
Preimage Resistance Beyond the Birthday Barrier –

The Case of Blockcipher Based Hashing

Matthias Krause1, Frederik Armknecht1, and Ewan Fleischmann2

1 Arbeitsgruppe Theoretische Informatik und Datensicherheit, University of Mannheim, Germany
2 Chair of Media Security, Bauhaus-University Weimar, Germany

Abstract. We provide the first preimage resistance bounds for block cipher based double
length, double call hash functions that go beyond the birthday bound. More precisely, we
consider hash functions using two calls to an ideal block cipher with an r-bit key and n-bit
plain- and ciphertext where r > n. For several practical and well-known double length design
principles, we introduce techniques for proving that no adversary asking less than Ω(21.5n)
queries can find a preimage with probability greater than 1/2. These techniques can be
applied to a series of existing constructions, e.g., Hirose’s FSE’06 scheme, for deriving bounds
that significantly outmatch previous results of Ω(2n). In the case that two independent block
ciphers are used, we are even able to state an asymptotically optimal bound of Ω(22n).

Keywords: Hash Function, Preimage Resistance, Block Cipher, Beyond Birthday Bound,
Foundations

1 Introduction

Motivation. A cryptographic hash function is a function which maps an input of arbi-
trary length to an output of fixed length and is one of the most important primitives in
cryptography [15]. In recent years, a rise in research for block cipher based hash functions
is clearly noticeable. Reasons for this certainly include the usage of such constructions
in some candidates of the SHA-3 contest or the more widespread availability of resource
restricted devices. Also there currently seems to be a deeper understanding on how to de-
sign good block ciphers compared to the knowledge on how to design good hash functions.
The approach of block cipher based hashing might be used to transfer this knowledge to
the field of hash functions – although one has to pay attention to the details. Due to the
short output length of most practical block ciphers, e.g., n = 128-bit, one is mainly inter-
ested in sound design principles for double length (DL) hash functions. Such constructions
usually use one block cipher with n-bit output as the building block by which messages
are projected to a fixed 2n-bit string. Here, the two most important criteria are efficiency
and security. By efficiency, one usually concentrates on the rate of the construction, being

message bits processed per compression function

(number of block cipher calls in H)× n
,

although it might be interesting to consider other factors as, e.g., the number of key
schedules or one might want to incorporate the key length of the block ciphers. Regarding
the security, the common notions refer to collision attacks (finding two inputs that map to
the same output), preimage attacks (given an output, find a matching input), and second-
preimage attacks (given an input-output pair, find another different input that maps to

the same output). Recall that for an ideal hash function with output length 2n, the effort
for finding a collision is in Θ(2n) and for finding a preimage resp. second-preimage is in
Θ(22n). Thus, the security of constructions should be measured in comparison to these
bounds.

There has been a considerable amount of publications that have analyzed the preim-
age resistance of block cipher based constructions. For single length compression functions,
near-optimal bounds are known [2]. Quite the contrary is true for double length compres-
sion functions where several authors [5, 6, 13, 17, 7, 8] have tried to analyze preimage
resistance, but all got stuck at the birthday bound 2n. The result usually stated is, that
the adversary has negligible advantage of finding a preimage if she asks q < 2n queries
while nothing is known about the advantage if q ≥ 2n. Indeed, several authors, e.g.,
[5, 6, 13], called the challenge of finding more satisfying preimage bounds as one of the
interesting open problems in the field of block cipher based hash functions. The problem
does not seem to be the lack of promising constructions where stronger preimage bounds
might hold, but rather that no techniques are known for assessing these questions. Sum-
ming up, several concepts on how to design block cipher based hash function are known
today, but only little is known on how to analyze them thoroughly.

Our Contribution. In this paper, we present several new techniques for deriving mini-
mum security bounds on the preimage resistance far beyond the birthday barrier. We use
these techniques to analyze the following three simple and straightforward designs

– H1(K,X) =
(

EK||0(X)⊕X,EK||1(X)⊕X
)

,

– H2(K,X) =
(

EK(X)⊕X,EK(X) ⊕X
)

, and

– H3(K,X) =
(

EK(X)⊕X,EK(X)⊕X
)

,

where K denotes the bit-by-bit complement of K and ’||’ the concatenation of bit strings.
All these constructions are in principle using a concatenation of the established Davies-
Meyer principle. The differences are that in H1, two different ciphers are used, in H2 two
different keys, and in H3 two different plaintexts. In that sense, this selection seems to
be quite natural and a good starting point. Observe that all these constructions have a
rate equal or very close to 1/2. Although some recent publications [6, 23, 24] have put
some effort in developing and using more generalized forms, it seems to result in a tradeoff
between clarity of presentation and broad applicability. We chose to use specific and very
simple representation since some of the proofs are – even in these cases – rather involved.
However, we show how to adapt these techniques to other designs.

We achieve the following new results:

1. No adversary can find a preimage with probability greater than 1/2 for H1, H2, or H3

with less than Ω(21.5n) queries.

2. We prove that no adversary can find a preimage with probability greater than 1/2 for
H1 with less than 22n−9 queries. For this, we make the reasonable assumption that an
adversary makes only queries for which the success probability of finding a preimage
is non-zero.

