
BiTR: Built-in Tamper Resilience

Seung Geol Choi1, Aggelos Kiayias2, and Tal Malkin3

1 University of Maryland sgchoi@cs.umd.edu
2 Department of Informatics and Telecommunications, University of Athens aggelos@di.uoa.gr

3 Columbia University tal@cs.columbia.edu

Abstract. The assumption of the availability of tamper-proof hardware tokens has been used extensively in the
design of cryptographic primitives. For example, Katz (Eurocrypt 2007) suggests them as an alternative to other
setup assumptions, towards achieving general UC-secure multi-party computation. On the other hand, a lot of
recent research has focused on protecting security of various cryptographic primitives against physical attacks such
as leakage and tampering.
In this paper we put forward the notion of Built-in Tamper Resilience (BiTR) for cryptographic protocols, capturing
the idea that the protocol that is encapsulated in a hardware token preserves its security properties even when an
adversary may tamper with its secret state. Our definition is within the UC model, and can be viewed as unifying and
extending several prior related works. We provide a composition theorem for BiTR security of protocols, as well as
several BiTR constructions for specific cryptographic protocols or tampering function classes. In particular, relaxing
the tamper-proof token assumption of Katz’s work, we achieve UC-secure computation based on a hardware token
that may be susceptible to affine tampering attacks. We also present BiTR proofs for identification and signature
schemes in the same tampering model. We next observe that non-malleable codes can be used as state encodings to
prove the BiTR property and show new positive results for deterministic non-malleable encodings (as opposed to
probabilistic that were previously known) for various classes of tampering functions.

1 Introduction

1.1 Motivation

Security Against Physical Attacks. Traditionally, cryptographic schemes have been analyzed assuming
that an adversary has only black-box access to them. For example, traditional security definitions for en-
cryption schemes address an adversary who is given the public key — but not the private key — and tries
to guess something about the plaintext of a challenge ciphertext, by applying some black-box attack (CPA,
CCA, etc.) In practical situations, however, an adversary can often do more. For example, practical hardware
devices leak information via numerous side channels, including power consumption [KJJ99], electromag-
netic radiation [QS01], and timing [BB05]. When an adversary takes hold of the computational device (e.g.,
smart-cards or mobile phones), such side channel information is readily accessible. Starting with the work of
[ISW03,MR04] there has been a surge of research activity on leakage-resilient cryptographic schemes (cf.,
[SMY09,AGV09,DKL09,P09,NS09,ADW09,KV09,FKPR10,DGK+10,FRR+10,BG10,DP10,JV10,GR10]).

The present work addresses tampering attacks, where an adversary can modify the secret data by ap-
plying various physical attacks (c.f., [BDL01,BS97]). Currently, there are only a few results in this area
[GLM+04,IPSW06,DPW10]. We focus on hardware tokens that implement two party cryptographic proto-
cols, which can be used directly (e.g., for identification), or as part of other (UC-secure) protocols.

Hardware Tokens. As discussed above, cryptographic primitives have traditionally been assumed to be
tamper (and leakage) proof. In the context of larger cryptographic protocols, there have been many works

that (implicitly or explicitly) used secure hardware as a tool to achieve security goals that could not be
achieved otherwise. The work most relevant to ours is that of Katz [K07], who suggests to use tamper-
proof hardware tokens to achieve UC-secure [C01] commitments. This allows to achieve general feasibility
results for UC-secure well-formed multi-party computation, where the parties, without any other setup as-
sumptions, send each other tamper-proof hardware tokens implementing specific two-party protocols. There
were several follow-up works such as [MS08,CGS08,DNW08,GIS+10,K10,GIMS10], all of which assume a
token that is tamper proof.

Given the wide applicability of tamper-proof tokens on one hand, and the reality of tampering attacks
on the other, we ask the following natural question:

Can we relax the tamper-proof assumption, and get security using tamperable hardware tokens?

Clearly, for the most general interpretation of this question, the answer is typically negative. For example,
if the result of [K07] was achievable with arbitrarily-tamperable hardware token, that would give general
UC-secure protocols in the “plain” model, which is known to be impossible [CF01]. In this work we address
the above question in settings where the class of possible tampering functions and/or the class of protocols
we wish to put on a token and protect are restricted.

1.2 Our Contributions

BiTR Definition. We provide a definition of Built-in Tamper Resilience (BiTR) for two party cryptographic
protocols, capturing the idea that the protocol can be encapsulated in a hardware token, whose state may be
tamperable. Our definition is very general, compatible with the UC setting [C01], and implies that any BiTR
protocol can be used as a hardware token within larger UC-protocols. Our definition may be viewed as
unifying and generalizing previous definitions [GLM+04,IPSW06,DPW10] (see Section 1.3), and bringing
them to the UC setting.

BiTR is a property of a cryptographic protocol M . In short, BiTR can be summarized as follows: any
adversary that is able to tamper tokens running M can be simulated by an adversary that has no tampering
capability, independently of the environment the tokens may be deployed. The definition has some tunable
parameters:

– A Class of Tampering Functions T . The bigger the class of tampering functions that we provide re-
silience against, the better.

– A State Encoding ψ. The higher the rate of the encoding the better. Moreover, the less fresh randomness
necessary to be generated by the protocol, the better.

While the result one would ideally want — arbitrary BiTR protocols against arbitrary tampering functions,
without any expanding encoding on the state — is not achievable, we provide several specific results that
trade off these parameters (see below), as well as the following general theorem.

BiTR Composition. As BiTR is a protocol centric property, the natural question that arises is whether
it is preserved under composition. A useful result for a general theory of BiTR cryptography would be a
general composition theorem which allows combining a BiTR protocol calling a subroutine and a BiTR
implementation of that subroutine into one overall BiTR protocol.

2

Unfortunately we provide specific counter examples showing that a very general composition theorem
is not possible. We also point out difficulties in achieving (and even defining) such a general composition
theorem, as it is not obvious what should be the right interface to give to an adversary tampering with a
subroutine call that is in a hardware token.

More importantly, we formulate and prove a limited composition theorem, which allows composition of
a certain type of BiTR protocols. Our main positive construction will use this composition theorem with a
simple component, and we hope that future work can take advantage of the full power of our composition
theorem for further positive results.

BiTR Constructions without State Encoding. We describe results that require no encoding as compared to
their no-tampering-allowed counterparts. It may come as a surprise that it is possible to prove a cryptographic
protocol BiTR without any encoding and thus without any validation of the secret protocol state whatsoever.
This stems from the power of our definitional framework for BiTR and the fact that it is achieved for specially
selected and designed protocols and classes of tampering functions. We define the class Taff = {fa,b | a ∈
Z+
q , b ∈ Zq, fa,b(v) := av + b mod q}. That is, the adversary may apply a modular affine function of his

choice to tamper the state. Affine tampering is an interesting class to consider as it has as special cases
multiplication (e.g., shifting — which may be the result of tampering shift-register based memory storage),
or addition (which may be result of bit flipping tampering).

We prove three protocols BiTR with respect to this class (without any modification or encoding neces-
sary). The first one is Schnorr’s identification (3-move) protocol [S91]. The second is Okamoto’s signature
scheme [O06]. Both protocols are interesting on their own (e.g., previous work [GLM+04] focused mostly
on signature schemes), but the latter is also useful for the third protocol we prove affine-BiTR, described
next.

UC-Secure Computation from tamperable tokens. We provide a generalization of Katz’s approach [K07]
for building UC-secure computation using hardware tokens; this involves the introduction of a commit-
ment scheme with a special property, called a dual-mode parameter generation (DPG) — depending on the
mode of the parameter, the commitment scheme is either statistically hiding or a trapdoor commitment. We
then observe that any commitment endowed with a DPG is sufficient for providing UC-secure multi-party
computation assuming tamper proof tokens. Following this track, we present a new DPG protocol for a
commitment scheme, BiTR against affine tampering functions, that relies on discrete-log based primitives
including the digital signature scheme of Okamoto [O06]. Thus, we obtain UC-secure general computation
using hardware tokens tamperable with affine functions. We then examine a different class of tokens that
implement a single OT [GKR08] and were utilized in [GIS+10] for UC secure computation. We characterize
the functions against which these tokens are BiTR.

