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Abstract. A publicly verifiable secret sharing (PVSS) scheme, proposed
by Stadler in [Sta96], is a VSS scheme in which anyone, not only the
shareholders, can verify that the secret shares are correctly distributed.
PVSS can play essential roles in the systems using VSS. Achieving si-
multaneously the following two features for PVSS is a challenging job:
– Efficient non-interactive public verification.
– Proving security for the public verifiability in the standard model.

In this paper we propose a (t, n)-threshold PVSS scheme which satisfies
both of these properties. Efficiency of the non-interactive public verifi-
cation step of the proposed scheme is optimal (in terms of computations
of bilinear maps (pairing)) while comparing with the earlier solution
by [HV08]. In public verification step of [HV08], one needs to compute
2n many pairings, where n is the number of shareholders, whereas in
our scheme the number of pairing computations is 2 only. This count
is irrespective of the number of shareholders. We also provide a formal
proof for the semantic security (IND) of our scheme based on the hard-
ness of a problem that we call the (n, t)-multi-sequence of exponents
Diffie-Hellman problem (MSE-DDH). This problem falls under the gen-
eral Diffie-Hellman exponent problem framework [BBG05].
Keywords: Secret sharing, non-interactive PVSS, general Diffie-Hellman
exponent problem.

1 Introduction

(Verifiable) Secret Sharing is one of the most important tools in modern cryp-
tography. The concept and the first realization of secret sharing were presented
independently in [Sha79] and in [Bla79]. Since then much work has been put into
the investigation of such schemes (see [Sim88,Sti92] for a list of references). In
a secret sharing scheme, there exists a dealer and n shareholders (sometimes re-
ferred to participants). The dealer splits a secret, say s, into n different pieces,
called shares, and sends each share to each shareholder. An access structure
describes which subsets of shareholders are qualified to recover the secret. By
a (t, n)-threshold access structure, 1 ≤ t ≤ n, we means that any subset of t
or more shareholders will be able to recover the secret; any smaller subset of
shareholders will not be able to gain any information about the secret.



The verifiable secret sharing (VSS) schemes constitute a particular interest-
ing class of schemes as they allow each receiver of information about the secret
(share of the secret) to verify that the share is consistent with the other shares.
If the dealer trusts one of the shareholders completely, he could share the ‘whole’
secret with the person and thus altogether avoid the trouble of using a secret
sharing scheme. Therefore in many applications the dealer doesn’t trust the
shareholders completely, and therefore it is reasonable to expect that (some of)
the shareholders do not trust the dealer either. For this reason efficient verifi-
able secret sharing schemes are necessary in practice. Verifiable secret sharing
was proposed first in [CGMA85]. In a VSS scheme, the shareholders can verify
the validity of their shares and thus overcome the problem of dishonest dealers.
VSS is known to play important roles in various cryptographic protocols such as
the multiparty protocols [CCD88,BOGW88], key-escrow cryptosystems [Mic92],
and threshold cryptography. A VSS scheme is called non-interactive if the
shareholders can verify their share without talking to each other or the dealer.
Proposals by [Fel87,Ped91] contributed to non-interactiveness and improved ef-
ficiency.
(Non-interactive) Publicly Verifiable Secret Sharing: The first proposed
VSS scheme [CGMA85] has the special property that anyone, not only the share-
holders, can verify that the shares were correctly distributed. In [Sta96], the
property was named public verifiability and the VSS schemes with the above
property were named publicly verifiable secret sharing schemes (PVSS). Some
of the important PVSS schemes were presented in [Sta96,FO98,Sch99].

In most PVSS schemes, the verification procedure involves interactive proofs
of knowledge. These proofs are made non-interactive by means of the Fiat-Shamir
technique [FS86] and thus security for verifiability can only be carried out in the
random oracle model [BR93]. Transforming security analysis of cryptographic
primitives from the framework of random oracle model to the standard model
have always turned out to be a theoretically important task which is seemingly
difficult in most of the cases. Some of these problems were dealt in [RV05,HV08].
Some of the positive features of [HV08] are: non-interactive PVSS, Fiat-Shamir
technique is not used, unconditional security for public verifiability and security
for indistinguishability of secrets. The scheme [HV08] is described briefly in
Appendix B.

Although, [HV08] successfully avoids Fiat-Shamir technique, their public ver-
ification algorithm is inefficient. In particular, for n shareholders, one has to
compute 2n many pairings in the public verification algorithm. This number
of pairing computations is expensive. Therefore, an important problem was to
reduce the number of pairing computations during the public verification algo-
rithm.
Our Contribution: In this paper we propose a practical and provably secure
non-interactive (t, n)-threshold PVSS scheme. Our scheme achieves the following:

– Public verification algorithm is non-interactive and is obtained without using
Fiat-Shamir zero knowledge proofs.



– Comparing with the public verification step of [HV08], our scheme provides
optimal efficiency in terms of the number of pairing computations. In public
verification step of [HV08], one needs to compute 2n many pairings, where n
is the number of shareholders, whereas in our scheme the number of pairing
computations is 2 only. This count is irrespective of the number of share-
holders. We also observe [Rev] that a simple modification to the verification
algorithm of [HV08] reduces the number of pairing computations from 2n to
n+1. But this modification is done at the cost ([HV08] enjoys unconditional
security for public verifiability) of reducing the security of public verifiability
to a new computational problem. See Appendix C for the modified scheme
and the security analysis for public verifiability.