3. We give examples for concrete designs where our results are directly applicable.

2

Scheme Best Known Preimage Bounds

Cyclic-DM [6] n/a

ADD/3-DM [6] n/a

Abreast-DM [11] Ω(2n) [6, 12]

Tandem-DM [11] Ω(2n) [13]

Hirose [8] Ω(2n)

Ω(21.5n), Section 5

H1, Hirose [7] Ω(2n)

Ω(21,5n), Section 3

Ω(22n), Section 4

H2 Ω(21.5n), Section 3

H3 Ω(21.5n), Section 3

Table 1. Comparison of our results for H1,H2 and H3 with existing related work. The bounds refer to
the minimum number of queries necessary for achieving a success probability of at least 1/2. Our results
are marked in bold font.

In Table 1, we put our results into relation to existing comparable work.

We remark that there are other constructions that might be worth considering, e.g.,
double length hash function with only one block cipher call and an additional operation
[24, 14]. But this operation usually takes considerably longer than a plain additional block
cipher call. Our table also does not contain proposals for which strong attacks are known,
e.g., MDC-2 [10, 25], or that have a weak rate considerable lower than 1/2, e.g., MDC-4
[19], Merkle’s DES-based scheme [16], or permutation based approaches [21, 22]. Currently,
there are no schemes known in literature that employ a block cipher with an n-bit plain-
/ciphertext and 2n-bit key with a rate > 1/2 that are known to be secure. For block
ciphers with n-bit key/plain-/ciphertext not even rate 1/2 schemes with these features are
known.

Outline. In Section 2, we give some definitions and statements that are either well known
from literature or are used for our later discussion. Section 3 gives a lower bound of
preimage resistance of Ω(21.5n) queries. This bound holds for all three constructions H1,
H2, and H3. For H1 we also give a tighter bound that asymptotically matches the optimal
Ω(22n) barrier. The proof can be found in Section 4. In Section 5, we demonstrate that
our techniques can be used for analyzing other designs as well, e.g., Hirose’s construction
from FSE’06. In Section 6 we discuss our results and conclude the paper.

3

2 Preliminaries

2.1 General Notations

An (r, n)-block cipher is a keyed family of permutations consisting of two paired algorithms
E : {0, 1}r × {0, 1}n → {0, 1}n and E−1 : {0, 1}r × {0, 1}n → {0, 1}n both accepting
a key of size r bits and an input block of size n bits for some n, r > 0. For positive
n, Block(r, n) is the set of all (r, n)-block ciphers. For any E ∈ Block(r, n) and any
fixed key K ∈ {0, 1}r , decryption E−1

K := E−1(K, ·) is the inverse function of encryption
EK := E(K, ·), so that E−1

K (EK(X)) = X holds for any input X ∈ {0, 1}n. In the ideal
cipher model [2, 4, 9] E is modeled as a family of random permutations {EK} whereas the
random permutations are chosen independently for each key K, i.e., formally E is selected
randomly from Block(r, n). We use the convention to write oracles, that are provided to
an algorithm, as superscripts. For example AE is an algorithm A with oracle access to
E to which A can request forward- and backward queries. For ease of presentation, we
identify the sets {0, 1}a+b and {0, 1}a × {0, 1}b. Similarly for A ∈ {0, 1}a and B ∈ {0, 1}b,
the concatenation of these bit strings is denoted by A||B ∈ {0, 1}a+b = {0, 1}a × {0, 1}b.

2.2 Block Cipher Based Compression Functions

A compression function H takes an m-bit message and an l-bit chaining value and com-
presses them to an l-bit value, i.e., H : {0, 1}m+l → {0, 1}l for some m, l > 0. A block
cipher based compression function is a compression function that has access to usually
one block cipher E ∈ Block(r, n). We say a block cipher based compression function H is
double-length, double-call (DL) if a 2n-bit value (U, V) is computed using two calls to E.

2.3 Preimage Resistance

Insecurity is quantified by the success probability of an optimal resource-bounded adver-
sary. The resource is the number of queries (forward and backward) to the block cipher
E. An adversary is a computationally unbounded but always-halting algorithm A with
access to E ∈ Block(r, n). The adversary may make a forward query (K,X) to discover
the corresponding value Y = E(K,X), or a backward query (K,Y), so as to learn the
corresponding value X = E−1(K,Y) such that E(K,X) = Y . Either way, the result of
the query is stored in a triple (Ki,Xi, Yi) := (K,X, Y) and the query history Q is the
tuple (Q1, . . . , Qq) where Qi = (Ki,Xi, Yi) and q is the total number of queries made by
the adversary. Without loss of generality, we assume that A asks at most once on a triplet
of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query and the correspond-

ing reply. For a set S, let z
$
← S represent random sampling from S under the uniform

distribution. For a probabilistic algorithmM, let z
$
←M mean that z is an output ofM

and its distribution is based on the random choices ofM.
A preimage finding adversary is an algorithm whose goal is to find a preimage of a

specific compression function. There are several methods known on how to define this
notion [20]. We opt for the strongest notion, preimage resistance (Pre), which intuitively
states that a function is a one-way function. This notion does imply weaker notions as,
e.g., everywhere preimage resistance (ePre) and always preimage resistance (aPre).

4

Definition 1. (Preimage Resistance Pre [20]) Let H be a block cipher based com-
pression function, H : {0, 1}m+l → {0, 1}l. Fix an adversary A with access to oracles
E,E−1. The advantage of A of inverting H is the real number

AdvPre
H (A) =Pr[E

$
← Block(r, n);A

$
← {0, 1}m+l ;B

$
← H(A);

A′ $
← AE(B) : H(A′) = B].

