
E�cient Non-Interactive Oblivious Transfer

with Tamper-Proof Hardware

Maria Dubovitskaya∗ Alessandra Scafuro† Ivan Visconti‡

August 31st, 2010

Abstract

Oblivious transfer (OT, for short) [Rab81] is a fundamental primitive in the founda-
tions of Cryptography. While in the standard model OT constructions rely on public-key
cryptography, only very recently Kolesnikov in [Kol10] showed a truly e�cient string OT
protocol by using tamper-proof hardware tokens. On the positive side, his construction only
needs few evaluations of a block cipher and requires stateless (therefore resettable) tokens.
On the negative side, security against malicious sender is only achieved in a covert sense (a
malicious sender can actually obtain the private input of the receiver but the receive can
detect this malicious behavior with probability 1/2), the protocol is interactive and does
not enjoy forward security (by breaking a token one violates the security of all previously
played OTs).

In this work, we propose new techniques to achieve truly e�cient string OT using tamper-
proof hardware tokens. While from one side our tokens need to be stateful, our protocol
enjoys several appealing features: 1) it is secure against malicious receivers and uncondi-
tionally secure against malicious senders, 2) it is non-interactive, 3) it is forward secure,
4) it enjoys adaptive input, therefore tokens can be sent before parties know their private
inputs, and can (virtually) be reused any polynomial number of times. This gracefully �ts
a large number of client-server settings (digital TV, e-banking) and thus many practical
applications.

We �nally notice that as shown by Goyal et al. in [GIS+10], non-interactive OT with
stateless tokens is impossible. Therefore our use of a stateful token is not avoidable.

Keywords: OT, Tamper-Proof Hardware Tokens.

1 Introduction

Oblivious transfer (OT) [Rab81, EGL85] is among the most investigated primitives in modern
Cryptography. Its importance is due to several reasons. OT is conceptually useful on his own,
and as subprotocol, for realizing secure multi-party computation [IPS08, Kil88] and in general
for cryptographic protocol design. Unfortunately in the standard model OT constructions rely
on public-key encryption, which limits its practical applicability when OT is used as subprotocol
and several instances of it have to be executed by the larger protocol. This e�ciency problem
is even more critical when one would like to use lightweight cryptographic hardware as smart
cards or RFID chips. Furthermore achieving OT secure under concurrent composition in the
standard model has been proved to be impossible [CKL03].

∗IBM Research, Zurich, SWITZERLAND. E-mail: mdu@zurich.ibm.com.
†Dip. di Informatica ed Appl., University of Salerno, ITALY. E-mail: scafuro@dia.unisa.it.
‡Dip. di Informatica ed Appl., University of Salerno, ITALY. E-mail: visconti@dia.unisa.it.

1



Among di�erent assumptions proposed in the past to overcome the impossibility results in the
standard model, the use of tamper proof hardware tokens has obtained an increasing interest for
its capability of designing elegant and extremely powerful protocols. First of all, tamper-resistant
hardware tokens implementing some well-known cryptographic tasks are widely available (e.g.,
smart cards) and have been used in practice in the last decades. Second, it has been shown that
protocols bene�t from the use of such tokens either in practice obtaining better computational
and communication complexities, and/or from a theoretic point of view, obtaining feasibility
results otherwise impossible to achieve.

Hardware tokens are supposed to carry on some publicly known tasks such that any player
can initialize them with their own secrets. Then tokens are distributed to the other players
(honest or malicious) that can use them in a �black box� way, i.e., by sending an input to the
token and getting back only the output without obtaining any information about its internal
state. Obviously nothing can prevent a malicious player from constructing adversarially designed
tokens on its own, and thus it is challenging to design advanced cryptographic protocols that
bene�t from the use of honest tokens, and simultaneously maintain all the desired security
guarantees in presence of adversarially designed tokens.

1.1 Evaluating Protocols with Hardware Tokens

There are several physical properties that could be enjoyed by tokens used in a cryptographic
protocol. Subtle di�erences can heavily simplify or complicate the design of a cryptographic
protocol. The literature could quickly become a jungle if the precise assumptions on the used
hardware and the power of the adversary are not clearly stated. Before discussing related
work, here we take a chance to summarize and discuss requirements, and features of tamper-
proof hardware tokens proposed in literature, and their impact on the e�ciency and security
of the protocols. This will simplify our discussion on previous work and will clearly place our
contribution in the state-of-the-art.

Token requirements. We list below speci�c features/assumptions that di�erentiate hetero-
geneous tokens.

Resettability: a resettable token can be reset to a previous state, i.e., the adversary is able
to manipulate the token and reset its internal variables (e.g., a counter) to its initial state.
This is a positive property for a protocol, as it decreases the hardware assumption (i.e.,
the protocol does not need the additional hardware assumption that a token can not be
reset).

State assumption: it is sometimes the case that next computations of a token are based on
previous ones, in particular depending on the content of the answered queries. Indeed,
when answering queries, a token could for instance erase some data, increment a counter
and so on. Such tokens have to reliably keep their state even without the power supply,
and are referred to as stateful in contrast to stateless tokens, that instead do not require
any permanent updatable memory. Obviously a stateless token require a less demanding
hardware assumption than a stateful token.

Knowledge of the code: sometimes security proofs rely on the ability of the simulator
to rewind the tokens received from potentially malicious parties. This means that the
adversary that produced the token is supposed to �know� its code. Such an assumption
prevents to model real-life adversaries who may simply pass on hardware tokens obtained
from one party to another party, or may construct a super-token by encapsulating received
tokens, without actually knowing its content. This assumption is therefore problematic to

2



justify when one wants to use such tokens to prove results under concurrent compositions.
Indeed in these scenarios, it is natural to consider a man-in-the-middle adversary that
passes on tokens, or that builds super tokens on top of some other tokens.

Re-usability: given the overhead of exchanging tokens and in some cases, their manufacturing
cost, an extremely important property for the design of practical protocols is that tokens
should be reusable any polynomial number of times. A consequence of this property is that
protocols should be secure under adaptive inputs, which means that when the token is sent,
the inputs for the computations that will be later performed are not known yet and will
be dynamically decided according to the outputs of the already performed computations.

E�ciency. Here we stress some more standard measures.

Number of rounds represents the number of communication rounds played by parties. This
is a classical measure in cryptographic protocols, and non-interactiveness makes a protocol
suitable for a much larger number of applications.

Number of queries represents the number of times a token is required to answer a query.
For practical reasons tokens are usually lightweight devices with a slow communication
interface, therefore minimizing the number of queries is worthy.

Amount of computations represents the amount of computations required to both parties
and tokens. This is also a classical measure with a speci�c focus here because of the power
constraints of available tamper-proof tokens. In this context even the use of symmetric
key encryptions in place of public key encryption turns out to be a big improvements in
e�ciency.

Quantity and directions: the introduction of physical tokens in a distributed computation
becomes hard to justify when the number of tokens required to carry on the computation
is large, and tokens have to be generated by many parties. Indeed, given the problematic
aspects of producing and exchanging tokens one would like to see only a small number of
tokens circulating in the system, possibly in one direction only, therefore matching several
client-server scenarios (e.g., often users after a subscription to a service receive a smart
card).

