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Abstract. An additively-homomorphic encryption scheme enables us to compute linear functions of
an encrypted input by manipulating only the ciphertexts. We define the relaxed notion of a semi-
homomorphic encryption scheme, where the plaintext can be recovered as long as the computed function
does not increase the size of the input “too much”. We show that a number of existing cryptosystems
are captured by our relaxed notion. In particular, we give examples of semi-homomorphic encryption
schemes based on lattices, subset sum and factoring. We then demonstrate how semi-homomorphic
encryption schemes allow us to construct an efficient multiparty computation protocol for arithmetic
circuits, UC-secure against a dishonest majority. The protocol consists of a preprocessing phase and an
online phase. Neither the inputs nor the function to be computed have to be known during preprocessing.
Moreover, the online phase is extremely efficient as it requires no cryptographic operations: the parties
only need to exchange additive shares and verify information theoretic MACs. Our contribution is
therefore twofold: from a theoretical point of view, we can base multiparty computation on a variety
of different assumptions, while on the practical side we offer a protocol with better efficiency than any
previous solution.
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1 Introduction

The fascinating idea of computing on encrypted data can be traced back at least to a seminal
paper by Rivest, Adleman and Dertouzos [RAD78] under the name of privacy homomorphism.
A privacy homomorphism, or homomorphic encryption scheme in more modern terminology, is
a public-key encryption scheme (G,E,D) for which it holds that D(E(a) ⊗ E(b)) = a ⊕ b, where
(⊗,⊕) are some group operation in the ciphertext and plaintext space respectively. For instance,
if ⊕ represents modular addition in some ring, we call such a scheme additively-homomorphic.
Intuitively a homomorphic encryption scheme enables two parties, say Alice and Bob, to perform
some kind of secure computation: as an example, Alice could encrypt her input a under her public
key, send the ciphertext E(a) to Bob; now by the homomorphic property, Bob can compute a
ciphertext containing, e.g., E(a · b + c) and send it back to Alice, who can decrypt and learn the
result. Thus, Bob has computed a non trivial function of the input a. However, Bob only sees an
encryption of a which leaks no information on a itself, assuming that the encryption scheme is
secure.

Informally we will say that a set of parties P1, . . . , Pn holding private inputs x1, . . . , xn securely
compute a function of their inputs y = f(x1, . . . , xn) if, by running some cryptographic protocol,
the honest parties learn the correct output of the function y. In addition, even if (up to) n − 1
parties are corrupt and cooperate, they are not able to learn any information about the honest
parties’ inputs, no matter how they deviate from the specifications of the protocol.

Building secure multiparty computation (MPC) protocols for this case of dishonest majority is
essential for several reasons: First, it is notoriously hard to handle dishonest majority efficiently: it
is well known that unconditionally secure solutions do not exist. Therefore, we cannot avoid using
some form of public-key technology which is typically much more expensive than the standard
primitives used for honest majority (such as secret sharing). Secondly, security against dishonest



majority is often the most natural to shoot for in applications, and is of course the only meaningful
goal in the significant 2-party case. Thus, finding practical solutions for dishonest majority under
reasonable assumptions is arguably the most important research goal with respect to applications
of multiparty computation.

In a recent breakthrough, Gentry [Gen09] showed the first fully-homomorphic encryption scheme
based on ideal lattices. Gentry’s scheme allows for significant improvement in communication com-
plexity, but would incur a huge computational overhead with current state of the art.

In this paper we take a different road: in a nutshell, we relax the requirements of homomorphic
encryption so that we can implement it under a variety of assumptions, and we show how this
weaker primitive is sufficient for efficient multiparty computation. Our main contributions are:

A framework for semi-homomorphic encryption: we define the notion of a semi-homomorphic
encryption modulo p, for a modulus p that is input to the key generation. Abstracting from the
details, the scheme is additively homomorphic and allows to encrypt any integer x, but the
decryption is guaranteed to return the correct result (modulo p) only if x is numerically small
enough. We demonstrate the generality of the framework by giving several examples of known
cryptosystems that are semi-homomorphic or can be modified to be so by trivial adjustments.
These include: the Okamoto-Uchiyama cryptosystem [OU98]; Paillier cryptosystem [Pai99] and
its generalization by Damg̊ard and Jurik [DJ01]1; Regev’s LWE based cryptosystem [Reg05];
the scheme of Damg̊ard, Geisler and Krøigaard [DGK09] based on a subgroup-decision problem;
the subset-sum based scheme by Lyubashevsky, Palacio and Segev [LPS10]; Gentry, Halevi and
Vaikuntanathan’s scheme [GHV10] based on LWE, and van Dijk, Gentry, Halevi and Vaikun-
tanathan’s scheme [DGHV10] based on the approximate gcd problem.
We also show a zero-knowledge protocol for any semi-homomorphic cryptosystem, where a
prover, given ciphertext C and public key pk, demonstrates that he knows plaintext x and
randomness r such that C = Epk(x, r), and that x furthermore is numerically less than a given
bound. We show that using a twist of the amortization technique of Cramer and Damg̊ard [CD09],
one can give u such proofs in parallel where the soundness error is 2−u and the cost per instance
proved is essentially 2 encryption operations for both parties. The application of the technique
from [CD09] to prove that a plaintext is bounded in size is new and of independent interest.

Information-theoretic “online” MPC: we propose a UC secure [Can01] protocol for arithmetic
multiparty computation that, in the presence of a trusted dealer who does not know the inputs,
offers information-theoretic security against an adaptive, malicious adversary that corrupts any
dishonest majority of the parties. The main idea of the protocol is that the parties will be given
additive sharing of multiplicative triples, together with information theoretic MACs of their
shares – forcing the parties to use the correct shares during the protocol.
This online phase is essentially optimal, as no symmetric or public-key cryptography is used,
matching the efficiency of passive protocols for honest majority like [BOGW88,CCD88]. Con-
cretely, each party performs O(n2) multiplications modulo p to evaluate a secure multiplication.
This improves on the previous protocol of Damg̊ard and Orlandi (DO) [DO10] where a Pedersen
commitment was published for every shared value. Getting rid of the commitments we improve
on efficiency (a factor of Ω(κ), where κ is the security parameter) and security (information
theoretic against computational). Implementation results for the two-party case indicate about

1 Paillier’s scheme fits this framework, even though it is originally additively homomorphic over ZN where N is an
RSA modulus (and therefore cannot be chosen say, as a prime or a power of 2). Nevertheless, the scheme can easily
be made semi-homomorphic modulo p for any p ∈ N.
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6 msec pr multiplication (see Appendix E), at least an order of magnitude faster than that of
DO on the same platform. Moreover, in DO the modulus p of the computation had to match the
prime order of the group where the commitments live. This means that log p must be at least
about 200. Here, we can, however, choose the prime modulus freely to match the application
which is an advantage since for, e.g., auctions or voting, 32 or 64 bits is typically enough.

An efficient implementation of the offline phase: we show how to replace the share dealer
for the online phase by a protocol based solely on semi-homomorphic encryption2. Our offline
phase is UC-secure against any dishonest majority, and it matches the lower bound for se-
cure computation with dishonest majority of O(n2) public-key operations per multiplication
gate [HIK07].
In the most efficient instantiation, the offline phase of DO requires security of Paillier encryption
and hardness of discrete logarithms. Our offline phase only has to assume Paillier and achieves
similar efficiency: A count of operations suggests that our offline phase is as efficient as DO up
to a small constant factor (about 2-3). Preliminary implementation results indicate about 2-3
sec to prepare a multiplication. Since we generalize to any semi-homomorphic scheme including
Regev’s scheme, we get the first potentially practical solution for dishonest majority that is
believed to withstand a quantum attack.
It is not possible to achieve UC security for dishonest majority without set-up assumptions,
and our protocol works in the registered public-key model of [BCNP04] where we assume that
public keys for all parties are known, and corrupted parties know their own secret keys.

Related Work: It was shown by Canetti, Lindell, Ostrovsky and Sahai [CLOS02] that secure com-
putation is possible under general assumptions even when considering any corrupted number of
parties in a concurrent setting (the UC framework). Their solution is, however, very far from being
practical.

For computation over Boolean circuits efficient solutions can be constructed from Yao’s garbled
circuit technique, see e.g. Pinkas, Schneider, Smart and Williams [PSSW09]. However, our main
interest here is arithmetic computation over larger fields or rings, which is a much more efficient ap-
proach for applications such as benchmarking or some auction variants. A more efficient solution for
the arithmetic case, based on threshold homomorphic encryption, was shown by Cramer, Damg̊ard
and Nielsen [CDN01]. However, it requires distributed key generation and uses heavy public-key
machinery throughout the protocol. More recently, Ishai, Prabhakaran and Sahai [IPS09] (using
the “MPC in the head” approach of Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS09]) and the
aforementioned DO protocol [DO10] show more efficient solutions. Although the techniques used
are completely different, the asymptotic complexities obtained are similar, but the constants are
significantly smaller in the DO solution, which was the most practical protocol proposed so far.

Notation: We let Un denote the uniform distribution over {0, 1}n. We use x ← X to denote the
process of sampling x from the distribution X or, if X is a set, a uniform choice from it.

We say that a function f : N→ R is negligible if ∀c,∃nc s.t. if n > nc then f(n) < n−c. We will
use ε(·) to denote an unspecified negligible function.

For p ∈ N, we represent Zp by the numbers {−b(p − 1)/2c, . . . , d(p − 1)/2e}. If x is an m-
dimensional vector, ||x||∞ := max(|x1|, . . . , |xm|).
2 The trusted dealer could be implemented using any existing MPC protocol for dishonest majority, but we want to

show how we can do it efficiently using semi-homomorphic encryption.
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As a general conventions: lowercase letters a, b, c, . . . represent integers and capital letters
A,B,C, . . . ciphertexts. Bold lowercase letters r, s, . . . are vectors and bold capitals M,A, . . . are
matrices. We call κ the computational security parameter and u the statistical security parameter.
In practice u can be set to be much smaller than κ, as it does not depend on the computing power
of the adversary.

