1 , 𝑞𝐻2 and 𝑞𝐻 are
the maximum number of times of hash queries 𝐻1, 𝐻2 and 𝐻; 𝑞𝑠 represents the
maximum number of queries to the Send oracles asked by the adversary.

Proof. We follow the hypothesis of the proof of Theorem 1 and define 𝑆𝑢𝑐𝑐𝑖
(𝑖 = 0, 1, 2, 3) as the event that the adversary 𝑀𝑀𝐴 wins the game 𝐺𝑖.

Game 𝐺0. Like 𝐺0 in Theorem 1, this game represents the real execution. In
the game, all the instances modeled as the real execution in the random oracle
model. By the definition, we have

𝐴𝑑𝑣𝑀𝐴
𝐵𝐺𝑆+(𝑀𝑀𝐴) = ∣2 ⋅ 𝑃𝑟[𝑆𝑢𝑐𝑐0]− 1∣. (8)

Game 𝐺1. In this game, we simulate all oracles in 𝐺0, except that we halt
all executions in which the event Forge defined in Theorem 1 occurs. Then we
have

𝑃𝑟[𝑆𝑢𝑐𝑐1]− 𝑃𝑟[𝑆𝑢𝑐𝑐0] ≤ 𝑃𝑟[Forge] ≤ 𝑛2 ⋅𝐴𝑑𝑣𝑆𝑖𝑔
𝐵𝐺𝑆+. (9)
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Game 𝐺2. In this game, we simulate all oracles in 𝐺1, except that we halt
all executions in which the event Collision defined in Theorem 1 occurs. Conse-
quently,

∣𝑃𝑟[𝑆𝑢𝑐𝑐2]− 𝑃𝑟[𝑆𝑢𝑐𝑐1]∣ ≤ 𝑃𝑟[Collision] ≤ 𝑞2𝐻1

2𝑞
+

𝑞2𝐻2

2𝑝
+

𝑞2𝐻
2𝜆+1

. (10)

Game 𝐺3. This game is as the same as the previous game except that the
simulation fails if the event Repeat defined in Theorem 1 occurs. Then we have

∣𝑃𝑟[𝑆𝑢𝑐𝑐3]− 𝑃𝑟[𝑆𝑢𝑐𝑐2]∣ ≤ 𝑃𝑟[Repeat] ≤ 𝑞2𝑠
2𝑘

. (11)

If 𝐺3 doesn’t abort, all the honest parties compute the same key. Hence
𝑃𝑟[𝑆𝑢𝑐𝑐3] = 0.

Together with (8)-(11), Theorem 2 is proven.
Theorem 3 (Contributiveness). Let 𝐻1, 𝐻2 and 𝐻 be three random ora-

cles and the signature scheme used in GBS+ is UF-CMA secure, 𝑀𝐶𝑜𝑛 denotes
an adversary that has the ability to perform the oracle queries mentioned in
Section 3 with the advantage 𝐴𝑑𝑣𝐶𝑜𝑛

𝐵𝐺𝑆+(𝑀𝐶𝑜𝑛). Then BGS+ is contributive and

𝐴𝑑𝑣𝐶𝑜𝑛
𝐵𝐺𝑆+(𝑀𝐶𝑜𝑛) ≤ ∣ 𝑞2𝑠

2𝑘−1 +
𝑞2𝐻2

𝑝 +
𝑞2𝐻
2𝜆

− 1∣, where 𝑞𝐻2 and 𝑞𝐻 are the maximum
number of times of hash queries 𝐻2 and 𝐻; 𝑞𝑠 represents the maximum number
of queries to the Send oracles asked by the adversary.

Proof. Following the proofs on Theorem 1 and Theorem 2, we construct four
games from 𝐺0 to 𝐺3.

