
Co-Z Divisor Addition Formulae in Jacobian of
Genus 2 Hyperelliptic Curves over Prime Fields

(Extended)

Vladislav Kovtun
Chair of Information Security
National Aviation University

Kiev, Ukraine
vladislav.kovtun@nrjetix.com

Sergey Kavun
Department of Computer Systems and Technologies

Kharkov National University of Economic
Kharkov, Ukraine

kavserg@gmail.com

Abstract—in this paper we proposed a new approach to divisor
scalar multiplication in Jacobian of genus 2 hyperelliptic curves
over fields with odd characteristic, without field inversion. It is
based on improved addition formulae of the weight 2 divisors in
projective divisor representation in most frequent case that suit
very well to scalar multiplication algorithms based on Euclidean
addition chains.

Keywords-hyperelliptic curve, divisor, Jacobian, addition
formulae, exponentiation, projective representation

I. INTRODUCTION

Since the introduction in publications of Miller and Koblitz
the application of algebraic curves in cryptography was given
its impulse to start [1, 2]. In these publications the usage of the
property of the elliptic curve (EC) points to form the additive
Abelelian group was suggested. In his later research [3],
Koblitz has proved the possibility of using more complex
curves – hyperelliptic (HEC). For HEC the group (Jacobian) of
more complex structures should be considered – divisors
instead of the curve points. As referred to in [3], HEC have a
variety of advantages over EC: being richer source of the
Abelian groups [3, 4] (forming the Abelian group, the size of
which is defined by product of the base field size by a curve
genus). Within the long time HEC cryptosystems were
restricted to academic interest only, having no practical
application due to high complexity of software and hardware
implementation, low performance, absence of in-depth studies
in the field of cryptoanalysis of such cryptosystems and
absence of comprehensible algorithms of cryptosystem
parameters generation [3, 4]. The active research [3-18] of
HEC has allowed to overcome the majority of the described
difficulties. The given research is devoted to the issues of
further efficiency improvement of genus 2 HEC cryptosystems
over prime fields.

The authors of publications [7, 9-18], offer variety of
approaches which increase the performance of HEC
cryptosystems essentially, making them highly competitive
with EC cryptosystems.

II. BACKGROUND
Let's observe basic concepts of cryptosystems on HEC.

More detailed information can be obtained from [3, 4].

Let K be a field and K be the algebraic closure of K .
Hyperelliptic curve (HEC) C of genus 1g ≥ over K is a set of
points (),u v that satisfy the equation:

 () ()2:C v h u v f u+ = , [],k u v , (1)

where () []h u k u∈ is a polynomial of degree at most g ,
() []f u k u∈ is a monic polynomial of degree 2 1g + , and there

are no solutions (),u v K K∈ × which simultaneously satisfy the
equation (1) and the partial derivative equations ()2 0u h u+ = ,

() () 0h u v f u′ ′− = .

In case of genus 2 HEC, polynomials ()f u and ()h u may
be represented as () 5 4 3 2

4 3 2 1 0f u u f u f u f u f u f= + + + + + and
() 2

2 1 0h u h u h u h= + + , ,i jh f K∈ .

Divisor D is a formal sum of points in C :

pP C
D m P

∈
= ∑ , Pm ∈ Z ,

Where only a finite number of the Pm are non zero.

Divisor 0D ∈ D is a principal divisor, if ()divD R= for some
rational function ()*R K C∈ . The set of all principal divisors,
denotes () () (){ }div :CP K F F K C= ∈ , in curve C over K ,

moreover ()CP K is a subgroup of 0D . Generally () ()CP C P K=
is called a group of principal divisors of curve C . The quotient
group () () ()0divC C CJ K K P K= is called the Jacobian of the
curve C over K . The quotient group () () ()0divJ C C P C= is
called Jacobian of the curve C .

Further, we will operate with divisors in Mumford
representation [4] ()2

1 0 1 0,D x u x u v x v= + + + , deg deg 2v u< ≤ ,
() () 2|u f u h u v v− − , where ()iD J C∀ ∈ , () 2iweight D = , 1, 2i = the

result 3 1 2D D D= + will have a 3() 2weight D = , this allows to save
several additional verifications of common addition algorithm.
Assume ()pGF is a base field, where p is an odd prime.