2 The Framework for Semi-Homomorphic Encryption

In this section we introduce a framework for public-key cryptosystems, that satisfy a relaxed version
of the additive homomorphic property. Let PKE = (G,E,D) be a tuple of algorithms where:

– G(1κ, p) is a randomized algorithm that takes as input a security parameter κ and a modulus
p;3 it then outputs a public/secret key pair (pk, sk). G also outputs a set of parameters P =
(p,M,R,Ddσ,G) where M,R are integers, Ddσ is a the description of a randomized algorithm and
G is the abelian group where the ciphertexts belong (written in additive notation). Jumping
ahead a correct decryption will be guaranteed only if the message m ∈ Z satisfies |m| ≤M (thus
M > p) and the randomness r ∈ Zd satisfies ||r||∞ ≤ R. Semantic security will be guaranteed
only if r is sampled according to r ← Ddσ(1κ), and we require that except with negligible
probability, Ddσ will always output r with ||r||∞ ≤ σ, for some σ < R that may depend on κ.
For all practical purposes one can think of M and R to be of size super-polynomial in κ, and
p and σ as being much smaller than M and R respectively. Even if we do not write so, we will
assume that every other algorithm takes as input the parameters P.

– Epk(m, r) is a deterministic algorithm that takes as input an integer m ∈ Z and a vector r ∈ Zd
and outputs a ciphertext C ∈ G. We sometimes write Epk(m) when it is not important to specify
the randomness explicitly.
Given C1, C2 ∈ G s.t. C1 = Epk(m1, r1), C2 = Epk(m2, r2), C ′ = C1 + C2 satisfies C ′ =
Epk(m1 +m2, r1 + r2). In other words, Epk(·, ·) is a homomorphism from (Zd+1,+) to (G,+)).
We call C a (τ, ρ)-ciphertext if C = Epk(m, r) with |m| ≤ τ and ||r||∞ ≤ ρ.

– Dsk(C) is a deterministic algorithm that takes as input a ciphertext C ∈ G and outputs m′ ∈
Zp ∪ {⊥}.

Definition 1 (Correctness). We say that a semi-homomorphic encryption scheme PKE is correct
if for all κ:

Pr[ (pk, sk,P)← G(1κ, p), m ∈ Z, |m| ≤M ; r ∈ Zd, ||r||∞ ≤ R :
Dsk(Epk(m, r)) 6= m mod p ] < ε(κ)

Semantic security for a semi-homomorphic cryptosystem is defined in the standard way, where
the adversary must choose his messages in Zp, and the encryption oracle chooses randomness for
the encryption using Ddσ.

2.1 Examples of Semi-Homomorphic Encryption

Regev’s cryptosystem [Reg05] is parametrized by p, q, m and α, and is given by (G,E,D). A variant
of the system was also given in [BD10], where parameters are chosen slightly different than the
3 In the framework there are no restrictions for the choice of p; however in the next sections p will always be chosen

to be a prime.
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original. In both [Reg05] and [BD10] only a single bit was encrypted, it is quite easy though to
extend it to elements of a bigger ring. It is this generalized version of the variant in [BD10] that
we describe here. All calculations are done in Zq. Key generation G(1κ) is done by sampling s ∈ Znq
and A ∈ Zm×nq uniformly random and x ∈ Zmq from a discrete Gaussian distribution with mean
0 and standard deviation qα√

2π
. We then have the key pair (pk, sk) = ((A,As + x), s). Encryption

of a message γ ∈ Zp is done by sampling a uniformly random vector r ∈ {−1, 0, 1}m. A ciphertext
C is then given by C = Epk(γ, r) = (a, b) = (AT r, (As + x)T r + γ bq/pe). Decryption is given by
Dsk(C) =

⌊
(b− sTa) · p/q

⌉
. Regev’s cryptosystem works with a decryption error, this can be made

negligibly small though when choosing the parameters.
Fitting the cryptosystem to the framework is quite straight forward. The group G = Znq × Zq

and p is just the same. The distribution Ddσ from which the randomness r is taken is the uniform
distribution over {−1, 0, 1}m, that is d = m and σ = 1. Given two ciphertexts (a, b) and (a′, b′)
we define addition to be (a + a′, b + b′). Defining addition like this it follows quite easily that the
homomorphic property holds. In Regev’s cryptosystem it will always be the case τ = ρp/2, this
means that M = Rp/2. How M can be chosen, and thereby also R, depends on all the original
parameters of the cryptosystem. First assume that q ·α = d

√
q with d > 1. Furthermore we will need

that p ≤ q/(4 c
√
q) for some constant c < d. Then to bound M we should have first that M < q/(4p)

and secondly that M < p s
√
q/(2m) for some s > cd/(d− c). Obtaining these bounds requires some

tedious computation which we leave out here.

In Paillier’s cryptosystem [Pai99] the secret key is two large primes p1, p2, the public key isN = p1p2,
and the encryption function is Epk(m, r) = (N + 1)mrN mod N2 where m ∈ ZN and r is random
in Z∗N2 . The decryption function D′sk reconstructs correctly any plaintext in ZN , and to get a semi-
homomorphic scheme modulo p, we simply redefine the decryption as D(c) = D′(c) mod p. It is not
hard to see that we get a semi-homomorphic scheme with M = (N − 1)/2, R = ∞, d = 1,Ddσ =
UZ∗

N2
, σ = ∞ and G = Z∗N2 , in particular, note that we do not need to bound the size of the

randomness, hence we set σ = R =∞.
The cryptosystem looks syntactically a bit different from our definition which writes G addi-

tively, while Z∗N2 is usually written with multiplicative notation; also for Paillier we have Epk(m, r)+
Epk(m′, r) = Epk(m + m′, r · r′) and not Epk(m + m′, r + r′). However, this makes no difference in
the following, except that it actually makes some of the zero-knowledge protocols simpler (more
details in Section 2.2). It is easy to see that the generalization of Paillier in [DJ01] can be modified
in a similar way to be semi-homomorphic.

Other examples: We can show that several other cryptosystems [OU98,DGK09,LPS10,GHV10,DGHV10]
are also semi-homomorphic, as mentioned in the introduction. More details can be found in Ap-
pendix D.

2.2 Zero-Knowledge Proofs

We present two zero-knowledge protocols, ΠPoPK, ΠPoCM where a prover P proves to a verifier V
that some ciphertexts were correctly computed and that some ciphertexts satisfy a multiplicative
relation respectively. ΠPoPK has (amortized) complexity O(κ+ u) bits per instance proved, where
the soundness error is 2−u. ΠPoCM has complexity O(κu). We show also a more efficient version of
ΠPoCM that works only for Paillier encryption, with complexity O(κ+ u). Finally, in Appendix B,
we define the multiplication security property that we conjecture is satisfied for all our example
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cryptosystems after applying a simple modification. We show that assuming this property, ΠPoCM

can be replaced by a different check that has complexity O(κ+ u).
ΠPoPK and ΠPoCM will both be of the standard 3-move form with a random u-bit challenge, and

so they are honest verifier zero-knowledge. To achieve zero-knowledge against an arbitrary verifier
standard techniques can be used. In particular, in our MPC protocol we will assume – only for the
sake of simplicity – a functionality FRand that generates random challenges on demand. The FRand

functionality is given in Figure 14 and can be implemented in our key registration model using only
semi-homomorphic encryption. In the protocols both prover and verifier will have public keys pkP
and pkV . By EP (a, r) we denote an encryption under pkP , similarly for EV (a, r).

Proof of Plaintext Knowledge. ΠPoPK takes as common input u ciphertexts Ck, k = 1, . . . , u.
If P is honest, he has created the encryptions as random (τ, ρ)-ciphertexts. Under this assumption,
the protocol is zero-knowledge.

The protocol is sound in the following sense: if P is corrupt and can make V accept with
probability larger than 2−u, then all the Ck are (22u+log uτ, 22u+log uρ)-ciphertexts. The protocol is
also a proof of knowledge with knowledge error 2−u that P knows correctly formed plaintexts and
randomness for all the Ck’s.

In other words, ΠPoPK is a ZKPoK for the following relation (under the assumption that pkP
is well-formed):

R
(u,τ,ρ)
PoPK = {(x,w)| x = (pkP , C1, . . . , Cu);

w = ((x1, r1), . . . , (xu, ru)) : Ck = EP (xk, rk),

|xk| ≤ 22u+log uτ, ||rk||∞ ≤ 22u+log uρ}

We use the approach of [CD09] to get small amortized complexity of the zero-knowledge proofs,
and thereby gaining efficiency by performing the proofs on u simultaneous instances. In the following
we define m = 2u− 1, furthermore Me is an m× n matrix constructed given a uniformly random
vector e = (e1, . . . , eu) ∈ {0, 1}u. Specifically the (i, k)-th entry Me,i,k is given by Me,i,k = ei−k+1

for 1 ≤ i − k + 1 ≤ u and 0 otherwise. By Me,i we denote the i-th row of Me. The protocol can
be seen in Figure 1. Completeness and zero-knowledge follow by standard arguments that can be
found in Appendix C.3, here we argue soundness which is the more interesting case:

Subprotocol ΠPoPK: Proof of Plaintext Knowledge

PoPK(u, τ, ρ):
1. The input is u ciphertexts {Ck = EP (xk, rk)}uk=1. We define the the vectors c = (C1, . . . , Cu) and

x = (x1, . . . , xu) and the matrix R = (r1, . . . , ru), where the rk’s are rows.
2. P constructs m (2u−1+log uτ, 2u−1+log uρ)-ciphertexts {Ai = EP (yi, si)}mi=1, and sends them to V . Again

we define vectors a and y and matrix S as above.
3. V chooses a uniformly random vector e = (e1, . . . , eu) ∈ {0, 1}u, and sends it to P .
4. Finally P computes and sends z = y + Me · x and T = S + Me ·R to V .
5. V checks that d = a + Me · c where d = (EP (z1, t1), . . . ,EP (zm, tm)). Furthermore V checks that
|zi| ≤ 2u−1+log uτ and ||ti||∞ ≤ 2u−1+log uρ.

Fig. 1. Proof of Plaintext Knowledge.

Soundness Assume we are given any prover P ∗, and consider the case where P ∗ can make V
accept for both e and e′, e 6= e′, by sending z, z′, T and T′ respectively. We now have the following
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equation:

(Me −Me′)c = (d− d′) (1)

What we would like is to find x = (x1, . . . , xu) and R = (r1, . . . , ru) such that Ck = EP (xk, rk).
We can do this by viewing (1) as a system of linear equations. First let j be the biggest index such
that ej 6= e′j . Now look at the u × u submatrix of Me −M′

e given by the rows j through j + u
both included. This is an upper triangular matrix with entries in {−1, 0, 1} and ej − e′j 6= 0 on the
diagonal. Now remember the form of the entries in the vectors c, d and d′, we have Ck = EP (xk, rk),
Dk = EP (zk, tk), D′k = EP (z′k, t

′
k). We can now directly solve the equations for the xk’s and the

rk’s by starting with Cu and going up. We give examples of the first few equations (remember we
are going bottom up). For simplicity we will assume that all entries in Me −Me′ will be 1.

