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Abstract—in this paper we proposed a new approach to divisor 
scalar multiplication in Jacobian of genus 2 hyperelliptic curves 
over fields with odd characteristic, without field inversion. It is 
based on improved addition formulae of the weight 2 divisors in 
projective divisor representation in most frequent case that suit 
very well to scalar multiplication algorithms based on Euclidean 
addition chains. 
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I. INTRODUCTION 
 

Since the introduction in publications of Miller and Koblitz 
the application of algebraic curves in cryptography was given 
its impulse to start [1, 2]. In these publications the usage of the 
property of the elliptic curve (EC) points to form the additive 
Abelelian group was suggested. In his later research [3], 
Koblitz has proved the possibility of using more complex 
curves – hyperelliptic (HEC). For HEC the group (Jacobian) of 
more complex structures should be considered – divisors 
instead of the curve points. As referred to in [3], HEC have a 
variety of advantages over EC: being richer source of the 
Abelian groups [3, 4] (forming the Abelian group, the size of 
which is defined by product of the base field size by a curve 
genus). Within the long time HEC cryptosystems were 
restricted to academic interest only, having no practical 
application due to high complexity of software and hardware 
implementation, low performance, absence of in-depth studies 
in the field of cryptoanalysis of such cryptosystems and 
absence of comprehensible algorithms of cryptosystem 
parameters generation [3, 4]. The active research [3-18] of 
HEC has allowed to overcome the majority of the described 
difficulties. The given research is devoted to the issues of 
further efficiency improvement of genus 2 HEC cryptosystems 
over prime fields. 

The authors of publications [7, 9-18], offer variety of 
approaches which increase the performance of HEC 
cryptosystems essentially, making them highly competitive 
with EC cryptosystems. 

II. BACKGROUND 
Let's observe basic concepts of cryptosystems on HEC. 

More detailed information can be obtained from [3, 4]. 

Let K  be a field and K  be the algebraic closure of K . 
Hyperelliptic curve (HEC) C  of genus 1g ≥  over K  is a set of 
points ( ),u v that satisfy the equation: 

 ( ) ( )2:C v h u v f u+ = , [ ],k u v , (1) 

where ( ) [ ]h u k u∈  is a polynomial of degree at most g , 
( ) [ ]f u k u∈  is a monic polynomial of degree 2 1g + , and there 

are no solutions ( ),u v K K∈ ×  which simultaneously satisfy the 
equation (1) and the partial derivative equations ( )2 0u h u+ = , 

( ) ( ) 0h u v f u′ ′− = . 

In case of genus 2 HEC, polynomials ( )f u and ( )h u  may 
be represented as ( ) 5 4 3 2

4 3 2 1 0f u u f u f u f u f u f= + + + + + and 
( ) 2

2 1 0h u h u h u h= + + , ,i jh f K∈ . 

Divisor D  is a formal sum of points in C : 

pP C
D m P

∈
= ∑ , Pm ∈ Z , 

Where only a finite number of the Pm  are non zero. 

Divisor 0D ∈ D  is a principal divisor, if ( )divD R=  for some 
rational function ( )*R K C∈ . The set of all principal divisors, 
denotes ( ) ( ) ( ){ }div :CP K F F K C= ∈ , in curve C  over K , 

moreover ( )CP K  is a subgroup of 0D . Generally ( ) ( )CP C P K=  
is called a group of principal divisors of curve C . The quotient 
group ( ) ( ) ( )0divC C CJ K K P K=  is called the Jacobian of the 
curve C  over K . The quotient group ( ) ( ) ( )0divJ C C P C=  is 
called Jacobian of the curve C . 



Further, we will operate with divisors in Mumford 
representation [4] ( )2

1 0 1 0,D x u x u v x v= + + + , deg deg 2v u< ≤ , 
( ) ( ) 2|u f u h u v v− − , where ( )iD J C∀ ∈ , ( ) 2iweight D = , 1, 2i =  the 

result 3 1 2D D D= +  will have a 3( ) 2weight D = , this allows to save 
several additional verifications of common addition algorithm. 
Assume ( )pGF  is a base field, where p  is an odd prime. 

HECC uses a divisor scalar multiplication operation: 

k

D D D k D+ + + = ⋅L1442443 . 