– The scheme is provably secure against a SA-IND (see Section 2.2) adversary.
The security relies on the hardness of a problem that we call the (n, t)- multi-
sequence of exponents Diffie-Hellman problem (MSE-DDH). This problem
falls under the general Diffie-Hellman exponent problem framework [BBG05].

Overview of the paper: We define the syntactics of non-interactive (t, n)-
threshold publicly verifiable secret sharing (PVSS) scheme and the required
security properties in Section 2, where we also describe the (n, t)-MSE-DDH
problem, on which the security of our scheme will be based. In this section we
also recall the definition of bilinear maps. In Section 3, we describe our new
scheme and discuss some of the issues. Section 3 ends with a formal security
proof of our scheme. The work is concluded in Section 5.

2 Preliminaries

In this section we describe the algorithms that form a non-interactive (t, n)-
threshold publicly verifiable secret sharing (PVSS) scheme, as well as the basic
security requirements for such schemes. We also introduce the computational
problem called the (n, t)-MSE-DDH problem, to which we will relate the security
of our scheme.

2.1 (Non-interactive) PVSS

In this section we describe a model for non-interactive PVSS. In a PVSS scheme,
a dealer D wishes to distribute shares of a secret value “s” among n sharehold-
ers P1, . . . , Pn. An access structure describes which subsets of shareholders are
qualified to recover the secret. In this article, we consider (t, n)-threshold access
structure, 1 ≤ t ≤ n, which means that any subset of t or more shareholders
will be able to recover the secret; any smaller subset will not be able to gain any
information about the secret, unless a computational assumption is broken. A
PVSS scheme is described by the following standard algorithms.

– Initialization This algorithm generates all system parameters. Further-
more, each shareholder Pi registers its public-key (may be issued by the
dealer with the corresponding secret key). The actual set of shareholders



taking part in a run of PVSS scheme must be a subset of the registered
shareholders. We assume w.l.o.g. that shareholders P1, . . . , Pn are the actual
shareholders in the run described below.

– Distribution The distribution of the shares of a secret “s” is performed
by the dealer D. The dealer computes and publishes the secret commitment
value(s) and the share deriving value(s) respectively. The secret commitment
value(s) commits the dealer to the value of secret s, whereas the share de-
riving value(s) can be used with the shareholders’ secret keys to yield the
share of the secret for the respective shareholders.

– Verification It is required that the dealer’s commitment to the secret
can be verified publicly. Thus any party knowing only the publicly available
information may verify that share deriving information is in consistent with
the share commitment information, i.e., it guarantees that the reconstruc-
tion protocol will be able to recover the same secret s. Furthermore, this
verification runs non-interactively.

– Reconstruction The shareholders construct their shares Si from the share
deriving value using the secret keys. It is not required that all shareholders
succeed in doing so, as long as a qualified set of shareholders is successful.
These shareholders then release Si and also the share commitment value(s)
to verify that the released shares are correct. The share commitment in-
formation is used to exclude the shareholders which are dishonest or fail to
reproduce their share Si correctly. Reconstruction of the secret s can be done
from the shares of any qualified set of shareholders.

In non-interactive PVSS schemes it is essential that all commitments can be
verified non-interactively. Since any party can verify the output of the dealer,
so we don’t budget operations for the individual participants to check their own
shares. Hence it suffices to have just one public verifier.

2.2 Security Model

Such a scheme must satisfy the following properties.

– Correctness: If the dealer and the shareholders act honestly, every quali-
fied subset of shareholders reconstructs the secret during the reconstruction
algorithm.

– Verifiability: If a dealer passes the verification step, then it implies that
the secret commitment values are in consistent with the share deriving val-
ues, i.e., the information which the dealer outputs for shareholders to derive
their respective shares of the secret for which the dealer had published his
commitment in terms of secret commitment values.

– Privacy: The very basic requirement is that, for an honest dealer, the
adversary cannot learn any information about the secret at the end of the
protocol.

Privacy: Following [RV05,HV08], we can more formally define the above pri-
vacy notion, under the classical semantic-security notion [GM84], using a game



between an adversary A and a challenger. The adversary here is a static one
i.e., at the beginning of the game, he is given the secret keys of the corrupted
shareholders.
Indistinguishability of Secrets (IND): The security notion is defined via
the following game between a challenger and a probabilistic polynomial time
(PPT) adversary A. Both the adversary and the challenger are given as input a
security parameter λ.

– Initialization: The challenger runs Initialization(λ) to obtain the set of
public parameters along with the public keys and the secret keys of all the
shareholders. Besides all the public keys, the adversary is also given the
respective secret keys of t− 1 corrupted shareholders.

– Challenge: The challenger picks two random secrets T0 and T1 and a
random bit b ∈ {0, 1}. Then he runs the distribution algorithm for the secret
Tb and sends all the resulting information to A along with {T0, T1}.

– Guess: Finally, the adversary A outputs a guess bit b′ ∈ {0, 1} for b and
wins the game if b′ = b.

We define the advantage of this static adversary (SA), A, against a (t, n)-
threshold PVSS as follows:

AdvSA−INDPV SS,A (λ) =
∣∣∣Prob[b′ = b]− 1

2

∣∣∣
The advantage is a function of the security parameter λ.