EP (xu, ru) = EP (zu+j − z′u+j , tu+j − t′u+j)

EP (xu−1, ru−1) + EP (xu, ru) = EP (zu+j−1 − z′u+j−1, tu+j−1 − t′u+j−1)

EP (xu−2, ru−2) + EP (xu−2, ru−2) + EP (fu,gu) = EP (zu+j−2 − z′u+j−2, tu+j−2 − t′u+j−2)
...

Since we know all values used on the right hand sides and that the cryptosystem used is additively
homomorphic, it should now be clear that we can find xk and rk such that Ck = EP (xk, rk). A
final note should be said about what we can guarantee about the sizes of xk and rk. Knowing
that |zi| ≤ 2u−1+log uτ , |z′i| ≤ 2u−1+log uτ , ||ti||∞ ≤ 2u−1+log uρ and ||t′i||∞ ≤ 2u−1+log uρ we could
potentially have that C1 would become a (22u+log uτ, 22u+log uρ) ciphertext. Thus this is what we
can guarantee.

Proof of Correct Multiplication. ΠPoCM(u, τ, ρ) takes as common input u triples of cipher-
texts (Ak, Bk, Ck) for k = 1, . . . , u, where Ak is under pkP and Bk and Ck is under pkV . In the
context where the protocol will be used, it will always be known that Bk in every triple is a
(22u+log uτ, 22u+log uρ)-ciphertext, as a result of executing ΠPoPK. If P is honest, he will know ak
and ak ≤ τ . Furthermore P has created Ck as Ck = akBk + EV (rk, tk), where EV (rk, tk) is a ran-
dom (23u+log uτ2, 23u+log uτρ)-ciphertext. Under this assumptions the protocol is zero-knowledge.
Jumping ahead, we note that the choice of sizes for EV (rk, tk) ensures that Ck is statistically close
to a random (23u+log uτ2, 23u+log uτρ)-ciphertext, and so reveals no information on ak to V .

In other words, ΠPoCM is a ZKPoK for the relation (under the assumption that pkP , pkV are
well-formed and Bk are all (22u+log uτ, 22u+log uρ)-ciphertexts):

R
(u,τ,ρ)
PoCM = {(x,w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1,h1, r1, t1), . . . , (au,hu, ru, tu)) :
Ak = EP (ak,hk), Ck = akBk + EV (rk, tk),

|ak| ≤ 23u+log uτ, ||hk||∞ ≤ 23u+log uρ,

|rk| ≤ 24u+log uτ2, ||tk||∞ ≤ 24u+log uτρ)}

The protocol can be seen in Figure 2. Note that Step 6 could also be interpreted as choosing
ek as a u-bit vector instead, thereby only calling FRand once. Completeness, soundness and zero-
knowledge follow by standard arguments that can be found in Appendix C.4.
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Subprotocol ΠPoCM: Proof of Correct Multiplication

PoCM(u, τ, ρ):
1. The input is u triples of ciphertexts {(Ak, Bk, Ck)}uk=1, where Ak = EP (ak,hk) and Ck = akBk +

EV (rk, tk). Furthermore Bk is a (22u+log uτ, 22u+log uρ)-ciphertext.
2. P constructs u uniformly random (23u−1+log uτ, 23u−1+log uρ)-ciphertexts Dk = EP (dk, sk) and u cipher-

texts Fk = dkBk + EV (fk,yk), where EV (fk,yk) are uniformly random (24u−1+log uτ2, 24u−1+log uτρ)-
ciphertexts.

3. V chooses u uniformly random bits ek and sends them to P .
4. P returns {(zk,vk)}uk=1 and {(xk,wk)}uk=1 to V . Here zk = dk + ekak, vk = sk + ekhk, xk = fk + ekrk

and wk = yk + ektk.
5. V checks that Dk+ekAk = EP (zk,vk) and that Fk+ekCk = zkBk+EV (xk,wk). Furthermore he checks

that |zk| ≤ 23u−1+log uτ , ||vk||∞ ≤ 23u−1+log uρ, |xk| ≤ 24u−1+log uτ2 and ||wk||∞ ≤ 24u−1+log uτρ.
6. Step 2-5 is repeated in parallel u times.

Fig. 2. Proof of Correct Multiplication.

Zero-Knowledge Protocols for Paillier. For the particular case of Paillier encryption, ΠPoPK

can be used as it is, except that there is no bound required on the randomness, instead all random
values used in encryptions are expected to be in Z∗N2 . Thus the relations to prove will only require
that the random values are in Z∗N2 and this is also what the verifier should check in the protocol.

For ΠPoCM we sketch a version that is more efficient than the above, using special properties of
Paillier encryption. In order to improve readability, we depart here from the additive notation for
operations on ciphertexts, since multiplicative notation is usually used for Paillier. In the following,
let pkV = N . Note first that based on such a public key, one can define an unconditionally hiding
commitment scheme with public key g = EV (0). To commit to a ∈ ZN , one sends com(a, r) =
garN mod N , for random r ∈ Z∗N2 . One can show that the scheme is binding assuming it is hard
to extract N -th roots modulo N2 (which must be the case if Paillier encryption is secure).

We restate the relation R(u,τ,ρ)
PoCM from above as it will look for the Paillier case, in multiplicative

notation and without bounds on the randomness:

R
(τ,ρ)
PoCM,Paillier = {(x,w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1, h1, r1, t1), . . . , (au, hu, ru, tu)) :
Ak = EP (ak, hk), Ck = Bak

k · EV (rk, tk),

|ak| ≤ 22u+log uτ, |rk| ≤ 25u+2 log uτ2}

The idea for the proof of knowledge for this relation is now to ask the prover to also send
commitments Ψk = com(ak, αk), Φk = com(rk, βk), k = 1 . . . u to the to rk’s and ak’s. Now, the
prover must first provide a proof of knowledge that for each k: 1) the same bounded size value
is contained in both Ak and Ψk, and that 2) a bounded size value is contained in Φk. The proof
for {Φk} is simply ΠPoPK since a commitment has the same form as an encryption (with (N + 1)
replaced by g). The proof for {Ψk, Ak} is made of two instances run in parallel of ΠPoPK, using the
same challenge e and responses zi in both instances. Finally, the prover must show that Ck can be
written as Ck = Bak

k · EV (rk, tk), where ak is the value contained in Ψk and rk is the value in Φk.
Since all commitments and ciphertexts live in the same group Z∗N2 , where pkV = N , we can do this
efficiently using a variant of a protocol from [CDN01]. The resulting protocol is shown in Figure 3.

Completeness of the protocol in steps 1-4 of Figure 3 is straightforward by inspection. Honest
verifier zero-knowledge follows by the standard argument: choose e and the prover’s responses

8



Subprotocol ΠPoCM: Proof of Correct Multiplication (only for Paillier Cryptosystem)

1. P sends Ψk = com(ak, αk), Φk = com(rk, βk), k = 1, . . . , u to the verifier.
2. P uses ΠPoPK on Φk to prove that, even if P is corrupted, each Φk contains a value rk with |rk| ≤ 25u+2 log uτ2.
3. P uses ΠPoPK in parallel on (Ak, Ψk) (where V uses the same e in both runs) to prove that, even if P is

corrupted, Ψk and Ak contains the same value ak and |ak| ≤ 22u+log uτ .
4. To show that the Ck’s are well formed, we do the following for each k:

(a) P picks random x, y, v, γ, δ ← Z∗N2 and sends D = Bxk EV (y, v), X = com(x, γx), Y = com(y, γy) to V .
(b) V sends a random u-bit challenge e.
(c) P computes za = x+ eak mod N, zr = y + erk mod N .

He also computes qa, qr, where x+ ea = qaN + za, y + erk = qrN + zr.
a

P sends za, zr, w = vsekB
qa
k mod N2, δa = γxα

e
kg
qa mod N2, and δr = γyβ

e
kg
qr mod N2 to V .

(d) V accepts if DCek = Bza
k EV (zr, w) mod N2 ∧XΨek = com(za, δa) mod N2 ∧ Y Φek = com(zr, δr) mod N2.

a Since g and Bk do not have order N , we need to explicitly handle the quotients qa and qr, in order to move
the “excess multiples” of N into the randomness parts of the commitments and ciphertext.

Fig. 3. Proof of Correct Multiplication for Paillier.

uniformly in their respective domains and use the equations checked by the verifier to compute a
matching first message D,X, Y . This implies completeness and honest verifier zero-knowledge for
the overall protocol, since the subprotocols in steps 2 and 3 have these properties as well.

Finally, soundness follows by assuming we are given correct responses in step 7 to two different
challenges. From the equations checked by the verifier, we can then easily compute ak, αk, rk, βk, sk
such that Ψk = com(ak, αk), Φk(rk, βk), Ck = Bak

k EV (rk, sk). Now, by soundness of the protocols
in steps 2 and 3, we can also compute bounded size values a′k, r

′
k that are contained in Ψk, Φk. By

the binding property of the commitment scheme, we have r′k = rk, a
′
k = ak except with negligible

probability, so we have a witness as required in the specification of the relation.

3 The Online Phase

Our goal is to implement reactive arithmetic multiparty computation over Zp for a prime p of size
super-polynomial in the statistical security parameter u. The (standard) ideal functionality FAMPC

that we implement can be found in the appendix, Figure 12. We assume here that the parties
already have a functionality for synchronous4, secure communication and broadcast.

We first present a protocol for an online phase that assumes access to a functionality FTRIP

which we later show how to implement using an offline protocol. The online phase is based on
a representation of values in Zp that are shared additively where shares are authenticated using
information theoretic message authentication codes (MACs). Before presenting the protocol we
introduce how the MACs work and how they are included in the representation of a value in Zp.
Furthermore, we argue how one can compute with these representations as we do with simple
values, and in particular how the relation to the MACs are maintained.

In the rest of this section, all additions and multiplications are to be read modulo p, even if not
specified. The number of parties is denoted by n, and we call the parties P1, . . . , Pn.