At the intermediate computation phase of most popular 
binary scalar multiplication algorithm performs divisor 
addition and doubling operation. The addition and doubling 
algorithms use field ( )pGF  inversion. Inversion is the most 
computationally intensive and space critical operation. 
Projective divisor representation [11, 12] is the most popular 
approach which allows to save a field inversion. 

Divisor ( )2
1 0 1 0,D x u x u v x v= + + + in projective representation 

may be represented as [ ]1 0 1 0, , , ,D U U V V Z= , where 
( )2

1 0 1 0,D x U Z x U Z V Z x V Z= + + + . 

At this moment, the most efficient types are arithmetic in 
projective representation, described in the paper [20] and in 
weighted representation, described in [17]. 

III. CO-Z APPROACH 
Paper [22] gives a new impulse to the increase of efficiency 

of point scalar multiplication in EC over ( )pGF . The author 
has proposed transformation of EC points to projective and 
modified Jacobi representation with the same denominator and 
further operation with points of identical Z -coordinates. This 
approach is called a Co-Z in literature. For the implementation 
of scalar multiplication on the basis of idea [22], algorithms 
described in [22] should be used, based on Euclidian addition 
chains approach and scalar in Zeckendorf representation in 
order to replace doublings by Fibonacci numbers computations, 
refer to. Algorithm A.1. 

Apply Co-Z approach to the divisor addition algorithm in 
projective representation. As a basis we should use divisor 
addition algorithm proposed in [15] and improved in [20] 
(Algorithm A.2). 

Algorithm A.1 Fibonacci-and-add ( ),k P  

Input: CD J∈ , ( )2, ,l Z
k d d= K  

Output: [ ] Ck D J∈  
begin 
 ( ) ( ), ,U V D D←  
 for 1i l= −  downto 2  
 if 1id =  then U U D← +  (add step) 

 ( ) ( ), ,U V U V U← +  (Fibonacci step) 
 end 
 return U  
end 

On the assumption that 1 2Z Z Z= = , for 1D  and 2D , algorithm 
A.2 can be transformed to the algorithm A.3. Let’s describe all 
modifications in A.2. 

Algorithm А.2. Addition reduced divisors  
Input: [ ]11 10 11 10 1, , , ,U U V V Z , [ ]21 20 21 20 2, , , ,U U V V Z  
Output: [ ] [ ]1 0 1 2 11 10 11 10 1, , , , , , , ,U U V V Z U U V V Z′ ′ ′ ′ ′ = +

[ ]21 20 21 20 2, , , ,U U V V Z+ , ( ) ( )1 2 2weight D weight D= =  

# Expression Cost 
1 Precomputations: 1 2Z Z Z= ⋅ , 21 1 21U Z U= ⋅% , 20 1 20U Z U= ⋅% , 

21 1 21V Z V= ⋅% , 20 1 20V Z V= ⋅%  

5M 

2 Compute resultant r  for 1u  and 2u : 1 11 2 21y U Z U= ⋅ − % , 

2 20 10 2y U U Z= − ⋅% , 3 11 1 2 1y U y y Z= ⋅ + ⋅ , 
2

2 3 1 10r y y y U= ⋅ + ⋅  

1S, 6M 

3 Compute almost inverse 2 1modinv r u u= , 

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=  

 

4 Compute ( )1 2 1mods v v inv u= − , 1 0s s x s= + : 

0 10 2 20w V Z V= ⋅ − % , 1 11 2 21w V Z V= ⋅ − % , 2 0 0w inv w= ⋅ , 

3 1 1w inv w= ⋅ , 0 2 10 3s w U w= − ⋅ , 

( ) ( ) ( )1 0 1 1 0 1 2 3 1 11s inv Z inv w w w w Z U= + ⋅ ⋅ + − − ⋅ +  

If 1 0s =  then consider special case 

8M 

5 Precomputations: R r Z= ⋅ , 2 0s s Z= ⋅ , 3 1s s Z= ⋅ , 

3R R s= ⋅% , 0 1 0w s s= ⋅ , 1 1 3w s s= ⋅ , 2 0 3w s s= ⋅ , 

3 1 21w w U= ⋅ % , 4 1w R s= ⋅  

9M 

6 Compute 2l su= , 3 2
2 1 0l x l x l x l= + + + : 0 0 20l w U= ⋅ % , 

2 3 2l w w= + , ( ) ( )1 1 0 21 20 0 3l w w U U l w= + ⋅ + − −% %  

2M 

7 Compute ( )( ) 1
1 12u s l h v k u−′ = + + − , ( )2

1 1 1k f v h v u= − − , 
2

1 0u x u x u′ ′ ′= + + : 2
1 2 3 1 1 22U w s s y h R R′ = − ⋅ + −% %  

( )2
0 2 1 1 1 11 2 2 1 4 21 12 2U s s y s U s y w w V h R′ = + ⋅ ⋅ ⋅ − + ⋅ + ⋅ + +% % %  