BiTR Constructions with State Encoding. We next discuss how one can take advantage of state consis-
tency checks to design BiTR protocols. We observe first that non-malleable codes [DPW10] can be used as
an encoding for proving the BiTR property of protocols. This gives rise to the problem of constructing such
codes. Existing constructions [DPW10] utilize randomness in calculating the encoding; we provide new con-
structions for such encodings focusing on purely deterministic constructions. In fact, when the protocol uses
no randomness (e.g., a deterministic signing algorithm) or a finite amount of randomness (e.g., a prover in
the resettable zero-knowledge [CGGM00] setting), by using deterministic encodings the token may dispense
with the need of random number generation.

3

Our design approach takes advantage of a generalization of non-malleable encodings (called δ-non-
malleable), and we show how they can be constructible for any given set of tampering functions (as long as
they exist). While the construction is not very efficient, by assuming that each function in the class T works
independently on small blocks (of logarithmic size) we provide a construction of efficient deterministic
non-malleable codes by concatenating Reed-Solomon codes with a collection of specific instances of non-
malleable codes (that apply in each coordinate independently).

1.3 Related Work

We briefly describe the most relevant previous works addressing protection against tampering.

Gennaro et al. [GLM+04] considered a device with two separate components: one is tamper-proof yet
readable (circuitry), and the other is tamperable yet read-proof (memory). They defined algorithmic tamper-
proof (ATP) security and explored it’s possibility for signature and decryption devices. To overcome arbi-
trary effective tampering attacks, they had to introduce self-destruct and public-key parameters, with which
they were able to demonstrate ATP constructions. Their definition of ATP security was given only for the
specific tasks of signature and encryption. In contrast, our definition is simulation based, independent of
the correctness or security objectives of the protocol, and we consider general two-party protocols (and the
implications in the UC framework [C01,K07]).

Ishai et al. [IPSW06] considered an adversary who can tamper with the wires of a circuit. They showed
a general compiler that outputs a self-destructing circuit that withstands such a tampering adversary. Con-
sidering that memory corresponds to a subset of the wires associated with the state in their model, the model
seems stronger than ours (as we consider only the state, not the computation circuit). However, the tampering
attack they considered is very limited: it modifies a bounded subset of the wires between each invocation,
which corresponds to tampering memory only partially.

Dziembowski et al. [DPW10] introduced the notion of non-malleable codes and tamper-simulatability
to address similar concerns as the present work. A distinguishing feature from the approach of that work
is that BiTR is a protocol centric property. As such, it allows arguing about tamper resilience while taking
advantage of specific protocol design features that enable BiTR even without any encodings. This can be
advantageous as the introduction of additional circuitry or a randomness device (as required by the positive
results of [DPW10]) may be infeasible or uneconomical — or even unsafe in practice as it may introduce
new pathways for other attacks. In contrast, our positive results do not require state encodings or when they
do, they do not rely on randomness and thus they can be used to fortify protocols into BiTR even in the case
when a randomness device is not accessible (or reliable) by the token.

Another important difference between our work and all the ones above, is that we address the universally
composable setting, rather than a stand-alone notion and thus the BiTR property would be preserved in all
deployment environments.

2 BiTR Definitions

Ideal functionalities Fwrap and Ftwrap. Katz [K07] modeled usage of a tamper-proof hardware token as
an ideal functionality Fwrap in the UC framework. Here, we slightly modify the functionality so that it is

4

Fwrap(M) is parameterized by a polynomial p and a security parameter k. Fwrap proceeds as follows:

Create: Upon receiving 〈Create, sid, P, P ′,msg〉 from party P :
1. Let msg′ = (Initialize,msg). Run M(msg′) for at most p(k) steps.
2. Let out be the response of M (set out to ⊥ if M does not respond). Let s′ be the updated state of M .
3. Send 〈Initialized, sid, P ′, out) to P and 〈Create, sid, P, P ′〉 to P ′.
4. If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M, s′).

Forge: Upon receiving 〈Forge, sid, P, P ′,M ′, s〉 from the adversary, if P is not corrupted, do nothing. Otherwise do:
1. Send 〈Create, sid, P, P ′〉 to P ′.
2. If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M ′, s).

Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s). If there is no such record, do nothing.
Otherwise, do:

1. Run K(msg; s) for at most p(k) steps.
2. Let out be the response of K (set out to ⊥ if K does not respond). Let s′ be the updated state of K. Send

(sid, P, out) to P ′.
3. Update the record with (P, P ′,K, s′).

———
Ftwrap(M, T , ψ), also parameterized by p and k (and ψ = (E,D) is an encoding scheme), proceeds as follows

Create: As in Fwrap(M) with the only change that state s′ is stored as E(s′) in memory.
Forge: As in Fwrap(M).
Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s̃). If there is no such record, do nothing.

Otherwise, do:
1. (Decoding) If P is corrupted, set s = s̃; otherwise, set s = D(s̃). If s = ⊥, send (sid, P,⊥) to P ′ and stop.
2. Run K(msg; s) for at most p(k) steps.
3. Let out be the response of K (set out to ⊥ if K does not respond). Let s′ be the updated state of K. Send

(sid, P, out) to P ′.
4. (Encoding) If P is corrupted, set s̃ = s′; otherwise set s̃ = E(s′).
5. Update the record with (P, P ′,K, s̃).

TamperRun: Upon receiving 〈TamperRun, sid, P, P ′, τ,msg〉 from the adversaryA, if P ′ is not corrupted, do nothing.
Otherwise; find a record (P, P ′,K, s̃). If there is no such record, do nothing. Otherwise, do:

1. Set s̃ = τ(s̃). Follow steps 1 ∼ 5 in handling Run request.

Fig. 1. Ideal functionalities Fwrap(M) and Ftwrap(M, T , ψ)

parameterized by an interactive machine (ITM) M for a two-party protocol4 (see Fig. 1). The modification
does not change the essence of the wrapper functionality; it merely binds honest parties to the use of a
specific embedded program. Corrupted parties may embed an arbitrary program in the token by invoking
Forge. Given that we will be interested in composition between tokens we will also consider Fwrap(M ;K)
as the compound functionality of a wrapped protocol M that has access to an oracle Fwrap(K).

We also define a new functionality Ftwrap similar to Fwrap but with tampering allowed. Let T be a
collection of (randomized) functions. Let ψ = (E,D) be an encoding scheme5. The essential difference
between Ftwrap and Fwrap is the ability of the adversary to tamper with the internal state of the hardware
token by executing tampered runs — a function drawn from T is applied on the internal state of the hardware
token. This (weaker) ideal functionality notion is fundamental for the definition of BiTR that comes next.

BiTR Protocols. We define a security notion for a protocol M , called Built-in Tamper Resilience (BiTR),
which essentially requires that Ftwrap(M) is interchangeable with Fwrap(M). We adopt the notations in
the UC framework given by Canetti [C01].

4 We will interchangeably use protocols and ITMs.
5 We will sometimes omit ψ from Ftwrap when it is obvious from the context.

5

Definition 1 (BiTR protocol). The protocolM is (T , ψ)-BiTR if for any PPTA, there exists a PPT S such
that for any non-uniform PPT Z ,

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z ,

where ≈ denotes computational indistinguishability.

In case ψ = id we simply write T -BiTR. Note that this definition is given through the ideal model,
which implies (by the standard UC theorem) that whenever a tamper-proof token wrapping M can be used,
it can be replaced by a T -tamperable token wrappingM .6 As a trivial example, every protocol is {id}-BiTR,
where id is the identity function.

3 Composition of BiTR Protocols

Consider an ITM K and another ITM M that calls K as a subroutine. We denote by (M ;K) the compound
ITM. The internal state of (M ;K) is represented as the concatenation of the two states sM ||sK where sM
is a state of M and sK the state of K at a certain moment of runtime.

Let Ftwrap(M ;K, T1×T2, ψ1×ψ2) denote an ideal functionality that permits tampering with functions
from T1 for the state of M and from T2 for the state of K while the states are encoded with ψ1 and ψ2

respectively. This extends the definition of Ftwrap. Note that one TamperRun of (M ;K) may call K
many times. In this case, tampering on K is applied only once at the beginning of the TamperRun of
(M ;K). Using this notation we recast the notion of BiTR for protocols that may call subroutines7.