Definition 1. We say that a (t, n)-threshold PVSS is SA-IND secure if for all
PPT adversaries A, we have that AdvSA−INDPV SS,A (λ) is a negligible function in λ.

2.3 Bilinear Map

Let G1, G2 and G̃ be three cyclic groups of prime order p. The group laws for
all the three groups are noted multiplicatively. A mapping e : G1 × G2 → G̃ is
called an admissible bilinear map (pairing) if it satisfies the following properties:

– Bilinearity: e(gα1 , g
β
2 ) = e(g1, g2)αβ for all g1 ∈ G1, g2 ∈ G2 and α, β ∈ Zp.

– Non-degeneracy: e(g1, g2) 6= 1 unless g1 = 1 or g2 = 1.
– Computability: There exist efficient algorithms to compute the group

operations in G1, G2, G̃ as well as the map e(·, ·).

A bilinear map group system is a tuple (p,G1, G2, G̃, e(·, ·)) composed of
the objects as described above. The above bilinear map is defined in asymmetric
setting [BLS01,BW06]. In symmetric setting, we have G1 = G2. Known examples
of e(·, ·) usually have G1, G2 to be the groups of Elliptic Curve or Hyperelliptic
Curve points and G̃ to be a subgroup of a multiplicative group of finite field.
Modified Weil pairing [BF01], Tate pairing [BKLS02,GHS02] are some of the
practical examples of bilinear maps.



2.4 (n, t)-MSE-DDH (The Multi-sequence of Exponents
Diffie-Hellman Assumption)

Our scheme’s security relies on the hardness of a problem that we call the (n, t)-
multi-sequence of exponents Diffie-Hellman problem (MSE-DDH). This problem
falls under the general Diffie-Hellman exponent problem framework [BBG05].
Some of the problems that are similar to (n, t)-MSE-DDH, were considered
in [DPP07,HLR10,DP08] and all of them fit the framework of general Diffie-
Hellman exponent problem. [BBG05] provides an intractability bound for the
general Diffie-Hellman exponent problem in the generic model [Sho97], where
the underlying groups are equipped with pairings. Thus the generic complexity
of (n, t)-MSE-DDH and the other similar problems mentioned in
[DPP07,HLR10,DP08] are covered by the analysis in [BBG05]. A proof to show
the (n, t)-MSE-DDH problem as a particular instance of general Diffie-Hellman
exponent problem is similar to the proof of [DP08], where it has been shown
that the (l,m, t)-MSE-DDH (l,m, t are integers) problem fit the framework of
general Diffie-Hellman exponent problem.

Let G1, G2, G̃ be the three groups of the same prime order p, and let e :
G1 ×G2 → G̃ be a non-degenerate and efficiently computable bilinear map. Let
g1 be a generator of G1 and g2 be a generator of G2.

Let n, t be two positive integers (t ≤ n). The (n, t)-multi-sequence of ex-
ponents Diffie-Hellman problem ((n, t)-MSE-DDH) related to the group triplet
(G1, G2, G̃) is as follows:

– Input: Two polynomials θ1, θ2 as

θ1(x) =
∏n
i=1(x+ ai) and θ2(x) =

∏n−t+1
i=1 (x+ bi).

where a1, . . . , an and b1, . . . , bn−t+1 are all distinct elements in Fp. Thus
degrees of θ1, θ2 are n and n − t + 1 respectively. We call a1, . . . , an and
b1, . . . , bn−t+1 to be the negative roots of θ1, θ2 respectively. Beside poly-
nomials θ1, θ2, the following sequences of exponentiations are also given as
input,
• ĝ1 := [g1, gα1 , {g

γi

1 }
n+t−2
i=1 , {gαγ

i

1 }n+t
i=1 and g

kαθ1(γ)
1 ] ,

• ĝ2 := [g2, gα2 , {g
γi

2 }
n−t−1
i=1 , {gαγ

i

2 }ni=1 and g
kθ2(γ)
2 ],

• an element T ∈ G̃,
where k, α, γ ∈ F∗p and are not known.

– Output: a bit b ∈ {0, 1} as,

b =

{
1 if T = e(g1, g2)kθ1(γ)

0 if T is a random element of G̃

Thus the problem is to distinguish if T is a random value or if it is equal to
e(g1, g2)kθ1(γ). To be more precise, let us denote by real the event that T =
e(g1, g2)kθ1(γ), by random the event that T is a random element from G̃ and by
I(θ1, θ2, ĝ1, ĝ2, T ) the input of the problem. Let λ be the size of the underlying
group order. We define the advantage of an algorithm A in solving (n, t)-MSE-
DDH problem as



Adv(n,t)−MSE-DDH
A (λ) =

∣∣∣Pr[A(I(θ1, θ2, [g1], [g2], T )) =

1|real]− Pr[A(I(θ1, θ2, [g1], [g2], T )) = 1|random]
∣∣∣

where the probability is taken over all the random coins consumed by A.

