
Cryptanalysis of block EnRUPT
Elias Yarrkov∗

2010-10-08 (revised 2010-10-12)

Abstract
EnRUPT is a cryptographic primitive with a variable block and key

length. We show several attacks on it that stem from properties of its
keying, including a very fast related-key attack.

1 Introduction
EnRUPT[5] is a simple symmetric algorithm with several modes, allowing it to
perform as different types of cryptographic primitives. One mode of EnRUPT
was previously attacked in [3] and [2]. This paper presents cryptanalysis of the
32-bit block cipher mode, though the same methods are expected to work for
the 64-bit version.

2 EnRUPT description
EnRUPT is an unbalanced source-heavy Feistel network similar to XXTEA[7, 6].
The block consists of a variable number of 32- or 64-bit words, as does the
key. The algorithm linearly loops through block and key words, XORing to the
current block word a function of its neighbors, the current key word, and the
round number. The block and the key are viewed as circular arrays; that is,
for an n-word block and key, xr = xr+n and kr = kr+n. The EnRUPT round
function is xr ← xr ⊕ F (xr−1, xr+1, kr, r), where F (a, b, k, r) = ((((a �
1)⊕ b⊕ r⊕ k) ≫ 8) ∗ 9)⊕ k. The number of rounds is defined s ∗ (w0 ∗ 2 + w1),
where w0 is block width in words and w1 is key width in words. s is a security
parameter, defaulted to 4.

∗yarrkov@gmail.com, http://cipherdev.org/

1

Algorithm 1 EnRUPT block cipher implementation1

#de f i n e r o t r (a , b) (((a)>>(b)) | ((a)<<(32−(b))))
void EnRUPT(uint32_t ∗x , i n t xw , uint32_t ∗k , i n t kw)
{

i n t r ;
f o r (r=1; r<=4∗(2∗xw+kw) ; r++)
{

uint32_t t , rk ;
t = (x [(r−1+xw)%xw] << 1) ^ x [(r+1)%xw] ;
rk = k [r%kw] ;
x [r%xw] ^= ro t r (t ^ rk ^ r , 8)∗9 ^ rk ;

}
}

3 Attacks
The approaches used for XXTEA in [8] seem to be ineffective against EnRUPT.
However, the keying is vulnerable to various things.

3.1 Key collisions
The round function of EnRUPT is not bijective for the given key word. Thus, we
can attempt to find a difference Δ so that F (a, b, k⊕Δ, r) = F (a, b, k, r) with
some probability. Using a simple solving algorithm, Δ = 0x02128292 comes out
as probably the best choice, giving a collision at probability 2−9.15. If two keys
differ in a single word, the difference will be encountered only once per cycle
through the key words.

For example, for a 128-bit block and 512-bit key, the number of full cycles
over the key is 6; we need to pass 5 to get a right pair. In this scenario, the
probability of the full characteristic is thus about 2−45.75. We can request about
246 encryptions under the original key, as well as a related key with Δ in k0.
This is expected to result in about one case where the direct ciphertext and its
respective related-key ciphertext collide in x1, x2 and x3, which is recognized as
a right pair. Knowing (x3 � 1) ⊕ x1 and the difference in x0, we can proceed
to recover candidates for k0, used for x0. Though this immediately gives an
advantage over brute force, effectively extending to the full key seems to require
a bit more queries with Δ in different key words.

These key collisions also lead to hash collisions, if the block cipher is used
in a construction such as Davies-Meyer.

1derived from a public domain implementation at http://www.enrupt.com/

2

3.2 A p=1 related-key differential characteristic
Consider the round function, ((((xr−1 � 1)⊕xr+1⊕r⊕k) ≫ 8)∗9)⊕k. Observe
that we can fully cancel the difference 0x80000080 in (xr−1 � 1) ⊕ xr+1 with
the difference 0x80000000 in k. We can achieve the appropriate difference in
(xr−1 � 1) ⊕ xr+1 with the difference 0x7FFFFF80 in xr−1 and xr+1. This
immediately leads to a distinguisher. Specifically, we can use that difference
in every block word, and the appropriate key difference in every key word; the
ciphertext block difference will be equal to the plaintext block difference.

3.3 A chosen-plaintext attack
The previously mentioned property can be adapted into a simple chosen-plaintext
attack similar to that for DES[4] due to its complementation property[1]. For
this attack description, the block length will be considered equal to the key
length.

We define and alternative form to view the block in: or = (xr−1 � 1)⊕xr+1
for r in [0, w − 1], where w = w0 = w1. Notice that o is a bijection of x. We
can set a difference either 0 or 0x80000080 in each word in o, giving 2w possible
differences in total. We can linearly solve those values back to the form used
in x, and use the key difference 0x80000000 where the matching o difference
is 0x80000080. Consider Δa all of the different block differences and ∇a the
respective key differences, with a in [0, 2w − 1].

