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Abstract. Addition modulo 231 − 1 is a basic arithmetic operation in
the stream cipher ZUC. For evaluating ZUC in resistance to linear crypt-
analysis, it is necessary to study properties of linear approximations of
the addition modulo 231 − 1. In this paper we discuss linear approxima-
tions of the addition modulo 2n − 1 for integer n ≥ 2. As results, an
exact formula on the correlations of linear approximations of the addi-
tion modulo 2n − 1 is given for the case when two inputs are involved,
and an iterative formula for the case when more than two inputs are in-
volved. For a class of special linear approximations with all masks being
equal to 1, we further discuss the limit of their correlations when n goes
to infinity. Let k be the number of inputs of the addition modulo 2n − 1.
It’s shows that when k is even, the limit is equal to zero, and when k is
odd, the limit is bounded by a constant depending on k.
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1 Introduction

Linear cryptanalysis [1] is one of the most powerful and general cryptanalytic
methods. Its main task is to find linear relations between the inputs and outputs
of target functions. In block ciphers, we usually find some linear relations among
keys, plaintexts and ciphertexts that hold with certian probability. If some plain-
cipher text pairs are known, some bits of the key can be recovered with high
probability [1, 2]. In stream ciphers, linear cryptanalysis is usually combined
with distinguishing cryptanalysis together, and its goal is to establish a linear
distinguisher to distinguish the keystream generated by the target algorithm
from a random sequence [3, 4].

For both block ciphers and stream ciphers, it is important to find an efficient
method for evaluating their resistance against linear cryptanalysis. It is known
that most cipher algorithms are usually composed of some certain components
and operations. Hence first of all we can calculate linear approximations of those
components or operations. The addition modulo 2n, specially when n is equal
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to the length of a computer word, e.g., 8, 16 or 32, is one of the most common
operations, and is widely used in the design of cipher algorithms [5–8]. Rich
results on the addition modulo 2n have been obtained, see [9–15].

The addition modulo 2n − 1 is another important arithmetic operation [16,
17]. Some properties on the addition modulo 2n − 1 have been explored in [18,
19]. However few results on linear approximations on the addition modulo 2n−1
can be found from public literatures. Recently a new stream cipher ZUC [20],
together with 128-EEA3 and128-EIA3, is recommended as the third suit of LTE
encryption and integrity candidate, see [21] for details. In ZUC, the addition
modulo 231 − 1 is a basic operation since the LFSR of ZUC is defined over the
prime field F231−1. For evaluating ZUC in resistance to linear cryptanalysis, it is
necessary to study properties of linear approximations on the addition modulo
231 − 1. In this paper, by means of known results on the addition modulo 2n,
we directly derive a formula of correlations of arbitrary linear approximations of
the addition modulo 2n − 1 with two inputs. As for the case where more than
two inputs are involved, we further give an iterative formula. What’s more, for a
class of special linear approximations with all masks being equal to 1, we discuss
the limit of their correlations when n goes to infinity. Let k be the number of
inputs of the addition modulo 2n − 1. It’s shows that when k is even, the limit
is equal to zero, and when k is odd, the limit is a constant depending on k.

The rest of this paper is organized as follows: In section 2, we give the defini-
tions of linear approximations and their correlations and recall some properties
on the addition modulo 2n briefly. In section 3 some basic properties of linear
approximation of the addition modulo 2n − 1 are given, and more properties for
the case k = 2 are given in section 4. In section 5 we further discuss the limit
of linear approximations with all masks being equal to 1. Finally we conclude in
section 6.

2 Preliminaries

2.1 Linear approximation and its correlation

Let n be a positive integer. Denoted by Z2n the set of integers x such that
0 ≤ x ≤ 2n − 1. Given an integer x ∈ Z2n , let

x = x(n−1)x(n−2) · · ·x(0) =
n−1∑
i=0

x(i)2i

be the binary representation of x, where x(i) ∈ {0, 1}. We call x(i) the i-th bit
of x, 0 ≤ i ≤ n − 1. In the rest of this paper, without further specification, we
always denote by x(i) the i-th bit of the integer x in the binary representation.
For arbitrary two integers w, x ∈ Z2n , the inner product of w and x is defined
as below

w · x =
n−1⊕
i=0

w(i)x(i).
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Let k be a positive integer and f be a function from Zk
2n to Z2n . Given

k + 1 constants u,w1, · · · , wk ∈ Z2n , the linear approximation of the function f
determined by u,w1, · · · , wk is an approximate relation of the form

u · f(x1, · · · , xk) =

k⊕
i=1

wi · xi, (1)

and the (k + 1)-tuple (u,w1, · · · , wk) is called to be a linear mask of f . The
efficiency of the linear approximation (1) is measured by its correlation, which
is defined as below

corf (u;w1, · · · , wk) = 2Pr(u · f(x1, · · · , xk) =

k⊕
i=1

wi · xi)− 1, (2)

where the probability is taken over uniformly distributed x1, · · · , xk.