( ) ( )2 2 1 11 1 21 42R h s s U r y U f Z⎡ ⎤+ ⋅ − + ⋅ + −⎣ ⎦
%  

2S, 8M 

8 Adjust: 0 0U U R′ ′= ⋅% % , 1 1U U R′ ′= ⋅% % , 2
3Z s R′ = ⋅ %  1S, 3M 

9 Compute ( )1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + : 

( ) ( )2
1 1 2 1 2 3 0 0 4 21 1V U l U h R s U h R w V l′ ′ ′ ′= ⋅ − + + ⋅ − − −% % % % % % , 

( ) ( )2
0 0 2 1 2 3 0 2 4 20V U l U h R s l h R w V′ ′ ′= ⋅ − + − ⋅ + + ⋅% % % % %  

5M 

4S, 46M
Step A.2.1. This step is to be omitted due to existence of 

the same denominator of all coordinates, which allows to save 
5 multiplications in ( )pGF . 

Step А.2.2. While computation of 1y  and 2y , reduction to 
common denominator of coordinates 1 jU  and 2 jU  is not 
required, saves 2 multiplications in ( )pGF . 

Step A.2.4. While computation of 1w  and 2w , reduction to 
common denominator of coordinates 1 jV  and 2 jV is also not 
required, saves 2 multiplications in ( )pGF . 

Step A.2.5. The number of precomputations can be 
decreased by 3 multiplications in ( )pGF  due to reorder 



computation of coefficients 0l , 1l  and 2l  of polynomial l  on a 
step A.2.6. 

Algorithm А.3. Co-Z reduced divisors addition 
Input: [ ]11 10 11 10, , , ,U U V V Z , [ ]21 20 21 20, , , ,U U V V Z  
Output: [ ] [ ]1 0 1 2 11 10 11 10, , , , , , , ,U U V V Z U U V V Z′ ′ ′ ′ ′ = +

[ ]21 20 21 20, , , ,U U V V Z+ , ( ) ( )1 2 2weight D weight D= =  

# Expression Cost 
1 Compute resultant r  of 1u , 2u : 1 11 21y U U= − , 

2 20 10y U U= − , 3 11 1 2y U y y Z= ⋅ + ⋅ , 2
2 3 1 10r y y y U= ⋅ + ⋅  

1S, 4M 

2 Compute almost inverse 2 1modinv r u u= , 

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=  

 

3 Compute ( )1 2 1mods v v inv u= − , 1 0s s x s= + : 

0 10 20w V V= − , 1 11 21w V V= − , 0 3 0 10 1 1s y w U y w= ⋅ − ⋅ ⋅  

1 2 1 1 0s y Z w y Z w= ⋅ + ⋅ ⋅ , 

If 1 0s =  then consider special case 

6M 

4 Precomputations: R r Z= ⋅ , 2 0s s Z= ⋅ , 3 1s s Z= ⋅ , 

3R R s= ⋅% , 3 1 1w s y= ⋅ , 5 3 1 21w w s U= + ⋅  

6M 

5 Compute 2l su= , 3 2
2 1 0l x l x l x l= + + + : 0 0 20l s U= ⋅ , 

2 1 21l s U= , ( ) ( ) 202021011 llUUssl −−+⋅+= , 222 sll +=  

2M 

6 Compute ( )( ) 1
1 12u s l h v k u−′ = + + − , ( )2

1 1 1k f v h v u= − − , 
2

1 0u x u x u′ ′ ′= + + : ( ) 2
1 3 2 3 22U s s w h R R′ = ⋅ − + −%  

( ) ( )2
0 2 3 5 2 3 2 1 21 12 2U s w w s s y s r V h R′ = + ⋅ − + ⋅ ⋅ + ⋅ + +%  

( ) ( )2 2 5 11 21 4R h s w r U U f Z+ ⋅ − + ⋅ + − ⋅⎡ ⎤⎣ ⎦  

2S, 8M 

7 Adjust: 0 0U U R′ ′= ⋅% % , 1 1U U R′ ′= ⋅% % , ( )2 3
3 3Z s R s r Z′ = ⋅ = ⋅ ⋅%  1S, 3M 

8 Compute ( )1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + : 

( )( ) ( )( )2
1 1 2 2 3 1 3 0 3 1 21 1V U l h R s U s U s h R rV l′ ′ ′ ′= ⋅ + ⋅ − + ⋅ − ⋅ + +% % % , 