4 A malicious adversary can always stop sending messages and, in any protocol for dishonest majority, all parties are
required for the computation to terminate. Without synchronous channels the honest parties might wait forever
for the adversary to send his messages. Synchronous channels guarantee that the honest parties can detect that
the the adversary is not participating anymore and therefore they can abort the protocol. If termination is not
required, the protocol can be implemented over an asynchronous network instead.
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3.1 The MACs

A key K in this system is a random pair K = (α, β) ∈ Z2
p, and the authentication code for a value

a ∈ Zp is MACK(a) = αa+ β mod p.
We will apply the MACs by having one party Pi hold a,MACK(a) and another party Pj holding

K. The idea is to use the MAC to prevent Pi from lying about a when he is supposed to reveal it
to Pj . It will be very important in the following that if we keep α constant over several different
MAC keys, then one can add two MACs and get a valid authentication code for the sum of the
two corresponding messages. More concretely, two keys K = (α, β),K ′ = (α′, β′) are said to be
consistent if α = α′. For consistent keys, we define K + K ′ = (α, β + β′) so that it holds that
MACK(a) + MACK′(a′) = MACK+K′(a+ a′).

The MACSs will be used as follows: we give to Pi several different values m1,m2, . . . with
corresponding MACs γ1, γ2, . . . computed using keys Ki = (α, βi) that are random but consistent.
It is then easy to see that if Pi claims a false value for any of the mi’s (or a linear combination of
them) he can guess an acceptable MAC for such a value with probability at most 1/p.

3.2 The Representation and Linear Computation

To represent a value a ∈ Zp, we will give a share ai to each party Pi. In addition, Pi will hold
MAC keys Ki

a1
, . . . ,Ki

an . He will use key Ki
aj to check the share of Pj , if we decide to make a

public. Finally, Pi also holds a set of authentication codes MAC
Kj
ai

(ai) – by mj(ai) we will denote
MAC

Kj
ai

(ai) from now on. Party Pi will use mj(ai) to convince Pj that ai is correct, if we decide
to make a public. Summing up, we have the following way to represent a:

[a] = [{ai, {Ki
aj ,mj(ai)}nj=1}ni=1]

where {ai, {Ki
aj ,mj(ai)}nj=1} is the information held privately by Pi, and where we use [a] as

shorthand when it is not needed to explicitly talk about the shares and MACs. We say that
[a] = [{ai, {Ki

aj ,mj(ai)}nj=1}ni=1] is consistent, with a =
∑

i ai, if mj(ai) = MAC
Kj
ai

(ai) for all i, j.
Two representations

[a] = [{ai, {Ki
aj ,mj(ai)}nj=1}ni=1], [a′] = [{a′i, {Ki

a′j
,mj(a′i)}nj=1}ni=1]

are said to be key-consistent if they are both consistent, and if for all i, j the keys Ki
aj ,K

i
a′j

are
consistent. We will want all representations in the following to be key-consistent: this is ensured
by letting Pi use the same αj-value in keys towards Pj throughout. Therefore the notation Ki

aj =
(αij , β

i
aj ) makes sense and we can compute with the representations, as detailed in Figure 4.

3.3 Triples and Multiplication

For multiplication and input sharing we will need both random single values [a] and triples [a], [b], [c]
where a, b are random and c = ab mod p. Also, we assume that all singles and triples we ever produce
are key consistent, so that we can freely add them together. More precisely, we assume we have
access to an ideal functionality FTRIP providing us with the above. This is presented in Figure 5.

The principle in the specification of the functionality is that the environment is allowed to
specify all the data that the corrupted parties should hold, including all shares of secrets, keys and
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Opening: We can reliably open a consistent representation to Pj : each Pi sends ai,mj(ai) to Pj . Pj checks that
mj(ai) = MAC

K
j
ai

(ai) and broadcasts OK or fail accordingly. If all is OK, Pj computes a =
P
i ai, else we

abort. We can of course modify this to opening a value [a] to all parties, by opening as above to every Pj .
Addition: Given two key-consistent representations as above we get that

[a+ a′] = [{ai + a′i, {Ki
aj

+Ki
aj
,mj(ai) +mj(a

′
i)}nj=1}ni=1]

is a consistent representation of a+ a′. This new representation can be computed only by local operations.
Multiplication by constants: In a similar way, we can multiply a public constant δ “into” a representation.

This is written δ[a] and is taken to mean that all parties multiply their shares, keys and MACs by δ. This
clearly gives a consistent representation [δa].

Addition of constants: We can add a public constant δ into a representation. This is written δ + [a] and is
taken to mean that P1 will add δ to his share a1. Also, each Pj will replace his key Kj

a1 = (αj1, β
j
a1) by

Kj
a1+δ = (αj1, β

j
a1 − δα

j
1). This will ensure that the MACs held by P1 will now be valid for the new share

a1 + δ, so we now have a consistent representation [a+ δ].

Fig. 4. Operations on [·]-representations.

Functionality FTRIP

Initialize: On input (init , p) from all parties the functionality stores the modulus p. For each corrupted party
Pi the environment specifies values αij , j = 1, . . . , n, except those αij where both Pi and Pj are corrupt. For
each honest Pi, it chooses αij , j = 1, . . . , n at random.

Singles: On input (singles, u) from all parties Pi, the functionality does the following, for v = 1, . . . , u:
1. It waits to get from the environment either “stop”, or some data as specified below. In the first case

it sends “fail” to all honest parties and stops. In the second case, the environment specifies for each
corrupt party Pi, a share ai and n pairs of values (mj(ai), β

i
aj

), j = 1, . . . , n, except those (mj(ai), β
i
aj

)
where both Pi and Pj are corrupt.

2. The functionality chooses a ∈ Zp at random and creates the representation [a] as follows:
(a) First it chooses random shares for the honest parties such that the sum of these and those specified

by the environment is correct: Let C be the set of corrupt parties, then ai is chosen at random for
Pi 6∈ C, subject to a =

P
i ai.

(b) For each honest Pi, and j = 1, . . . , n, βiaj
is chosen as follows: if Pj is honest, βiaj

is chosen at

random, otherwise it sets βiaj
= mi(aj)−αijaj . Note that the environment already specified mi

aj
, aj ,

so what is done here is to construct the key to be held by Pi to be consistent with the share and
MAC chosen by the environment.

(c) For all i = 1, . . . , n, j = 1, . . . , n the it sets Ki
aj

= (αij , β
i
aj

), and computes mj(ai) = MAC
K

j
ai

(ai).

(d) Now all data for [a] is created. The functionality sends {ai, {Ki
aj
,mj(ai)}j=1,...,n} to each honest

Pi (no need to send anything to corrupt parties, the environment already has the data).
Triples: On input (triples, u) from all parties Pi, the functionality does the following, for v = 1, . . . , u:

1. Step 1 is done as in “Singles”.
2. For each triple to create it chooses a, b at random and sets c = ab. Now it creates representations

[a], [b], [c], each as in Step 2 in “Singles”.

Fig. 5. The ideal functionality for making singles [a] and triples [a], [b], [c].

MACs. Then, the functionality chooses the secrets to be shared and constructs the data for honest
parties so it is consistent with the secrets and the data specified by the environment.

Thanks to this functionality we are also able to compute multiplications in the following way:
If the parties hold two key-consistent representations [x], [y], we can use one precomputed key-
consistent triple [a], [b], [c] (with c = ab) to compute a new representation of [xy].
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To do so we first open [x] − [a] to get a value ε, and [y] − [b] to get δ. Then, we have xy =
(a+ ε)(b+ δ) = c+ εb+ δa+ εδ. Therefore, we get a new representation of xy as follows:

[xy] = [c] + ε[b] + δ[a] + εδ.

Using the tools from the previous sections we can now construct a protocol ΠAMPC that securely
implements the MPC functionality FAMPC in the UC security framework. FAMPC and ΠAMPC are
presented in Figure 12 and Figure 6 respectively. The proof of the following theorem can be found
in Appendix C.1.

Protocol ΠAMPC

Initialize: The parties first invoke FTRIP(init , p). Then, they invoke FTRIP(triples, u) and FTRIP(singles, u) a
sufficient number of times to get enough singles and triples.

Input: To share Pi’s input [xi] with identifier varid , Pi takes a single [a] from the set of available ones. Then,
the following is performed:
1. [a] is opened to Pi.
2. Pi broadcasts δ = xi − a.
3. The parties compute [xi] = [a] + δ.

Rand: The parties take an available single [a] and store with identifier varid .
Add: To add [x], [y] with identifiers varid1, varid2 the parties compute [z] = [x]+[y] and assign [z] the identifier

varid3.
Multiply: To multiply [x], [y] with identifiers varid1, varid2 the parties do the following:

1. They take a triple ([a], [b], [c]) from the set of the available ones.
2. [x]− [a] = ε and [y]− [b] = δ are opened.
3. They compute [z] = [c] + ε[b] + δ[a] + εδ
4. They assign [z] the identifier varid3 and remove ([a], [b], [c]) from the set of the available triples.

Output: To output [x] with identifier varid to Pi the parties do an opening of [x] to Pi.

Fig. 6. The protocol for arithmetic MPC.

Theorem 1. In the FTRIP-hybrid model, the protocol ΠAMPC implements FAMPC with statistical
security against any static5, active adversary corrupting up to n− 1 parties.

4 The Offline Phase

In this section we describe the protocol ΠTRIP which securely implements the functionality FTRIP

described in Section 3 in the presence of a key registration functionality FKeyReg (Figure 13) and
a functionality that generates random challenges FRand (Figure 14)6.

4.1 〈·〉-representation

Throughout the description of the offline phase, Ei will denote Epki where pki is the public key
of party Pi, as established by FKeyReg. We assume the cryptosystem used is semi-homomorphic
modulo p, as defined in Section 2. In the following, we will always set τ = p/2 and ρ = σ. Thus,
5 ΠAMPC can actually be shown to adaptively secure, but our implementation of FTRIP will only be statically secure.
6 FRand is only introduced for the sake of a cleaner presentation, and it could easily be implemented in the FKeyReg

model using semi-homomorphic encryption only.
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if Pi generates a ciphertext C = Ei(x, r) where x ∈ Zp and r is generated by Ddσ, C will be a
(τ, ρ)-ciphertext. We will use the zero-knowledge protocols from Section 2.2. They depend on an
“information theoretic” security parameter u controlling, e.g., the soundness error. We will say
that a semi-homomorphic cryptosystem is admissible if it allows correct decryption of ciphertext
produced in those protocols, that is, if M ≥ 25u+2 log uτ2 and R ≥ 24u+log uτρ.

In the following 〈xk〉 will stand for the following representation of xk ∈ Zp: each Pi has published
Ei(xk,i) and holds xk,i privately, such that xk =

∑
i xk,i mod p. For the protocol to be secure, it

will be necessary to ensure that the parties encrypt small enough plaintexts. For this purpose we
use the ΠPoPK described in Section 2.2, and we get the protocol in Figure 7 to establish a set
〈xk〉 , k = 1, . . . , u of such random representations.