2.2 Linear approximations of the addition modulo 2n

In this section we recall linear approximations of the addition modulo 2n briefly,
for more details please refer to [9, 10].

Denote by � the addition modulo 2n, that is, for any x1, x2 ∈ Z2n , we have
x1 � x2 = (x1 + x2) mod 2n. Let (u,w1, w2) be a linear mask of the addition
�, and denote by cor�(u;w1, w2) the correlation of the linear approximation
u · (x1 � x2) = w1 · x1 ⊕ w2 · x2. From the linear mask (u,w1, w2) we derive a
sequence z = zn−1 · · · z0 as follows

zi = u(i)22 + w
(i)
1 2 + w

(i)
2 , i = 0, 1, · · · , n− 1.

It’s easy to see that 0 ≤ zi ≤ 7 for all 0 ≤ i ≤ n− 1. Define

Mn(u,w1, w2) =
n−1∏
i=0

Azi , (3)

where Aj (j = 0, 1, · · · , 7) are constant matrices of size 2 × 2 and defined as
follows

A0 =
1

4

(
3 1
1 3

)
, A1 = A2 = −A4 =

1

4

(
1 1
−1 −1

)
,

−A3 = A5 = A6 =
1

4

(
1 −1
−1 1

)
, A7 =

1

4

(
3 −1
1 −3

)
.

Then we have

Theorem 1 ([9]). For any given linear mask (u,w1, w2), let Mn(u,w1, w2) be
defined as above. Set Mn(u,w1, w2) = (Mi,j)0≤i,j≤1. Then we have

Mi,j = Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j)

− Pr(u · (x1 � x2) ̸= w1 · x1 ⊕ w2 · x2 ∧ cn = i ∧ c0 = j),
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where c0 is an initial carry bit, and cn is the n-th carry bit of the addition x1

and x2 with the initial carry bit c0. By convention c0 = 0, we have

cor�(u,w1, w2) = M0,0 +M1,0. (4)

Note that for any integers x1 and x2, if c0 = 1, then the addition of x1 and
x2 modulo 2n with the initial carry c0 is equivalent to (x1 + x2 + 1) mod 2n.
Therefore we have the following conclusion.

Corollary 1. Let x1�x2 = x1 � x2 � 1 and (u,w1, w2) be a linear mask of
�. Denote by cor�(u,w1, w2) the correlation of the linear approximation u ·
(x1�x2) = w1 · x1 ⊕ w2 · x2. Then we have

cor�(u,w1, w2) = M0,1 +M1,1. (5)

3 Some properties on linear approximations of the
addition modulo 2n − 1

In this section we will discuss some properties of linear approximations of the
addition modulo 2n − 1 with k inputs, where we always assume that n ≥ 2
and k ≥ 2. For consistency with the definition of the addition of the prime field
F2n−1 in ZUC [20], here we make convention that the set of representatives of the
residue class modulo 2n−1 are { 1, 2, · · · , 2n − 1 } instead of { 0, 1, · · · , 2n − 2 }.
It should be pointed out that all results in this paper can deduce the correspond-
ing ones in { 0, 1, · · · , 2n − 2 } directly.

Let J = { 1, 2, · · · , 2n − 1 }, and denote by �̂ the addition modulo 2n − 1 as
defined in ZUC, more precisely, for any x1, x2 ∈ J , we have

x1�̂x2 =

{
x1 + x2 if x1 + x2 < 2n,
(x1 + x2 + 1)mod2n if x1 + x2 ≥ 2n.

(6)

For example, set n = 3, then J = {1, 2, · · · , 7}, and 2�̂6 = 1, 3�̂4 = 7.
Below we consider the addition modulo 2n − 1 over J with k inputs. For

any given linear mask (u,w1, · · · , wk), we denote by cor�̂(u;w1, · · · , wk) the
correlation of the linear approximation

u · (x1�̂ · · · �̂xk) =
k⊕

i=1

w1 · xk.

For simplicity we write cor�̂(u;w1, · · · , wk) as cor(u;w1, · · · , wk).
The following two theorems can be easily derived. In fact, Theorem 2 follows

directly from the symmetry of x1, · · · , xk in the addition modulo 2n − 1, and
Theorem 3 from the fact that (x�̂x′) ≪ l = (x ≪ l)� (x′ ≪ l) for ∀x, x′ ∈ J
and 1 ≤ l ≤ n− 1, where x ≪ l means the cyclic shift of x to the left for l bits.