Security issues. We now point out some security issues when dealing with hardware tokens.

Protocol composition: an important measure for the security of a protocol is whether it
maintains the security guarantees also when played in composition with itself, or with
other protocols. Therefore one has to argue whether a protocol enjoys one-time, sequential,
self-concurrent, general concurrent or universal composition.

Adversary's power: an adversary can be semi-honest (i.e., a protocol guarantees input/output
privacy as long as the adversary follows honestly the protocol and then tries to analyze
its view), covert (i.e., a protocol can leak some input/output privacy of honest players, as
long as there is a reasonable chance to catch the malicious party) and malicious (i.e., a
protocol must protect honest players' input/output privacy from any adversarial behav-
ior). Moreover, security can be based on computational assumptions, therefore against
e�cient adversaries only, or unconditional, therefore against unbounded adversaries.

Cryptographic assumptions and models: the use of general assumptions should be pre-
ferred since a protocol can then be instantiated under various candidate assumptions.
Moreover, the use of random oracles (which limits the adversary to a black-box use of
a collision-resistant hash function) and in general of controversial conjectures should be
avoided.

3



Forward security: in case the adversary at some point breaks the tamper resistance of the
token and obtains its current state, previous computations should remain secure.

1.2 Related Work

The use of tamper-proof hardware tokens for cryptographic purposes was investigated by Gol-
dreich and Ostrovsky focusing on oblivious RAM [GO96]. Moran and Naor [MN05] considered
a relaxation of tamper-proof hardware called �tamper-evident seals�, and demonstrated the pos-
sibility of implementing cryptographic primitives based on this relaxed notion. Then Katz
in [Kat07] put forth a more general formalization of a tamper-proof token model. He provides a
scheme achieving Universally Composable (UC-secure) two-party computation under the DDH
assumption. His construction uses tokens assumed to be equipped with a built-in source of ran-
domness (this can be more concretely implemented by using stateful tokens and pseudo-random
functions) that cannot be reset and requires that tokens be sent by both parties. In [Kat07],
it is assumed that once a party creates a hardware token and sends it o�, it can not send any
messages to the token (but can receive messages from it). Also it is assumed that all parties
(including the malicious ones) know the code run by the hardware token that they distributed,
which technically means that tokens can be rewound.

Chandran, Goyal and Sahai [CGS08] extended the results of Katz and suggested three main
improvements: �rst, they considered resettable tokens, second, their construction is based on
general assumption (enhanced trapdoor permutations) instead of DDH. And �nally, their secu-
rity proof does not rely on the simulator's ability to rewind hardware tokens, thus they make
no assumptions on how malicious parties create the hardware token which they distribute. As
for communication between token and its creator they require the opposite assumption: token
can not send any messages to its creator, but can potentially receive messages from it.

Moran and Segev [MS08] realized the UC commitment functionality in the same model
of [Kat07] but providing several improvements. In their constructions tokens are passed in one
direction only, therefore �tting all real-life scenarios which are inherently asymmetric (e.g, voting
systems). Furthermore they showed a protocol realizing the commitment functionality without
relying on computational assumptions and proved that the existence of one-way functions su�ces
to realize the multiple commitment functionality.

We notice that both the results of [CGS08, MS08] focus on constructing UC commitments.
Then the compiler of [CLOS02] must be used to obtain security for general functionalities.
Therefore it turns out that both constructions do not achieve e�ciently the oblivious transfer
functionality.

Goyal, Ishai, Sahai and Wadia in [GIS+10] considered the general question of basing cryp-
tography on tamper-proof tokens, under minimal computational assumptions. They considered
both stateful and stateless tokens and, in particular, they showed that by exchanging simple
stateful hardware tokens, any functionality can be realized with unconditional security against
malicious parties, and that stateless tokens and one-way functions are su�cient for UC-secure
computation.

Very recently, Goyal, Ishai, Mahmoody and Sahai in [GIMS10] focusing on feasibility results
addressed the challenging issue of achieving unconditional security by using only stateless token.
On top of the model proposed in [CGS08] where parties do not need to know the token's code,
they prove that if token encapsulation is possible (i.e., a token can be used to encapsulate other
tokens) then unconditional UC-secure OT is possible. Furthermore, sticking on feasibility results
they prove that if encapsulation is not possible then there exist no protocols using stateless tokens
and achieving statistically secure OT.

The question of using simple tamper proof hardware tokens for practical secure computation

4



has been addressed recently by Kolesnikov [Kol10]. On top of some new techniques and a
careful use of strong PRPGs, Kolesnikov presented an e�cient protocol for string OT, relying
on resettable (and actually, stateless) tamper-proof tokens. This protocol is secure against covert
sender and malicious receiver under sequential composition. All parties, including the tokens
only have to run few evaluations of a block cipher. Security against covert sender means that the
input/output privacy of the receiver can be compromised, but there is a deterrence factor that
can expose the cheating behavior of the sender, and this can be su�cient in some applications. If
the token is semi-honest (e.g., if it is provided by a trusted entity, but adversarially initialized),
then his protocol is secure against malicious adversaries under concurrent general composition.
However this last model assumes that an adversary can not create adversarially designed tokens,
which is unrealistic in practice.

Concerning the covert setting, note that the deterrence factor in practice would be more
e�ective in presence of evidence of cheating, that is, once a covert sender get caught there should
be some proof of the cheating that is publicly veri�able (or at least veri�able by some speci�c
entity). We notice that the protocol of Kolesnikov does not provide evidence of cheating. Indeed
in case the sender prepare a stateful token cheating only once, even if the receiver discovers the
attempt of cheating it has no chance to prove it.

1.3 Our Contribution

We propose a truly e�cient non-interactive string oblivious transfer (OT) protocol based on
stateful tamper-proof tokens and the existence of one-way functions. From a practical point of
view, the only computations required consist of few evaluations of forward-secure PRGs. We
obtain the optimal round complexity by means of a careful use of two stateful hardware tokens.
These tokens are created by one party (the sender) and then distributed to the other party
(the receiver), like in standard client-server setting (digital TV, e-banking). Furthermore our
protocol guarantees unconditional security against malicious senders.

Our result is obtained by means of a new technique: the receiver will play separately with
both tokens essentially emulating an OT protocol between the tokens that are not able to
communicate directly with each other. Jumping ahead, we will show that one can move the
interaction from the communication network that connects remote parties to the location of one
party only that by means of his computing device can run a protocol between the two tokens.
We stress that tokens are sent from the sender at the very beginning, when parties do not have
to know their inputs yet. We believe that this new technique can lead to further improved
constructions in the design of protocols with tamper proof hardware tokens.

We achieve a more general de�nition of OT (adaptive-input OT [Lin04]) that allows parties
to choose their inputs adaptively on the outputs obtained from the previous protocol executions.

In our protocol the communication between parties is done only in one direction (from sender
to receiver), so the protocol is non-interactive. After the receiver gets tokens from the sender it
queries each token once and obtains the selected string. Neither a token nor the sender know
about the receiver's choice.