HECC uses a divisor scalar multiplication operation:

k

D D D k D+ + + = ⋅L1442443 .

At the intermediate computation phase of most popular
binary scalar multiplication algorithm performs divisor
addition and doubling operation. The addition and doubling
algorithms use field ()pGF inversion. Inversion is the most
computationally intensive and space critical operation.
Projective divisor representation [11, 12] is the most popular
approach which allows to save a field inversion.

Divisor ()2
1 0 1 0,D x u x u v x v= + + + in projective representation

may be represented as []1 0 1 0, , , ,D U U V V Z= , where
()2

1 0 1 0,D x U Z x U Z V Z x V Z= + + + .

At this moment, the most efficient types are arithmetic in
projective representation, described in the paper [20] and in
weighted representation, described in [17].

III. CO-Z APPROACH
Paper [22] gives a new impulse to the increase of efficiency

of point scalar multiplication in EC over ()pGF . The author
has proposed transformation of EC points to projective and
modified Jacobi representation with the same denominator and
further operation with points of identical Z -coordinates. This
approach is called a Co-Z in literature. For the implementation
of scalar multiplication on the basis of idea [22], algorithms
described in [22] should be used, based on Euclidian addition
chains approach and scalar in Zeckendorf representation in
order to replace doublings by Fibonacci numbers computations,
refer to. Algorithm A.1.

Apply Co-Z approach to the divisor addition algorithm in
projective representation. As a basis we should use divisor
addition algorithm proposed in [15] and improved in [20]
(Algorithm A.2).

Algorithm A.1 Fibonacci-and-add (),k P

Input: CD J∈ , ()2, ,l Z
k d d= K

Output: [] Ck D J∈
begin
 () (), ,U V D D←
 for 1i l= − downto 2
 if 1id = then U U D← + (add step)

 () (), ,U V U V U← + (Fibonacci step)
 end
 return U
end

On the assumption that 1 2Z Z Z= = , for 1D and 2D , algorithm
A.2 can be transformed to the algorithm A.3. Let’s describe all
modifications in A.2.

Algorithm А.2. Addition reduced divisors
Input: []11 10 11 10 1, , , ,U U V V Z , []21 20 21 20 2, , , ,U U V V Z
Output: [] []1 0 1 2 11 10 11 10 1, , , , , , , ,U U V V Z U U V V Z′ ′ ′ ′ ′ = +

[]21 20 21 20 2, , , ,U U V V Z+ , () ()1 2 2weight D weight D= =

Expression Cost
1 Precomputations: 1 2Z Z Z= ⋅ , 21 1 21U Z U= ⋅% , 20 1 20U Z U= ⋅% ,

21 1 21V Z V= ⋅% , 20 1 20V Z V= ⋅%

5M

2 Compute resultant r for 1u and 2u : 1 11 2 21y U Z U= ⋅ − % ,

2 20 10 2y U U Z= − ⋅% , 3 11 1 2 1y U y y Z= ⋅ + ⋅ ,
2

2 3 1 10r y y y U= ⋅ + ⋅

1S, 6M

3 Compute almost inverse 2 1modinv r u u= ,

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=

4 Compute ()1 2 1mods v v inv u= − , 1 0s s x s= + :

0 10 2 20w V Z V= ⋅ − % , 1 11 2 21w V Z V= ⋅ − % , 2 0 0w inv w= ⋅ ,

3 1 1w inv w= ⋅ , 0 2 10 3s w U w= − ⋅ ,

() () ()1 0 1 1 0 1 2 3 1 11s inv Z inv w w w w Z U= + ⋅ ⋅ + − − ⋅ +

If 1 0s = then consider special case

8M

5 Precomputations: R r Z= ⋅ , 2 0s s Z= ⋅ , 3 1s s Z= ⋅ ,

3R R s= ⋅% , 0 1 0w s s= ⋅ , 1 1 3w s s= ⋅ , 2 0 3w s s= ⋅ ,

3 1 21w w U= ⋅ % , 4 1w R s= ⋅

9M

6 Compute 2l su= , 3 2
2 1 0l x l x l x l= + + + : 0 0 20l w U= ⋅ % ,

2 3 2l w w= + , () ()1 1 0 21 20 0 3l w w U U l w= + ⋅ + − −% %

2M

7 Compute ()() 1
1 12u s l h v k u−′ = + + − , ()2

1 1 1k f v h v u= − − ,
2

1 0u x u x u′ ′ ′= + + : 2
1 2 3 1 1 22U w s s y h R R′ = − ⋅ + −% %

()2
0 2 1 1 1 11 2 2 1 4 21 12 2U s s y s U s y w w V h R′ = + ⋅ ⋅ ⋅ − + ⋅ + ⋅ + +% % %