Theorem 2. For any given linear mask (u;w1, · · · , wk) and an permutation
(i1, · · · , ik) of (1, · · · , k), we have

cor(u;w1, · · · , wk) = cor(u;wi1 , · · · , wik). (7)
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Proof. By the definition of the correlation we only need to prove that Pr(u ·
(x1�̂ · · · �̂xk) =

⊕k
j=1 wj · xj) = Pr(u · (x1�̂ · · · �̂xk) =

⊕k
j=1 wij · xj). Define

J(u;w1, · · · , wk) = { (x1, · · · , xk) ∈ Jk | u · (x1�̂ · · · �̂xk) =

k⊕
j=1

wj · xj } .

By the symmetry of x1, · · · , xk in the addition modulo 2n−1, it’s obvious that for
any (x1, · · · , xk) ∈ J(u;w1, · · · , wk), we have (xi1 , · · · , xik) ∈ J(u;wi1 , · · · , wik),
and vice versa. So #J(u;w1, · · · , wk) = #J(u;wi1 , · · · , wik), where the notation
# denotes the cardinality of a set. Therefore

Pr(u · (x1�̂ · · · �̂xk) =
k⊕

j=1

wj · xj) = Pr(u · (x1�̂ · · · �̂xk) =
k⊕

j=1

wij · xj).

�

Theorem 3. For any given linear mask (u;w1, · · · , wk) and integer 1 ≤ l ≤
n− 1, we have

cor(u;w1, · · · , wk) = cor(u ≪ l;w1 ≪ l, · · · , wk ≪ l). (8)

Proof. Similarly to the proof of Theorem 2, we only need to prove that Pr(u ·
(x1�̂ · · · �̂xk) =

⊕k
j=1 wj ·xj) = Pr(u·x1�̂ · · · �̂xk) =

⊕k
j=1(wj ≪ l)·xj). Keep

the notation J(u;w1, · · · , wk) as above. For any (x1, · · · , xk) ∈ J(u;w1, · · · , wk),
since (x1�̂ · · · �̂xk) ≪ l = (x1 ≪ l)�̂ · · · �̂(xk ≪ l), we have

(x1 ≪ l, · · · , xk ≪ l) ∈ J(u;w1 ≪ l, · · · , wk ≪ l),

which shows that #J(u;w1, · · · , wk) ≤ #J(u;w1 ≪ l, · · · , wk ≪ l). Note that
(x ≪ l) ≪ (n− l) = x for any x ∈ J , further we have

#J(u;w1 ≪ l, · · · , wk ≪ l)

≤#J(u; (w1 ≪ l) ≪ (n− l), · · · , (wk ≪ l) ≪ (n− l))

=#J(u;w1, · · · , wk).

So #J(u;w1, · · · , wk) = #J(u;w1 ≪ l, · · · , wk ≪ l), and the conclusion fol-
lows. �

3.1 The case k = 2

In this section we will derive the exact formula of cor(u;w1, w2) for any linear
mask (u,w1, w2) from Theorem 1. For any given linear mask (u,w1, w2), keep
the notations z, Mn(u;w1, w2) and Mi,j (0 ≤ i, j ≤ 1) defined in the section 2.

It’s noticed that when x1 + x2 < 2n, we have x1�̂x2 = x1 � x2, and when
x1+x2 ≥ 2n, we have x1�̂x2 = x1�x2�1. Thus by Theorem 1 and Corollary 1,
it seems that cor(u;w1, w2) is equal to M0,0 +M1,1 regardless of the difference
between Z2n and J . Below we give an exact formula for cor(u;w1, w2).
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Theorem 4. Let (u,w1, w2) be a linear mask of the addition �̂ modulo 2n − 1,
and Mn(u,w1, w2) = (Mi,j)0≤i,j≤1 be defined as above. Then we have

cor(u;w1, w2) =
22n(M0,0 +M1,1) + 2n · c+ 1

(2n − 1)2
, (9)

where

c =


−3, if u = w1 = w2 and wH(w2) is even,
1, if u ̸= w1 = w2 and wH(w2) is odd,
0, if u,w1 and w2 are pairwise different,

−1, otherwise,

and wH(w2) denotes the hamming weight of w2 in the binary representation.

Proof. For any given x1, x2 ∈ J , we consider x1�̂x2 from the following two
aspects.