Subprotocol ΠSHARE

Share(u):
1. Each Pi chooses xk,i ∈ Zp at random for k = 1, . . . , u and broadcasts (τ, ρ)-ciphertexts {Ei(xk,i)}uk=1.
2. Each pair Pi, Pj , i 6= j, runs ΠPoPK(u, τ, ρ) on input the Ei(xk,i)’s. This proves that the ciphertexts are

(22u+log uτ, 22u+log uρ)-ciphertexts.
3. All parties output 〈xk〉 = (E1(xk,1), . . . ,En(xk,n)), for k = 1, . . . , u, where xk is defined by xk =P

i xk,i mod p. Pi keeps the xk,i and the randomness for his encryptions as private output.

Fig. 7. Subprotocol allowing parties to create random additively shared values.

4.2 〈·〉-multiplication

The final goal of the ΠTRIP protocol is to produce triples [ak], [bk], [ck] with akbk = ck mod p in
the [·]-representation, but for now we will disregard the MACs and construct a protocol Πn-MULT

which produces triples 〈ak〉 , 〈bk〉 , 〈ck〉 in the 〈·〉-representation.7

We will start by describing a two-party protocol. Assume Pi is holding a set of u (τ, ρ)-
encryptions Ei(xk) under his public key and likewise Pj is holding u (τ, ρ)-encryptions Ej(yk)
under his public key. For each k, we want the protocol to output zk,i, zk,j to Pi, Pj such that
xkyk = zk,i + zk,j mod p. Such a protocol can be seen in Figure 8.

Subprotocol Π2-MULT

2-Mult(u, τ, ρ):
1. Honest Pi and Pj input (τ, ρ)-ciphertexts {Ei(xk)}uk=1, {Ej(yk)}uk=1 (At this point of the protocol it has

already been verified that the ciphertexts are (22u+log uτ, 22u+log uρ)-ciphertexts).
2. For each k, Pi sends Ck = xk Ej(yk) + Ej(rk) to Pj . Here Ej(rk) is a random (23u+log uτ2, 23u+log uτρ)-

encryption under Pj ’s public key. Pi furthermore invokes ΠPoCM(u, τ, ρ) with input Ck, Ei(xk), Ej(yk),
to prove that the Ck’s are constructed correctly.

3. For each k, Pj decrypts Ck to obtain vk, and outputs zk,j = vk mod p. Pi outputs zk,i = −rk mod p.

Fig. 8. Subprotocol allowing two parties to obtain encrypted sharings of the product of their inputs.

7 In fact, due to the nature of the MACs, the same protocol that is used to compute 2 party multiplications will be
later used in order to construct the MACs as well.
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This protocol does not commit parties to their output, so there is no guarantee that corrupt
parties will later use their output correctly – however, the protocol ensures that malicious parties
knows which shares they ought to continue with.

To build the protocol Πn-MULT, the first thing to notice is that given 〈ak〉 and 〈bk〉 we have
that ck = akbk =

∑
i

∑
j ak,ibk,j . But constructing each of the terms in this sum in shared form is

exactly what Π2-MULT allows us to do. The Πn-MULT protocol can now be seen in Figure 9. Note
that it does not guarantee that the multiplicative relation in the triples holds, we will check for this
later.

Subprotocol Πn-MULT

n-Mult(u):

1. The input is 〈ak〉 , 〈bk〉 , k = 1, . . . , u, created using the ΠSHARE protocol. Each Pi initializes variables
ck,i = ak,ibk,i mod p, k = 1, . . . , u.

2. Each pair Pi, Pj , i 6= j, runs Π2-MULT using as input the ciphertexts Ei(ak,i),Ej(bk,j), k = 1, . . . , u, and
adds the outputs to the private variables ck,i, ck,j , i.e., for k = 1, . . . , u, Pi sets ck,i = ck,i + zk,i mod p,
and Pj sets ck,j = ck,j + zk,i mod p.

3. Each Pi invokes ΠSHARE, where ck,i, k = 1, . . . , u is used as the numbers to broadcast encryptions of.
Parties output what ΠSHARE outputs, namely 〈ck〉 , k = 1, . . . , u.

Fig. 9. Protocol allowing the parties to construct 〈ck = akbk mod p〉 from 〈ak〉 , 〈bk〉.

4.3 From 〈·〉-triples to [·]-triples

We first describe a protocol that allows us to add MACs to the 〈·〉-representation. This consists
essentially of invoking the Π2-MULT a number of times. The protocol is shown in Figure 10. The
full protocol ΠTRIP, which also includes the possibility of creating a set of single values, is now a
straightforward application of the subprotocols we have defined now. This is shown in Figure 11.
The proof of the following theorem can be found in Appendix C.2:

Theorem 2. If the underlying cryptosystem is semi-homomorphic modulo p, admissible and is
semantically secure, then ΠTRIP implements FTRIP with computational security against any static,
active adversary corrupting up to n− 1 parties, in the (FKeyReg,FRand)-hybrid model.

Subprotocol ΠADDMACS

Initialize: For each pair Pi, Pj , i 6= j, Pi chooses αij at random in Zp, sends a (τ, ρ)-ciphertext Ei(α
i
j) to Pj and

then runs ΠPoPK(u, τ, ρ) with (Ei(α
i
j), . . . ,Ei(α

i
j)) as input and with Pj as verifier.

AddMacs(u):
1. The input is a set 〈ak〉 , k = 1, . . . , u. Each Pi already holds shares ak,i of ak, and will store these as part

of [ak].
2. Each pair Pi, Pj i 6= j invokes Π2-MULT(u, τ, ρ) with input ciphertexts Ei(α

i
j), . . . ,Ei(α

i
j) from Pi and

input ciphertexts Ej(ak,j) from Pj . From this, Pi obtains output zk,i, Pj gets zk,j . Recall that Π2-MULT

ensures that αijak,j = zk,i + zk,j mod p. This is essentially the equation defining the MACs we need, so
therefore, as a part of each [ak], Pi stores αij , β

i
ak,j

= −zk,i mod p as the MAC key to use against Pj
while Pj stores mi(ak,j) = zk,j as the MAC to use to convince Pi about ak,j .

Fig. 10. Subprotocol constructing [ak] from 〈ak〉.
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Protocol ΠTRIP

Initialize: The parties first invoke FKeyReg(p) and then Initialize in ΠADDMACS.
Triples(u):

1. To get sets of representations {〈ak〉 , 〈bk〉 , 〈fk〉 , 〈gk〉}uk=1, the parties invoke ΠSHARE 4 times.
2. The parties invoke Πn-MULT twice, on inputs {〈ak〉 , 〈bk〉}uk=1, respectively {〈fk〉 , 〈gk〉}uk=1. They obtain

as output representations {〈ck〉}uk=1, respectively {〈hk〉}uk=1.
3. The parties invoke ΠADDMACS on each of the created sets of the representations. That means they now

have {[ak], [bk], [ck], [fk], [gk], [hk]}uk=1.
4. The parties check that indeed akbk = ck mod p by “sacrificing” the triples (fk, gk, hk): First, the parties

invoke FRand to get a random u-bit challenge e. Then, they open e[ak]−[fk] to get εk, and open [bk]−[gk]
to get δk. Finally, they open e[ck]− [hk] − δk[fk]− εk[gk]− εkδk and check that the result is 0. parties
output the set {[ak], [bk], [ck]}uk=1.

Singles(u):
1. To get a set of representations {〈a〉}uk=1, ΠSHARE is invoked.
2. The parties invoke ΠADDMACS on the created set of representations and obtain {[ak]}uk=1.

Fig. 11. The protocol for the offline phase.
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A “Standard” Ideal Functionalities

The ideal functionality for arithmetic multiparty computation that is securely implemented during
the online phase is presented in Figure 12.

The offline protocol implements FTRIP in the (FKeyReg,FRand)-hybrid model: FKeyReg and
FRand are detailed in Figure 13 and Figure 14 respectively.

Functionality FAMPC

Initialize: On input (init , p) from all parties, the functionality activates and stores the modulus p.
Rand: On input (rand , Pi, varid) from all parties Pi, with varid a fresh identifier, the functionality picks r ← Zp

and stores (varid , r).
Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a fresh

identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and store (varid3, x+ y mod p).
Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory

and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p).
Output: On input (output , Pi, varid) from all parties (if varid is present in memory), the functionality retrieves

(varid , x) and outputs it to Pi.

At each command the functionality will send to the environment what command is being executed. a

a This is to make it possible to construct the simulator to prove an implementation secure. In further specifica-
tions of ideal functionalities this is assumed implicitly.

Fig. 12. The ideal functionality for arithmetic MPC.

Functionality FKeyReg

FKeyReg proceeds as follows, given G and security parameter 1κ:

Registration (honest): On input p from an honest party Pi, the functionality runs (ski, pki)← G(1κ, p), and
then sends (registered , Pi, pki,⊥) to all parties Pj 6= Pi and (registered , Pi, pki, ski) to Pi;

Registration (corrupted): On input (p, r∗) from a corrupted party Pi, the functionality does as before using
r∗ (instead of a uniform string) as the random tape for the G algorithm.

Fig. 13. The ideal functionality for the key registration model.

Functionality FRand

Rand. sample: The functionality has only one command: When receiving (rand , u) from all parties, it samples
a uniform r ← {0, 1}u and outputs (rand , r) to all parties.

Fig. 14. The ideal functionality for coin-flipping.
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B The Multiplication Security Property

Let (G,E,D) be a semi-homomorphic cryptosystem. Consider the following game, played between
the adversary A and challenger B.

1. B generates a key pair G(1κ, p) = (sk, pk). He chooses y, s ∈R Zp and r according to Ddσ. He
flips a coin and sets z to be y or s accordingly. Finally, he sends Y = Epk(y, r) to A.

2. A outputs integer x and ciphertext C. Here, x must be small enough that xy will not exceed
the bound for correct decryption.

3. B checks if xy mod p = Dsk(C), and sends either “no” or “yes” to A. In the latter case, he also
sends z to A.

4. A outputs a bit, which we think of as his guess at whether B chose z = y or s. A wins if his
guess is correct.

We say the cryptosystem is multiplication-secure if no polynomial-time adversary wins with prob-
ability more than 1/2 + ε(κ) where ε(κ) is negligible.

This game is meant to model Π2-MULT where A (called Pi there) is supposed to multiply a
number a into an encryption X to get C. If we do not require him to prove in zero-knowledge that
he did that correctly, but instead check after the fact whether C contains the right thing, A gets
this one bit of information. Multiplication security says that even given this bit, whatever is inside
Y still seems completely random to A.