We prove our protocol secure against malicious adversaries under sequential composition.
Furthermore, our protocol is forward secure, i.e., if the adversary at some point breaks the token
and obtains its current state, all future computations will be insecure, but the previous outputs
of the token still remain completely hidden from the adversary. Our protocol also provides token
re-usability, which means that once the token is released to the receiver it can be used to perform
polynomial many protocol executions. We assume that one of the tokens can be rewound, i.e., the
sender needs to know the content of the token. This in turn does not guarantee security against
man-in-the-middle attacks. Concerning communication between the token and its creator, we

5



allow the communication between the creator and the token.

Properties This Paper Katz [Kat07]/Moran
et al. [MS08]

Chandran et
al. [CGS08]

Goyal et al. [GIS+10] Kolesnikov [Kol10]

Security malicious, seq. UC UC UC covert, seq.
Assumptions OWF DDH/OWF ETP Unconditional/OWF OWF
State assump-
tion

stateful stateful stateless stateful/stateless stateless

Rounds non-
interactive

O(1) O(log n1+ε) non-interactive/O(n) O(1)

No. of Tokens 2 2/1 2 O(n)/ 2 1
Token rewind yes yes no yes/no no
Re-usability yes yes yes no/yes yes
E�ciency yes no no no/no yes

ETP = enhanced trapdoor permutations seq. = sequential composition

Figure 1: OT Protocols with Tamper-Proof Hardware (comparison).

In Fig. 1 we compare our and related work based on the properties we described above.
In terms of e�ciency, our protocol can be compared to Kolesnikov's protocol. Our proposal is
computationally slightly more e�cient, and moreover non-interactive. Although we use stateful
tokens, we prove that our protocol is forward secure against malicious static adversaries. The
results of [Kol10] either have weaker security guarantees (covert sender), or rely on a semi-honest
token and do not enjoy forward security. Finally, we stress that in light of the results of Goyal
et al. [GIS+10], non-interactiveness can not be obtained with a stateless token.

In our security proof the simulator as in [Kat07, MS08, GIS+10] rewinds the token, which
means that the sender needs to know the code executed by the token that it sent. This implies
that an adversary never forwards to a party a token received from another party, and moreover it
never constructs a new token on top of a received one. Given the above evident limitations in a
truly concurrent setting, we therefore prove the protocol secure under sequential composition (as
in [Kol10]). Instead in [Kat07, MS08, GIS+10] security under general concurrent composition
has been proved still under the above limitation about forwarding or extending some received
tokens. The construction given in [CGS08] instead does not su�er of this limitation and gives a
proof of UC security without further weaknesses in the adversary model. However, as shown in
Fig. 1, this is obtained by loosing other important properties.

2 De�nitions and Tools

Notation. We denote by n the security parameter and by PPT the property of an algorithm of
running in probabilistic polynomial-time. A function negl(·) is negligible in n (or just negligible)
if for every polynomial p(·) there exists a value N such that for all n > N it holds that negl(n) <
1/p(n).

Let X = {X(n, a)}n∈Na∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. We

say that X and Y are computationally indistinguishable, (i.e., X
c≡ Y ), if for every non-uniform

PPT distinguisher D there exists a negligible function negl(·), such that for every a ∈ {0, 1}∗,∣∣∣Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]
∣∣∣ < negl(n).

We denote by y
$← B(x) the value assigned to variable y as the output of the PPT algorithm

B on input x, while with y ← B(x) we indicate the output of the deterministic polynomial-time

algorithm B. For a �nite set A, x
$← A denotes the assignment of a uniformly chosen element of

6



A to variable x.

Pseudo-random generators. A pseudo-random generator (PRG) G:{0, 1}n → {0, 1}n+k is a
deterministic polynomial-time algorithm that receives a short truly random seed and stretches
it into a longer string (expansion) that is indistinguishable from a truly random string (pseudo-
randomness).

Here we consider a more powerful adversary that at some point is able to break into the
computing device and thus to obtain its current state. While in this case all future computations
will obviously be completely insecure, here we require that the security (pseudo-randomness of
the generated bits) of previous computations still holds. This is a stronger security notion that
is referred to as forward-security and requires that the previous output of the PRG remains
secure even after the adversary gets the current state. Bellare and Yee in [BY03] provide a
comprehensive treatment of forward-security in the context of shared-key based cryptographic
primitives investigating on de�nitions and constructions of forward secure PRGs. We follow
their de�nition of forward secure pseudo-random generator that we recall below.

Forward secure pseudo-random generators. A quadruple of e�cient algorithms GEN =
(GEN.key,GEN.next, k, t) is a stateful generator, when k and t are two positive integers indicating
respectively the stretch factor and the maximum number of blocks the generator can produce,
GEN.key is a probabilistic key generation algorithm that outputs the initial state (the seed) and
GEN.next is the (deterministic) next step algorithm that on input the current state returns a pair
consisting of a k-bit string output block and the next state. A sequence Out1, Out2, . . . , Outt of

k-bit output blocks is obtained by picking a seed St0
$← GEN.key and then iterating (Outi, Sti)←

GEN.next(Sti−1) for i = 1, . . . , t. Sti−1 can be seen as the �key� or �seed� at time i. Forward
security will require that this key is erased as soon as the next one has been generated, so that
someone breaking into the machine gets only the current key.

Forward security. The forward security property is modeled by the following security exper-
iment. The adversary A runs in two stages: in the ��nd� stage it receives output blocks, one
at a time, until it (adaptively) decides to break in and obtains the current state. In the �guess�
stage, it must decide whether the output blocks it had been fed were outputs of the generator or
were independent random bits. Let A (find, Out, h) denote A in the �nd stage, taking an output
block Out and current history h and returning a pair (d, h) where h is an updated history and
d ∈ {find, guess}. This stage continues until d = guess or all t output blocks have been generated
(in the latter case the adversary is given the �nal state in the guess stage). More formally, the
adversary will play in one of the following experiments:

Experiment Expfprg-1
GEN (A) Experiment Expfprg-0

GEN (A)

St0
$← GEN.key St0

$← GEN.key
i← 0;h← ε i← 0;h← ε
Repeat Repeat

i← i+ 1 i← i+ 1
(Outi, Sti)← GEN.next(Sti−1) (Outi, Sti)← GEN.next(Sti−1)

Outi
$← {0, 1}k

(d, h)
$← A(find, Outi, h) (d, h)

$← A(find, Outi, h)
Until (d = guess) or (i = t) Until (d = guess) or (i = t)

g
$← A(guess, Sti, h) g

$← A(guess, Sti, h)
Return g Return g

7



De�nition 1 (Forward Secure Pseudo-Random Generator). Let GEN be a stateful genera-

tor. GEN is a forward secure pseudo-random generator if for all non-uniform PPT adver-

sary A there exists a negligible function negl(·) such that Advfprg
GEN(A) =

∣∣∣Pr[Expfprg-0
GEN (A) =

1]− Pr[Expfprg-1
GEN (A) = 1]

∣∣∣ < negl(n).

Symmetric-key encryption. We will be using the One-Time-Pad (OTP) encryption scheme,
where the encryption and decryption functions correspond to an XOR computation. We will
indeed need one encryption only per key, therefore OTP will su�ce. Moreover, the keys used in
our scheme will be pseudorandom, and we will show in the proof that this is su�cient for our
purposes (obviously we will loose the information-theoretic security of OTP).