First, when x1 + x2 < 2n, it’s known that x1�̂x2 = x1 � x2. By Theorem 1,
we have

M0,0 =Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ x1 + x2 < 2n)

− Pr(u · (x1 � x2) ̸= w1 · x1 ⊕ w2 · x2 ∧ x1 + x2 < 2n)

Since

Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ x1 + x2 < 2n)

+Pr(u · (x1 � x2) ̸= w1 · x1 ⊕ w2 · x2 ∧ x1 + x2 < 2n)

=Pr(x1 + x2 < 2n) =
2n + 1

2n+1
,

thus we have

Pr(u · (x1 � x2) = w1 · x1 ⊕ w2 · x2 ∧ x1 + x2 < 2n) =
1

2
M0,0 +

2n + 1

2n+2
.

It follows that there are 2n−2(2n + 1) + 22n−1M0,0 pairs (x1, x2) satisfying u ·
(x1 � x2) = w1 · x1 ⊕ w2 · x2 and x1 + x2 < 2n simultaneously. We consider
those pairs of the form (0, x2). When x1 = 0, we get (u ⊕ w2) · x2 = 0 due to
u · x2 = w2 · x2. It follows that there are 2n−1 solutions x2 if u ̸= w2 and 2n

solutions if u = w2. Hence there are 2n−1 pairs of the form (0, x2) among the
above all pairs not in J × J if u ̸= w2 and 2n pairs not in J × J if u = w2. By
the symmetry of x1 and x2, we have the same conclusion for x2 = 0. In addition,
the pair (0, 0) always satisfies u · (x1�x2) = w1 ·x1⊕w2 ·x2 but is not in J ×J .

Second, when x1 + x2 ≥ 2n, we have x1�̂x2 = x1 � x2 � 1. Similarly to the
above case, there are totally 2n−2(2n + 1) + 22n−1M1,1 pairs (x1, x2) satisfying
both x1 + x2 +1 ≥ 2n and u · (x1 � x2 � 1) = w1 · x1 ⊕w2 · x2. Now we consider
how to remove some pairs (x1, x2) satisfying x1 + x2 + 1 = 2n from the above
pairs. Note that x1 � x2 � 1 = 0, thus we only need to count pairs (x1, x2) such
that x1 + x2 = 2n − 1 and w1 · x1 = w2 · x2. Since x1 + x2 = 2n − 1 = x1 ⊕ x2,
it follows that

(w1 ⊕ w2) · x1 = w2 · (2n − 1). (10)
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If w1 ̸= w2, Equality (10) has 2n−1 solutions; if w1 = w2, when the weight of
w2, that is, the number of 1’s in the binary representation of w2, denoted by
wH(w2), is an odd number, Equality (10) has no solutions, and when wH(w2) is
an even number, it has 2n solutions.

Combine the above two cases, and we can get the desired conclusion. �

3.2 The case k > 2

Theorem 5. For any given linear mask (u,w1, · · · , wk) and integer k > 2, we
have

cor(u;w1, · · · , wk) =
2n − 1

2n

2n−1∑
w=0

cor(w;w1, · · · , wk−1)cor(u;w,wk). (11)

Proof. By the definition of the correlation cor(u;w1, · · · , wk), we have

cor(u;w1, · · · , wk) =
1

(2n − 1)k

∑
(x1,··· ,xk)∈Jk

(−1)u·(x1�̂···�̂xk)⊕
⊕k

i=1 wi·xi .

Denote y = x1�̂ · · · �̂xk and y′ = x1�̂ · · · �̂xk−1. Then we have

2n−1∑
w=0

cor(w;w1, · · · , wk−1)cor(u;w,wk)

=
1

(2n − 1)k+1

2n−1∑
w=0

∑
(x1,··· ,xk−1)∈Jk−1

(−1)w·y′⊕
⊕k−1

i=1 wi·xi

∑
xk∈J

(−1)u·y⊕w·y′⊕wk·xk

=
1

(2n − 1)k+1

∑
(x1,··· ,xk)∈Jk

(−1)u·y⊕
⊕k

i=1 wi·xi

2n−1∑
w=0

(−1)w·y′⊕w·y′

=
2n

2n − 1
cor(u;w1, · · · , wk).

�

4 More properties of linear approximations on the
addition modulo 2n − 1 with two inputs

In this section we will provide more properties of linear approximations on the
addition modulo 2n − 1 with two inputs, that is, k = 2. First we introduce some
notations and concepts.

Let Q be the rational field. Define

I =

{(
a b
b a

)
|a, b ∈ Q

}
,

II =

{(
a −b
b −a

)
|a, b ∈ Q

}
,
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and call a matrix in the set I (or II) to be type-I (or type-II). It is easily seen
that A0, A3, A5, A6 ∈ I and A1, A2, A4, A7 ∈ II (which are defined in section 2).
The following two properties can be easily verified.