Definition 2 (“Hybrid” BiTR protocol). The protocol M with subprotocol K is (T1, ψ1)-BiTR if for any
PPT A and any T2, ψ2, there exists a PPT S such that for any non-uniform PPT Z ,

IDEALFtwrap(M ;K,T1×T2,ψ1×ψ2),A,Z ≈ IDEALFtwrap(M ;K,{id}×T2,id×ψ2),S,Z ,

The above definition enables us to consider whether a certain protocol is BiTR by itself without con-
sidering the properties of any subprotocols it may call. Armed with the above definition we can now return
to the question of composition: Given protocol M with subprotocol K that are both BiTR for tampering
classes T1 and T2 respectively, is the compound protocol (i.e., M ;K) BiTR against the tampering class
T1 × T2? Unfortunately, the answer in general is no. To see this consider the following examples.

BiTR Composition Counter-Example #1. Suppose there are two ITMs M and K where M is {id}-BiTR
and K is a signature scheme T -BiTR against some T . M operates as follows: Given an encryption key
pk as input, pick a random number r, call K for a signature on r, and output Epk(r, Sig(r)) where E is a
non-malleable encryption scheme. Now, some tampering function (id, τ) with τ ∈ T is applied to (M ;K).
Any tampered execution in the Ftwrap(·) setting will produce some ciphertext C ′ = Epk(r, σ′) where σ′ is
a signature that reflects the tampering application of τ . For the resulting protocol to be BiTR, the simulator
has to construct such C ′ from the results of non-tampered executions (i.e., ciphertexts C = Epk(r, σ) that
come from Fwrap(M ;K), where σ is a valid signature that has not been tampered with). However, once

6 One could also consider a definition that requires this in the context of a specific UC-protocol. We believe our stronger definition,
which holds for any UC-protocol using a token with M , is the right definition for built-in tamper resilience.

7 We will use subroutines and subprotocols interchangeably.

6

the simulator generate such C ′, it will violate the non-malleability of Epk, since it amounts to generating a
related ciphertext C ′ from a ciphertext C. In this scenario, the BiTR simulator for K is of no use; it is useful
only if direct access to r and σ — rather than its encryption — is allowed.

As the above counter-example indicates, whether the compound protocol of two BiTR protocols is BiTR
depends on how the outer protocol M uses the subprotocol K. An intuition is that the ITM M should
preserve the output from K (say, oK) in its own output in a malleable form; this may enable the simulator of
Fwrap(M ;K) to modify oK appropriately. To capture this requirement, we will introduce the condition of a
transparent subprotocol below. Roughly speaking it requires that the modifications needed due to tampering
of the subprotocol K have to be “transparent” to the external output of (M ;K).

Still, even if M is calling K in an entirely transparent fashion (e.g., simply passing through the output
of K for some public input) the composition of two BiTR protocols might still fail, as demonstrated next.

BiTR Composition Counter-Example #2. Suppose K implements a signature algorithm with state b||sk
where b ∈ {0, 1} and sk is a signing key. K operates as follows : given an input m it reads b and if b = 0
it returns a signature on m. On the other hand, if b = 1 it returns two signatures on the messages m||0 and
m||1. Normally it is always the case that b = 0. Consider now a class of tampering functions T that contains
a single function t which switches the first bit of the internal state from 0 to 1. Observe that it is easy to
show that K is BiTR for T — indeed we can build a simulator that accesses the protocol K twice for the
messages m||0, m||1 and returns the two signatures. Now consider a protocol M that calls K as follows:
on input a length 1k, M selects a random string r of length k and calls K; M will return the response of
K whatever this might be. Now suppose we would like to show that (M ;K) is ({id} × T)-BiTR. It can be
easily seen that any simulator is bound to fail due to the unforgeability of the signature: once tampering of
the inner subprotocol occurs the simulator will have to present two signatures on the messages r||0 and r||1;
while the simulator is allowed to call Fwrap(M ;K) as many times as it wants, the fact that M randomizes
the calls to K make it infeasible to recover two signatures on two messages that differ only on 1 bit.

It follows that BiTR composition would be sensitive to the resources that the simulator of K needs
to utilize in order to simulate the tampering operation. To address these issues we introduce the notion of
BiTR-parsimonious protocols below.

The BiTR Composition Theorem. Before expressing the requirements for our composition theorem that
were motivated by the above counterexamples, we need to establish some notation. We first consider how
we can extend an environment Z that operates with (M ;K) tokens to an environment that operates with K
tokens through the interface of M . While this extension is mostly straightforward, some care needs to be
applied when considering the interaction with the adversary.

– For a non-uniform PPT environment Z that operates with (M ;K) tokens, we define the layered envi-
ronment ZM of Z (with the M -layer) that operates with K tokens. Roughly speaking, it simulates the
behavior of the M -layer for all (M ;K) invocations. It works as follows:
1. Communication between Z and the adversary is simply passed without any alteration.
2. Upon receiving a Create command from Z , ZM correspondingly simulates an instance of M . If

the token M issues a Create instruction to a K token then ZM makes the corresponding call (to
Fwrap(K) or Ftwrap(K, ·)). Upon receiving a request for forging a token M by the adversary, ZM
will comply and generate an instance of this token with the program supplied by the adversary;
any Forge commands for K tokens will be sent back to the adversary. ZM will simulate the all

7

responses at the end of token creation for Z , including the Initialized command back to calling
party P and the 〈Create, sid, P, P ′〉 to the prospective token user P ′.

3. Upon receiving a Run command from Z , ZM runs the corresponding instance of M (or the forged
algorithm in case of a forged program). If M issues a Run instruction to a K token then ZM passes
it on. In the end, ZM will return the outcome of the computation of the token back to Z .
If the adversary asks to Run/TamperRun a token M , ZM will comply and run the M token but
it will not permit tampering. If the instance of M that the adversary invoked wishes to make some
invocation to aK token, thenZM will pass this back to the adversary, informing it that the invocation
it requested wishes to call K and will hold the execution of M for when the answer arrives.

4. In the end ZM will output whatever Z outputs.
– For a PPT adversary A against (M ;K) tokens and an ITM I , we define the corresponding layered

adversary AM ;I (with the M -layer and interface I) that attacks K tokens. It works exactly in the same
way as A except for the handling of the (M ;K) tokens. Whenever A invokes an (M ;K) token, AM ;I

passes this call to the environment instead (this would hold true for tamper and non-tamper runs). If the
environment requests a (possible tamper) run to K while handling the invocation of the M token the
following will take place: AM ;I will pass this input to I to get it possibly modified and then proceed
to invoke K (to Fwrap(K) or Ftwrap(K, ·)) with the possibly modified message; when the response
from K arrives AM ;I will pass it to I again for possible post-processing and then return the result to
the environment. In the end AM ;I will obtain the output of the invocation of the (M ;K) token from the
environment and return it to A who will receive it as the response of the (possibly tamper) run of the
(M ;K) token.
The term layered (with the M -layer) comes from the fact that AM ;I passes to the environment requests
to invoke (M ;K) tokens. The most important restriction ofAM ;I compared to a general attacker against
K tokens is that the layered adversary lets the environment drive the attack against K tokens following
the way the M -layer of a hardware token uses K.

We next define a strengthening of the BiTR property for protocols K that can be subprotocols of other
protocols M . We use the notion of layered adversary AM ;I ; for simplicity when I is “pass-through”, i.e., it
implements the identity function we write AM , omitting I from the superscript.

Definition 3 (BiTR-parsimonious). We say the ITM K is (T , ψ)-BiTR parsimonious if for any M that
calls K as a subprotocol the following holds: for all adversaries A against (M ;K) there is A′, I such that
for all environments Z it holds that :

IDEALFtwrap(K,T ,ψ),AM ,ZM ≈ IDEALFwrap(K),(A′)M ;I ,ZM .

The critical difference between BiTR and BiTR parsimonious is in the nature of the adversary/simulator:
in particular (A′)M ;I is only allowed to access Fwrap(K) when it is being asked in the context of a calling
procedure M and do that only as many times as M dictates. It is easy to see that BiTR parsimonious implies
BiTR by simply letting the calling procedure M be just a pass-through function as well as the interface I .
In such case, the simulator (A′)M ;I can in fact be used for any environment Z against K tokens. Much of
the difficulty in proving the BiTR parsimonious property is the construction of the interface I; to reflect this
we may call a protocol BiTR parsimonious with interface I .