() ()2 2 1 11 1 21 42R h s s U r y U f Z⎡ ⎤+ ⋅ − + ⋅ + −⎣ ⎦
%

2S, 8M

8 Adjust: 0 0U U R′ ′= ⋅% % , 1 1U U R′ ′= ⋅% % , 2
3Z s R′ = ⋅ % 1S, 3M

9 Compute ()1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + :

() ()2
1 1 2 1 2 3 0 0 4 21 1V U l U h R s U h R w V l′ ′ ′ ′= ⋅ − + + ⋅ − − −% % % % % % ,

() ()2
0 0 2 1 2 3 0 2 4 20V U l U h R s l h R w V′ ′ ′= ⋅ − + − ⋅ + + ⋅% % % % %

5M

4S, 46M
Step A.2.1. This step is to be omitted due to existence of

the same denominator of all coordinates, which allows to save
5 multiplications in ()pGF .

Step А.2.2. While computation of 1y and 2y , reduction to
common denominator of coordinates 1 jU and 2 jU is not
required, saves 2 multiplications in ()pGF .

Step A.2.4. While computation of 1w and 2w , reduction to
common denominator of coordinates 1 jV and 2 jV is also not
required, saves 2 multiplications in ()pGF .

Step A.2.5. The number of precomputations can be
decreased by 3 multiplications in ()pGF due to reorder

computation of coefficients 0l , 1l and 2l of polynomial l on a
step A.2.6.

Algorithm А.3. Co-Z reduced divisors addition
Input: []11 10 11 10, , , ,U U V V Z , []21 20 21 20, , , ,U U V V Z
Output: [] []1 0 1 2 11 10 11 10, , , , , , , ,U U V V Z U U V V Z′ ′ ′ ′ ′ = +

[]21 20 21 20, , , ,U U V V Z+ , () ()1 2 2weight D weight D= =

Expression Cost
1 Compute resultant r of 1u , 2u : 1 11 21y U U= − ,

2 20 10y U U= − , 3 11 1 2y U y y Z= ⋅ + ⋅ , 2
2 3 1 10r y y y U= ⋅ + ⋅

1S, 4M

2 Compute almost inverse 2 1modinv r u u= ,

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=

3 Compute ()1 2 1mods v v inv u= − , 1 0s s x s= + :

0 10 20w V V= − , 1 11 21w V V= − , 0 3 0 10 1 1s y w U y w= ⋅ − ⋅ ⋅

1 2 1 1 0s y Z w y Z w= ⋅ + ⋅ ⋅ ,

If 1 0s = then consider special case

6M

4 Precomputations: R r Z= ⋅ , 2 0s s Z= ⋅ , 3 1s s Z= ⋅ ,

3R R s= ⋅% , 3 1 1w s y= ⋅ , 5 3 1 21w w s U= + ⋅

6M

5 Compute 2l su= , 3 2
2 1 0l x l x l x l= + + + : 0 0 20l s U= ⋅ ,

2 1 21l s U= , () () 202021011 llUUssl −−+⋅+= , 222 sll +=

2M

6 Compute ()() 1
1 12u s l h v k u−′ = + + − , ()2

1 1 1k f v h v u= − − ,
2

1 0u x u x u′ ′ ′= + + : () 2
1 3 2 3 22U s s w h R R′ = ⋅ − + −%

() ()2
0 2 3 5 2 3 2 1 21 12 2U s w w s s y s r V h R′ = + ⋅ − + ⋅ ⋅ + ⋅ + +%

() ()2 2 5 11 21 4R h s w r U U f Z+ ⋅ − + ⋅ + − ⋅⎡ ⎤⎣ ⎦

2S, 8M

7 Adjust: 0 0U U R′ ′= ⋅% % , 1 1U U R′ ′= ⋅% % , ()2 3
3 3Z s R s r Z′ = ⋅ = ⋅ ⋅% 1S, 3M

8 Compute ()1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + :

()() ()()2
1 1 2 2 3 1 3 0 3 1 21 1V U l h R s U s U s h R rV l′ ′ ′ ′= ⋅ + ⋅ − + ⋅ − ⋅ + +% % % ,