Lemma 1. The product of arbitrary two type-I (or type-II) matrices is a type-I
matrix.

Lemma 2. The product of a type-I matrix and a type-II matrix is a type-II
matrix.

By the definition of Mn(u;w1, w2) and Lemmas 1 and 2, we have

Lemma 3. For any given linear mask (u,w1, w2), Mn(u,w1, w2) is either type-I
or type-II.

For any given square matrix M , denote by Tr(M) the trace of the matrix
M , that is, the sum of elements on the main diagonal of M . Since the trace of
an arbitrary type-II matrix is zero, thus the following conclusions hold.

Corollary 2. For any given linear mask (u,w1, w2), let z = zn−1 · · · z0 be a
sequence derived by (u,w1, w2). If the number of elements zi such that zi ∈
{1, 2, 4, 7} is odd, i = 0, 1, · · · , n− 1, then Tr(Mn(u,w1, w2)) = 0.

Corollary 3. Let u ∈ Z2n and wH(u) be odd. Then Tr(Mn(u, u, u)) = 0. Thus
we have

cor(u;u, u) = − 1

2n − 1

and
lim

n→∞
cor(u;u, u) = 0.

Corollary 4. Let u ∈ Z2n and wH(u) be even. Then Mn(u, u, u) is type-I, that
is, M0,0 = M1,1. Thus we have

cor(u;u, u) =
22n · 2M0,0 − 3 · 2n + 1

(2n − 1)2
.

If all 1’s of u in the binary representation are adjacent, then we have

cor(u;u, u) =
22n · (2

wH(u)

2 −n + 2−
wH(u)

2 )− 3 · 2n + 1

(2n − 1)2

and
lim

n→∞
cor(u;u, u) = 2−

wH(u)

2 .

Below we give some facts on Ai, 0 ≤ i ≤ 7, which will be used later.

Lemma 4. 1. A0Ai =
1
2Ai, for ∀ i ∈ {1, 2, 3, 4, 5, 6};

2. AiA0 = Ai if i ∈ {1, 2, 4} and AiA0 = 1
2Ai if i ∈ {3, 5, 6};

3. AiAj = 0, i ∈ {1, 2, 4} and j ∈ {1, 2, 3, 4, 5, 6};
4. A1A7 = A2A7 = −A4A7 = A6.
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Now we consider a class of special linear mask (u, 1, w). Let z = zn−1 · · · z0
be the sequence derived from (u, 1, w). It is easy to see that z0 ∈ { 1, 3, 5, 7 } and
zi ∈ { 0, 2, 4, 6 }, 1 ≤ i ≤ n− 1. In the rest we write Mn(u, 1, w) as M simply.

Lemma 5. For any integers u,w ∈ Z2n , if Tr(M) ̸= 0, then the sequence z is
of the form either {0, 6}n−1{3, 5} or {0, 6}∗{2, 4}0∗7.

Proof. Let r be the number of zi such that zi ∈ { 2, 4 }, i = 1, 2, · · · , n − 1. We
first prove that r ≤ 1. Assume that r > 1. Then there exist two indexes i and j
such that zi, zj ∈ { 2, 4 }, 1 ≤ i < j ≤ n− 1. By Items 2 and 3 of Lemma 4, we
have Azi · · ·Azj = 0. It follows that M = 0, which contradict Tr(M) ̸= 0.

When r = 0, if z0 ∈ { 1, 7 }, by Corollary 2, it’s known that the matrix M is
type-II, which contradict Tr(M) ̸= 0 as well. Thus z0 ∈ { 3, 5 }. So z is of the
form {0, 6}n−1{3, 5}.

When r = 1, let zj ∈ { 2, 4 }, where 1 ≤ j ≤ n− 1. First we claim zi = 0 for
all 1 ≤ i < j. If there exists some index i such that zi ̸= 0, by Items 2 and 3
of Lemma 4, we have Azi · · ·Azj = 0, further M = 0, which is a contradiction.
Second, if z0 ∈ { 1, 3, 5 }, by Items 2 and 3 of Lemma 4, we have Az0 · · ·Azi = 0.
So z is of the form {0, 6}∗{2, 4}0∗7. �

Theorem 6. For any integers u,w ∈ Z2n , Tr(M) ̸= 0 if and only if u = w⊕2i,
where 0 ≤ i ≤ LNB(w⊕ 1), LNB(x) denotes the least position where 1 appears
in the binary representation of x if x ̸= 0, and LNB(0) = n− 1.