2.1 1-out-of-2 Oblivious Transfer

1-out-of-2 string Oblivious Transfer (OT) is a two-party protocol between a sender S and a
receiver R. The sender S has two secret strings s0, s1, and the receiver R has a selection bit
i from {0, 1}. Upon completion, R learns si, but nothing about s(1−i), and S learns nothing
about i. Following the notation of [Lin04] the Oblivious Transfer functionality is a function:
FOT : ((s0, s1), i) 7→ (ε, si) where the sender gets no output. In this work we consider the case in
which parties run sequentially a polynomial number of OT protocol executions and we require
that at each execution players are allowed to select their inputs adaptively on outputs obtained
in all previous executions. We refer to this variant of OT as FOT

adpt and we follow the de�nition
of functionality with adaptively chosen inputs adopted by Lindell in [Lin04].

Sequential self-composition and stateful parties. The notation used in the above FOT
adpt

allows through session ids the execution of multiple OT instances. When multiple instances are
possible, a natural question is whether the adversary can interleave the execution of di�erent
instances or not. Here we will consider an adversary that mounts a sequential attack, therefore
multiple instances of an OT protocol will not be interleaved, and thus they will be played
sequentially. The adversary will use his control of the communication network. Among his
features, it will be able to ask the honest sender to play OT sessions concerning di�erent senders,
as also the same stateful senders. The only restriction concerns the fact that before a new OT
starts, all the messages of the previous execution must have been exchanged, or otherwise the
previous execution will never be completed.

Static corruption. Concerning the corruption capabilities of the adversary, we will consider
a static adversary only, which means that the adversary selects the party to be impersonated
when the experiment starts. This means that in all executions, the adversary will always play
as sender or will always play as receiver.

Adaptively chosen inputs. When multiple executions of a protocol are possible, each party
needs an input for each execution. It is often the case that a party chooses the input of each
execution adaptively basing its decision on the outputs of previous executions. Following the
de�nition of Lindell in [Lin04] this property is formalized by requiring that inputs of each
execution be provided by a PPT input-selecting Touring Machine M . More formally, each
honest party Pi is augmented by a PPT input-selecting Touring Machine Mi and the input
played in the session sid is the result of the computation of Mi(initPi , sid, αsid,1, . . . , αsid,j) where
initPi is the initial state of Pi, sid is the session id of the current session, and αsid,1, . . . , αsid,j are

8



outputs obtained from the sessions concluded so far. Note that init contains the initial inputs
along with some possible auxiliary information.

Functionality FOT
adpt

FOT
adpt proceeds as follows, running with an oblivious transfer sender S, a receiver R and an

adversary Sim that controls one of the parties:
1. Upon receiving a message (start session) from Sim send (start session, sid) to the

honest party Pi where sid is the index of the session. The honest party Pi then applies
its input-selecting machine Mi to its initial input initPi , the session number sid and the

previous outputs and obtains the input xsid (i.e., (ssid0 , ssid1 ) for S, isid for R) that is xsid
$←

Mi(initPi , sid, αsid,1, . . . , αsid,j). Finally Pi sends (role, sid, xsid) to the ideal functionality
(with role ∈ {sender, receiver}).

2. Upon receiving a message (role, sid, xsid) from an honest party Pi, if no other message
matching (role, sid, ·) has been already received from Pi, then store (role, sid, xsid) other-
wise discard it.

3. Upon receiving a message (receiver, sid, i) from Sim, if a message matching
(sender, sid, (s0, s1)) has been previously stored, then send (sid, si) to Sim, otherwise dis-
card (receiver, sid, i).

4. Upon receiving a message (sender, sid, (s0, s1)) from Sim, if no other message matching
(sender, sid, (·, ·)) has been already received from Sim then store (sender, sid, (s0, s1)) oth-
erwise discard it.

5. Upon receiving a message (send-output, sid) from Sim send the output (sid, si) to the
honest party. (If (sid, s0, s1) and (sid, i) have not yet been received by the trusted party,
then message (send-output, sid) is ignored).

Figure 2: The functionality FOT
adpt for OT with adaptively chosen inputs.

Ideal model execution. The ideal functionality is shown in Fig. 2. We let Sim be the non-
uniform PPT ideal world adversary. Then, the ideal execution of FOT

adpt (with security parameter
n, input-selecting machines M = (M1,M2), initial inputs (initS, initR) and auxiliary input z to
Sim), denoted IdealFOTadpt,Sim,M

(n, initS, initR, z) is the random variable de�ned as the output pair

of the honest party and Sim from the above ideal execution.

Real model execution. In the real model execution the FOT
adpt functionality is computed by

a protocol π in which S and R are de�ned as two sets of instructions πS and πR respectively,
that are computable in polynomial time. We let A be a non-uniform PPT adversary that
controls either S or R and the scheduling of all messages throughout the (sequential) executions
of the sessions. The (sequential) execution of π (with security parameter n, input-selecting
machines M = (M1,M2), initial inputs (initS, initR), and auxiliary input z to A), denoted by
Realπ,A,M (n, initS, initR, z), is the random variable de�ned as the output pair of the honest party
and A resulting from the following process.

The session sid is initiated by the adversary by sending a start-session message to the honest
party. The honest party then applies its input-selecting machine on its initial input, the session
number sid and its previously received outputs, and obtains the input for this new session. Upon
the conclusion of an execution of π, the honest party writes its output from that execution on
its output tape.

9



In order to obtain token re-usability we will assume that once a party sends tokens to the
other party, it also keeps some state information regarding the tokens. Therefore multiple
executions of a protocol that recycle the same tokens will require some state information shared
among the executions. Without such a requirement token re-usability would not be possible.

Security De�nition. The security is de�ned as the emulation of the real execution in the
ideal model. A protocol is secure if for every real-model adversary A and pair of input-selecting
machines (M1,M2), there exists an ideal model adversary Sim such that for all initial inputs
initS, initR, the outcome of an ideal execution with Sim is computationally indistinguishable from
the outcome of a real protocol execution with A. Notice that Sim knows the strategy used by
the honest parties to choose their inputs. However, Sim does not know the initial input of the
honest party, nor the random tape used by its input-selecting machine (any �secrets� used by
the honest parties are included in the initial input, not the input-selecting machine).

De�nition 2 (Security under adaptive-input sequential composition (adapted from [Lin04])).
Let FOT

adpt and π be as above. Protocol π is said to securely compute FOT
adpt under sequential self

composition if for every real-model non-uniform PPT adversary A controlling Pi (i ∈ {1, 2})
and every pair of PPT input-selecting machines M = (M1,M2), there exists an ideal-model

non-uniform PPT adversary Sim controlling Pi, such that:

{IdealFOTadpt,Sim,M (n, initS, initR, z)}{n∈N ;initS,initR,z∈{0,1}∗}
c≡ {Realπ,A,M (n, initS, initR, z)}{n∈N ;initS,initR,z∈{0,1}∗}.

3 E�cient Non-Interactive 1-Out-Of-2 OT

In this section we show a protocol for e�cient non-interactive OT with stateful tamper proof
tokens. We �rst start with an high-level description of our result, and the we give the formal
protocol and proof.