()() ()2
0 0 2 2 3 1 3 3 0 0 20V U l h R s U s s l h R r V′ ′ ′= ⋅ + − − ⋅ ⋅ + + ⋅% %

8M

4S, 37M
9 Adjust: 3

3cZ s r= ⋅ , 20 20 cU U Z= ⋅ , 21 21 cU U Z= ⋅ ,

20 20 cV V Z= ⋅ , 21 21 cV V Z= ⋅

5M

4S, 42M
Step A.2.6. Unlike algorithm A.2, the A.3 offers

considering multiplier 3s , present in each coefficient 0l , 1l and
2l of polynomial l , when using coefficients il , 0, 2i = on the

steps A.2.7 and A.2.9. This allows to factor out 3s , thus saves 3
multiplications in ()pGF . Consider next the application of
proposed algorithm for the mixed divisor addition 1D and 2D ,
such as []11 10 11 10, , , ,U U V V Z and []21 20 21 20, , , ,1U U V V (affine
representation). Therefore it is necessary to reduce devisor 2D
to common Z -coordinate, i.e. []21 20 21 20, , , ,U Z U Z V Z V Z Z⋅ ⋅ ⋅ ⋅ the
action requires 4 multiplications in ()pGF . Hereinafter the
provided algorithm A.3 should be used for addition of (prior
formed) divisors with the same Z -coordinate.

It is to be considered that after computing 3 1 2D D D= + one
of the items, for example 2D , should be transformed to the
same Z -coordinate with a divisor 3D . For this purpose, at the
step A.3.9, value cZ should be computed, where 3 cZ Z Z= ⋅ , i.e.

3
3cZ s r= ⋅ , which requires 1 field multiplication. In other words,

divisor transformation to common Z -coordinate requires 5
field multiplications. Ultimately, for the divisor addition step in
A.1 42M+4S (M - multiplication, S - squaring) field operations
are required. For the Fibonacci step 46M+4S field operations
are required. In accordance to the computational complexity
estimation [20], the approach, described in this paper, is not
effective, because complexity of mixed addition is 39M+4S.
Thus the alternative approach to the divisor addition for the
scalar multiplication implementation is proposed. Let’s draw a
computational complexity comparison between scalar
multiplication algorithms described in [20] and those suggested
in this paper, based on idea [22].

IV. COMPARISON WITH OTHER METHODS
Assume that S=0,8M and scalar multiplier is a 80-bit

integer and refer to [20, 22] for the complexity of scalar
multiplication algorithms. In Table 1 the computational
complexity of the compared algorithms is represented.

TABLE I. COMPUTATIONAL COMPLEXITY OF SCALAR MULTIPLICATION
ALGORITHMS

Scalar multiplication algorithm Cost, M
Addition in mixed coordinates [20]

1 Binary (left-to-right) 5192
2 NAF 4630
3 w -NAF, 4w = 4350

Co-Z addition
4 Fibonacci-and-add 6773
5 Window Fibonacci-and-add 5970

Computational complexity of Fibonacci-and-add scalar
multiplication algorithm has 23% more than Binary left-to-
right algorithm and 13% then Window Fibonacci-and-add .

V. SUMMARY
In the paper new algorithm of weight 2 divisor addition

with and identical (shared) Z -coordinates (by the Co-Z
approach) has been proposed, which requires more ()pGF
operations then algorithm [20], however allows to decrease
computational complexity of Fibonacci-and-add scalar
multiplication algorithm while approaching to the Binary left-
to-right algorithm.

REFERENCES
[1] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177), 1987, pp. 203–209.
[2] I. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams,

editor, Advances in Cryptology - CRYPTO’85, volume 218 of LNCS,
Springer, 1985, pp. 417–426.

[3] N. Koblitz. Hyperelliptic cryptosystems. Journal of cryptology, No 1.
1989. pp.139-150.

[4] Menezes A., Wu Y.H., Zuccherato R. An elementary introduction to
hyperelliptic curves / In: Koblitz N. ed. // Algebraic aspects of
cryptography. –Berlin, Heidelberg, New York: Springer–Verlag,
1998. -pp. 28–63.