Finally we introduce the transparent subprotocol property for a pair of protocols M and K where the
first calls the second as a subprotocol. The transparency condition effectively states that in any environment

8

where (M ;K) tokens are used, given an adversary that runs forged tokens of K driven by the way M is
using the K tokens, we can derive a simulator that handles only (M ;K) tokens.

Definition 4 (Transparent Subprotocol). Consider a protocol M with subprotocol K. K is a transparent
subprotocol of M with respect to I , if for any A, there is an A′ such that for all non-uniform Z it holds that

IDEALFwrap(K),AM ;I ,ZM ≈ IDEALFwrap(M ;K),A′,Z .

It is worth noting that the major issue with proving transparency is that a simulator should be built that
can translate the malicious behavior of any adversary againstK tokens while just controlling (M ;K) tokens
“from the outside.”

We are now ready to state our composition theorem. Due to space limitations, all proofs appear in the
appendix.

Theorem 1 (BiTR Composition Theorem). Let M be a protocol and K be a subprotocol of M . If M is
(T1, ψ1)-BiTR, K is (T2, ψ2)-BiTR parsimonious with interface I and K is a transparent subprotocol of M
with respect to I , then (M ;K) is (T , ψ)-BiTR where T = T1 × T2, and ψ = ψ1 × ψ2.

Proof. Consider some A. We will show that there is some S for which it holds that for any Z

IDEALFtwrap(M ;K,T1×T2,ψ1×ψ2),A,Z ≈ IDEALFwrap(M ;K),S,Z (1)

For simplicity we will assume that Z runs only a single instance of an (M ;K) token; a proof of the
general case can be easily derived by employing a standard hybrid argument.

Using the BiTR property of M we know that there is an S1 for which it holds that for any Z ,

IDEALFtwrap(M ;K,T1×T2,ψ1×ψ2),A,Z ≈ IDEALFtwrap(M ;K,{id}×T2,id×ψ2),S1,Z (2)

Note that S1 is an adversary that may tamper with the inner token only. Specifically it executes tampered
runs for M ;K tokens for which it can specify a tampering for the state of the K protocol.

Now recall the definition of the M -layer adversaries and environments. By considering the M -layer of
S1 it is immediate that for any Z , we have :

IDEALFtwrap(M ;K,{id}×T2,id×ψ2),S1,Z = IDEALFtwrap(K,T2,ψ2),SM
1 ,ZM (3)

Now due to the fact that K is BiTR-parsimonious we have that there is an S2 that depends only on SM1
for which it holds that for any environment Z that operates with (M ;K) tokens we have for some interface
I

IDEALFtwrap(K,T2,ψ2),SM
1 ,ZM ≈ IDEALFwrap(K),SM ;I

2 ,ZM (4)

Now using the transparent subprotocol property w.r.t. I we have that there is an S3 such that for any Z ,

IDEALFwrap(K),SM ;I
2 ,ZM ≈ IDEALFwrap(M ;K),S3,Z (5)

9

Now we return to the original statement (1) we need to show. We set S = S3. Consider any Z .

IDEALFtwrap(M ;K,T1×T2,ψ1×ψ2),A,Z

(2)
≈ IDEALFtwrap(M ;K,{id}×T2,id×ψ2),S1,Z

(3)
= IDEALFtwrap(K,T2,ψ2),SM

1 ,ZM

(4)
≈ IDEALFwrap(K),SM ;I

2 ,ZM

(5)
≈ IDEALFwrap(M ;K),S3,Z

This completes the proof. �

4 Affine BiTR Protocols without State Encoding

In this section, we show two protocols (for identification and signatures, respectively) that are BiTR against
certain tampering functions, without using any encoding scheme. Specifically, we consider a tampering
adversary that can modify the state of the hardware with affine functions. Assuming the variables in the
hardware are elements of Zq, the adversary can choose a tampering fa,b on a variable v, which will change
v into fa,b(v) = av + b mod q. Let Taff = {fa,b | a ∈ Z+

q , b ∈ Zq}.

Schnorr Identification [S91]. The Schnorr identification is a three-move two party protocol between a
prover and a verifier. The common input is y = gx, where g is a generator of a cyclic group of size q, and
the prover’s auxiliary input is x ∈ Zq. The protocol proceeds as follows:

1. The prover picks a random t ∈ Zq and sends z = gt to the verifier.
2. The verifier picks a random c ∈ Zq and sends c to the prover.
3. The prover computes s = cx+ t mod q to the verifier, who checks if zyc = gs.

We consider an ITM on the prover side wrapped as a hardware token. The description is found in Fig. 2.

Theorem 2. The ITM Msch in Fig. 2 is T 2
aff-BiTR without any encoding.

Proof. Let M be an ITM as described above and T = T 2
aff . We show that for any non-uniform PPT Z and

any PPT A, there exists a PPT S such that

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z .

Handling the case in which no party is corrupted and the case in which both parties are corrupted is trivial.
Now we consider the case in which only one party is corrupted. Wlog, suppose that P ′ is corrupted.

Fix Z and A. For convenience, let Fwrap = Fwrap(M) and Ftwrap = Ftwrap(M, T). In order to keep
the history of tamperings, S maintains two functions fx and ft, which are initialized with identity functions.
The simulator S proceeds as follows:

– S forwards all the messages between A and Z .

10

– Upon receiving 〈Create, sid, P ′, P,msg〉 from A on behalf of P ′:
S forwards the message to Fwrap and sends its response to A in return.

– Upon receiving 〈Forge, sid, P ′, P,M ′, s′〉 from A on behalf of P ′:
S forwards the message to Fwrap.

– Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:
If msg = (Prove,⊥), S calls Fwrap with 〈Run, sid, P,msg〉. Let 〈sid, P, z〉 be the output from
Fwrap. S forwards the output A and sets ft to the identity function.

If msg = (Prove, c′), let w and v (resp., a and b) be the cofficients of fx (resp., ft), that is, fx(z) =
wz+v and ft(z) = az+ b. S computes c = wc′/a and calls Fwrap with 〈Run, sid, P, (Prove, c)〉.
Let 〈sid, P, s〉 be the output from Fwrap. S computes s′ = as+ c′v + b and sends 〈sid, P, s′〉 to A.
Set ft to the identity function.

– Upon receiving 〈TamperRun, sid, P, P ′, (fax,bx , fat,bt),msg〉 from A:
Set fx = fx ◦ fax,bx and ft = ft ◦ fat,bt . Then S handles msg as in handling Run command.

Note that

s′ = as+ c′v + b = a(cx+ t) + c′v + b = a(wc′x/a+ t) + c′v + b

= wc′x+ at+ c′v + b = (wx+ v)c′ + at+ b = x′c′ + t′.

Therefore, the above simulation is perfect. �

Signature Scheme due to Okamoto [O06]. The digital signature scheme of Okamoto [O06] was employed
in the context of designing blind signatures. Here we show that it is BiTR against affine functions. We give
a brief description next. Let (G1,G2) be a bilinear group as follows:

– G1 and G2 are two cyclic groups of prime order q where possibly G1 = G2.
– h1 (resp. h2) is a generator of G1 (resp. G2).
– ψ is an isomorphism from G2 to G1 such that ψ(h2) = h1.
– e is a non-degenerate bilinar map e : G1 ×G2→GT where |GT | = p, i.e.,

∀u ∈ G1 ∀v ∈ G2 ∀a, b ∈ Z : e(ua, ub) = e(u, v)ab.

The signature scheme below is secure against a chosen message attack under the Strong Diffie-Hellman
assumption [O06]. The signature token is described in Fig. 2.

– Key Generation: Randomly select generators g2, u2, v2 ∈ G2 and compute g1 = ψ(g2), u1 = ψ(u2),
and v1 = ψ(v2). Choose a random x ∈ Z∗q and computew2 = gx2 . Verification key is (g1, g2, w2, u2, v2).
Signing key is x.