3 The new (t, n)-threshold PVSS scheme

The earlier proposals for (publicly) verifiable secret sharing scheme mostly rely
on the idea of interpolating a polynomial (see Appendix A) on the exponent of
a generator of a group. A sketch of the idea can be given as follows:

– Fix a cyclic group G of prime order p and a generator g ∈ G.
– Choose a polynomial f ∈ Fp[x] of degree t− 1, say f(x) = a0 + a1x+ · · ·+
at−1x

t−1.
– The polynomial is kept secret but a commitment to the polynomial is

published by publicly distributing the coefficient of f on the exponent of
g. Shares (usually f(i)’s for the ith shareholder) are also published on the
exponents of g.

– When t or more participants come together, they can interpolate f on the
exponent of g, i.e., gf(x).

Our proposal, though works with polynomial interpolation, is based on a
different approach. This idea is very prominent in threshold cryptography, e.g.,
broadcast encryption, threshold encryption, attribute based encryption etc. The
approach for our scheme is inspired by the work of [DPP07,HLR10,DP08]. An
overview of this idea can briefly be described as follows:

– Fix a cyclic group G of prime order p and a generator g ∈ G.
– Choose a polynomial f ∈ Fp[x] and publish it (unlike the earlier approach,
f is not kept secret).

– Instead what is kept secret is a value (say γ ∈ Fp) where this polynomial
would later be evaluated. Some public information is made available so that
one can compute gf(γ).

Scheme: Now we describe a (t, n)-threshold publicly verifiable secret sharing
scheme. A special property of this scheme is that the participants are initially
issued secret keys such that for every new secret that the dealer wants to share,
the participants can use the same secret keys to derive the respective shares of
the secret in question. Let λ be the underlying security parameter of the system.

– Initialization: This algorithm consists of two steps:
• Setting up public parameters: Generates a bilinear map group system

(p,G1, G2, G̃, e(·, ·)). Also, two generators g ∈ G1 and h ∈ G2 are ran-
domly selected as well as the secret values α, γ ∈ F∗p. We assume that p
is significantly larger than n. The dealer then computes and publishes(

u = gαγ , h, hα, {hγi}n−t−1
i=1 , {hαγi}ni=1

)
.



• User keys generation: There are n participants P1, . . . , Pn and each of
them is given a pair of public key and secret key as: the dealer first
randomly selects n many distinct elements a1, . . . , an ∈ F∗p and consider
the following polynomial,

f(x) =
∏n
i=1(x+ ai).

Then the ith participant Pi is given public key and secret key as
(pki, ski) = (ai, g

1
γ+ai ).

Thus {ai}’s are known to all, i.e., f is public. The Remark 1 below de-
scribes how the participants can verify the correctness of their respective
secret keys. Also the dealer can publicly send the encrypted secret keys
using any standard ElGamal like public key encryption scheme.

– Distribution: The dealer wishes to share a secret, which is an element in
G̃. The secret is of the form e(g, h)αk, where k is selected randomly from F∗p.
The dealer then computes and publishes the following values:
• Share commitment element (SCE): This value binds the dealer’s com-

mitment to the secret and is given as,
SCE = u−k = g−kαγ .

• Share deriving element (SDE): This value contains information about
all the shares of the secret for which the dealer rendered his commitment.
Participants will get their share by using the respective secret keys with
SDE. This value is given as,

SDE = hαkf(γ).
The ith participant gets his share Si by computing,

Si = e(g
1

γ+ai ,SDE).
– Verification: Any (external) verifier first computes

SCE′ = u−1 and SDE′ = hαf(γ).

One may note that hαf(γ) can be computed using {hαγi}ni=1. The verifier
then check the correctness by checking

e(SCE′,SDE) = e(SCE,SDE′)

One should also note that the share deriving element SDE is consistent with
the share commitment element SCE if and only if there exists a scalar k
such that SCE = (SCE′)k and SDE = (SDE′)k. If the verification fails, all
participants exit the protocol.

– Reconstruction: Let A be a qualified set of participants, i.e. it consists
of at least t many participants. Let the public-keys of the participants are
ar1 , . . . , ars , s ≥ t. Together with their respective shares e(g

1
γ+ari , hαkf(γ))’s,

they reconstruct the secret as follows. They first compute

R1 = e(g, h)kαfr1,...,rs (γ), where fr1,...,rs(γ) = f(γ)Qs
i=1(γ+ari )

.

[The computation of R1 is done recursively. A simple case is described here

for convenience. With e(g, hαkf(γ))
1

γ+ar1 and e(g, hαkf(γ))
1

γ+ar2 , the element

e(g, hαkf(γ))
1

(γ+ar1 )(γ+ar2 ) is derived as:



(
e(g,hαkf(γ))

1
γ+ar1

e(g,hαkf(γ))
1

γ+ar2

) 1
(ar2−ar1 )

.