Again, for q ≥ 1, we write

AdvPre
H (q) = max

A
{AdvPre

H (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries.

2.4 Analysis Preliminaries

For our analysis, we focus on the following three double call, double length block cipher
based compression functions, H1 : {0, 1}r−1 × {0, 1}n −→ {0, 1}2n and H2,H3 : {0, 1}r ×
{0, 1}n −→ {0, 1}2n that all have access to a block cipher E and are defined as follows.
For any X, K let

H1(K,X) =
(

EK||0(X) ⊕X,EK||1(X)⊕X
)

,

H2(K,X) =
(

EK(X) ⊕X,EK(X)⊕X
)

, and

H3(K,X) =
(

EK(X) ⊕X,EK(X)⊕X
)

.

Note that – in particular H2 and H3 – can be defined in a similar way by replacing the
bit by bit complement with an arbitrary fixed point free involution without changing any
arguments used in the proofs.

We analyze the preimage resistance of H1, H2 and H3, i.e., we derive lower bounds on
the number of queries to E necessary for reaching at least a success probability of 1/2 in
finding a preimage for a random hash value (U, V) ∈ {0, 1}2n.

Although the adversary can pose by definition arbitrary queries to the E-oracle, one
sees easily that certain pairs of queries can be naturally polled. For example, asking in the
H1 case for the value EK||0(X) is not sufficient for confirming a preimage without asking (or
knowing) the value EK||1(X). Therefore, we consider meta queries instead where certain
E-queries are given for ”free”. These queries are selected by the following criteria:

1. One meta query should provide all information necessary for deciding whether the
asked parameters yield a preimage.

2. The set of meta queries should not restrict the set of possible E-queries. That is, for
each possible values X, Y , and K, there should exist meta queries that provide the
value EK(X) resp. E−1

K (Y).

Based on these considerations, we use the following meta queries:

Definition 2. For H1, the adversary always asks one of the following oracle queries.

5

– Type-I queries Q with respect to X ∈ {0, 1}n, K ∈ {0, 1}r−1, denoted Q = (I,X,K),
yielding the response R(Q,E) consisting of Y = EK||0(X) and Y ′ = EK||1(X).)

– Type-II queries with respect to Y ∈ {0, 1}n, K ∈ {0, 1}r−1, denoted Q = (II, Y,K),
yielding the response R(Q,E) consisting of X = E−1

K||0(Y) and Y ′ = EK||1(X).)

– Type-III queries with respect to Y ′ ∈ {0, 1}n, K ∈ {0, 1}r−1, denoted Q = (III, Y,K),
yielding the response R(Q,E) consisting of X = E−1

K||1
(Y ′) and Y = EK||0(X).)

For H2 and H3 the queries are adapted accordingly. In more detail, for H2, the Type-
I query response is (Y, Y ′) = (EK(X), EK(X)), the Type-II query response is (X,Y ′) =
(E−1

K (Y), EK(X)) and the Type-III query response is (X,Y) = (E−1
K

(Y), EK(X)). For H3,

the Type-I query response is (Y, Y ′) = (EK(X), EK(X)) and the Type-II query response
is (X,Y ′) = (E−1

K (Y), EK(X)). It is easy to see that for H3 it is not necessary to consider
Type-III queries.

In any case, the 5-tupel (T,X, Y, Y ′,K), T ∈ {I, II, III}, is called the query-response
pair (Q,R(Q)). Observe that there are two equivalent versions of the operation mode of
the oracle.

– In the offline version, the oracle in advance chooses the random (r, n)-block cipher E.
– In the online version, for each new query, the oracle chooses the answer at random

with respect to the uniform distribution from the set of possible answers.

The Ω(21.5n) bound will be derived with respect to the the offline version of the E-oracle,
while the Ω(22n) bound is based on the online version.

3 Lower Ω (21.5n) Preimage Resistance Bounds for H1, H2 and H3

We first analyze in Section 3.1 the preimage resistance of H1 and give an Ω(23/2·n) lower
bound on the number of queries necessary for finding a preimage with a chance of success
of at least 1/2. Then, in Section 3.2, we discuss how we can generalize this result to H2

and H3.

3.1 A Preimage Bound for H1

We start with an important observation on H1.

Lemma 1. For any (U, V) ∈ {0, 1}2n, the complexity of finding a preimage to the hash
value (U, V) w.r.t. H1 is the same as the complexity of finding a preimage to the hash
value (0, 0) w.r.t. H1.

Proof. Finding a preimage for H1 to the image (0, 0) ∈ {0, 1}2n is equivalent to finding a
key-prefix K ∈ {0, 1}r−1 and an input X ∈ {0, 1}n such that EK||0(X) = EK||1(X) = X.
We call such an X a double fixed point of the permutations EK||0 and EK||1.

Finding a preimage to the image (U, V) ∈ {0, 1}2n is equivalent to finding a key-prefix
K ∈ {0, 1}r−1 and an input X ∈ {0, 1}n such that ẼK||0(X) = ẼK||1(X) = X, where the

(r, n)-block cipher Ẽ is defined as follows: For all keys κ = (κ1, · · · , κr) and X ∈ {0, 1}n

let Ẽκ(X) := Eκ(X)⊕ V if κr = 0 and Ẽκ(X) := Eκ(X) ⊕W if κr = 1.