Proof. The necessity follows directly from Lemma 5. Below we prove the suffi-
ciency. First we prove thatTr(At

6) = 2−t for ∀t ≥ 1. In fact, It is easy to calculate
two characteristic roots 0 and 2−1 of A6. Thus we have Tr(At

6) = 0t + (2−1)t =
2−t.

If i = 0, i.e., u = w ⊕ 1, then z is of the form {0, 6}n−1{3, 5}. Let t be the
number of zi such that zi = 6, i = 1, 2, · · · , n − 1. Then 0 occurs in zn−1 · · · z1
for n− 1− t times. Thus by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · ·Az0)

= Tr(2−(n−1−t)At
6Az0)

= (−1)w2−(n−1−t)Tr(At+1
6 )

= (−1)w2−(n−1−t)2−(t+1)

= (−1)w2−n.

If i > 0, then z is of the form {0, 6}∗{2, 4}0∗7 and zi ∈ { 2, 4 }. Let t be the
number of repeats of 6 in zn−1 · · · zi+1. Then by Lemma 4, we have

Tr(M) = Tr(Azn−1 · · · · ·Az0)

= Tr(2−(n−1−i−t)At
6AziA7)

= (−1)s2−(n−1−i−t)Tr(At+1
6 )

= (−1)s2−(n−1−i−t)2−(t+1)

= (−1)s2−(n−i),
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where s = w(i) ⊕ 1. �

Theorem 6 gives a sufficient and necessary condition on how to determine
whether M is type-II for any linear mask (u, 1, w). From its proof we can get
the following result.

Corollary 5. For any integers u,w ∈ Z2n such that u = w ⊕ 2i, where 0 ≤ i ≤
LNB(w ⊕1), we have Tr(M) = (−1)s2−(n−i), where

s =

{
0 if i = 0 and w0 = 0 or i > 0 and w(i) = 1,
1 otherwise.

By Theorem 4 and Corollary 5, further we have

Corollary 6.

cor(w; 1, 1) =


1

(2n−1)2 w = 0,

− 1
2n−1 w = 1,

−2n+i+2n+1
(2n−1)2 w = 2i + 1, 1 ≤ i ≤ n− 1,

2n+1
(2n−1)2 otherwise

and

cor(1;w, 1) =


1

(2n−1)2 w = 0,
2n+i−2n+1
(2n−1)2 w = 2i + 1, 1 ≤ i ≤ n− 1,

− 1
2n−1 otherwise.

Finally we give an upper bound of |cor(u; 1, w)|. For any given integer x ∈
Z2n , define

Jx = {x⊕ 2i|1 ≤ i ≤ LNB(x⊕ 1)}.

Theorem 7. For any integers u,w ∈ Z2n , if w /∈ Ju, then

|cor(u; 1, w)| < 3

2n − 1
. (12)

Proof. If w ̸= u⊕ 1, by Theorem 6, we have Tr(M) = 0. Further we can get the
desired result by Theorem 4. If w = u ⊕ 1, by Corollary 5 and Theorem 4, we
have

|cor(u; 1, w)| ≤ 22n · 2−n + 2n + 1

(2n − 1)2
=

2 · 2n + 1

(2n − 1)2
<

3

(2n − 1)
.

�

5 The limit of cor(1; 1k)

In this section, we will discuss the limit of cor(1; 1, · · · , 1︸ ︷︷ ︸
k

) for some integer k ≥ 2

when n goes to infinity. For simplicity, we denote it by cor(1; 1k).
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Lemma 6. For any integers n ≥ 2 and k ≥ 2, we have

∑
u∈Z2n

|cor(u; 1k)| < (n+ 3)k−1.

Proof. Note that |Jx| ≤ n for all x ∈ Z2n . When k = 2, by Theorem 7, we have

∑
u∈Z2n

|cor(u; 1, 1)| =
∑
u∈J1

|cor(u; 1, 1)|+
∑
u/∈J1

|cor(u; 1, 1)|

≤
∑
u∈J1

1 +
3

2n − 1

∑
u/∈J1

1 < n+ 3.

Suppose that when k = k0, we have
∑

u∈Z2n

|cor(u; 1k0)| < (n+ 3)k0−1. Then

∑
u∈Z2n

|cor(u; 1k0+1)|

=
2n − 1

2n

∑
u∈Z2n

|
∑

w∈Z2n

cor(w; 1k0)cor(u;w, 1)|

<
∑

u∈Z2n

∑
w∈Z2n

|cor(w; 1k0)cor(u;w, 1)|

=
∑

u∈Z2n

(
∑
w∈Ju

|cor(w; 1k0)cor(u;w, 1)|+
∑
w/∈Ju

|cor(w; 1k0)cor(u;w, 1)|)

<
∑

u∈Z2n

∑
w∈Ju

|cor(w; 1k0)|+ 3

2n − 1

∑
u∈Z2n

∑
w/∈Ju

|cor(w; 1k0)|

< n · (n+ 3)k0−1 +
3

2n − 1
· (2n − 1) · (n+ 3)k0−1

= (n+ 3)k0 .