Thus, in order to compute e(g, hαkf(γ))
1

(γ+ar1 )(γ+ar2 )(γ+ar3 ) , one can repeat

the above technique twice: first with the inputs e(g, hαkf(γ))
1

γ+ar2 and

e(g, hαkf(γ))
1

γ+ar3 (which will output e(g, hαkf(γ))
1

(γ+ar2 )(γ+ar3 ) ) and secondly

with the inputs e(g, hαkf(γ))
1

(γ+ar1 )(γ+ar2 ) and e(g, hαkf(γ))
1

(γ+ar2 )(γ+ar3 ) ] Next
they compute,

R2 = h
1
γ (fr1,...,rs (γ)−fr1,...,rs (0))

The computation of R2 can successfully be carried out using {hγi}n−t−1
i=1 as

degree of 1
γ (fr1,...,rs(γ)− fr1,...,rs(0)) = n− s− 1 and n− s− 1 ≤ n− t− 1

as (t ≤ s). Now compute

e(SCE, R2) ·R1 = e(g−kαγ , h
1
γ (fr1,...,rs (γ)−fr1,...,rs (0))) · e(g, h)kαfr1,...,rs (γ)

= e(g, h)−kα(fr1,...,rs (γ)−fr1,...,rs (0)) · e(g, h)kαfr1,...,rs (γ)

= e(g, h)kαfr1,...,rs (0)

Finally the secret is reconstructed by computing

e(g, h)kα =
(
e(g, h)kαfr1,...,rs (0)

) 1
fr1,...,rs (0) .

Remark 1. The ith participant Pi, with its pair of keys

(pki, ski) = (ai, g
1

γ+ai ),

can check the correctness of its secret key as follows. It first computes hαai and
checks if

e(ski, hαγ · hαai) = e(g
1

γ+ai , hαγ · hαai)

= e(g
1

γ+ai , hα(γ+ai))
= e(g, h)α

One may note that e(g, h)α cannot be computed from the public parameters.
One has to put e(g, h)α as part of public parameters. One may later see that,
this will not hamper the security proof of the proposed scheme.

Remark 2. Our scheme couldn’t provide a satisfactory answer to the following
problem. During the reconstruction phase when a shareholder releases his share
commitment value e(g

1
γ+ai , hαkf(γ)), there seems to be no obvious method to

verify this value. One, not so interesting, wayout is to publish the hash digests
of e(g

1
γ+ai , hαkf(γ))’s, (1 ≤ i ≤ n) during the distribution step of the scheme.

But then this would mean that the correctness of the verification can only be
carried out in the random oracle model.



Remark 3. The Reconstruction algorithm of the scheme requires the compu-
tation of R1 = e(g, h)kαfr1,...,rs (γ) given {ari}si=1 and {e(g

1
γ+ari , hαkf(γ))}si=1.

The recursive method (described in the scheme) takes time that is bounded by
(s−1)s

2 · (Tp+TG̃), where Tp is the total time of a subtraction and an inversion in
Fp and TG̃ the total time of a division and exponentiation in G̃. One may note

that the computation of the elements

(
e(g,hαkf(γ))

1
γ+ari

e(g,hαkf(γ))

1
γ+arj

) 1
(arj−ari )

’s is done by

exponentiation (not by computing the high order roots) as 1
(arj−ari )

is invertible

modulo the order of the elements

(
e(g,hαkf(γ))

1
γ+ari

e(g,hαkf(γ))

1
γ+arj

)
which is p.

3.1 Security Analysis

3.2 Verifiability

We describe that a dishonest dealer cannot cheat the shareholders without being
detected in the verification.

Lemma 1. If the dealer passes the verification step, then all qualified subsets
of honest shareholders will reconstruct the same secret that dealer had wished to
share.

The dealer puts forward its commitment to the secret e(g, h)αk by binding its
essential value k as part of the secret commitment value SCE = u−k = g−kαγ .
Thus, the share deriving element SDE=hkαf(γ) is consistent with the shared
commitment element SCE follows from the facts that,

– SDE′ (= hαf(γ)) and SCE′ are obtained respectively from the dealer’s pub-
licly committed values {hαγi}ni=1 and u = gαγ ,

– and the equality e(SCE′,SDE) = e(SCE,SDE′) which essentially ensures
that the scalar k is same such that SCE = (SCE′)k and SDE = (SDE′)k.

3.3 Indistinguishability of Secrets (IND)

In this section, we show that our (t, n)-threshold PVSS scheme is SA-IND secure,
assuming that the (n, t)-MSE-DDH problem is hard to solve.

Theorem 1. Let n, t (t ≤ n) be two positive integers. For any PPT adversary
A against the SA-IND security of our (t, n)-threshold PVSS scheme, there exists
an algorithm B that distinguishes the two distributions of the (n, t)-MSE-DDH
problem, such that

AdvSA−INDA (λ) ≤ 2 ·Adv(n,t)−MSE−DDH
B (λ)



Proof: The security reduction is to show that if there is an adversary (A)
which can break our (t, n)-threshold PVSS then one obtains an algorithm to
solve (n, t)-MDE-DDH. The heart of such an algorithm is a simulator (B) which
is constructed as follows. Given an instance of (n, t)-MSE-DDH as input, the sim-
ulator plays the security game SA-IND with an adversary against (t, n)-threshold
PVSS. The simulator sets up the (t, n)-threshold PVSS based on the (n, t)-MSE-
DDH instance. The simulator gives the public parameters to the adversary and
continues the game by answering all queries made by the adversary. The queries
include, public keys of n participants and private keys of t − 1 corrupted par-
ticipants. In the process, it randomly chooses a bit b and distributes the shares
of the secret Tb using the (n, t)-MSE-DDH instance provided as input. Finally,
the adversary outputs a bit b′. Based on the value of b and b′, the simulator
decides whether the instance it received is real or random. Intuitively, if the
adversary has an advantage in breaking the scheme, the simulator also has an
advantage in distinguishing between real and random instances. This leads to
an upper bound on the advantage of the adversary in terms of the advantage of
the simulator in solving (n, t)-MSE-DDH.