High-level description of techniques and protocol. In the protocol proposed by Kolesnikov
in [Kol10] there is a �rst round where the sender creates and sends a token to the receiver. Then,
the receiver interacts with the token and uses the obtained outputs to play two more rounds
with sender. The protocol is therefore interactive which is a limitation in several applications
(e.g., when the sender broadcasts messages through a satellite and the receiver can not transmit
messages back to the sender), and when a protocol is used as subprotocol (e.g., for protocol
composition issues and round complexity optimality).

Our main technique to overcome this limitation, therefore obtaining a non-interactive pro-
tocol, consists in asking sender S to send two tokens to the receiver R. The two tokens will be
used by R to play locally (i.e., without exchanging messages with the sender) an execution of
OT. Obviously, we want to achieve token re-usability and adaptive-input OT, therefore it is not
possible for S to encode the usual inputs (s0, s1) in the token1. Instead, we will ask S to send a
one-time pad encryption of s0 and s1 computed with two independent keys k0, k1 given in output
by two forward-secure PRGs. One of the two tokens, that we denote Ts, internally includes both
keys. Clearly we do not want that Ts gives ki to R as answer to a query i. Indeed, this would
allow Ts to learn the bits of R and thus to adaptively change its behavior. For instance Ts could
be programmed in a way such that it answers to any sequence of queries with the exception
of a speci�c pattern 101001001, so that in the real model execution R will get answers to all
queries up to the last query 1 of the sequence 101001001. Instead the simulator will never be
able to replicate this attack in the ideal model execution for two main reasons: 1) discovering

1This implies that one can not use the one-time memory (OTM, for short) tokens used in [GIS+10].

10



such a pattern by internally running the adversary and querying and rewinding the token would
require to explore all possible patterns, and this clearly require exponential time in the size of
the pattern; 2) the simulator in the ideal model execution is not aware of the input of R and
thus can not send adaptive aborts to the ideal world functionality.

Therefore the above simple solution does not work since it does not allow one to get sequential
composition. The mere use of a stateful token therefore does not seem to make trivial the problem
of designing e�cient non-interactive OT.

To overcome this limitation, we implement an OT execution between Ts that will play the
role of a sender having the two keys mentioned above as input, and R that is interested in getting
ki without revealing i to Ts. Here one can think that there is a circularity since we wanted to
achieve e�cient OT, but now we are back to the problem of achieving e�cient OT. This is only
partially true. Indeed, by using this technique, we have at least solved the problem with the
round complexity. We have only one message sent by S in the communication network, and now
we need an e�cient OT that is played locally and thus does not need to be non-interactive.

We implement the e�cient (local) OT between Ts and R, using again the help of hardware
tokens. This is why we require in our solution a second token that we denote as Tk. The role of
Tk is to help for the design of a 2-message e�cient OT protocol, to be played locally.

The local execution of OT goes as follow: Ts playing as a sender will keep the two keys
(k0, k1) encrypted by means of two additional keys k̂0, k̂1. R will send a random bit b to Ts that
will answer with (k̂0 ⊕ k0, k̂1 ⊕ k1) if b = 0 and with (k̂0 ⊕ k1, k̂1 ⊕ k0) if b = 1. Then, R sends

b⊕ i to Tk that will answer sending k̂b⊕i. It is easy to see that both Ts and Tk only see random
bits, but however R obtains the correct key that allows it to obtain ki �rst, and then si.

We give the intuition behind the security proof. When playing as malicious sender the view of
the adversarial sender is empty since the protocol is non-interactive. Moreover, the view of each
malicious token sent by the adversarial sender only consists of random bits (i.e., the queries of
the token). We stress that tokens do not communicate with each other. Therefore the simulator
can perfectly simulate the adversarial view and the protocol provides unconditional security
against a malicious sender. When playing as malicious receiver, the adversarial view consists
of the tuple containing encryptions of the two strings (obtained by the sender), encryptions of
the two keys (obtained by Ts) and one decryption key (obtained by Tk) that will determine
the �nal decrypted string. Due to the use of the one-time-pad encryption, any tuple is such
that it is always possible to have four values of the view that are completely random and to
set the remaining value so that one would compute the output string si. This property, along
with the ability of observing all queries made by an adversarial receiver to the tokens (this
coordination is not possible between malicious tokens and the malicious sender because they
can not communicate with each other), allows the simulator to answer with randomly chosen
strings and equivocate the encryptions by setting the remaining value of the view properly.

3.1 Non-Interactive OT

The formal protocol is depicted in Fig. 3.

Theorem 1. If GEN = (GEN.key,GEN.next, n, t) is a forward-secure PRG then protocol 3.1 se-

curely and e�ciently implements FOT
adpt functionality. Furthermore the protocol is forward secure.

Proof. Correctness is straightforward and relies on the properties of the ⊕ operator. R with
input i aims at decrypting si from ei. Thus it needs to get the key ki by interrogating tokens Tk
and Ts. Depending on the random bit b chosen for the query to Ts, due to token's correctness,
the desired key ki is hidden in ê′i⊕b through an OTP encryption with k̂i⊕b. Hence, by querying

11



the token Tk with input i⊕ b, R retrieves the correct key k̂i⊕b. Finally, by the properties of the

⊕ operator, from êi⊕b using k̂i⊕b, R gets k′i and it uses k′i to obtain si from ei.

We now show the ideal world adversary Sim, by considering the following cases.

Case 1: sender is corrupted. Let A, ATs and ATk be PPT adversaries controlling S, Ts and
Tk respectively. We show a PPT ideal world adversary Sim that simulates the honest receiver
R in the real world experiment to the adversary A in order to extracts the pair (s0, s1) and
be able to carry out the same attack in the ideal world. Sim runs A internally and works as
follows. It obtains tokens ATs and ATk . Upon receiving the start-session message from A,
Sim sends the message (start session) to FOT

adpt. This leads the ideal world receiver to get
the message (start session, sid) from FOT

adpt and to activate the input-selecting machine M2 in
order to obtain its next input. Upon receiving the pair (e0, e1) from A, Sim interrogates token
ATs with a randomly chosen bit b and obtains the pair (k̂0 ⊕ kb, k̂1 ⊕ k1−b). Let st be the state
of the simulation at this point. Sim then rewinds ATs and queries it with bit 1 − b obtaining
(k̂0⊕k1−b, k̂1⊕kb). The the simulator continues the execution from st (i.e., the rewind is played
as a look-ahead and no query computed during the rewind will appear in the future view of A).
Note that it is crucial that the simulator chooses a random bit for the token's queries. Indeed if
the simulator just queries the token with bit 0 and then bit 1 we have that the main thread of
the simulation always includes 0 as query for Ts, which is clearly di�erent from what the honest
receiver sends in the real world. Finally Sim continues from state st (which is the main thread of
the simulation), queries token ATk with a randomly chosen bit c obtaining k̂c. At this point Sim
gets both decryption keys and it can decrypt strings s0, s1 to play in the ideal world. Hence, Sim
sends the message (sender, sid, (s0, s1)) followed by (send-output, sid) message to FOT

adpt . Note
that the simulator can fail the decryption of both strings due to aborts in the following cases.
In case Tk does not abort and Ts aborts then the simulator will not be able to extract at least
one string to play in the ideal functionality. Thus it will play one of the following three pairs
(s0, 0

n), (0n, s1) or (0
n, 0n), depending on the query answered by Ts. In case Tk aborts then the

simulator will play (0n, 0n) in the ideal world.
The intuition behind the security proof lies on the fact that all queries in the view of a

token correspond to uniformly chosen random bit. This makes the output generated in the ideal
execution distributed identically to the real execution. Thus, the security against a malicious
sender is unconditional.