Note that A has no chance to win when B says “no”. This corresponds to the fact that the real
protocol is aborted if the test says C is bad, and nothing at all is revealed later.

Multiplication security implies semantic security (for a different cryptosystem, where you en-
crypt m by sending Epk(x),m⊕ x), but it is not clear whether it is strictly stronger in general.

Our semi-homomorphic schemes are not all multiplication secure. Consider our Paillier variant,
for instance: Given the encryption Y = Epk(y), the adversary could choose a = 1 and compute
C = Epk(y + b) for some b of his choice, using the homomorphic property. If he chooses b to be a
multiple of p that is close to (N − 1)/2, then on the one hand ay = a(y + b) mod p. On the other
hand, if y < 0 the addition of b to y will not create overflow modulo N , while y ≥ 0 we will get
overflow most of the time and the multiplicative relation mod p no longer holds. Hence, if A sends
such a C to B and gets answer “yes” along with z, he clearly has a significant advantage: If z ≤ 0
he will guess that z = y, else he will guess that z = s.

We therefore suggest to modify the encryption algorithm from E to Ē, where

Ēpk(y) = Epk(y + vp),

where v is random. We can set the parameters so that v can take superpolynomially many values,
and still we can decrypt correctly. Note that relations modulo p that we care about will not be
affected by this change. With this modification, the above attack on Paillier fails: by semantic
security of Paillier, the choice of b cannot be significantly correlated to the choice of v. Given this,
it is easy to see that the distributions of B’s answers for any y will be statistically close to each
other.

This modification can be applied to any semi-homomorphic cryptosystem, and we conjecture
that with this change, all our examples are indeed multiplication secure. The basis for this is that
all the example schemes share a common characteristic structure: From the cryptosystem, one
can define an additively homomorphic (over the integers) function f , such that when decrypting
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a ciphertext Epk(y), one obtains f(y) mod q where q is a modulus defined by the key used. Then
from this number one can reconstruct y mod p as required, provided |y| ≤M . For the Paillier case
f is the identity, in the Regev case, we have f(x) = x · bq/pe. A semi-homomorphic cryptosystem
with this extra structure is called a mixed modulus cryptosystem.

Fro such a scheme, when using the homomorphic property to compute, for instance, aEpk(y) +
Epk(b) we get a ciphertext that “contains” af(y) + f(b) = f(ay+ b). As before, if |ax+ b| ≤M , one
can still decrypt correctly to ay+b mod p, despite the fact that we can only compute f(ax+b) mod q.
We will say we have overflow if decryption does not work correctly.

We can now see that the idea of the attack on Paillier generalizes to any mixed modulus
cryptosystem: the adversary can try to choose a, b carefully such that the occurrence of overflow
depends on x. However, if we use the modification where we replace y by y + vp, we conjecture
that the random choice of v will create enough uncertainty that the occurrence of overflow will be
essentially independent of the choice of y. More precisely, the conjecture is

Conjecture 1. For any mixed modulus semi-homomorphic cryptosystem, if we replace the encryp-
tion function E by Ē as defined above, the resulting cryptosystem is multiplication secure.

As evidence in favor of this we note that, as before, we can assume that the choice of operations
the adversary does on the ciphertext is essentially independent of v. Note furthermore that in some
of the examples such as Okamoto-Uchiyama, the adversary does not even know q.

To use multiplication security in the protocol, we can modify Π2-MULT as shown in Figure 15.
To this end, we define a representation of a secret value z, denoted 〈z〉ij = (Ei(zi),Ej(zj)), where
z = (zi + zj) mod p. This is the same as the previous 〈·〉 notation except that only Pi and Pj
hold shares of the value. We also define such a representation where only one party contributes an
encryption, e.g. 〈zi mod p〉 = (Ei(zi), C0), where C0 is a default encryption of 0. Also note that,
compared to standard offline phase, we have to adjust the values of τ and ρ to account for the
addition of the random multiple of p in Ē. The idea in the protocol is to do two instances of the
two-party multiplication protocol, with committed inputs and outputs and use one to to check the
result of the other.

Note that the final check ensures that xkyk mod p = zk by the same argument as in ΠTRIP, and
since the x′k, y

′
k, z
′
k are chosen sufficiently large, the check does not reveal any side information.

We can now replace E by Ē in the entire offline protocol and replace Π2-MULT by Π2-MULTNEW.
In proving that the resulting protocol is secure, we can exploit the fact that a corrupt Pi can be
seen as an adversary A playing the multiplication security game: for any fixed k, the ciphertext
D corresponds to Ē(yk), the C to Ck − Zk,i, and x corresponds to xk. The result of the final
test tells the adversary whether Ck −Ek decrypts to xkyk mod p. Multiplication security now says
that even given this information, the adversary cannot distinguish the correct value of yk from an
independent random value. This is exactly equivalent to distinguishing the simulation of the offline
phase from the real protocol: in the real protocol, the outputs from FTRIP are generated based on
what is actually contained in the ciphertexts of honest players, while in the simulation, independent
random values are used.

We therefore conclude that if the cryptosystem used is multiplication secure, then this modified
offline protocol implements FTRIP, and we note that using Π2-MULTNEW means that the amortized
cost for a single two-party multiplication is O(κ + u) bits, no matter which multiplication secure
cryptosystem we use.
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Subprotocol Π2-MULTNEW

2-MultNew(u, τ, ρ):
1. Honest Pi and Pj input (τ, ρ)-ciphertexts {Ēi(xk)}uk=1, {Ēj(yk)}uk=1 (At this point of the protocol it has

already been verified that the ciphertexts are (22u+log uτ, 22u+log uρ)-ciphertexts).
2. For each k, Pi sends Ck = xkĒj(yk) + Ēj(rk) to Pj . Here Ēj(rk) is a random (23u+log uτ2, 23u+log uτρ)-

encryption under Pj ’s public key.
3. For each k, Pj decrypts Ck to obtain vk, and outputs zk,j = vk mod p. Pi outputs zk,i = −rk mod p.
4. For each k, Pj computes Zk,j = Ēj(zk,j) and sends to Pi. Pi computes Zk,i = Ēi(zk,i) and sends to Pj .
5. ΠPoPK is used to verify that the Zk,i are well formed ciphertexts and that Pi knows the zk,i’s. ΠPoPK is

also used to verify that the Zk, j are well formed and that Pj knows the zk,j ’s.
6. Let zk = (zk,i + zk,j) mod p. Based on the ciphertexts created now, we have representations as defined

above of form 〈xk〉ij , 〈yk〉ij , 〈zk〉 mod p, where if parties followed the protocol xkyk = zk mod p.
7. We repeat Steps 1-6 again with new randomly chosen plaintexts, to create representations
〈x′k〉ij , 〈y

′
k〉ij , 〈z

′
k〉ij . However, x′k is chosen randomly of bitlength log τ + 2u, yk of length log τ + u,

and z′k of length 2 log τ + 3u.
8. As in protocol ΠTRIP, we now use the triple (〈x′k〉ij , 〈y

′
k〉ij , 〈z

′
k〉ij) to check that (〈xk〉ij , 〈yk〉ij , 〈zk〉ij)

satisfies xkyk = zk mod p. First, the parties invoke FRand to get a random u-bit challenge e. Then, they
open e 〈xk〉ij − 〈x

′
k〉ij to get εk, and open 〈yk〉ij − 〈y

′
k〉ij to get δk. Finally, they open e 〈zk〉ij − 〈z

′
k〉ij −

δk 〈x′k〉ij − εk 〈y
′
k〉ij − εkδk and check that the result is 0 modulo p. If this is not the case, the protocol

aborts.

Fig. 15. Subprotocol allowing two parties to obtain encrypted sharings of the product of their inputs.

C Proofs

C.1 Proof of Theorem 1

The Simulator SAMPC We construct a simulator SAMPC such that a poly-time environment Z
cannot distinguish between the real protocol system FTRIP composed with ΠAMPC and FAMPC

composed with SAMPC. We assume here static, active corruption. The simulator will internally
run a copy of FTRIP composed with ΠAMPC where it corrupts the parties specified by Z. The
simulator relays messages between parties/FTRIP and Z, such that Z will see the same interface
as when interacting with a real protocol. During the run of the internal protocol the simulator will
keep copies of the shares, MACs and keys of both honest and corrupted parties and update them
according to the execution.

The idea is now, that the simulator runs the protocol with the environment, where it plays the
role of the honest parties. Since the inputs of the honest parties are not known to the simulator
these will be random values (or zero). However, if the protocol is secure, the environment will not
be able to tell the difference. The specification of the simulator SAMPC is presented in Figure 16.

Security In general, the openings in the protocol do not reveal any information about the values
that the parties have. Whenever we open a value during Input or Multiply we mask it by subtracting
with a new random value. Therefore, the distribution of the view of the corrupted parties is exactly
the same in the simulation as in the real case. Then, the only method there is left for the environment
to distinguish between the two cases, is to compare the protocol execution with the inputs and
outputs of the honest parties and check for inconsistency.

If the simulated protocol fails at some point because of a wrong MAC, the simulator aborts
which is consistent with the internal state of the ideal functionality since, in this case, the simulator
also makes the ideal functionality fail.
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Simulator SAMPC

In the following, H represents the set of honest parties and C the set of corrupted parties.

Initialize: The simulator initializes the copy with p and creates the desired number of triples. Here the simulator
will read all data of the corrupted parties specified to the copy of FTRIP.

Rand: The simulator runs the copy protocol honestly and calls rand on the ideal functionality FAMPC.
Input: If Pi ∈ H the copy is run honestly with dummy input, for example 0. If in Step 1 during input, the MACs

are not correct, the protocol is aborted.
If Pi ∈ C the input step is done honestly and then the simulator waits for Pi to broadcast δ. Given this, the
simulator can compute x′i = a+ δ mod p since it knows (all the shares of) a. This is the supposed input of
Pi, which the simulator now gives to the ideal functionality FAMPC.

Add: The simulator runs the protocol honestly and calls add on the ideal functionality FAMPC.
Multiply: The simulator runs the protocol honestly and, as before, aborts if some share from a corrupted party

is not correct. Otherwise it calls multiply on the ideal functionality FAMPC.
Output: If Pi ∈ H the output step is run and the protocol is aborted if some share from a corrupted party is

not correct. Otherwise the simulator calls output on FAMPC.
If Pi ∈ C the simulator calls output on FAMPC. Since Pi is corrupted the ideal functionality will provide the
simulator with y, which is the output to Pi. Now it has to simulate shares yj of honest parties such that
they are consistent with y. This is done by changing one of the internal shares of an honest party. Let Pk be
that party. The new share is now computed as y′k = y−

P
i 6=k yi. Next, a valid MAC for y′k is needed. This,

the simulator can compute from scratch as MACKi
yk

(y′k) since it knows from the beginning the keys of Pi.