– (n, t)-MSE-DDH Instance: The simulator, B, receives an instance of
(n, t)-MSE-DDH as described in Section 2.4. Thus B is given a bilinear map
group system (p,G1, G2, G̃, e(·, ·)) where the size of p is λ. We assume that p
is significantly larger than n. B is further given polynomials θ1, θ2 ∈ Fp[x] of
degrees n and n− t+1 respectively as described in Section 2.4. The negative
roots of θ1 and θ2 are denoted by a1, . . . , an and an+t, . . . , a2n respectively.
This instance also includes,

• ĝ1 := [g1, gα1 , {g
γi

1 }
n+t−2
i=1 , {gαγ

i

1 }n+t
i=1 and g

kγθ1(γ)
1 ] ,

• ĝ2 := [g2, gα2 , {g
γi

2 }
n−t−1
i=1 , {gαγ

i

2 }ni=1 and g
kθ2(γ)
2 ],

• an element T ∈ G̃.
– Initialization: B selects randomly t − 1 elements an+1, . . . , an+t−1 ∈ F∗p

(different from the input ai’s) and construct a polynomial of degree t− 1 as,

θ0(x) =
∏n+t−1
i=n+1(x+ ai).

The public parameters are defined and published in the following manner.

• g = g
θ1(γ)θ0(γ)
1 ,

• h = g2,
• hα, {hγi}n−t−1

i=1 , {hαγi}ni=1,
• u = g

αγθ1(γ)θ0(γ)
1 = (gθ1(γ)θ0(γ)1 )αγ = gαγ .

One may note that B cannot compute g, as degree of θ1(x)θ0(x) is n+ t− 1.
As we see subsequently that the form of g is required only for the security
analysis and B doesn’t have to publish it. Of course B can compute u with
{gαγ

i

1 }n+t
i=1 . Thus to be precise the published parameters are,

u, h, hα, {hγi}n−t−1
i=1 , {hαγi}ni=1.



– User Keys Generation: There are n participants and t− 1 of them are
assumed to be corrupted, i.e., B will issue respective public key and secret
key pairs to A for t− 1 corrupted participants and only public keys for the
remaining n− t+ 1 participants.
• Corrupted participants: For t− 1 corrupted participants

(Pwn+1 , . . . , Pwn+t−1), the key pairs are issued to A as

(pkwi , skwi) = (ai, g
θ1(γ)θ0(γ)
γ+ai

1 ) = (ai, g
1

γ+ai ), i = n+ 1 to n+ t− 1
• Honest Participants: The remaining n− t+1 participants assigned their

respective public keys from
{ai}2ni=n+t.

One may note that B can compute g
θ1(γ)θ0(γ)
γ+ai

1 ’s using {gγ
i

1 }
n+t−2
i=1 .

– Distribution of secret commitment element and share deriving el-
ement: B defines polynomial f , as described in the scheme, whose negative
roots correspond to the public keys of all the participants. Thus,

f(x) = θ0(x)θ2(x).

B then proceed to select T as the secret that it intends to share among
the n participants by publishing the secret commitment element and share
deriving element as,

(SCE,SDE) = (gkαθ1(γ)1 , g
kθ2(γ)
2 ).

One may note that, if we set k′ = k
αθ0(γ)

, then

SCE = g
−kγθ1(γ)
1

= g
−k′αγθ0(γ)θ1(γ)
1

= (gθ1(γ)θ0(γ)1 )−k
′αγ

= (g)−k
′αγ = u−k

′

and

SDE = g
kθ2(γ)
2

= g
αk′θ0(γ)θ2(γ)
2

= hαk
′f(γ)

Further, if T is real, then

T = e(g1, g2)kθ1(γ)

= e(g1, g2)αk
′θ0(γ)θ1(γ)

= e(g, h)αk
′

Thus the secret T is of required form as described in the scheme. With this,
the simulator now randomly selects a bit b ∈ {0, 1} and sets Tb = T and
assigns a random value in the secret space G̃ to T1−b. A is then issued



(SCE,SDE, T0, T1).

– Guess: Finally A outputs its guess, a bit b′ for b.

Based on the value of b and b′, B goes on to solve the (n, t)-MSE-DDH problem
instance at hand as follows:

– if b′ = b, B answers 1, meaning that T = e(g1, g2)kθ1(γ),
– otherwise, B answers 0, meaning that T is a random element of G̃.

Thus, the advantage of the algorithm B in solving the input (n, t)-MSE-DDH
problem is

Adv(n,t)−MSE-DDH
B (λ)

=
∣∣∣Pr[B(I(θ1, θ2, [g1], [g2], T )) = 1|real]−Pr[B(I(θ1, θ2, [g1], ĝ2, T )) = 1|random]

∣∣∣
=
∣∣∣Pr[b′ = b|real]−Pr[b′ = b|random]

∣∣∣.
In the above simulation, when the event real occurs, the simulator B poses as
a real challenger for A, i.e., the distribution of all the parameters during the
simulation perfectly comply with the IND security game and therefore

∣∣∣Pr[b′ =

b|real] − 1
2

∣∣∣ = 1
2AdvSA−INDA (λ). Whereas, when the event random occurs, the

distribution of the guess bit b′ is completely independent of the distribution of
the bit b and thus Pr[b′ = b] is equal to 1

2 . Putting it altogether, we obtain

AdvSA−INDA (λ) ≤ 2 ·Adv(n,t)−MSE−DDH
B (λ).