6

Note that assigning Ẽ to E defines a bijective mapping over Block(r, n). The outputs
of E and Ẽ are uniformly distributed. Consequently, the effort for finding a preimage to
the image (U, V) is the same as of finding a preimage to the image (0, 0). ⊓⊔

This lemma naturally implies the following definition:

Definition 3 (Successful Queries). Let Q = (Q1, · · · , Qq) be an arbitrarily fixed se-
quence of q queries, i.e., Qi = (Ti, Zi,Ki), where Ti ∈ {I, II, III}, Zi ∈ {0, 1}

n, Ki ∈
{0, 1}r−1.

We say that the i-th query Qi = (Ti, Zi,Ki) is successful, if the corresponding query-
response pair (Qi, R(Qi)) := (Ti,Xi, Yi, Y

′
i ,Ki) satisfies Xi = Yi = Y ′

i . We denote this
event by Succ(Qi).

Analogously, we say Q is successful, iff at least one query in Q is successful. This
event will be denoted by Succ(Q).

We now upper bound Pr[Succ(Q)], where the probability is measured over the uniform
distribution over Block(r, n). To this end, we define by K(Q) = {K1, · · · ,Kq′} the set of
keys involved in Q. Naturally, q′ ≤ q. For any K ∈ K(Q), the sequence of queries Qi,
1 ≤ i ≤ q, with Ki = K is denoted by QK . Clearly,

Pr[Succ(Q)] ≤
∑

K∈K(Q)

Pr[Succ(QK)]. (1)

Next, we upper bound Pr[Succ(QK)] for K ∈ K(Q). Given two permutations π, π′ over
{0, 1}n, we denote by DFP (π, π′) = {X : π(X) = π′(X) = X} the set of double fixed
points of π, π′. Furthermore, we define

– K0(E) = {K ∈ {0, 1}r−1,DFP (EK||0, EK||1) = ∅},

– K1(E) = {K ∈ {0, 1}r−1, |DFP (EK||0, EK||1)| = 1}, and

– K2(E) = {K ∈ {0, 1}r−1, |DFP (EK||0, EK||1)| ≥ 2}.

Lemma 2. For any K ∈ {0, 1}r−1 and N ≥ 3 it holds that Pr[K ∈ K1(E)] < 1/N and
Pr[K ∈ K2(E)] < 1/N2.

Proof. The probability for any X ∈ {0, 1}n being a double fixed point is upper bounded
by ((N − 1)!/N !)2, i.e. dividing the number of possible permutations of N elements with
one element fixed by the total number of permutations of N elements. Consequently,

Pr[K ∈ K1(E)] < N ·

(

(N − 1)!

N !

)2

= 1/N.

With a similar argument one can show that

Pr[K ∈ K2(E)] <

(

N

2

)(

(N − 2)!

N !

)2

=
1

2N(N − 1)
< 1/N2 (2)

for N ≥ 3. Note that these two bounds are in fact upper bounds since they essentially
upper bound the cases ’one or more double fixed points’ and ’two or more double fixed
points’. ⊓⊔

7

Since Pr[Succ(QK)|K ∈ K0(E)] = 0, we obtain

Pr[Succ(Q)] ≤
∑

K∈K(Q)

2
∑

j=0

Pr[Succ(QK) |K ∈ Kj(E)] · Pr[K ∈ Kj(E)]

<
∑

K∈K(Q)

(

1/N · Pr[Succ(QK) |K ∈ K1(E)] + 1/N2
)

≤ 1/N2 · |K(Q)|+
∑

K∈K(Q)

1/N · Pr[Succ(QK) |K ∈ K1(E)]. (3)

We now derive an upper bound for Pr[Succ(QK) |K ∈ K1(E)]. This probability equals
the probability Pr1[Succ(QK)], where the probability measure Pr1 is defined w.r.t. the
uniform distribution over the set of all keys K ∈ K1(E).

Let QK = (S1, · · · , St), Si = (Ti, Zi,K) for i = 1, · · · , t, where Zi ∈ {0, 1}
n and

Ti ∈ {I, II, III}. The event that some query of QK is successful implies the existence of
some i, 0 ≤ i ≤ t− 1, such that Si+1 is successful but S1, · · · , Si have not been successful
before. Consequently,

Pr1[Succ(Qk)] ≤
t−1
∑

i=0

Pr1

Succ(Si+1) ∧
i
∧

j=1

Fail(Sj)

=
t−1
∑

i=0

Pr1

Succ(Si+1)

∣

∣

∣

∣

∣

∣

i
∧

j=1

Fail(Sj)

 · Pr1

i
∧

j=0

Fail(Sj)

≤
t−1
∑

i=0

Pr1

Succ(Si+1)

∣

∣

∣

∣

∣

∣

i
∧

j=1

Fail(Sj)

 .

Hereby, Succ(Si) denotes the event that the query Si is successful and Fail(Sj) denotes
the event that query Sj is is not successful.

Lemma 3. It holds that Pr1

[

Succ(Si+1)
∣

∣

∣

∧i
j=1 Fail(Sj)

]

≤ 1
N−3i .

Proof. Let us fix a key K ∈ K1(E) and let X∗ denote the unique double fixed point,
i.e., EK||0(X) = EK||1(X) = X. We suppose that the queries S1, · · · , Si have not been
successful.