To turn this into a chosen-plaintext attack, we first do 2w chosen-plaintext
queries to get the ciphertext Ek(Δa) for each ofΔa, and we set the key Ek(Δa)⊕
Δa to point to value a in a fast lookup table. Notice that

Ek(0)⊕ Ek⊕∇a(Δa) = Δa

Ek⊕∇a(0)⊕ Ek(Δa) = Δa

Ek⊕∇a(0) = Ek(Δa)⊕Δa

We can use this to accelerate exhaustive search. We encrypt a zero-block with
all possible keys, except we always leave the highest bit of each key word zero.
After each block encryption with trial key kt, we test for a match in the lookup
table. If the ciphertext is found to point to a value a in the table, then probably
k = kt⊕∇a. As an optimization to reduce memory requirements, we don’t need
to store Ek(Δa) ⊕ Δa entirely, only enough to keep the rate of false positives
low. In total, the work required for exhaustive search is reduced by at most w
bits with 2w chosen-plaintext queries and O(2w) memory. Generalizing to cases
where the block length does not equal the key length, the reduction in work is
gcd(w0, w1) bits.

Simplistically, it could be said that the work*memory complexity doesn’t
actually change from exhaustive search. However, the cost of a single EnRUPT
circuit (including the block) is larger than the cost of just storing a block or part
of it, so this is expected to give a cheaper attack than plain exhaustive search.

3

3.4 Fast key recovery
The previously shown family of characteristics can’t be directly used to recover
the key, but we can weaken it to get key dependency, thus allowing efficient
key recovery. The differences Δor = 0x40000040 and Δkr = 0x40000000 cancel
out with probability about 2−0.85. We can set the difference 0x40000040 in one
word in the o-form, and 0 or 0x80000080 in the others. For example, for eight
block and key words:

Δx = {0x4CCCCC80, 0, 0x19999980, 0, 0x73333340, 0, 0x66666600, 0}
Δk = {0, 0x80000000, 0, 0x40000000, 0, 0x80000000, 0, 0x80000000}

When the number of key words equals the number of block words, the num-
ber of cycles to perform over the block is 12, as in this example. Naively, we’d
then calculate the right pair probability as 2−0.85∗11. However, the probability
of the characteristic failing at the appropriate place is 2−1.17, which is not neg-
ligible. In addition, when the characteristic does break, the output difference
from F will be 0x80000000; this will not spread further during the same cycle,
because the next round’s input from the current word will be shifted up by one.
Thus, the probability is 2−0.85∗10−1.17. This results in a requirement of about
210.67 queries, under two keys in total. When we have a right pair, all input to
the final call of F , except the used key word, is visible. The difference in the
output is also visible. This leads to straightforward recovery of candidate key
words.

More than one right pair will help key recovery. A test implementation
recovers the full key in minutes with about four right pairs per key word. In
this scenario, that means about 215.67 queries. This could be further improved.

4 Conclusions
Flaws were shown in the block cipher keying of EnRUPT that lead to several
attacks. Problems stemming from one property are strong enough to allow
easily experimentally performing full key recovery. EnRUPT is thus not a secure
family of pseudorandom permutations, as an optimal block cipher would be.

References
[1] M. E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie,

S. Pohlig, and P. Schweitzer. Results of an initial attempt to cryptanalyze
the NBS data encryption standard. Technical Report SEL 76–042, Stanford
University, 1976.

[2] Sebastiaan Indesteege and Bart Preneel. Practical collisions for enrupt.
pages 246–259, 2009.

[3] Dmitry Khovratovich and Ivica Nikolic. Cryptanalysis of enrupt. Cryptology
ePrint Archive, Report 2008/467, 2008. http://eprint.iacr.org/.

4

[4] Sara Kiesler and Jennifer Goetz. National bureau of standards: Data en-
cryption standard. Technical report, 1977.

[5] Sean O’Neil. Enrupt: First all-in-one symmetric cryptographic primitive.
The State of the Art of Stream Ciphers (SASC), 2008.

[6] D J Wheeler and R J Needham. Correction of xtea. unpublished manuscript.
In Computer Laboratory, Cambridge University, 1998.

[7] David J Wheeler and Robert M Needham. Tea extensions. Technical report,
1997.

[8] Elias Yarrkov. Cryptanalysis of xxtea. Cryptology ePrint Archive, Report
2010/254, 2010. http://eprint.iacr.org/.

5