This enables it to compute Ki
yk

by the computations on representations done during the protocol. Now the
simulator sends the internal shares and corresponding MACs to Pi.

Fig. 16. The simulator for FAMPC.

If the simulated protocol succeeds, the ideal functionality is always told to output the result of
the function evaluation. This result is of course the correct evaluation of the input matching the
shares that were read from the corrupted parties in the beginning. Therefore, if the corrupted parties
during the protocol successfully cheat with their shares, this would not be consistent. However, as
argued in Section 3.1, the probability of a party being able to claim a wrong value for a given MAC
is 1/p. In conclusion, if the protocol succeeds, the computation is correct except with probability a
polynomial multiple (the number of MACs ever checked) of 1/p.

C.2 Proof of Theorem 2

We first observe that any semi-homomorphic encryption scheme has, in addition to the regular key
generation algorithm G, the following alternate key generation algorithm G∗:

– G∗(1κ, p) is a randomized algorithm that outputs a meaningless public key p̃k with the property
that an encryption of any message Efpk(m) is statistically indistinguishable from an encryption

of 0. Also, let (pk, sk) ← G(1κ, p) and p̃k ← G∗(1κ, p). Then we have that pk and p̃k are
computationally indistinguishable.

Most of our example schemes already have this property, where in fact indistinguishability of the
two types of keys is equivalent to semantic security. However, the property can be assumed without
loss of generality, by including a ciphertext Ce = Epk(b) in the public key redefining the encryption
algorithm to be E∗pk(m) = m ·Ce+Epk(0). Then, both G and G∗ would run the same algorithm, with
the only difference being that G uses b = 1 while G∗ uses b = 0. Also in this case, semantic security
is equivalent to indistinguishability of the types of keys. The presence of meaningless public keys
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also allows us to use semi-homomorphic encryption to construct UC-commitments, using techniques
similar to [DN02].

The Simulator STRIP We now construct a simulator STRIP where the idea is that it simulates
the calls to FKeyReg and FRand and runs a copy of the protocol internally. The simulator plays the
honest players’ role and does all the steps in ΠTRIP. During these, it obtains the shares and values
of the corrupted parties, since it knows all the secret keys. These values are then input to FTRIP.
A precise description is provided in Figure 17.

Simulator STRIP

Initialize: The simulator first uses G(1κ) to generate the key pairs (ski, pki) for every Pi and sends the keys
to the corrupt parties. Then, it does the initialization step of ΠTRIP where it aborts if ΠPoPK fails for some
Pi, Pj , where either Pi or Pj is honest. Otherwise, for each pair Pi, Pj where Pi is corrupt and Pj is honest,
the simulator will receive Ei(α

i
j) which it decrypts and inputs to FTRIP when calling Initialize.

Triples: The simulator performs ΠTRIP. During this, ΠPoPK and ΠPoCM are performed a number of times. The
simulator will abort the protocol if they fail for some Pi, Pj , where either Pi or Pj is honest. Otherwise it
proceeds with the steps:
1. In the first step ΠSHARE is invoked 4 times, in which the simulator receives for each corrupt Pi ciphertexts

Ei(ak,i),Ei(bk,i),Ei(fk,i),Ei(gk,i), k = 1, . . . , u. The simulator decrypts and stores these.
2. Next, in step 2, during the sharing, the simulator receives from each corrupt Pi ciphertexts

Ei(ck,i),Ei(hk,i) of the shares ck, hk, where ck = akbk mod p, hk = fkgk mod p. Again, the simulator
decrypts and stores.

3. Then, in step 3, the protocol Π2-MULT is done between two parties Pi, Pj to obtain keys and MACS for
all the shares. In the case where Pi is corrupt and Pj is honest the simulator obtains the MAC, for
say ak,j by decrypting the dk sent by Pi. When, on the other hand, Pi is honest and Pj is corrupt, the
simulator decrypts dk, getting sk, about which ΠPoCM guarantees sk = ykxk + rk mod p. Therefore, the
simulator obtains βiak,j

by calculating −(sk − xkyk) mod p. This can be done since yk is chosen by Pi,
that is here the simulator, and xk is acquired before during input sharing.

4. Finally, in step 4, FRand is simulated by choosing a random u-bit value. Then, the check is done honestly.
If the check fails, the simulator aborts. Otherwise, the simulator calls Triples on FTRIP and inputs all
the shares and values of the corrupted parties.

Singles: The simulator does step 1 and 3 from above, but only with one set of representations. Then it calls
Singles on FTRIP where it inputs the shares and values of corrupted parties.

Fig. 17. The simulator for FTRIP.

Security This is argued by doing the following reduction: Assume there exists a distinguisher D
that can distinguish with significant probability between a real and a simulated view. Then, we
can use this to distinguish between a normally generated public key and the so-called meaningless
public key described above. That is, we can construct a distinguisher D′ that given a public key
pk∗ can tell whether pk∗ = pk or pk∗ = p̃k. This is a contradiction since a key generated by the
normal key generator is computationally indistinguishable from a meaningless key.

We do the above by constructing an algorithm B that takes as input a public key pk∗ which
is either a normal public key or a meaningless public key. The output of B is a view, view∗ of the
same form as what the environment would see. If pk∗ = pk, the view will correspond to either a
real protocol run or to a simulated run. If, however, pk∗ = p̃k the view is such that a real run is
statistically indistinguishable from a simulated. Then, we give view∗ to D, which guesses either
real or sim. If D guesses correctly, we guess that pk∗ = pk otherwise we guess pk∗ = p̃k.
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For simplicity we describe in the following, the algorithm B for the two-party setting, where
we have a corrupt party P1 and an honest party P2: We start by letting the input pk∗ be the
public key of P2 and then we generate a normal key pair (pk1, sk1) and send it to P1. After this,
we begin executing the protocol. However, during multiplications when P1 sends ciphertexts to P2,
we cannot decrypt. Instead, we exploit that P1 and P2 have run ΠPoCM with P1 as prover. That is
P1 has proven that he knows a, r of appropriate size such that the ciphertext was constructed as
aEpk2(m) + Epk2(r). This means, we can use the knowledge extractor of ΠPoCM and rewinding to
extract the values a, r from P1. With this we calculate the resulting plaintext x = am + r mod p,
and continue the protocol as if we had decrypted. In the end we choose randomly between the real
or the simulated view. In the first case, we let the output be exactly those values, that were used in
our execution of the protocol. That is, all shared values are determined from the values that were
used, so for example a = aRealP1

+ aRealP2
. In the second case, we choose the output for P2 as FTRIP

would do. That means, the shares of a given triple aP1 , bP1 , cP1 will now be determined by choosing
a, b at random, setting c = ab mod p and then letting aP2 = a−aRealP1

, bP2 = b−bRealP1
, cP2 = c−cRealP1

.

It can now be seen, that if pk∗ was a normal key, then the view corresponds statistically to either
a real or a simulated execution. The execution matches exactly either a real or a simulated one
except from the small probability that an extractor fails in getting the value inside an encryption,
in which case we give up.

If pk∗ is a meaningless key, we know first of all that the encryptions under P2’s key contain
statistically no information about the values. Then, because of ΠPoPK, it is guaranteed that the
parties make well formed ciphertexts, encrypting values that are not too big. This and the fact
that the cryptosystem is admissible ensures, that decryption gives the correct value when B or
the simulator decrypts. Moreover, bounding the size is very important in Π2-MULT, when P2 sends
ak E1(bk) + E1(rk), such that we are certain that the random value rk is big enough to mask P2’s
choice ak. In addition, we need that all messages sent in the zero-knowledge protocols where P2

acts as prover, do not depend on the specific values that P2 has. This is indeed the case, since
the zero-knowledge property implies that the conversations could just as well have been simulated
without knowing what is inside the encryptions.

Finally, in the last step of ΠTRIP, we have the opening and check of triples. Here, no information
is leaked from e[ak]− [fk], and [bk]− [gk], since these are just random values. Moreover, it is easy to
see that if the triples are correct, this check will be true. On the other hand, if they are not correct,
the probability of satisfying the check is 2−u, since there is only one random challenge e, for which
e(ck − akbk) = (hk − gkfk). Therefore, if the check goes through we know that the multiplicative
relation between ak, bk, ck holds except with very small probability.

As a result, if we use a meaningless key, a real execution and a simulated execution are statisti-
cally indistinguishable. Therefore, if D can distinguish real views from simulated views with some
advantage ε, then D′ can distinguish normal keys from meaningless keys with advantage ε− δ. We
subtract δ, since there is some negligible error that B does not succeed, for instance because of the
knowledge extractor or if the adversary is able to cheat with the check of the triples. However, if ε
is non-negligible, then ε− δ is also non-negligible, and so we have our contradiction.
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C.3 Completeness and Zero-Knowledge for ΠPoPK

Completeness This follows directly by construction. Assume that P is honest and look at the
checks V makes. First

ai + Me,i · c = EP (yi, si) +Me,i · c = EP (yi, si) +
u∑
k=1

Me,i,k · ck

= EP (yi, si) +
u∑
k=1

Me,i,k · EP (xk, rk) = EP (yi +
u∑
k=1

Me,i,k · xk, si +
u∑
k=1

Me,i,k · rk)

= EP (yi + Me,i · x, si + Me,i ·R) = EP (zi, ti)

so this will obviously be correct if P is honest. Furthermore zi = yi + Me,i ·x, and since the entries
in c are (τ, ρ)-ciphertexts, we have that Me,i · x ≤ uτ . This means that Me,i · x is taken from an
exponentially smaller interval than yi, and therefore the check of |zi| ≤ 2u−1+log uτ will only fail
with negligible probability. A similar argument can be made for the check of ||ti||∞ ≤ 2u−1+log uρ.

Zero-Knowledge We give an honest-verifier simulator for the protocol that simulates accepting
conversations. First note that a conversation has the form (a, e, (z,T)). Now to simulate an ac-
cepting conversation first choose e ∈ {0, 1}u uniformly random, and z,T uniformly random such
that d contains (2u−1+log uτ, 2u−1+log uρ)-ciphertexts. Finally construct a such that d = a + Me · c,
where as always d = (EP (z1, t1), . . . ,EP (zm, tm)). A simulated accepting conversation is now given
by (a, e, (z,T)).