– Signature of a message m ∈ Z∗q : Choose random r, s ∈ Z∗q . The signature is (σ, r, s) where σ =
(gm1 u1v

s
1)

1/(x+r) and x+ r 6= 0 (mod q).
– Verification of (m,σ, r, s): Check that m, r, s,∈ Z∗q , σ ∈ G1, σ 6= 1, and e(σ,w2g

r
2) = e(g1, gm2 u2v

s
2).

Theorem 3. There is an interface Ioka such that ITM Moka in Fig. 2 is Taff-BiTR parsimonious with Ioka.

11

Msch: The description of a cyclic group of size q, including a generator g, is embedded in the program as a parameter. The state
is (x, t) ∈ Z2

q .
Initialization

- Upon receiving a message (Initialize), choose x, t ∈R Zq and output gx.
Message Handling

- Upon receiving a message (Prove,⊥), output z = gt.
- Upon receiving a message (Prove, c), compute s = cx+ t mod q, pick t ∈R Zq , and output s.

———
Moka: The description of G1, G2, g2, u2, v2, and a collision-resistant hashing function H : {0, 1}n→Z∗q are embedded in the

program. The state is x ∈ Zq .
Initialization

- Upon receiving a message (Initialize), choose x ∈R Zq , and g2, u2, v2 ∈R G2 and output (g2, w2, u2, v2).
Message Handling

- Upon receiving a message (Sign,m), Choose random r, s ∈ Z∗q such that x + r 6= 0 (mod q). Compute σ =

(g
H(m)
1 u1v

s
1)

1/(x+r) and output (σ, r, s).

Fig. 2. Schnorr identification Msch and Okamoto signature Moka

Proof. Let K = Moka and T = Taff . We show that for any M that calls K as a subprotocol and for all
adversaries A against (M ;K), there is A′, I such that for all environments Z it holds that :

IDEALFtwrap(K,T ,ψ),AM ,ZM ≈ IDEALFwrap(K),(A′)M ;I ,ZM .

Fix M ,A, and Z . LetA′ = A. From now on, we will describe the behavior of the interface I . Handling
the case in which no party is corrupted and the case in which both parties are corrupted is trivial. Now we
consider the case in which only one party is corrupted. Wlog, suppose that P ′ is corrupted.

For convenience, let Fwrap = Fwrap(K) and Ftwrap = Ftwrap(K, T). In order to keep the history
of tamperings, I maintains a function fx, which is initialized with the identity function. Wlog, assume the
message to be signed is in Z∗q . The simulator I proceeds as follows:

– Upon receiving 〈Create, sid, P ′, P,msg〉 from AM on behalf of P ′:
I forwards the message back to AM . When AM sends the reply from Fwrap, I also forwards the
reply back to AM .

– Upon receiving 〈Forge, sid, P ′, P,M ′, s′〉 from AM on behalf of P ′:
As with handling Create, I forwards the messages to AM .

– Upon receiving 〈Run, sid, P,msg〉 from AM on behalf of P ′:
I forwards the messages back to AM . When AM sends the reply from Fwrap, let 〈sid, P, (σ, r, s)〉
be the reply. Let a and b be the coefficients of fx, i.e., fx(z) = az + b. I computes σ′ = σ1/a,
r′ = ar − b mod q and s′ = s, and sends 〈sid, P, (σ′, r′, s′)〉 to AM .

– Upon receiving 〈TamperRun, sid, P, P ′, fax,bx ,msg〉 from AM :
Set fx = fx ◦ fax,bx . Then I handles msg as in handling Run command.

Note that

σ′ = σ1/a = (gm1 u1v
s
1)

1/a(x+r) = (gm1 u1v
s
1)

1/(ax+ra) = (gm1 u1v
s′
1)1/(ax+r

′+b) = (gm1 u1v
s′
1)1/(x

′+r′)

and (r′, s′) is uniformly distributed in (Z∗q)2. Therefore the distribution of (σ′, r′, s′) from I is identical to
the distribution from the pass-through interface.

�

12

5 UC Secure Computation from Tamperable Tokens

In this section we examine the problem of achieving UC-secure computation relying on tamperable (rather
than tamper-proof) tokens. Our starting point is the result of Katz [K07], obtaining a UC commitment
scheme (and general UC-secure computation) in the Fwrap(M)-hybrid for some ITM M (under the DDH
assumption). We extend this result to show a UC commitment in the Fwrap(M ′)-hybrid where M ′ is Taff-
BiTR. Thus, the protocol is secure in the Ftwrap(M ′, Taff)-hybrid model. Along the way we present a gen-
eralization of Katz’s scheme for building commitment schemes that we call commitments with dual-mode
parameter generation. Finally, we examine the OTM token that was introduced by [GKR08] and used by
[GIS+10] to achieve unconditional UC-secure computation. We characterize the BiTRness properties of this
token.

5.1 Generalizing Katz’s Commitment [K07].

Generalizing the result of Katz, we introduce a commitment scheme with dual-mode parameter generation
(DPG). According to the mode, the parameters, output by DPG, make the commitment scheme uncondi-
tionally hiding or extractable. Using this type of commitment, we describe how to implement UC-secure
implementation of the ideal commitment functionality.

Definition 5 (Commitment scheme with DPG). A commitment scheme Π = (Com,Decom) that is pa-
rameterized by p, has a dual mode parameter generation if there is an ITM M for a two-party protocol
〈·,M〉 such that

– (Normal mode) For any PPT P ∗, with overwhelming probability, the output of 〈P ∗,M〉 is a parameter
p over which the commitment scheme Π is unconditionally hiding.

– (Extraction mode) There is a PPT S such that SM outputs a parameter p and trapdoor t such that the
commitment scheme Π with the parameter p is a trapdoor commitment scheme with trapdoor t.

– The parameter generated from 〈P ∗,M〉 and that from SM are computationally indistinguishable.

UC-Secure commitment scheme by wrapping DPG. Now we describe our generalized version of the
UC-secure commitment protocol given by Katz [K07]. We consider a commitment scheme Π (presented in
Fig. 3). The protocol is described in the Fwrap(M) hybrid model (where presumably the ITM M achieves
DPG for that commitment scheme).

We briefly sketch the proof of UC-security for the above commitment scheme, assuming that DPG is
achieved by the parameter generation. In the real world, due to the property Fwrap(M), it is not possible
to rewind M and therefore the parameters are generated in the normal mode. In the ideal world, on the
other hand, the simulator emulating the behavior of Fwrap(M) can rewind M and run in the extraction
mode. For a corrupted sender, the simulator has to extract the commitment. This can be done by making
pS extractable. Then, when the adversary sends a commitment 〈C1, C2, π〉, the simulator can extract the
message committed to from C1 using the trapdoor of pS. For a corrupted receiver, the simulator can make
the commitment equivocal by causing pR to be extractable. Using the trapdoor that was output along with
pR as witness, the simulator can generate a WI proofs π and π′ with respect to the condition (2).

We next show the following easy result regarding BiTR properties of the resulting commitment scheme.

13

Commitment Phase:
1. Each of the sender and the receiver calls Fwrap(M) with a Create message.
2. Each party executes the procedure dual-mode parameter generation with the Fwrap(M). Let pS be the parameter the

receiver obtained, and pR be one the sender obtained. The parameters pR and pS are exchanged.
3. The sender commits to a message m by sending 〈C1, C2, π〉, where C1 is a commitment to m based on the parameter

pS, C2 is a statistically-binding commitment to m, and π is WI proof that (1) C1 and C2 commits to the same message,
or (2) pR was generated in the extraction mode.

Opening Phase:
1. The sender reveals 〈m, r2, π′〉, where m is the committed message, r2 is the randomness for C2, and π′ is WI proof

that (1) C1 and C2 commits to the same message, or (2) pR was generated in the extraction mode.

Fig. 3. Template of the Commitment Scheme Π in the Fwrap(M)-hybrid model.