4 Comparison

We use HV and PS to denote the schemes proposed in [HV08] and this article
respectively. In Table 1, we compare PS with HV in terms of exponentiations (in
the underlying groups) and pairing computations. HV uses symmetric pairing
and PS is based on asymmetric pairing. Thus the group exponents are computed
in G (see Section B) forHV, and in G1, G2 for PS (see Section 3). A list of points
to better understand the comparison table is given as follows:

– n, t bears the usual meaning.
– For Reconstruction algorithm, comparison is done based on the number of

operations required for t shareholders to reconstruct the secret.
– HV requires computation of 2t pairings to verify the shares, released by the t

shareholders during the Reconstruction algorithm. But this number has not
been counted in the comparison table as PS does not satisfy this property.



Table 1. Comparison Table

Algorithms Schemes Exponentiation
in G, G1 or G2

Exponentiation
in G̃

Pairing

Setup
HV n − −
PS 3n− t + 1 − −

Distribution
HV n + t − −
PS 2 − n

Verification
HV n · t − 2n
PS n − 2

Reconstruction
HV 2t − 1

PS n− t− 1 ≈ (t−1)t
2

1

5 Conclusion

We have proposed in this paper a practical (t, n)-threshold PVSS scheme that
achieves simultaneously:

– Efficient non-interactive public verification.
– Provable security for the public verifiability in the standard model.

Efficiency of the non-interactive public verification step of our scheme is optimal
while comparing with the earlier proposal [HV08]. We provide formal security
proof for our scheme, against indistinguishability of secrets (IND) attack model,
based on the hardness of a problem that we call the (n, t)- multi-sequence of ex-
ponents Diffie-Hellman problem (MSE-DDH). This problem falls under the gen-
eral Diffie-Hellman exponent problem framework. [BBG05]. The security proof
(for indistinguishability of secrets ) could handle only static adversaries. An in-
teresting task would be to modify the scheme accordingly so that an adaptive
adversary can be handled during the security analysis. The other challenging
task is to provide the security proof under a more standard assumption.
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A The Lagrange Interpolation

Here, we give a concrete description of the Lagrange interpolation. Let P (x) =∑t−1
j=0 αjx

j be a polynomial over Fp with degree t − 1 where p is a prime, and
(x1, P (x1)), . . . , (xt, P (xt)) be t many distinct points over P (x). Then, for given
(x1, P (x1)), . . . , (xt, P (xt)) one can reconstruct P (x) as

P (x) = P (x1)λx1(x) + · · ·+ P (xt)λxt(x),

where for 1 ≤ j ≤ t

λxj (x) = (x−x1)···(x−xj−1)(x−xj+1)···(x−xt)
(xj−x1)···(xj−xj−1)(xj−xj+1)···(xj−xt) .

B Heidarvand and Villar’s PVSS Scheme

Here, we recall the PVSS scheme of [HV08]. A bilinear map group system
(p,G, G̃, e(·, ·)) is generatd where the bilinear map is e : G×G→ G̃. The aim is
to share efficiently a random value from G̃. The Dealer, D, will achieve this by
first randomly selecting two independent generators g, h ∈ G, s ∈ Fp and then
distributing shares of the secret e(h, h)s.

– Initialization: Participants Pi’s generates their respective private keys
xi ∈R Z∗p and registers yi = hxi as their respective public keys.

– Distribution: The dealer wishes to distribute the secret among partici-
pants P1, . . . , Pn. The dealer picks a random polynomial p of degree t− 1 in
Fp[x]:

p(x) =
t−1∑
j=0

αjx
j

and sets s = α0. The dealer keeps this polynomial secret but publishes the
secret commitment values Cj = gαj , 0 ≤ j ≤ t−1. The dealer also publishes
the shares deriving values Yi = y

P (i)
i , 1 ≤ i ≤ n, where yi’s are the public

keys of the participants.
– Verification: An external verifier can check the correctness of the shares

as follows. For i = 1 to n, it computes

Xi =
t−1∏
j=0

Ci
j

j ,



and checks if the following equalities holds.

e(Xi, yi) = e(g, Yi).

If the verification fails, all participants exit the protocol. Note that the
verification step requires 2n pairing computations.

– Reconstruction: Using its private key xi, each participant find the share

Si = hP (i) from Yi by computing Si = Y
x−1
i

i . Then all participants pool
their shares. All shares can be verified by other participants by checking the
equation e(Si, yi) = e(Yi, h). After the verification, if there are at least t
correct shares, then for an arbitrary set A of t participants who have pooled
correct shares can get hs by Lagrange interpolation:∏

Pi∈A
Sλii =

∏
Pi∈A

(hP (i))λi = h
P
Pi∈A

λiP (i) = hP (0) = hs,

where λi =
∏

Pj∈A\{Pi}

j

j − i
is a Lagrange coefficient. The secret will be re-

covered by computing e(hs, h).