( )( ) ( )2
0 0 2 2 3 1 3 3 0 0 20V U l h R s U s s l h R r V′ ′ ′= ⋅ + − − ⋅ ⋅ + + ⋅% %  

8M 

4S, 37M 
9 Adjust: 3

3cZ s r= ⋅ , 20 20 cU U Z= ⋅ , 21 21 cU U Z= ⋅ , 

20 20 cV V Z= ⋅ , 21 21 cV V Z= ⋅  

5M 

4S, 42M 
Step A.2.6. Unlike algorithm A.2, the A.3 offers 

considering multiplier 3s , present in each coefficient 0l , 1l  and 
2l  of polynomial l , when using coefficients il , 0, 2i =  on the 

steps A.2.7 and A.2.9. This allows to factor out 3s , thus saves 3 
multiplications in ( )pGF . Consider next the application of 
proposed algorithm for the mixed divisor addition 1D  and 2D , 
such as [ ]11 10 11 10, , , ,U U V V Z  and [ ]21 20 21 20, , , ,1U U V V  (affine 
representation). Therefore it is necessary to reduce devisor 2D  
to common Z -coordinate, i.e. [ ]21 20 21 20, , , ,U Z U Z V Z V Z Z⋅ ⋅ ⋅ ⋅  the 
action requires 4 multiplications in ( )pGF . Hereinafter the 
provided algorithm A.3 should be used for addition of (prior 
formed) divisors with the same Z -coordinate. 

It is to be considered that after computing 3 1 2D D D= +  one 
of the items, for example 2D , should be transformed to the 
same Z -coordinate with a divisor 3D . For this purpose, at the 
step A.3.9, value cZ  should be computed, where 3 cZ Z Z= ⋅ , i.e. 

3
3cZ s r= ⋅ , which requires 1 field multiplication. In other words, 

divisor transformation to common Z -coordinate requires 5 
field multiplications. Ultimately, for the divisor addition step in 
A.1 42M+4S (M - multiplication, S - squaring) field operations 
are required. For the Fibonacci step 46M+4S field operations 
are required. In accordance to the computational complexity 
estimation [20], the approach, described in this paper, is not 
effective, because complexity of mixed addition is 39M+4S. 
Thus the alternative approach to the divisor addition for the 
scalar multiplication implementation is proposed. Let’s draw a 
computational complexity comparison between scalar 
multiplication algorithms described in [20] and those suggested 
in this paper, based on idea [22]. 

IV. COMPARISON WITH OTHER METHODS 
Assume that S=0,8M and scalar multiplier is a 80-bit 

integer and refer to [20, 22] for the complexity of scalar 
multiplication algorithms. In Table 1 the computational 
complexity of the compared algorithms is represented. 

TABLE I.  COMPUTATIONAL COMPLEXITY OF SCALAR MULTIPLICATION 
ALGORITHMS 

# Scalar multiplication algorithm Cost, M 
Addition in mixed coordinates [20] 

1 Binary (left-to-right) 5192 
2 NAF 4630 
3 w -NAF, 4w =  4350 

Co-Z addition 
4 Fibonacci-and-add 6773 
5 Window Fibonacci-and-add 5970 

Computational complexity of Fibonacci-and-add scalar 
multiplication algorithm has 23% more than Binary left-to-
right algorithm and 13% then Window Fibonacci-and-add . 

V. SUMMARY 
In the paper new algorithm of weight 2 divisor addition 

with and identical (shared) Z -coordinates (by the Co-Z 
approach) has been proposed, which requires more ( )pGF  
operations then algorithm [20], however allows to decrease 
computational complexity of Fibonacci-and-add scalar 
multiplication algorithm while approaching to the Binary left-
to-right algorithm. 
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