Game 𝐺0. This game represents the real execution in the random oracle
model. By the definition, we have

𝐴𝑑𝑣𝐶𝑜𝑛
𝐵𝐺𝑆+(𝑀𝐶𝑜𝑛) = ∣2 ⋅ 𝑃𝑟[𝑆𝑢𝑐𝑐0]− 1∣. (12)

Game 𝐺1. In this game, we simulate all oracles as in 𝐺0, except that we
halt all executions in which the event Repeat defined in Theorem 1 occurs. Then
we have

∣𝑃𝑟[𝑆𝑢𝑐𝑐1]− 𝑃𝑟[𝑆𝑢𝑐𝑐0]∣ ≤ 𝑃𝑟[Repeat] ≤ 𝑞2𝑠
2𝑘

. (13)

Game 𝐺2. In this game, we simulate all oracles in 𝐺1, except that we halt
all executions in which the event Collision1 for input 𝑘𝑛 occurs. Consequently,

∣𝑃𝑟[𝑆𝑢𝑐𝑐2]− 𝑃𝑟[𝑆𝑢𝑐𝑐1]∣ ≤ 𝑃𝑟[Collision1] ≤ 𝑞2𝐻2

2𝑝
. (14)

Game 𝐺3. In this game, we simulate all oracles in 𝐺2, except that we halt
all executions in which the event Collision2 for input (𝑠𝑖𝑑∥𝑘1∥ ⋅ ⋅ ⋅ ∥𝑘𝑛) occurs
Consequently,

∣𝑃𝑟[𝑆𝑢𝑐𝑐3]− 𝑃𝑟[𝑆𝑢𝑐𝑐2]∣ ≤ 𝑃𝑟[Collision2] ≤ 𝑞2𝐻
2𝜆+1

. (15)

If 𝐺3 doesn’t abort, the output of the random oracle 𝐻 is uniformly dis-
tributed. Hence, 𝑃𝑟[𝑆𝑢𝑐𝑐3] = 0.

Together with (12)-(15), Theorem 3 is proven.



Jianjie Zhao et al. 15

6 Conclusion

We analyze GBG model and find that this model doesn’t consider the ephemeral
key leakage resistance property. Considering this drawback, we extend GBG
model to the following extent: the only corruption powers we don’t give an
adversary in the game are that it is not allowed to reveal both the long-term key
and the ephemeral key of a legitimate party simultaneously. We then introduce
a new GKA protocol called BGS+ protocol based on BGS protocol which is
provably secure in GBG model but cannot resist ephemeral key leakage attack
and prove that it is secure in the new model. As far as we know, this is the first
provably secure GKA protocol in the strongest security model.

As for limitations, we didn’t take the efficiency into account. A natural di-
rection for further research is the design of provably secure protocols with lower
computational cost and communication cost. Additionally, the design of GKA
protocols in standard models where the security of the protocols isn’t depen-
dent on the security of random oracles is another imperative future research
consideration.
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15. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling Key Compromise Im-
personation Attacks on Group Key Exchange Protocols. In Jarecki, S., Tsudik, G.,
eds.: Public Key Cryptography–PKC’09. Volume 5443 of LNCS., Springer (2009)
105–123

16. Boyd, C., Nieto, J.M.G.: Round-Optimal Contributory Conference Key Agree-
ment. In: Public Key Cryptography–PKC’03. Volume 2567 of LNCS., Springer
(2003) 161–174

17. Al-Riyami, S.S., Paterson, K.G.: Tripartite Authenticated Key Agreement Proto-
cols from Pairings. In: Cryptography and Coding, 9th IMA International Confer-
ence. Volume 2898 of LNCS., Springer (2003) 332–359

18. Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual Authentication
and Group Key Agreement for Low-Power Mobile Devices. In: Proc. of MWCN
03, World Scientific Publishing (October 2003) 5962

19. Manulis, M., Suzuki, K., Ustaoglu, B.: Modeling Leakage of Ephemeral Secrets
in Tripartite/Group Key Exchange. In Lee, D., Hong, S., eds.: Information, Secu-
rity and Cryptology–ICISC’09, Revised Selected Papers. Volume 5984 of LNCS.,
Springer (2010) 16–33

20. Lauter, K., Mityagin, A.: Security Analysis of KEA Authenticated Key Exchange
Protocol. In Yung, M., Dodis, Y., Kiayias, A., Malkin, T., eds.: Public Key
Cryptography–PKC’06. Volume 3958 of LNCS., Springer (2006) 378–394

21. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004) http://eprint.iacr.org/.