Case 2: receiver is corrupted. In this case we show a PPT ideal world adversary Sim that
simulates S in the real world in order to extract the bit from the malicious receiver A and carry
out the same attack in the ideal world. Sim runs A internally and works as follows. Upon
receiving the start-session message from A, Sim sends the message (start session) to FOT

adpt.
Then the ideal world sender will receive the message (start session, sid) from FOT

adpt and it
will activate its input-selecting machine M1 to get the input to send to the functionality. At
this point Sim randomly chooses the pair (e0, e1) and sends it to A. Then Sim must answer
to the queries made by the adversary to tokens Ts and Tk. We distinguish two cases. Case
2.1: the adversary queries Ts �rst. In this case, as the adversary interrogates Ts with input b,
Sim outputs a randomly chosen pair of strings ê0, ê1. Then, when A queries the token Tk with
input c, Sim computes i ← c ⊕ b and plays (receiver, sid, i) in the ideal functionality in order
to get the string si. Now the simulator computes k̂c ← êc ⊕ ei ⊕ si and returns it to A. Case
2.2: the adversary queries Tk �rst. In this case, as the adversary interrogates Tk with input
c, Sim outputs a randomly chosen string k̂c. Then, when A queries the token Ts with input b,
Sim computes i ← c ⊕ b and plays (receiver, sid, i) in the ideal functionality in order to get
the string si. Then the simulator sets êc ← ei ⊕ si ⊕ k̂c and ê(1−c) as a randomly chosen string,

12



and outputs (ê0, ê1). Finally the simulator will send the message (send-output, sid) in the ideal
world. Note that, the case where A queries tokens many times for the same execution (i.e.,
without having received new pairs from the sender) is not harmful since Sim is only required
to choose random keys to answer the queries consistently for both tokens and records the keys
according to the order they were queried to make consistent the future messages to be sent. The
case in which A �rst queries one token, then gets the message from Sim and then queries the
last token is managed following the previous approach (only the order with which Sim has to
react to A's behavior changes). The last case regards Sim that gets the string from the ideal
execution before actually sending the pair (e0, e1) to A. However, this can be easily managed as
Sim can again compute (e0, e1) properly, so that A gets sb⊕c. Finally, when A performs token
corruption, Sim chooses random values K = (k0, k1, St0, St1), K̂ = (k̂0, Ŝt0, k̂1, Ŝt1) and returns
the value according to the token that was corrupted. We �nally stress that after corruption of
a token, no other OT has to be simulated w.r.t. the sender that sent that token.

The simulator runs in polynomial time. When playing as receiver Sim is required to
perform the rewind of a token. Since the malicious sender's attack (that involves A,ATs ,ATk)
runs in polynomial time, then interacting with a token requires polynomial time and thus the
simulator interacting with the token twice will be still polynomial. Notice that a rewind does
not involve to repeat work done for other sessions, and thus there is no blow up in the running
time of the simulator. Now consider the case of a malicious sender that starts sequentially many
executions with di�erent receivers. Since the protocol is non-interactive (a malicious sender has
no message in his view) and the extraction process of the simulator involves only rewinding of
tokens (and not of the sender) each execution can be resolved independently of the others, and
thus this part can be simulated in polynomial time. When playing as a sender the simulator
is required to extract the bit of the receiver. The trick is that in this case the simulator has
complete control on the tokens, and can see both queries before answering to the second query
(this can not be done by a malicious sender). Using the properties of the ⊕ operator, it can
disclose at its wish the previously sent message by answering properly to the queries. Thus each
execution requires only straight-line simulation, which is obviously done in polynomial time.

Achieving adaptive-input property. The adaptive-input property allows players to choose
the next input to be provided in the protocol/functionality adaptively on the outputs obtained
previously. Proving security in this setting requires a simulator able to reproduce the adversarial
view without leading players of the simulated experiment to initiate more protocol executions
(and thus more queries to the input-selecting machine) then the real world experiment. This
could happen when the simulator's extraction strategy relies on the rewind of the malicious
player. In such a case a malicious player could coordinate the executions and choose its inputs
so that a simulator needs to open more ideal-word execution in order gets the inputs needed to
simulate the adversarial view. This would make a deviation between real world and ideal world.

However, our simulator is not a�ected by such a problem, since it never rewinds the sender
and the receiver, and the simulation is based on rewinding tokens in one case and in coordinating
the answers to queries in another cases. Rewinding a token does not allow the adversary to open
new sessions, and thus the input selecting machines do not need extra executions in the ideal
world.

Indistinguishability of the views. We informally sketch the proof of security showing that
the view of the adversary interacting with Sim is indistinguishable form the view of A interacting
with the honest players. In our setting the adversary can decide to play as a malicious sender in

13



all sessions or as a malicious receiver in all sessions. We will therefore show that in both cases
the simulation goes through.

A is a malicious sender. In this case the view of the malicious sender is made only by
queries to the tokens. The honest receiver queries the token with randomly chosen bits. The
simulator deviates from the honest receiver only for the rewind of the token. However the query
done after the rewind is random too for the token. Since each rewind leaves the token Ts as
it had seen a randomly chosen bit, and the simulation continues from that state, the view of
Ts interacting with Sim is distributed identically to the view of Ts when interacting with the
honest receiver. Therefore, the views are perfectly indistinguishable, and thus our protocol
achieves unconditional security against malicious senders.

A is a malicious receiver. In this case the view of the malicious receiver in one protocol
execution consists of the pair of messages sent by the sender and the outputs of the tokens. Fur-
thermore, dealing with a malicious receiver we have to prove that views remain indistinguishable
even after the adversary gets the token's state performing the corruption. We notice that the
simulator deviates from the honest sender in two ways: 1) it does not use GEN to perform the
encryptions and the answers of tokens; 2) it sends the encryptions and it answers the token's
queries with randomly chosen values except for one (depending on the order of the queries made
to the tokens by the A) that is properly set allowing the adversary to decrypt its selected string.
For lack of space, a detailed sequence of hybrid arguments, showing that the view of the adver-
sary in the real world does not change during the ideal world, is shown in Appendix A. We now
informally argue the two main steps that characterize the hybrid arguments. In the �rst step,
starting from the real world execution we replace the use of GEN to obtain the keys, by selecting
randomly chosen keys. Moreover, once the adversary performs the corruption of the token the
simulator returns randomly chosen values. It follows from the forward-security of GEN that the
view of A interacting with the sender can not be distinguished in polynomial time from the
view of A interacting in this experiment. In the second step we show that the strategy used by
Sim, answering queries and setting the last values properly is perfectly indistinguishable from
the previous experiment. Indeed, this is due to the perfect security of OTP, since in both cases
(i.e., the above experiment and during the simulation) all keys are used once and have uniform
distribution. Summing up, we conclude that the view generated by the malicious receiver A
playing with the honest sender S is computational indistinguishable from the view generated by
A interacting with the simulator Sim.