B.1 Security

We state the security theorem for public verification of Heidarvand and Villar’s
PVSS Scheme [HV08].

Theorem 2. [HV08] The PVSS scheme is publicly verfiable in the presence of
an unbounded adversary.

C A Modification of Heidarvand and Villar’s PVSS
Scheme (Modified-HV Scheme)

In this Section we propose a modification to the verification algorithm of [HV08].
Thus we present only the new verification algorithm.

– Verification: An external verifier can check the correctness of the shares
as follows. For i = 1 to n, it computes

Xi =
t−1∏
j=0

Ci
j

j ,

and checks if the following equality holds,
n∏
i=1

e(Xi, yi) = e(g,
n∏
i=1

Yi).

If the verification fails, all participants exit the protocol. Note that the
verification step requires n+ 1 pairing computations.



C.1 (n, t)-RDHE (The Representation of (n, t) Diffie-Hellman
Exponent) Problem

We relate the security of the public verifiability of Modified-HV to a variant of
computational Diffie-Hellman problem. We call it, the (n, t)-RDHE (The Rep-
resentation of (n, t) Diffie-Hellman Exponent) Problem.

Let G be a multiplicative group with prime order p and n, t be two positive
integers (t ≤ n). We assume that p is significantly larger than n. The repre-
sentation of (n, t) Diffie-Hellman exponent problem related to the group G is
described as follows:

– Input: A degree (t− 1) polynomial in Fp[x],

P (x) = α0 + α1x+ . . .+ αt−1x
t−1.

Beside P (x), the tuple of exponents [h, hd1 , . . . , hdn ] is also given as input,
where h ∈ G and d1, . . . , dn ∈ Fp.

– Output: A tuple (hd1)a1 , . . . , (hdn)an such that,

(a1, . . . , an) 6= (P (1), . . . , P (n)) but h
Pn
i=1 diai = h

Pn
i=1 diP (i),

where a1, . . . , an ∈ Fp.

Let λ be the size of the underlying group order. We define the advantage of an
algorithm A in solving (n, t)-RDHE problem as

Pr[A(P (x), h, hd1 , . . . , hdn) = (hd1)a1 , . . . , (hdn)an) | (a1, . . . , an) 6=
(P (1), . . . , P (n)) but h

Pn
i=1 diai = h

Pn
i=1 diP (i)],

where the probability is over the random choice of generator h in G, the random
choice of P (x) ∈ Fp[x], and the random bits consumed by A.

Definition 2. We say that the (τ, ε)-(n, t)-RDHE assumption holds on G if no
τ -time algorithm has advantage at least ε in solving the (n, t)-RDHE problem on
G.

C.2 Security

The following theorem states that if the dealer passes the verification, then all
participants in the protocol must behave honestly or will be detected.

Theorem 3. Under the (n, t)-RDHE assumption, If Verifier accepts, then there
exists unique polynomial P (x) such that the encrypted share of participant Pi is
Yi = y

P (i)
i for 1 ≤ i ≤ n.

Proof: The security reduction is to show that if there is a dishonest dealerA who
can successfully cheat in the verification algorithm of the Modified-HV scheme,
then one obtains an algorithm B to efficiently solve (n, t)-RDHE problem. We
describe the algorithm B as follows:



– B is given an instance of the (n, t)-RDHE problem. This instance includes a
polynomial P (x) = α0 + α1x+ . . .+ αt−1x

t−1, and a tuple [h, hd1 , . . . , hdn ]
of elements from the group G of order p.

– B selects randomly an element g ∈ G. It then fed A with
(P (x), g, h, hd1 , . . . , hdn) and asks A to setup the Modified-HV scheme with
yi = hdi as the public key of the ith participant Pi, 1 ≤ i ≤ n.

– A then sets e(h, h)α0 as the secret, where α0 = P (0).
– A then publishes the commitment values (for the polynomial P (x)) Cj =
gαj , 0 ≤ j ≤ t − 1. Next it selects a1, . . . , an and publishes Yi = yaii , 1 ≤
i ≤ n. A then claims that Yi’s are the respective encrypted shares for the
participants Pi’s. ThusA can successfully cheats in the above claim (amounts
to cheating in verification) if

(a1, . . . , an) 6= (P (1), . . . , P (n)) but
n∏
i=1

e(Xi, yi) = e(g,
n∏
i=1

Yi). (1)

– Finally B outputs (Y1, . . . , Yn) as the solution to the given (n, t)-RDHE prob-
lem instance.

This completes the description of B. Equation (1) implies

(a1, . . . , an) 6= (P (1), . . . , P (n)) but h
Pn
i=1 diai = h

Pn
i=1 diP (i),

as
∏n
i=1 e(Xi, yi) = e(g,

∏n
i=1 Yi) =>

∏n
i=1 e(g

P (i), hdi) = e(g,
∏n
i=1 y

ai
i ) =>∏n

i=1 e(g, h
di·P (i)) = e(g,

∏n
i=1 h

di·ai) => e(g, h
Pn
i=1 di·P (i)) = e(g, h

Pn
i=1 di·ai)

=> h
Pn
i=1 diP (i) = h

Pn
i=1 diai . Thus if the dealer A successfully cheats in the

verification algorithm then its advantage translates to the advantage of B in
solving the given (n, t)-RDHE problem instance.