Let (S1, R(S1)), · · · , (Si, R(Si)) denote the corresponding sequence of query-response
pairs, where (Sj , R(Sj)) = (Tj ,Xj , Yj, Y

′
j ,K) for 1 ≤ j ≤ i.

Let A = {X1, · · · ,Xi} ∪ {Y1, · · · , Yi} ∪ {Y
′
1 , · · · , Y

′
i }. It can be easily checked that

X∗ 6∈ A, since otherwise one of the queries Sj, 1 ≤ j ≤ i, would have been successful. Note
that any X∗∗ ∈ {0, 1}n \ A is equally likely to be X∗. The success probability of query
Si+1 is zero if Xi+1 ∈ A and ≤ 1/(N − |A|) if not. As |A| ≤ 3i we obtain the desired
result. ⊓⊔

We fix a parameter α, 1 ≤ α ≤ N , which will be determined later, and define

A1 = {K ∈ K(Q), |QK | ≤ α} and A2 = {K ∈ K(Q), |QK | > α}.

8

According to (3) we obtain that

Pr[Succ(Q)] ≤ 1/N2 · |K(Q)| + 1/N ·
∑

K∈A1

Pr1[Succ(QK)] + 1/N ·
∑

K∈A2

Pr1[Succ(QK)]

≤ 1/N2 · |K(Q)|+ 1/N · |A1| ·
α

N − 3α
+ 1/N · |A2|. (4)

Now suppose that the success probability of the adversary in this case is greater or equal
than 1/2, i.e., Pr[Succ(Q)] ≥ 1/2 where |Q| = q. Let q < 1

6N
2. Then 1

6N
2 > q ≥ |K(Q)|

and (4) imply that

1/N · |A1| ·
α

N − 3α
> 1/6 (5)

or
1/N · |A2| > 1/6. (6)

Now, (5) implies (as q ≥ |A1|) that

q · 1/N ·
α

N − 3α
> 1/6, i.e. q ≥ B1(N,α),

where B1(N,α) = 1/6 ·N · N−3α
α = 1/6 ·N ·

(

N
α − 3

)

.
As q ≥ α · |A2|, (6) implies q ≥ B2(N,α), where B2(N,α) = 1/6 · α ·N .
For deriving a lower bound on q, we fix α in such a way that B1(N,α) = B2(N,α). We

obtain α as the solution of α = N
α − 3, and, thus, as the positive solution of the quadratic

equation α2 + 3α − N = 0. This implies α =
√

N + 9/4 − 3/2. Using q ≥ B1(N,α), we

have shown that if Pr[Succ(Q)] ≥ 1/2 implies that q ≥ 2n/6 ·
(

√

2n + 9/4− 3/2
)

and

therefore the following Theorem 1.

Theorem 1. Pr[Succ(Q)] ≥ 1/2 implies that q ≥ 2n/6 ·
(

√

2n + 9/4− 3/2
)

.

3.2 Preimage bounds for H2 and H3

An appealing property of the approach discussed in the previous section is that it can be
easily translated to the case of H2 and H3 as well. In principle, the arguments are equal,
but one has to pay attention to the details.

Let (U, V) denote the considered image. Recall that one of the main ideas is to split
the set of possible keys into the following subsets: (i) keys for which no preimage exists,
(ii) keys for which one preimage exists, and (iii) keys for which more than one preimage
exists. For H2 and H3, one can follow the same strategy. The difference is that also keys
for which a preimage of (V,U) exists (instead of (U, V)) are helpful.

Let us illustrate this for the example ofH2. Given an input (K,X) such thatH2(K,X) =
(V,U), one sees easily that H2(K,X) = (U, V). Consequently, such keys are valuable as
well although they might not give directly a preimage of (U, V). For a formalization of this
issue, we define for a given key K the following set of ”good” inputs

Good(K) := {X : (EK(X) ⊕X = U ∧EK(X)⊕X = V) ∨

(EK(X)⊕X = V ∧ EK(X) ⊕X = U)}

9

and consider for i = 0, 1, 2 the sets of keys Ki(E) := {K ∈ {0, 1}r, |Good(K)| = i}. One
checks easily that the probabilities Pr[K ∈ Ki] are equal to the probabilities derived in
Section 3.1 up to some constants. Using the same arguments as given there, one easily
gets the following Theorem

Theorem 2. In the case of H2 and H3, a probability of success ≥ 1/2, i.e., Pr[Succ(Q)] ≥
1/2, implies that q ∈ Ω(21.5n).

4 An Ω (22n) Lower Bound for H1

4.1 Preliminaries

Now we consider another approach for estimating a lower bound on the number of queries
needed to find an preimage of (0, 0) w.r.t. H1 with probability of at least 1/2. For this
approach, we have assume an adversary that is greedy in the sense that she does not
pose queries for which it is known in advance that the success probability of finding the
preimage is zero. We make this formal in the following Definition:

Definition 4 (Disjoint Query). Let Q = (Q1, · · · , Qq) be a sequence of queries. Let
Qi = (Ti, Zi,Ki) for i = 1, · · · , q and (Qi, R(Qi)) = (Ti,Xi, Yi, Y

′
i ,Ki) be the according

query-response pair. For a fixed key K, we consider the set A(Q,K) ⊆ {0, 1}n of all inputs
and outputs that occurred so far with respect to the same key, i.e.,

A(Q,K) :=
⋃

1≤i≤q:Ki=K

{Xi, Yi, Y
′
i }. (7)

We call a new query Q = (T,Z,K) to be disjoint to Q, if Z 6∈ A(Q,K).