[5] Cantor D.G. Computing in Jacobian of a Hyperelliptic
curve // Mathematics of Computation. –Vol. 48. -No.177. -1987. -pp.95–
101.

[6] Gaudry P., Harley R. Counting points on hyperelliptic curves over finite
fields / In W. Bosma, ed. // ANTS IV. –LNCS 1838. –Berlin: Springer–
Verlag, 2000. –pp.297–312.

[7] 140. Harley R. Fast arithmetic on genius two curves. –2000. Available
at: http://cristal.inria.fr/harley/hyper/, adding.txt and doubling.c

[8] Jacobson M. (Jr), Menezes A., Stain A. Hyperelliptic curves and
cryptography // Report of Fields Institute Communications. –Vol.7. –
2002. –28p.

[9] Lange T. Efficient arithmetic on hyperelliptic curves: PhD thesis:
Mathematics and Informatics. –University of Essen: Institute for
experimental mathematics. – Germany: Essen, 2001. –122p.

[10] 143. Matsuo K., Chao J., Tsujii S. Fast genius two hyperelliptic curve
cryptosystem // Technical report IEICE. –ISEC2001–31. –IEICE`2001.
–2001. –8p.

[11] Miyamoto Y., Doi H., Matsuo K., Chao J., Tsujii S. A fast addition
algorithm of genius two hyperelliptic curve // In the 2002 Symposium on
cryptography and information security. –SCIS`2002. Japan: IEICE,
2002. –pp.497–502. (In Japanese)

[12] Takahashi M. Improving Harley algorithms for jacobians of genius 2
hyperelliptic curves // In the 2002 Symposium on cryptography and
information security. –SCIS`2002. Japan: IEICE, 2002. –pp.155–160.
(In Japanese)

[13] Sugizaki H., Matsuo K., Chao J., Tsujii S. An extension of Harley
addition algorithm for hyperelliptic curves over finite fields of
characteristic two // Technical report IEICE. –ISEC2002–09. –
IEICE`2002. –2002. –8p.

[14] Lange T. Efficient arithmetic on genius 2 hyperelliptic curves over finite
fields via explicit formulae // Cryptology ePrint Archive. –Report
2002/121. –2002. –13p. Available http://eprint.iacr.org.

[15] Lange T. Inversion–free arithmetic on genius 2 hyperelliptic
curves // Cryptology ePrint Archive. –Report 2002/147. –2002. –7p.
Available http://eprint.iacr.org.

[16] Lange T. Formulae for arithmetic on genius 2 hyperelliptic curves.
September 2003. Available http://www.ruhr–uni–
bochum.de/itsc/tanja/preprints/expl_sub.pdf.

[17] Lange T. Weighted coordinates on genius 2 hyperelliptic
curves // Cryptology ePrint Archive. –Report 2002/153. –2002. –20p.
Available http://eprint.iacr.org.

[18] Wollinger T. Software and hardware implementation of hyperelliptic
curve cryptosystems: PhD dissertation: Electronics and informatics. –
Worchester Polytechnic Institute. –Germany: Bochum, 2004. –218p.

[19] Chudnovsky D.V., Chudnovsky G.V. Sequence of number generated by
addition in formal group and new primality and factorization
test // Advanced in Applied Math. –№8. –1986. –pp.385–434.

[20] Ковтун В.Ю., Збитнев С.И. Арифметические операции в якобиане
гиперэллиптической кривой рода 2 в проективных координатах с
уменьшенной сложностью // Восточно–Европейский журнал
передовых технологий. –2004. –Вып. №½ (13). –С. 14–22.

[21] Cohen H., Miyaji A., Ono T. Efficient elliptic curve exponentiation
using mixed coordinates // Proceedings of the International Conference
on the Theory and Applications of Cryptology and Information Security:
Advances in Cryptology. –CRYPTO`98. –LNCS 1514. –Berlin:
Springer–Verlag, 1998. –pp. 51–65.

[22] N. Meloni. New point addition formul. for ECC applications. In C.
Carlet and B. Sunar, editors, Arithmetic of Finite Fields (WAIFI 2007),
LNCS 4547, Springer, 2007, pp. 189–201.