Let G be the cyclic multiplicative group of size q defined by a safe prime p = 2q+1 and g be a generator of G. The description
of G is embedded in the program. The state is (r1, r2, s1, s2) ∈ Z4

q . It uses a signature ITM K as a subprotocol.
Initialization

- Upon receiving a message (Initialize), call K with (Initialize), sets the state to all 0s and output whatever K outputs.
Message Handling

- Upon receiving a message h0: Check h0 is a generator of G. If the checking fails, output ⊥. Otherwise, pick ri, si ∈R Zq

and compute Pedersen commitments comi = gsih
X (gi)
0 for i = 1, 2, where gi = gri and the encoding X is defined as:

X (α) = α if α > p/2, p− α otherwise. Output (com1, com2).
- Upon receiving a message (h, h1, h2, x1, x2): Check h, h1, h2 ∈ G, x1, x2 ∈ Z∗q . If the checking fails, output ⊥. Other-
wise, let gi = gri and compute ĝi = gxi

i hi for i = 1, 2. Call K with (Sign, (P, P ′, p, g, h, ĝ1, ĝ2)) to get a signature σ.
Output (g1, g2, s1, s2, σ). Pick ri, si ∈R Zq for i = 1, 2.

Fig. 4. DPG-achieving ITM Mdpg

Corollary 1. If an ITM M , achieving DPG for the commitment scheme Π , is T -BiTR, then there exists a
UC-secure commitment scheme in the Ftwrap(M, T)-hybrid.

5.2 BiTR DPG

Here we present a new dual mode parameter generation for the commitment scheme of Katz [K07], which is
BiTR against affine tampering attacks. We briefly recall the basic commitment scheme Π referring to Fig. 3
as instantiated there in [K07]. The main idea is that the parameter p is of the form (p, g, h, ĝ, ĥ). Based on
this the commitment C1 to a bit b is defined as (gr1hr2 , ĝr1 ĥr2gb) for randomly-chosen r1, r2 ∈ Zq. It is
well-known (and easy to check) that if p is a random tuple then this commitment scheme is perfectly hiding;
on the other hand if it is a Diffie-Hellman (DH) tuple and r = logg ĝ = logh ĥ is known, then b can be
efficiently extracted from the commitment. This demonstrates the dual mode properties of the parameter
generation.

BiTR DPG-Achieving ITM. We next show there is a DPG-achieving ITM M that is BiTR against affine
tampering functions for the commitment scheme. We present this result in Fig. 4. Roughly speaking, the
protocol (in the normal mode) generates a random tuple (g, h, ĝ1, ĝ2), by multiplying random numbers g1
and g2 (fromMdpg) and random numbers h1 and h2 (from the token user) — x1 and x2 have been introduced
to achieve BiTR security. That is, in the normal mode, the probability that the tuple (g, h, ĝ1, ĝ2) is a DH
tuple is negligible since ĝ1 and ĝ2 are uniformly distributed. In the extraction mode, however, S can rewind

14

the ITM to cause (g, h, ĝ1, ĝ2) to be a DH tuple. Specifically, S picks a random DH tuple (g, h′, g′1, g
′
2) and,

after finding out the values g1, g2, rewinds the machine right before the second round and sends hi = g′i/g
xi
1

for i = 1, 2. Under the DDH assumption, parameters from the normal mode and from the extraction mode
are indistinguishable.

Theorem 4. The ITM Mdpg in Fig. 4 is T 4
aff-BiTR without any encoding.

Proof. Let M be the ITM. We show that for any non-uniform PPT Z and any PPT A, there exists a PPT S
such that

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z .

Handling the case in which no party is corrupted and the case in which both parties are corrupted is trivial.
Now we consider the case in which only one party is corrupted. Wlog, suppose that P ′ is corrupted.

Fix Z and A. For convenience, let Fwrap = Fwrap(M) and Ftwrap = Ftwrap(M, T). In order to keep
the history of tamperings, S maintains functions {(f ri , fsi) | i = 1, 2}, which are initialized with identity
functions. The simulator S proceeds as follows:

– S forwards all the messages between A and Z .
– Upon receiving 〈Create, sid, P ′, P,msg〉 from A on behalf of P ′:

S forwards the message to Fwrap and sends its response to A in return.
– Upon receiving 〈Forge, sid, P ′, P,M ′, s′〉 from A on behalf of P :

S forwards the message to Fwrap.
– Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:
• If msg = h0, S calls Fwrap with 〈Run, sid, P, h0〉 to get output 〈sid, P, (com1, com2)〉. S sends

the output to A and sets f ri and fsi to identity functions for i = 1, 2.
• If msg = (h, h′1, h

′
2, x
′
1, x
′
2), let wi and vi be the coefficients of f ri (i.e., f ri (z) = wiz + vi) for

i = 1, 2. S computes
hi = h′i · gvix

′
i , xi = wix

′
i mod q,

for i = 1, 2 and sends (h, h1, h2, x1, x2) to Fwrap. Upon receiving 〈sid, P, (g1, g2, s1, s2, σ)〉 from
Fwrap, S computes g′i = gwi

i · gvi and s′i = fsi (si) for i = 1, 2 and sends 〈sid, P, (g′1, g′2, s′1, s′2, σ)〉
back to A. Set f ri and fsi to identity functions for i = 1, 2.

– Upon receiving 〈TamperRun, sid, P, P ′, (fr1 , fr2 , fs1 , fs2),msg〉 from A:
Set f ri = f ri ◦fri and fsi = fsi ◦fsi for i = 1, 2. Then S handlesmsg as in handlingRun command.

Let ĝ′i = (g′i)
x′ih′i where g′i = gf

r
i (ri) for i = 1, 2. Note that for i = 1, 2

ĝ′i = (g′i)
x′ih′i = (gwi

1 · g
vi)x

′
ihi · g−vix

′
i = gxi

1 hi = ĝi.

Therefore the σ is a valid signature on the message (P, P ′, g, h, ĝ′1, ĝ
′
2) = (P, P ′, g, h, ĝ1, ĝ2). The above

simulation is perfect. �

Lemma 1. ITM Moka in Fig. 2 is a transparent subprotocol of Mdpg with respect to Ioka in Theorem 3.

Proof. Let M = Mdpg, K = Moka, and I = Ioka. We show for any A, there is an A′ such that for all
non-uniform Z it holds that

IDEALFwrap(K),AM ;I ,ZM ≈ IDEALFwrap(M ;K),A′,Z .

15

Fix A and Z . A′ works as follows:

– A′ works identically with A except in handling (M ;K) tokens.
– When A sends a message to Create, Forge, Run, or TamperRun8 (M ;K), A′ traps and sends it to
Fwrap(M ;K). If it was a TamperRun,A′ sends Run Fwrap(M ;K) with the same message and remem-
bers the tamper function t. Upon receiving the reply rep from Fwrap(M ;K), if K was invoked (i.e., in
the second round of DPG), A′ works as follows:
1. From the reply, A′ extracts the messages exchanged between M and K — in particular, a pair of a

message m and a signature σ on it. This is possible, since rep contains the m and σ, according to the
DPG protocol.

2. If A invoked a TamperRun with t, A′ passes 〈TamperRun, sid, P, P ′, t, (Sign,m)〉 to I for pre-
processing; Otherwise A invoked just a Run, A′ passes 〈Run, P ′, (Sign,m)〉. From the descrip-
tion of I , we know that it will return the same message. Now, A′ passes 〈sid, P, σ〉 to I for post-
processing. When I sends the modified signature σ′, then A′ modifies the signature part of rep.

3. A′ sends rep to A.

The simulation is perfect. In particular, in the second item above, A′ exactly simulates the messages ex-
changed among AM ;I and ZM , and I . �

Applying the composition theorem (Theorem 1) along with Theorem 3 and 4 and Lemma 1 to the above
scheme, we obtain a wholly BiTR token.

Corollary 2. (Mdpg;Moka) is T 5
aff-BiTR without any encoding.

5.3 BiTR One-Time Memory (OTM) Tokens

Following [K07], several works based UC-secure computation on tamper-proof hardware tokens, in various
settings. In [GIS+10] Goyal et. al. show (among other things) protocols for general UC-secure computa-
tion in the Fwrap(OTM)-hybrid model. This hardware token implements a single OT execution, and was
introduced by Goldwasser, Kalai, and Rothblum [GKR08] in the context of one-time programs. Specifically,
OTM consists of two k-bit strings9 {s0, s1}. Upon receiving an input bit b, it outputs sb and updates the state
to consist of ⊥ (“self-destruct”).

Theorem 5. The k-bit OTM protocol is T -BiTR if and only if T can be written as T = (T0(sj0), T1(sj1))
where each Ti : {0, 1}k→{0, 1}k and j0, j1 ∈ {0, 1}. That is, each of Ti depends only on one of the secrets.