The reason for considering disjoint queries are made clear by the following Lemma:

Lemma 4. Let Fail(Q) denote the event that making the queries Q was not successful.
For a single query Q = (T,Z,K), let Pr[Q|Fail(Q)] denote the probability that Q is
successful w.r.t. E under the condition that all queries in Q have not been successful
before w.r.t. E. We abbreviate N = 2n. It holds

Pr[Q|Fail(Q)] ≤

{

1/(N − q)2 , Q disjoint to Q
0 , else.

(8)

Proof: We assume the online mode for the E-oracle. Note that the fact that Q ist not
successful w.r.t. E implies that Xi 6= Yi or Xi 6= Y ′

i for all i = 1, · · · , q. Furthermore, if
Z ∈ A(Q,K), i.e., the query is not disjoint, then there exists an index i ∈ {1, . . . , q} such
that Xi = Z, Yi = Z, or Y ′

i = Z. Taking both together immediately shows that Z cannot
be a double fixed point.

Let us now suppose that Q is disjoint to Q. We estimate Pr[Q|Fail(Q)] under the
condition that T = I. For the other two cases T ∈ {II, III}, the proof can be done in a
similar way. The fact that Q is disjoint toQ implies that Z ∈ {0, 1}n\X and Z ∈ {0, 1}n\Y
and Z ∈ {0, 1}n \Y ′. Consequently, the probability that EK||0(Z) = Z and the probability
that EK||1(Z) = Z are both ≤ 1/(N − q). As both events are independent, the success

probability of Q is ≤ 1/(N − q)2. ⊓⊔

10

Definition 5 (Sequence of Disjoint Queries). We call Q a sequence of disjoint queries
w.r.t. E if for all i, 1 ≤ i ≤ q, query Qi+1 is disjoint to Q≤i := {Q1, . . . , Qi}.

By Lemma 4, we know that this is the only kind of queries that have a non-zero success
probability. Although it seems to be plausible that this strategy is the optimum one, we
do not have a proof for this assumption. In other words, we cannot exclude that strategies
might exist where asking some queries with zero success probability can yield globally a
better success probability.

Definition 6 (Accepting Computation). A sequence of queries Q = (Q1, · · · , Qq) is
called an accepting computation (or, for short, Q is accepting) iff

(1) Q is a sequence of disjoint queries.

(2) For all i, 1 ≤ i ≤ q−1, query Qi = (Ti, Zi,Ki) is not successful, i.e., Zi is not a double
fixed point, and

(3) query Qq = (Tq, Zq,Kq) is successful, i.e., EKq||0(Zq) = EKq||1
(Zq) = Zq.

4.2 Main Result

The main technical result of this section is the following estimation of the probability
Pr[Q accepting] that Q is an accepting computation.

Theorem 3. Consider a sequence of queries Q = (Q1, · · · , Qq) and set N := 2n.

(i) It holds Pr[Q accepting] ≤ 1
(N−q)2

.

(ii) If q ≥ 15/16 ·N then Pr[Q accepting] ≤ e−1/32·N .

Proof: The proof of part (i) is an straightforward consequence of Lemma 4. The proof
of part (ii) is postponed to subsection 4.3. ⊓⊔

We show now how Theorem 3 can be used to derive a nearly maximal lower bound on
the preimage resistance of H1. Let q ≤ N2 and Q = (Q1, · · · , Qq) denote an arbitrarily
fixed sequence of disjoint queries asked by the adversary with Qi = (Ti, Zi,Ki) for 1 ≤
i ≤ q. We call Q to be successful if at least one of the queries Qi in Q is successful, i.e.,
EKi||0(Zi) = EKi||1

(Zi) = Zi. This implies that for at least one query Qi ∈ Q it holds that
Q≤i is an accepting computation. Consequently,

Pr [Succ(Q)] ≤

q
∑

i=1

Pr [Q≤i accepting] . (9)

Observe that the first claim of Theorem 3 does not make any useful statements beyond
the birthday bound ≥ 2n. Indeed, the idea is now to split the set of queries into two sets,
according to the statements given in Theorem 3. For all i, 1 ≤ i ≤ q, let rankQ(i)
denote the number of queries Qj = (Tj , Zj ,Kj) with 1 ≤ j < i and key Kj = Ki. Let
r1 := {i, rankQ(i) >

15
16N} and r2 := {i, rankQ(i) ≤

15
16N}. Theorem 3 and Relation (9)

yield

11

Pr [Succ(Q)] ≤
∑

i∈r1

Pr [Q≤i accepting] +
∑

i∈r2

Pr [Q≤i accepting] (10)

≤ |r1| · e
−1/32·N + |r2| ·

1

(N − 15/16 ·N)2
(11)

≤ q · 256 ·N−2 (12)

if N ≥ 256. We have proved

Theorem 4. For achieving a success probability of 1/2 in finding a preimage of (0, 0)
w.r.t. H1, a greedy adversary has to ask at least 1/512 · 22n = 22n−9 queries. ⊓⊔

4.3 The Proof of Part (ii) of Theorem 3

Let q = 15/16 ·N and Q = (Q1, · · · , Qq+1) be an arbitrarily fixed sequence of q+1 queries
w.r.t. the same key K ∈ {0, 1}r−1. Let Qi = (Ti, Zi,K) for i = 1, · · · , q + 1. We derive an
upper bound for the probability Pr[Q accepting].