4 Acknowledgments

The work described in this paper has been supported in part by the European Commission
through the ICT program under contract 216676 ECRYPT II and 215270 FRONTS, and in
part by the MIUR Project PRIN �PEPPER: Privacy E Protezione di dati PERsonali� (prot.
2008SY2PH4).

The authors wish to thank the participants of the MAYA-ECRYPT II meeting that took
place in IBM Research Zurich in May 2010, for several interesting discussions on cryptographic
protocols with tamper proof hardware tokens.

14



References

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
Marc Joye, editor, Topics in Cryptology � CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 1�18, San Francisco, CA, USA, April 13�17, 2003.
Springer, Berlin, Germany.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in

Cryptology � EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 545�562, Istanbul, Turkey, April 13�17, 2008. Springer, Berlin, Germany.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, edi-
tor, Advances in Cryptology � EUROCRYPT 2003, volume 2656 of Lecture Notes in

Computer Science, pages 68�86, Warsaw, Poland, May 4�8, 2003. Springer, Berlin,
Germany.

[CLOS02] Ron Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In 34th Annual ACM Symposium

on Theory of Computing, Lecture Notes in Computer Science, pages 494�503, Mon-
tréal, Québec, Canada, May 19�21, 2002. ACM Press.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637�647, 1985.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive lock-
ing, zero-knowledge pcps, and unconditional cryptography. In Advances in Cryptology

� CRYPTO 2010, Lecture Notes in Computer Science, pages 173�190, Santa Barbara,
CA, USA, August 2010. Springer, Berlin, Germany.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture
Notes in Computer Science, pages 308�326, Zurich, Switzerland, February 9�11, 2010.
Springer, Berlin, Germany.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. Journal of the ACM, 43:431�473, 1996.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - e�ciently. In David Wagner, editor, Advances in Cryptology �

CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 572�591,
Santa Barbara, CA, USA, August 17�21, 2008. Springer, Berlin, Germany.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, Advances in Cryptology � EUROCRYPT 2007,
volume 4515 of Lecture Notes in Computer Science, pages 115�128, Barcelona, Spain,
May 20�24, 2007. Springer, Berlin, Germany.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM

Symposium on Theory of Computing, pages 20�31, Chicago, Illinois, USA, May 2�4,
1988. ACM Press.

15



[Kol10] Vladimir Kolesnikov. Truly e�cient string oblivious transfer using resettable tamper-
proof tokens. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptogra-

phy Conference, volume 5978 of Lecture Notes in Computer Science, pages 327�342,
Zurich, Switzerland, February 9�11, 2010. Springer, Berlin, Germany.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Moni Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes

in Computer Science, pages 203�222, Cambridge, MA, USA, February 19�21, 2004.
Springer, Berlin, Germany.

[MN05] Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals.
In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP 2005: 32nd International Colloquium on Automata, Languages

and Programming, volume 3580 of Lecture Notes in Computer Science, pages 285�297,
Lisbon, Portugal, July 11�15, 2005. Springer, Berlin, Germany.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In Nigel P. Smart, editor, Advances
in Cryptology � EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Sci-

ence, pages 527�544, Istanbul, Turkey, April 13�17, 2008. Springer, Berlin, Germany.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

A Details on the Indistinguishability of the Views

In this section we provide a detailed proof of the indistinguishability of the views of the adver-
sarial receiver A when playing against an honest sender and when playing during the simulation
(Section 3.1 includes a sketch of this proof).

Letm = p(n), where p is a polynomial, consider an adversary performing a total ofm protocol
executions with possibly di�erent senders: S1,S2, . . . ,Sp in any order. Finally consider that A
ends its attack by making token corruptions. Since the security experiment with each di�erent
sender is anyway concluded after the corruption of the corresponding token then wlog we assume
that A ends corrupting all tokens. The proof continues by showing the indistinguishability of
the following hybrids games.

H0: in this hybrid Sim with initial input initS will internally simulates a real world execution be-
tweenA and S and outputs whateverA outputs. This is identical toRealπ,A,M (n, initS, initR, z).

H1,1: in this hybrid Sim works exactly as in H0 except that, when playing as the sender S1,
it replaces the use of gen0 by giving in output randomly chosen keys when required (i.e.,
for computing (e0, e1) and for answering queries to the token Ts). Obviously the same
random value will be used to replace the j-th output of gen0 both when computing the
j-th message and when answering to the j-th query of Ts.

Suppose that there exists a PPT distinguisher D distinguishing the views generated in
hybrid H0 and H1,1 then we can construct a PPT distinguisher B for the forward-security
of gen0. We let q denote the number of protocol executions between A and sender S1

(A performs corruption at the end of the q-th execution obtaining the state that would
have been used in the q + 1 execution). The algorithm B runs the external forward-

security experiment and has to guess whether it is in Expfprg-0
GEN or Expfprg-1

GEN . At the i-th
iteration of this experiment, B obtains Outi. B internally runs the experiment played by

16



honest senders and A except when simulating the i-th (for i = 1, . . . , q) protocol execution
between A and S1. In this case it replaces the key generated by gen0 with Outi (keeping
the usual consistency, it will use Outi also for the i-th answer of Ts) and returns find to
the external experiment obtaining the next output block Outi+1. Then, after receiving
the block Outq+1 in the last interaction, B returns guess to the external experiment and
obtain the state Stq+1. Finally, when adversary A performs the corruption of token Ts, B
answers to A by sending the pair (Stq+1, Outq+1) obtained from the external experiment,
along with the state of gen1. At the end of the simulation B provides the view of A to
D and outputs whatever D outputs. Now if the sequence of Outi was computed by the
pseudo-random generator GEN, then the view generated by B is distributed identically to
experiment H0, otherwise if it was randomly chosen, the view is distributed identically
to experiment H1,1. By the forward security of GEN, H0 and H1,1 are computational
indistinguishable.

H1,2, . . . ,H1,p: in the hybrid H1,j (for j = 2, . . . , p), Sim works exactly as in the hybrid H1,j−1
except that, when playing as the honest sender Sj , it replaces the use of gen0 by selecting
randomly chosen keys when required (keeping the usual consistency, it will use Outi also
for the i-th answer of Ts). By the same arguments as above it follows that hybrids H1,j−1
and H1,j are computationally indistinguishable.

H2,1: in this hybrid, Sim works exactly as in H1,p except that, when playing as the sender
S1, it replaces the use of gen1 by outputting randomly chosen keys when required (i.e.,
for computing (e0, e1) and for answering queries to the token Ts). Obviously the same
random value will be used to replace the j-th output of gen1 both when computing the
j-th message and when answering to the j-th query of Ts. Precisely as we showed the
indistinguishability of H0 and H1,1, it follows that H1,p and H2,1 are computationally
indistinguishable.

H2,2, . . . ,H2,p: in the hybrid H2,j (for j = 2, . . . , p), Sim works exactly as in the hybrid H2,j−1
except that, when playing as the honest sender Sj , it replaces the use of gen1 by selecting
randomly chosen keys when required (keeping the usual consistency, it will use Outi also
for the i-th answer of Ts). Precisely as we showed the indistinguishability of H1,j−1 and
H1,j , it follows that H2,j−1 and H2,j are computationally indistinguishable.