By induction the conclusion is correct. �

Lemma 7. For any integer t ≥ 1 and i ≥ 2, we have

lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

cor(ut; 1
i)

t∏
j=1

cor(uj−1;uj , 1) = 0,

where u0 = 1.
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Proof. By Lemma 6 and Theorem 7, we have

|
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

cor(ut; 1
i)

t∏
j=1

cor(uj−1;uj , 1)|

<
3

2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

|cor(ut; 1
i)

t−1∏
j=1

cor(uj−1;uj , 1)|

≤ 3

2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

∑
ut /∈Jut−1

|cor(ut; 1
i)|

<
3

2n − 1
(n+ 3)i−1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

ut−1∈Jut−2

1

<
3

2n − 1
(n+ 3)i−1nt−1.

Since 3
2n−1 (n+3)i−1nt−1 approaches 0 when n goes to infinity, thus the conclu-

sion holds. �
Lemma 8. For any integer k ≥ 3, if lim

n→∞
cor(1; 1k) exists, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1;uj , 1),

where u0 = uk−1 = 1.

Proof.

lim
n→∞

cor(1; 1k)

= lim
n→∞

∑
u1∈Z2n

cor(u1; 1
k−1)cor(1;u1, 1)

= lim
n→∞

(
∑

u1∈J1

+
∑

u1 /∈J1

)cor(u1; 1
k−1)cor(1;u1, 1)

= lim
n→∞

∑
u1∈J1

cor(u1; 1
k−1)cor(1;u1, 1) (by Lemma 7)

= lim
n→∞

∑
u1∈J1

∑
u2∈Z2n

cor(u2; 1
k−2)cor(u1;u2, 1)cor(1;u1, 1)

= lim
n→∞

∑
u1∈J1

(
∑

u2∈Ju1

+
∑

u2 /∈Ju1

)cor(u2; 1
k−2)cor(u1;u2, 1)cor(1;u1, 1)

= lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

cor(u2; 1
k−2)cor(u1;u2, 1)cor(1;u1, 1) (by Lemma 7)

= · · ·

= lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1;uj , 1).
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�
Theorem 8. For any integer k ≥ 3, if lim

n→∞
cor(1; 1k) exists, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−1∈Juk−2

k−1∏
j=1

Tr(Mn(uj−1, uj , 1)),

where u0 = uk−1 = 1.

Proof. By Theorem 4, for any linear mask(u,w1, w2), we have

cor(u;w1, w2) = Tr(Mn(u,w1, w2)) +
δ(u,w1, w2)

2n − 1
,

where |δ(u,w1, w2)| < K, K is some constant. Then

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

k−1∏
j=1

cor(uj−1;uj , 1)

=
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

(Tr(Mn(1, u1, 1)) +
δ(1, u1, 1)

p
)

k−1∏
j=2

cor(uj−1;uj , 1)

= A+B,

where

A =
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

Tr(Mn(1, u1, 1))
k−1∏
j=2

cor(uj−1;uj , 1)

and

B =
∑

u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

δ(1, u1, 1)

2n − 1

k−1∏
j=2

cor(uj−1;uj , 1).

Since

|B| ≤ K

2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

|
k−2∏
j=2

cor(uj−1;uj , 1)|

≤ K

2n − 1

∑
u1∈J1

∑
u2∈Ju1

· · ·
∑

uk−2∈Juk−3

1

≤ K

2n − 1
nk n→∞−−−−→ 0,

thus we have

lim
n→∞

cor(1; 1k) = lim
n→∞

A.

Repeat the above procedure, and we always strip
δ(uj−1,uj ,1)

2n−1 from cor(uj−1;uj , 1),
j = 2, 3, · · · , k − 1. Then finally we can get the desired conclusion. �
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Corollary 7. lim
n→∞

cor(1; 12) = 0 and lim
n→∞

cor(1; 13) = − 1
3 .

Proof. Since Mn(1, 1, 1) = An−1
0 A7 is type-II, thus Tr(Mn(1, 1, 1)) = 0, further

we have lim
n→∞

cor(1; 1, 1) = 0. By Theorem 8 and Corollary 6, we have

lim
n→∞

cor(1; 13)

= lim
n→∞

∑
u∈J1

Tr(Mn(u, 1, 1))Tr(Mn(1, u, 1))

= lim
n→∞

n−1∑
i=1

Tr(Mn(2
i + 1, 1, 1))Tr(Mn(1, 2

i + 1, 1))

= lim
n→∞

n−1∑
i=1

(−2−(n−i)) · 2−(n−i)

= − lim
n→∞

n−1∑
i=1

4−(n−i) = −1

3
.