While asking Q1, · · · , Qq+1, the adversary generates sets Xi = {X1, · · · ,Xi}, Yi =
{Y1, · · · , Yi}, and Y

′
i = {Y

′
1 , · · · , Y

′
i } of size i. Let Ai := Xi ∪ Yi ∪ Y

′
i. One sees easily that

|Ai|+ 1 ≤ |Ai+1| ≤ |Ai|+ 3 for i = 0, · · · , q. (Let A0 = ∅). As Q is a sequence of disjoint
queries, it must hold that the input Zq+1 is outside of Aq and in particulkar |Aq| < N .
This implies that

Pr[Q accepting] ≤ Pr[|Aq| < N]. (13)

We show that the latter event is rather unlikely by taking a closer look on the size of
Aℓ for some smaller index ℓ < q. Fix ℓ = N/8. Because of |Ai+1| ≥ |Ai| + 1, one has
|Aq| − |Aℓ| ≥ q − ℓ = 15/16N − 2/16N = 13/16N . This implies that

|Aℓ| ≤ |Aq| − 13/16N < N − 13/16N = 3/16N. (14)

It follows that

Pr[|Aq| < N] ≤ Pr[|Aℓ| ≤ 3/16N] =: p∗. (15)

We show that p∗ ≤ e−1/32·N which yields the initial claim by Eqs. (13) and (15).

For this purpose, we introduce a set of independent random Bernoulli variables and
make use of Chernov’s Inequality [1, Appendix A, pp. 233-240]. We recall it here shortly:
Let ν1, · · · , νn be independent random Bernoulli variables. Let σ = 1/n ·

∑n
i=1 νi be the

(normed) sum of these variables and E(σ) = 1/n ·
∑n

i=1 Pr[νi = 1] its expectation value.

Then, for all δ > 0 it holds that Pr[E(σ)− σ > δ] < e−2δ2n.

For defining the Bernoulli variables, we take a closer look on what happens during
asking a query Qi. Each query Qi is composed of two separate queries Q0

i and Q1
i to the E-

oracle. In sub-query Q0
i , the adversary asks an input Z0

i and gets a response R0
i = EKi

(Zi)
if a forward query has been made or R0

i = E−1
Ki

(Zi) in the case of a backward query.

Likewise, for the other sub-query Q1
i she requests an input Z1

i and gets an answer R1
i .

12

For b ∈ {0, 1} denote by Rb
i the set of possible answers for query Qb

i . Note that
|Rb

i | = N − (i− 1)3. Note further that for i ≤ ℓ = N/8 it holds that

|Ai| ≤ 3i < 1/2 · (N − (i− 1)) = 1/2 · |Rb
i |. (16)

We now introduce subsets of R0
i and R1

i and consider the probability that R0
i and

R1
i fall into these sets, respectively. The reasons are twofold: first, it allows for deriving a

lower bound on |Aℓ|, and second do they imply Bernoulli variables ν0i and ν1i as explained
above which allow for using Chernov’s Inequality. These variables are defined as follows.
Suppose that for i = 1, · · · , ℓ, in addition to asking Q0

i and Q1
i , the adversary does the

following.

– Before asking Q0
i she fixes a set R̃0

i ⊆ R
0
i \ (Ai−1 ∪ {Zi}) of size ⌈|R

0
i |/2⌉, and

– before asking Q1
i she fixes a set R̃1

i ⊆ R
1
i \ (Ai−1 ∪ {Zi, Z

′
i}) of size ⌈|R

1
i |/2⌉.

Inequality (16) guarantees that this is always possible. For i = 1, · · · , s let ν0i ∈ {0, 1}
denote the random Bernoulli variable taking 1 iff R0

i ∈ R̃
0
i , and analogously let ν1i ∈ {0, 1}

denote the random Bernoulli variables taking value 1 iff R1
i ∈ R̃

1
i .

As we are considering the ideal cipher model, ν0i and ν1i are independent random

Bernouilli variables. Let σ = 1
2ℓ ·

∑ℓ
i=1(ν

0
i + ν1i) the normed sum. We can apply Chernov’s

Inequality which tells that Pr[E(σ)− σ > δ] < e−2δ2n.

As each variable takes 1 with a probability ≥ 1/2, one sees easily that that E(σ) ≥ 1/2
and in particular 1/4 ≤ E(σ)−1/4. Furthermore, let σ∗ := 2ℓ ·σ =

∑ℓ
i=1(ν

0
i +ν1i). Observe

that |Ai+1| ≥ |Ai| + 1 + ν0i + ν1i and hence |Aℓ| ≥ ℓ + σ∗. Thus, |Aℓ| ≤ 3/16N implies
ℓ+ σ∗ ≤ 3/16N ⇔ σ∗ ≤ 1/16N as ℓ = 1/8N by definition.