Proof. Let M be an OTM as described and T = (T1, T2) with j0 and j1. We show that for any non-uniform
PPT Z and any PPT A, there exists a PPT S such that

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z .

Handling the case in which no party is corrupted and the case in which both parties are corrupted is trivial.
Now we consider the case in which only one party is corrupted. Wlog, suppose that P ′ is corrupted.

Fix Z and A. For convenience, let Fwrap = Fwrap(M) and Ftwrap = Ftwrap(M, T). The simulator S
proceeds as follows:

8 Only the state K can be tampered.
9 For the [GIS+10] result k = 1 (namely two bits) is sufficient.

16

– S forwards all the messages between A and Z .
– Upon receiving 〈Create, sid, P ′, P,msg〉 from A on behalf of P ′:

S forwards the message to Fwrap and sends its response to A in return.
– Upon receiving 〈Forge, sid, P ′, P,M ′, s′〉 from A on behalf of P ′:

S forwards the message to Fwrap.
– Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:

If msg = b ∈ {0, 1}, S calls Fwrap with 〈Run, sid, P,msg〉. Let 〈sid, P, z〉 be the output from
Fwrap. S forwards the output A.

– Upon receiving 〈TamperRun, sid, P, P ′, (t0, j0, t1, j1),msg〉 from A:
Ifmsg = b ∈ {0, 1}, S callsFwrap with 〈Run, sid, P, jb〉. Let 〈sid, P, z〉 be the output fromFwrap.
S sends 〈sid, P, tb(z)〉 to A.

It is easy to check tb(z) = tb(sjb) is equal to the tampered state s′b.

�

6 BiTR Protocols against General Classes of Tampering Functions

6.1 BiTR Protocols from Non-Malleable Codes

In this section we will see how the BiTR property can be derived by implementing an integrity check in the
form of an encoding ψ. A useful tool for this objective is the notion of non-malleable codes [DPW10] which
we recall here: a pair of procedures (E,D) is a non-malleable code with respect to tampering functions
T , if there is an algorithm S such that for all x ∈ {0, 1}n and t ∈ T , if x = D(t(E(x))), it holds that
S(t) = > with overwhelming probability, while otherwise S(t) is statistically (or computationally) close
to D(t(E(x))). By encoding the state of a protocol with a non-malleable code it is possible to show the
following restatement of Theorem 6.1 of [DPW10] under the BiTR security framework.

Theorem 6 ([DPW10]). Let T be a class of tampering functions over {0, 1}m and (E,D,S) be a non-
malleable code with respect to T , where E : {0, 1}n → {0, 1}m,D : {0, 1}n → {0, 1}m and S are efficient
procedures. Let M be an ITM whose state is of length n. Then M is (T , ψ)-BiTR where ψ = (E,D).

The above theorem suggests the importance of the problem of constructing non-malleable codes for a
given class of tampering functions T . Some positive answers to this difficult question are given in [DPW10]
for a class of tampering functions that operate on each one of the bits of the state independently; they also
provide a general feasibility result for tampering families of bounded size (with an inefficient construction);
an important characteristic of those solutions is relying on the randomness of the encoding. Here we show a
different set of positive results by considering the case of deterministic non-malleable codes, i.e., the setting
where (E,D) are both deterministic functions.

To do that we will utilize a relaxation of non-malleable codes : (E,D,Predict) is called a δ-non-
malleable code with distance ε if for any x ∈ {0, 1}n and t ∈ T , it holds that (i) D(E(x)) = x, (ii)
the probability of the event D(t(E(x))) 6∈ {x,⊥} is at most δ,10 and (iii) Predict(·) ∈ {>,⊥}, and
|Pr[D

(
t(E(x))

)
= x] − Pr[Predict(t) = >]| ≤ ε. It is easy to see that if ε, δ are negligible the resulting

code is non-malleable: given that δ is negligible, property (ii) suggests that D will return either the correct
value or fail, and thus in case it fails, Predict(·) will return ⊥ with about the same probability due to (iii).
We call δ (resp., ε) the crossover threshold (resp., predictability distance).
10 The tampering t may change the codeword x into another valid codeword.

17

6.2 Constructing Deterministic Non-Malleable Codes

Inefficient Construction for Any T . Our construction is reminiscent of the procedure that constructs an
error-correcting code C by removing Hamming balls of a certain radius from the codeword space. Let δ, ε
be the desired crossover threshold and predictability distance respectively. For u ∈ {0, 1}m and t ∈ T , let
qu,t = Pr[t(u) = u]. We say that a set U ⊆ {0, 1}m is one-sided w.r.t. T if it holds that ∀t ∈ T : (∀u ∈ U :
qu,t ≤ ε) ∨ (∀u ∈ U : qu,t ≥ 1− ε). The codeword set C is constructed as follows:

1. Find u ∈ {0, 1}m such that {u} is one-sided w.r.t. T . If no such u exists, fail; otherwise, set C = {u}.
2. Repeat the following procedure until it stops. Let Lt = {u | u ∈ {0, 1}m \ C and (∀c ∈ C : Pr[t(c) =
u] ≤ δ)}, and let L = ∩t∈T Lt (i.e., all strings that cannot be reached by tampering a current codeword,
except with probability at most δ). If L = ∅ then stop; otherwise, pick a u ∈ L such that {u} ∪ C is
one-sided and add u to C (if no such u can be found, stop).

Now, we set n = blog2 |C|c and consider E : {0, 1}n → {0, 1}m an arbitrary injection from {0, 1}n
to C. The decoding D is defined as the inverse of E when restricted on C, and ⊥ everywhere else. We next
define Predict as follows. On input t, if (∀u ∈ C : qu,t ≥ 1− ε) holds, then output >; otherwise output ⊥,
since (∀u ∈ C : qu,t ≤ ε) will hold (no other option is possible, since C is one-sided by construction).

The rate of the constructed code is n/m, the time-complexity of constructing E,D is 2O(m+n)|T | and
the time complexity of Predict(·) is O(2m).11 Regarding this construction we have:

Lemma 2. Fix any class of functions T . The above code (E,D,Predict) is δ-non-malleable w.r.t. T and
distance ε. Moreover, if there exists such code with rate > 0, then such a code is produced by the above
procedure.

Proof. Let t ∈ T . For any x it holds that the event t(E(x)) 6∈ {x,⊥} (cross-over) happens with probability
at most δ by construction of C.

On the other hand, let x ∈ {0, 1}n. Denote u = E(x) and we have that D(t(E(x))) = x suggests that
t(u) = u. This event happens with probability qu,t (but note that Predict is only given t, and is independent
of u - this is where the one-sidedness of C is used). We consider the two possible cases. If ∀u ∈ C : qu,t ≤ ε
(i.e., t is likely to corrupt the encoding), Predict is defined to output 0, while Pr[D(t(E(x))) = x] =
qu,t ≤ ε. If ∀u ∈ C : qu,t ≥ 1 − ε (i.e., t is close to the identity function), Predict is defined to output 1,
while Pr[D(t(E(x))) = x] = qu,t ≥ 1− ε. In both cases we have the needed

|Pr[D
(
t(E(x))

)
= x]− Pr[Predict(t) = 1]| ≤ ε.

�

Discussion: When does a deterministic non-malleable code exist? The basic idea of the construction
above was to search for a one-sided set of codewords and use it to define the non-malleable code. The
11 In the above description, we assumed the probabilities qu,t and Pr[t(c) = u] are known. If they are not known, they can be

estimated using standard techniques. In particular, to evaluate the probability of an event A, repeat k independent experiments
of A and denote the success ratio of the k experiments as p̂. Let Xi be the probability that the i-th execution of the event A
is successful. The expected value of Y =

∑k
i=1Xi is k · p. Using the Chernoff bound it follows that |p̂ − p| ≤ 1/N with

probability 1− γ provided that k = Ω(N2 ln(γ−1)).

18

necessity of one-sidedness is easy to see since if the property fails, i.e., ε < qu,t < 1 − ε for some t and u,
the requirement on Predict cannot hold in general.12 We now provide two illustrative examples and discuss
the existence (and rate) of a deterministic non-malleable encoding for them.