H3,1: in this hybrid, Sim works exactly as in H2,p except that, when playing as the sender S1, it
replaces the use of ĝen0 by selecting randomly chosen keys when required (i.e., for answering
queries made to tokens Ts and Tk). Precisely as we showed the indistinguishability of H0

and H1,1, it follows that H2,p and H3,1 are computationally indistinguishable.

H3,2, . . . ,H3,p: in the hybrid H3,j (for j = 2, . . . , p), Sim works exactly as in the hybrid H3,j−1
except that, when playing as the honest sender Sj , it replaces the use of ĝen0 by selecting
randomly chosen keys when required (keeping the usual consistency, it will use Outi for
the i-th answers of Ts and Tk). Precisely as we showed the indistinguishability of H1,j−1
and H1,j , it follows that H3,j−1 and H3,j are computationally indistinguishable.

H4,1: in this hybrid, Sim works exactly as in H3,p except that, when playing as the sender
S1, it replaces the use of ĝen1 by selecting randomly chosen keys when required (i.e., for
answering queries made to Ts and Tk). Precisely as we showed the indistinguishability of
H0 and H1,1, it follows that H3,p and H4,1 are computationally indistinguishable.

H4,2 . . . , H4,p: in the hybrid H4,j (for j = 2, . . . , p), Sim works exactly as in the hybrid H4,j−1
except that, when playing as the honest sender Sj , it replaces the use of ĝen1 by selecting
randomly chosen keys when required. Precisely as we showed the indistinguishability of
H1,j−1 and H1,j , it follows that H4,j−1 and H4,j are computationally indistinguishable.

17



H5,1: in this hybrid, Sim works exactly as in hybrid H4,p except that in the �rst session Sim

plays (e0, e1) and answers to the tokens queries sending k̂c and (ê0, ê1) according to the
description of the simulator (i.e., all values are random except the last one that is properly
computed so that the adversary obtains sb⊕c where b and c are the bits of the two queries).
We stress that in H4,p all keys used for such a session are random, and Sim sends to the
adversary the following messages:

1. e0 = s0 ⊕ k0, where k0 is a random key, as �rst part of the non-interactive message;
2. e1 = s1 ⊕ k1, where k1 is a random key, as second part of the non-interactive message;
3. ê0 = k̂0 ⊕ kb, where k̂0 is a random key, as �rst part of the answer of Ts to query b;
4. ê1 = k̂1⊕k1−b, where k̂1 is a random key, as second part of the answer of Ts to query b;
5. k̂c as answer of Tk to query c.

Notice that the adversary does not obtain neither k1−(b⊕c) nor k̂(1−c). From the above
equations this means that in the view of the adversary e1−(b⊕c) and ê1−c are random
strings. The remaining values obtained by the adversary are eb⊕c, êc and kc where the last
two strings are random and the �rst string corresponds to sb⊕c ⊕ êc ⊕ kc.
In H5,1, according to the description of the simulator, depending on A's behavior, we
should distinguish the following cases.

Case 1: �rst Sim sends (e0, e1), then it plays as Ts and �nally it plays as Tk.
Case 2: �rst Sim sends (e0, e1), then it plays as Tk and �nally it plays as Ts.
Case 3: �rst Sim plays as Tk, then it sends (e0, e1) and �nally it plays as Ts.
Case 4: �rst Sim plays as Tk, then it plays as Ts and �nally it sends (e0, e1).
Case 5: �rst Sim plays as Ts, then it sends (e0, e1) and �nally it plays as Tk.
Case 6: �rst Sim plays as Ts, then it plays as Tk and �nally it sends (e0, e1).

We now show that the output of H5,1 in Case 1 is perfectly indistinguishable from the
one of H4,p, the other cases follow the same approach and trivially �t the equations.

So we will assume that �rst Sim sends (e0, e1), then it plays as Ts and �nally it plays as Tk.
Notice that (e0, e1) will be played as two random strings, as well as ê0 and ê1 as answer to
a query b of token Ts. Then the answer given by Tk to a query c will be sb⊕c ⊕ eb⊕c ⊕ êc.
Now observe that again, as discussed previously for H4,p, the adversary does not obtain

neither k1−(b⊕c) nor k̂(1−c). Therefore in the view of the adversary both e1−(b⊕c) and ê1−c
are random strings. Also here, it happens that the remaining values obtained by the
adversary are eb⊕c, êc and kc where the last two strings are random, indeed kc has been
computed as the ⊕ operation over three strings, of which two were random. Moreover the
�rst string corresponds to sb⊕c ⊕ êc ⊕ kc which is precisely what happens in H4,p.

Therefore the views are identically distributed.

H5,2, . . . ,H5,m: in the hybrid H5,j , (for j = 2, . . . ,m), Sim works exactly as in the hybrid
H5,j−1 except that in the j-th session Sim computes the pair (e0, e1) and the answers of
Ts and Tk as described above. By the same argument as before hybrids H5,j H5,j+1 are
identically distributed.

Since H5,m corresponds to the simulated game, the claim holds.

18



Non-Interactive Initialization Phase:

S prepares and sends tokens to R as follows:

1. compute K = {(k0,St0) ← gen0.next(GEN.key(1n)); (k1,St1) ←
gen1.next(GEN.key(1n))};

2. compute K̂ = {(k̂0, Ŝt0) ← ĝen0.next(GEN.key(1n)); (k̂1, Ŝt1) ←
ĝen1.next(GEN.key(1n))};

3. create token Ts seeded with the pair (K̂,K) and token Tk seeded with K̂ such that:

Tk on input a bit c:
1. output k̂c;
2. update keys: (k̂0, Ŝt0)← ĝen0.next(Ŝt0); (k̂1, Ŝt1)← ĝen1.next(Ŝt1).

Ts on input a bit b:
1. output ê0 ← k̂0 ⊕ kb; ê1 ← k̂1 ⊕ k(1−b);
2. update keys:

(k̂0, Ŝt0)← ĝen0.next(Ŝt0); (k̂1, Ŝt1)← ĝen1.next(Ŝt1);
(k0, St0)← gen0.next(St0); (k1,St1)← gen1.next(St1);

4. send tokens Ts and Tk to R.

Non-Interactive Oblivious Transfer:

S on input (s0, s1) works as follows:

1. compute e0, e1 as: e0 ← k0 ⊕ s0; e1 ← k1 ⊕ s1;
2. update keys: (k0, St0)← gen0.next(St0); (k1,St1)← gen1.next(St1);
3. send {e0, e1} to R.

R on input i, upon receiving {e0, e1} works as follows:
1. choose a random bit b and computes c← b⊕ i;
2. query Tk with input c and obtains k̂′c, in case of abort output 0n;
3. query Ts with input b and obtains ê′0, ê

′
1, in case of abort output 0n;

4. compute k′i ← k̂′c ⊕ ê′c;
5. compute s′i ← k′i ⊕ ei and return s′i.

Figure 3: E�cient Non-Interactive String OT with 2 Tokens.

19