Putting everything together gives

p∗ ≤ Pr[σ∗ < 1/16 ·N] = Pr[2ℓ · σ < 1/16 ·N] (17)

= Pr[σ < 1/4] ≤ Pr[σ < E(σ)− 1/4] = Pr[E(σ)− σ > 1/4] (18)

< e−2/16·2s = e−1/32·N . (19)

Remark 1. Observe that one key ingredient of the proof was to show that with a high
probability, the number of disjoint queries cannot grow above 15/16N . Intuitively, one
might expect that this bound is highly overrated. Indeed, computer simulations indicated
that on average, only about N/2 disjoint queries are possible. If this bound holds in general
(which is currently an open question), this would yield better concrete bounds with respect
to the preimage resistance.

5 Applications

We now discuss how our results can be applied to derive better bounds for existing double
call, double length hash functions. To this end, we consider two well-known constructions
given by Hirose [8, 7]. These are depicted in Figure 1. One sees easily that the design on

3 Note that R0

i = {0, 1}n \ Xi−1 for Ti ∈ {I, II} and R0

i = {0, 1}n \ Yi−1 if Ti = I . Note further that
R1

i = {0, 1}n \ Y ′

i−1 for Ti ∈ {I, II} and R1

i = {0, 1}n \ Xi−1 for Ti = III .

13

the left side is comprised by the H3 construction since the xor-operation with a non-zero
value is clearly a fixed point free involution. Regarding the design on the right side, it is
in principle the H1 construction. Thus, the according bounds derived in Section 3 hold
immediately.

E

E

R

S

U

V

M

const

Hirose’s FSE proposal [8], with const 6= 0

E

E

R

S

U

V

M 0

1

One of Hirose’s proposals in [7]

Fig. 1. Double call, double length examples from literature.

6 Discussion and Conclusion

In this work, we developed and applied new techniques for determining lower bounds
with respect to preimage resistance. For the considered constructions, the given results
outmatch significantly the best known bounds.

Despite this landmark result, there are still a lot of challenges open in the field of block
cipher based hashing. For example, is it possible to show that the Ω(22n) bound on the
preimage resistance of H1 does hold for any attacker and/or that the conjecture stated
in Remark 1 is true? Likewise, can this bound be extended to the other constructions
considered in this work, i.e., H2 and H3? More general, can our techniques be adapted
for assessing other known constructions like Abreast-DM or Tandem-DM? Going one step
further, one may ask whether other interesting generalizations are possible, as, e.g., the
alleviation of the necessity of two keys. Closely related is the question of how these tech-
niques can be applied to single call double length hash functions.

References

[1] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[2] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 320–335. Springer, 2002.

[3] Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven,

Belgium, February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in Computer

Science. Springer, 2009.
[4] Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single Pseudorandom Permu-

tation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT, volume
739 of Lecture Notes in Computer Science, pages 210–224. Springer, 1991.

14

[5] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the Security of Tandem-DM. In Dunkelman
[3], pages 84–103.

[6] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Security of cyclic double block length hash
functions. In Parker [18], pages 153–175.

[7] Shoichi Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In
Choonsik Park and Seongtaek Chee, editors, ICISC, volume 3506 of Lecture Notes in Computer

Science, pages 330–342. Springer, 2004.
[8] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In Matthew

J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 210–225.
Springer, 2006.

[9] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search. In Neal
Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 252–267.
Springer, 1996.

[10] Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S. Thomsen. Cryptanalysis of
mdc-2. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science,
pages 106–120. Springer, 2009.

[11] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, pages
55–70, 1992.

[12] Jooyoung Lee and Daesung Kwon. The security of abreast-dm in the ideal cipher model. Cryptology
ePrint Archive, Report 2009/225, 2009. http://eprint.iacr.org/.

[13] Jooyoung Lee, Martijn Stam, and John Steinberger. The collision security of tandem-dm in the ideal
cipher model. Cryptology ePrint Archive, Report 2010/409, 2010. http://eprint.iacr.org/.

[14] Stefan Lucks. A collision-resistant rate-1 double-block-length hash function. In Eli Biham, Helena
Handschuh, Stefan Lucks, and Vincent Rijmen, editors, Symmetric Cryptography, volume 07021 of
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

[15] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[16] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor, CRYPTO, volume
435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

[17] Onur Özen and Martijn Stam. Another glance at double-length hashing. In Parker [18], pages
176–201.

[18] Matthew G. Parker, editor. Cryptography and Coding, 12th IMA International Conference, Cryptog-

raphy and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings, volume 5921 of Lecture
Notes in Computer Science. Springer, 2009.

[19] Bart Preneel. Mdc-2 and mdc-4. In Henk C. A. van Tilborg, editor, Encyclopedia of Cryptography

and Security. Springer, 2005.
[20] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implica-

tions, and separations for preimage resistance, second-preimage resistance, and collision resistance.
In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science,
pages 371–388. Springer, 2004.

[21] Phillip Rogaway and John P. Steinberger. Constructing Cryptographic Hash Functions from Fixed-
Key Blockciphers. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer

Science, pages 433–450. Springer, 2008.
[22] Phillip Rogaway and John P. Steinberger. Security/Efficiency Tradeoffs for Permutation-Based Hash-

ing. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 220–236. Springer, 2008.

[23] Martijn Stam. Blockcipher based hashing revisited. Cryptology ePrint Archive, Report 2008/071,
2008. http://eprint.iacr.org/.

[24] Martijn Stam. Blockcipher-based hashing revisited. In Dunkelman [3], pages 67–83.
[25] John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In Moni Naor,

editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages 34–51. Springer,
2007.

15