Example 1: Set Function. If T contains a function t that sets the i-th bit of u ∈ {0, 1}m to 0, it follows that
the code C we construct must obey that either all codewords have the i-th bit set to 0 or all of them have
the bit set to 1. This means that any bit setting function cuts the size of the code |C| by half. There is no
non-malleable code when the collection T contains Set functions for every bit position (consistent with the
tampering attack of [GLM+04] using Set functions).

Example 2: Differential Fault Analysis [BDL01]. Consider a single function t which flips each 1-bit to a
0-bit with probability β. Consider a code C ⊆ {0, 1}m for which it holds that all codewords in C have
Hamming distance at least r between each other and 0m ∈ C. Then it is easy to see that δ, the probability
of crossover, is at most βr. Further, now suppose that t is applied to an arbitrary codeword u in C other than
0m. We observe that the number of 1’s in u is at least r (otherwise it would have been too close to 0m). It
follows that t will change some of these 1’s to 0’s, with probability at least 1− (1− β)r. It follows that we
can predict the effect of the application of t with this probability when we restrict to codewords in C \{0m}.

Claim. Any code C over {0, 1}m with minimum distance r that contains 0m allows for a βr-non-malleable
code with (1− β)r for t using the code C \ {0m}.

Using an asymptotically good code we can essentially retain the same message-rate.

We can extend the above to the case when a compositions of t are allowed. Note that a sequence of a
applications of t, flips each 1-bit to a 0-bit with probability β+(1−β)β+ . . .+(1−β)a−1β = 1−(1−β)a.
The encoding now has crossover (1 − (1 − β)a)r ≤ e−(1−β)ar. Thus, from e−(1−β)ar ≤ δ, we obtain
r ≥ (1/(1 − β))a ln(1/δ), i.e., when β is bounded away from 1, the minimum distance of the code grows
exponentially with a.

Efficient Construction for Localized T . Now, we show a simple way to use the (inefficient) construction
above with constant rate and any cross-over δ < 1/2, to achieve an efficient construction with negligible
cross-over (and thus, a BiTR protocol), when the class contains only functions that can be split into inde-
pendent tampering of local (i.e., logarithmically small) blocks. Here we consider a tampering class T of
polynomial size.

Theorem 7. Let k be a security parameter. Let Ti be a class of tampering functions over {0, 1}m
′

for
i = 1, . . . , ` where m′ = O(log k). Let T be a class of functions over {0, 1}m defined as T = T1× · · ·×T`
(i.e., m = `m′). Suppose that there exist deterministic δ-non-malleable codes w.r.t. Ti with rate r and
δ < 1/2 for i = 1, . . . , `. Then there exists a deterministic non-malleable code w.r.t. T with rate ≥ r/2 as
long as ` ≤ 2m

′r and ` = ω(log k).

Proof. We show a construction of a non-malleable code w.r.t. T . Let n′ = rm′ and n = mr/2. Note that
` = m/m′ = 2n/n′. Let q = n/n′ = `/2.

Encoding. Given an input x ∈ {0, 1}n, the encoding proceeds as follows:

1. Parse the given input x as x1, . . . , xq ∈ {0, 1}n
′
.

12 For probabilistic non-malleable codes this can be dealt with, as long as qE(x),t is independent of x — i.e., for any possible
encoded value, there is the same probability that t corrupts it.

19

2. Apply a Reed-Solomon code to x1, . . . , xq, and obtain a codeword y1, . . . , y` such that

yj =
q−1∑
i=0

(αj)ixi+1

where α1, . . . , α` are distinct elements. Note it has to be the case that 2n
′
> `.

3. For j = 1, . . . , `, encode each yj ∈ {0, 1}n
′

to zj = Ej(yj), where Ej is the encoding function of the
δ-non-malleable code w.r.t. Ti with negl(k) predictability distance.

Decoding. To decode a codeword (z1, . . . , z`), for i = 1, . . . , `, compute yi = Dj(zi) for i = 1, . . . , `,
where Dj is the decoding function of the δ-non-malleable code w.r.t. Ti with negl(k) predictability dis-
tance. If one of those individual decodings fails then decoding fails. Otherwise, check to see if the points
{(αi, yi)}`i=1 lie on a polynomial of degree less than q. If this is the case output the polynomial’s coefficients
(x1, . . . , xq); otherwise the decoding fails.

Now, consider the family of tampering functions T . We show the crossover parameter of the above
construction is negl(k). Given that the action in each coordinate is independent the probability of crossover
is the probability of switching `− q + 1 coordinates. This probability via the Chernoff bound can be made
exponentially small assuming that δ < 1/2. Predictability is easily satisfied by checking if the output of
Predict for each block is 1. �

Putting this with Theorem 6, we get the following.

Corollary 3. Under the conditions and parameter choices of Theorem 7, any protocol with state of length
at most mr/2 can be made T -BiTR as long as ` ≤ 2m

′r and ` = ω(log k).

References

[ADW09] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-retrieval model. In
CRYPTO, pages 36–54, 2009.

[AGV09] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against memory
attacks. In TCC, pages 474–495, 2009.

[BB05] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Networks, 48(5):701–716, 2005.
[BDL01] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors in cryptographic computations. J.

Cryptology, 14(2):101–119, 2001.
[BG10] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup indistinguisha-

bility - (or: Quadratic residuosity strikes back). In CRYPTO, pages 1–20, 2010.
[BS97] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In CRYPTO, pages 513–525, 1997.
[C01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145,

2001.
[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO, pages 19–40, 2001.
[CGGM00] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge (extended abstract). In STOC,

pages 235–244, 2000.
[CGS08] N. Chandran, V. Goyal, and A. Sahai. New constructions for uc secure computation using tamper-proof hardware. In

EUROCRYPT, pages 545–562, 2008.
[DGK+10] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption schemes with auxiliary

inputs. In TCC, pages 361–381, 2010.
[DKL09] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, pages 621–630, 2009.

20

[DNW08] I. Damgård, J. B. Nielsen, and D. Wichs. Isolated proofs of knowledge and isolated zero knowledge. In EUROCRYPT,
pages 509–526, 2008.

[DP10] Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-channel attacks on feistel networks. In
CRYPTO, pages 21–40, 2010.

[DPW10] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ICS, pages 434–452, 2010.
[FKPR10] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. In TCC, pages 343–360, 2010.
[FRR+10] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from leakage: the computationally-

bounded and noisy cases. In EUROCRYPT, pages 135–156, 2010.
[GIMS10] V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai. Interactive locking, zero-knowledge pcps, and unconditional cryp-

tography. In CRYPTO, pages 173–190, 2010.
[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on tamper-proof hardware tokens.

In TCC, pages 308–326, 2010.
[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In CRYPTO, pages 39–56, 2008.
[GLM+04] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic tamper-proof (atp) security: Theoretical

foundations for security against hardware tampering. In TCC, pages 258–277, 2004.
[GR10] S. Goldwasser and G. N. Rothblum. Securing computation against continuous leakage. In CRYPTO, pages 59–79,

2010.
[IPSW06] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits ii: Keeping secrets in tamperable circuits. In

EUROCRYPT, pages 308–327, 2006.
[ISW03] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In CRYPTO, pages

463–481, 2003.
[JV10] A. Juma and Y. Vahlis. Protecting cryptographic keys against continual leakage. In CRYPTO, pages 41–58, 2010.
[K07] J. Katz. Universally composable multi-party computation using tamper-proof hardware. In EUROCRYPT, pages 115–

128, 2007.
[K10] V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-proof tokens. In TCC, pages 327–342,

2010.
[KJJ99] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages 388–397, 1999.
[KV09] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASIACRYPT, pages 703–720,

2009.
[MR04] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In TCC, pages 278–296, 2004.
[MS08] T. Moran and G. Segev. David and goliath commitments: Uc computation for asymmetric parties using tamper-proof

hardware. In EUROCRYPT, pages 527–544, 2008.
[NS09] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages 18–35, 2009.
[O06] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In TCC, pages 80–99, 2006.
[P09] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–482, 2009.
[QS01] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and counter-measures for smart cards. In

E-SMART, pages 200–210, 2001.
[S91] C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991.
[SMY09] F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-channel key recovery attacks.

In EUROCRYPT, pages 443–461, 2009.

21