We should now argue that a real accepting conversation and a simulated accepting conversation
are statistically indistinguishable. By construction it will clearly still be the case that d = a+Me ·c.
Now we look at the distributions of the conversations. First the distribution of e in both real and
simulated conversations is exactly the same. Looking at a in a real conversation the entries Ak will
be uniformly random (2u−1+log uτ, 2u−1+log uρ)-ciphertexts. In the simulated conversation we have
a = d−Me · c, where d contains uniformly random (2u−1+log uτ, 2u−1+log uρ)-ciphertexts. Looking
at Me · c and remembering that Me only contains entries in {0, 1} we see that Me · c will be a
vector containing at most (uτ, uρ)-ciphertexts. What we conclude is that the contribution from
Me · c is exponentially smaller than the contribution from d, so a = d−Me · c will be statistically
indistinguishable from uniformly random (2u−1+log uτ, 2u−1+log uρ)-ciphertexts. A similar argument
can be made for the statistical indistinguishability of (z,T) in the two cases.

C.4 Completeness, Soundness and Zero-Knowledge for ΠPoCM

Completeness In the following we leave out the subscript k, for instance a means ak. Completeness
follows directly by construction. Consider the first two checks that V makes in step 5 of the protocol.
First we have:

D + eA = EP (d, s) + eEp(a,h) = EP (d+ ea, s + eh) = EP (z,v)

Secondly we have:

F + eC = dB + EV (f,y) + e(aB + EV (r, t))
= (d+ ea)B + EV (f + er,y + et)
= zB + EV (x,w)

24



For V ’s checks on sizes these will succeed except with negligible probability since the intervals from
which d, s, f and y are taken are exponentially larger than those from which a, h, r and t are
taken.

Soundness Again we leave out the subscript k. Assume we are given any prover P ∗, and consider
the case where P ∗ can make V accept for both e = 0 and e = 1 by sending (z0,v0, x0,w0) and
(z1,v1, x1,w1) respectively. This gives us the following equations:

D = EP (z0,v0) , D +A = EP (z1,v1)
F = z0B + EV (x0,w0) , F + C = z1B + EV (x1,w1)

which gives us that,

A = EP (z1 − z0,v1 − v0) , C = (z1 − z0)B + EV (x1 − x0,w1 −w0)

This shows that a cheating prover P ∗ has success probability at most 1/2 in one iteration. Since we
repeat u times, this gives a soundness error of 2−u. A final note should be said about what we can
guarantee about the sizes of ak, hk, rk and tk. Knowing that |z0| ≤ 23u−1+log uτ , |z1| ≤ 23u−1+log uτ ,
||v0||∞ ≤ 23u−1+log uτ and ||v1||∞ ≤ 23u−1+log uρ, we can only guarantee that EP (a,h) is a
(23u+log uτ, 23u+log uρ)-ciphertext. Similarly, knowing that |x0| ≤ 24u−1+log uτ2, |x1| ≤ 24u−1+log uτ2,
||w0||∞ ≤ 24u−1+log uτρ and ||w1||∞ ≤ 24u−1+log uτρ, we can only guarantee that EV (r, t) is a
(24u+log uτ2, 24u+log uτρ)-ciphertext.

Zero-Knowledge Again we leave out the subscript k. We give an honest-verifier simulator for
the protocol that simulates accepting conversations. First note that a conversation has the form
((D,F ), e, (z,v, x,w)). Now to simulate an accepting conversation we first choose e as a uniformly
random bit, and (z,v, x,w) uniformly random such that |z| ≤ 23u−1+log uτ , ||v||∞ ≤ 23u−1+log uρ,
|x| ≤ 24u−1+log uτ2 and ||w||∞ ≤ 24u−1+log uτρ. Finally construct D and F such that D + eA =
EP (z,v) and F + eC = zB + EV (x,w). A simulated accepting conversation is now given by
((D,F ), e, (z,v, x,w)).

We now argue that a real accepting conversation is statistically indistinguishable from a sim-
ulated accepting conversation. By construction it will clearly be the case that D + eA = EP (z,v)
and F + eC = zB + EV (x,w), which is what V checks. Next we look at the distributions of the
conversations. First the distribution of e is clearly the same in both cases. Looking at D in a real
conversation, this is uniformly random (23u−1+log uτ, 23u−1+log uρ)-ciphertext, in the simulated case
it is given by D = EP (z,v)− eA. Now EP (z,v) is a uniformly random (23u−1+log uτ, 23u−1+log uρ)-
ciphertext, and eA is exponentially smaller. Therefore D will be computationally indistinguishable
from a random (23u−1+log uτ, 23u−1+log uρ)-ciphertext. The same line of argument can be used to
show that the distributions of F and (z,v, x,w) are computationally indistinguishable in the two
cases.

D Examples of Semi-Homomorphic Cryptosystems

Subset Sum Cryptosystem Another example is (a slightly generalized version of) the cryptosystem
from [LPS10] based on the subset sum problem.
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In the subset sum problem with parameters n, qm (denoted SS(n, qm)), we are given a1, . . . , an, T ∈
Z and want to find S ⊆ {1, . . . , n} such that

∑
i∈S ai = T mod qm. In the following we will use

vector notation, that is for example we write a number in Zqm as an m-dimensional vector with
entries in Zq. We use � for the subset sum operation, so a subset sum with the elements in the
columns of A ∈ Zm×nq is A � s = As + c, where s ∈ {0, 1}n is the chosen subset of elements
and c ∈ Zmq denotes the vector of carries in the sum. In our generalized version of the scheme, we
will, however, also generalize the � operator, such that the vector s is allowed to have non-binary
entries.

The k-bit-cryptosystem based on SS(n,qn+k) is given by (G′,E′,D′). Key generation G′ randomly
samples A’ ∈ Zn×nq and s1, . . . , sk ∈ {0, 1}n. Then, it calculates the subset sums: ti = A’� si, i =
1, . . . , k and outputs pk = A = [A’||t1|| · · · ||tk] and sk = s1, . . . , sk. Encryption C = E′pk(m; r)
for a message m ∈ {0, 1}k and randomness r ∈ {0, 1}n outputs rT �A + bq/2e[0n||m1|| · · · ||mk].
Decryption D′sk(C) writes C = [vT ||w1|| · · · ||wk], where v ∈ Znq and w1, . . . , wk ∈ Zq and calculates
yi = vT s − wi mod q. Finally it outputs as the i-th bit 0 if |yi| < q

4 and 1 otherwise. This will be
correct with probability 1− n−ω(1).

To make it fit into the framework we redefine the cryptosystem, allowing, first of all, multiples
of elements in the subset sum and secondly we do encryptions of a single value in Zp instead of a
vector of bits.

More precisely we have a semi-homomorphic scheme modulo p where G = Zn+1
q , d = n,Ddσ =

U{−1,0,1}n , so σ = 1. The cryptosystem based on subset sum with parameters n and qn+1 is given by
(G,E,D). Key generation Gis done as in G’, except that now s ∈ {−1, 0, 1}n. Encryption Epk(m, r)
outputs rT �A + bq/pe[0n||m] with m ∈ Zp and r ∈ {−1, 0, 1}n. For the purpose of decryption we
partition the interval [−q2 ,

q
2 ] more fine-grained, enabling us to decrypt to more than just to 0 and 1.

Concretely, for values in Zp, we partition the interval into sub-intervals of size q
p . When we decrypt

we do the same calculation as before, but instead decryption determines and outputs the closest
multiple j of qp . In other words Dsk(C) writes C = [vT ||w] and outputs y = b(p/q)(vT s−w) mod qe.

Adding two ciphertexts, C,C ′ we get (r+r’)T � A + bq/pe[0n||m + m′], which is the same
kind of expression as with normal encryption. The only difference is that the size of the entries in
the random vector and the size of the message might exceed the “standard” values, σ and p for
randomness and message respectively.

As for correctness the bounds M,R will need to be chosen such that they satisfy

2Rn+ 2Rn log2(n) +
1
2

(M + p) <
q

2p
, (2)

due to tedious calculations omitted here. This also means that we will have to increase the size of q
(and thereby the size of the ciphertext). Correctness is obtained as before with a decryption error
of n−ω(1).

Semantic security follows in the same way as for the original scheme, assuming that the subset
sum instance is hard. The problem SS(n, qm) is known to be harder as the so called density
n/ log(qm) gets closer to 1 [IN96]. When the density is less than 1/n or larger than n/ log2(n) we
have algorithms that use polynomial time, [LO85,Fri86,FP05,Lyu05,Sha08]. A concrete choice of
q = Θ

(
nlog(n)

)
will therefore still leave us in the range where the problem is assumed to be hard.

Other examples. The Okamoto-Uchiyama scheme is closely related to Paillier’s cryptosystem,
except that the modulus used is of form p2

1p2. Just like the scheme of Damg̊ard, Geisler and
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Krøigaard [DGK09] it is based on a subgroup-decision problem. Both schemes can be made semi-
homomorphic modulo p in the same way as Paillier’s scheme, by reducing modulo p after the normal
decryption process is done.

The scheme by van Dijk, Gentry, Halevi and Vaikuntanathan’s [DGHV10] scheme based on
the approximate gcd problem is fully homomorphic, but if we only require the additive homomor-
phic property, much more practical instances of the cryptosystem can be built, and it is actually
essentially by construction already semi-homomorphic.

E Benchmarks

An implementation of the on-line phase using a 65 -bit prime has been done in Python, with the
following results, where each party ran on a 1 GHz dual-core AMD Opteron 2216 CPU med 2,1
Mb level 2 cache.

parties 2 3 4 5 6 7 8
time (ms) 6.1 7.9 6.6 8.1 9.9 10.2 14.2
stdvar (ms) 0.6 0.2 0.3 0.4 0.6 0.7 3.3
median (ms) 5.9 7.8 6.6 8.0 10.0 10.3 12.7
Fastest (ms) 5.65347 7.69279 6.20544 7.41833 9.34531 8.99815 11.43949
Slowest (ms) 7.61234 8.33839 7.06685 8.77171 11.00211 11.53103 20.03714

These results are within a factor 3 of the time needed on the same platform for a secure multi-
plication using Shamir secret-sharing and assuming honest majority and semi-honest adversary.

A preliminary implementation has also been done of the off-line phase on the same platform,
but a full set of benchmarks was not ready at time of writing. The results do suggest, however,
that for the two party case and based on Paillier encryption with 1024 bit modulus, the time for
preparing a secure multiplication should be around 2-4 seconds, virtually independently of the value
of the information theoretic security parameter u.
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