�
In order to deal with the general case lim

n→∞
cor(1; 1k), for a given integer

k ≥ 3, we define

Uk = {u0u1u2 · · ·uk−2uk−1|uj ∈ Juj−1 , 1 ≤ j ≤ k − 1, uk−1 = u0 = 1}. (13)

Then Theorem 8 can also be represented as:

Theorem 9. For given integer k ≥ 3, if lim
n→∞

cor(1; 1k) exist, then

lim
n→∞

cor(1; 1k) = lim
n→∞

∑
u0u1···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj , 1)).

For any string u0u1u2 · · ·uk−2uk−1 ∈ Uk, by the definition of Juj−1 , we have
uj > 0 for 0 ≤ j ≤ k − 1, and there is only one bit in uj different from
uj−1, that is, wH(uj−1) − wH(uj) = ±1. Note that wH(u0) = 1 is odd, thus
wH(u2), wH(u4), · · · are odd and wH(u1), wH(u3), · · · are even.

When k is even, it’s known that wH(uk−1) is even, which contradict wH(uk−1) =
1 since uk−1 = 1. It follows that Uk = ∅. Hence we have the following conclusion.

Theorem 10. For any even positive integer k, we have lim
n→∞

cor(1; 1k) = 0.

When k is odd, set u2j = 1 and u2j+1 = 2n−1+ for 0 ≤ j ≤ k−1
2 . Then

u0 · · ·uk−2uk−1 ∈ Uk. It shows that Uk ̸= ∅. For all odd integer k, we define

Ik = {i1i2 · · · ik−1|2ij = uj ⊕ uj−1, u0 · · ·uk−2uk−1 ∈ Uk},

Ik,d = {i1i2 · · · ik−1|d =
k−1∑
j=1

ij , i1i2 · · · ik−1 ∈ Ik},

and denote Nk,d = #Ik,d.
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Theorem 11. For any odd integer k ≥ 3, we have

∑
u0u1···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj , 1)) = (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑
d=k−1

Nk,d · 2d.

Proof. For any u0 · · ·uk−1 ∈ Uk, by Corollary 5, when wH(uj)− wH(uj−1) = 1,
the sign of Tr(Mn(uj−1, uj , 1)) is positive, and when wH(uj)−wH(uj−1) = −1,

the sign of Tr(Mn(uj−1;uj , 1)) is negative. So the sign of
∏k−1

j=1 Tr(Mn(uj−1;uj , 1))

is the same with
∏k−1

j=1 (wH(uj)−wH(uj−1)). Note that
∑k−1

j=1 (wH(uj)−wH(uj−1)) =
0, it follows that the number of j such that wH(uj)−wH(uj−1) = 1 is equal to that

of j such that wH(uj)−wH(uj−1) = −1. Thus the sign of
∏k−1

j=1 Tr(Mn(uj−1;uj , 1))

equals (−1)
k−1
2 . Then we have

∑
u0···uk−1∈Uk

k−1∏
j=1

Tr(Mn(uj−1, uj , 1))

= (−1)
k−1
2

∑
i1i2···ik−1∈Ik

k−1∏
j=1

2−(n−ij)

= (−1)
k−1
2 · 2−(k−1)n

(k−1)(n−1)∑
d=k−1

N
(d)
k · 2d.

�

Theorem 12. For any odd integer k ≥ 3, if lim
n→∞

cor(1; 1k) exists, then

1. lim
n→∞

cor(1; 1k) ≥ 1
32

−(k−3), if k ≡ 1 mod 4,

2. lim
n→∞

cor(1; 1k) ≤ − 1
32

−(k−3), if k ≡ 3 mod 4.

Proof. For any given u0 · · ·uk−1 ∈ Uk, denote 2ij = uj ⊕ uj−1, 1 ≤ j ≤ k − 1.

Then i1i2 · · · ik−1 ∈ Ik. Note that 2
i1 ⊕ 2i2 ⊕· · ·⊕ 2ik−1 =

⊕k−1
j=1 (uj ⊕uj−1) = 0,

it means that i1, i2, · · · ik can be divided to two identical sets. So d =
∑k−1

j=1 ij
is always even. Note that 1 ≤ ij ≤ n − 1, thus k − 1 ≤ d ≤ (k − 1)(d − 1).
In addition, by the definition of Ik and Ik,d, for any even integer k − 1 ≤ d ≤
(n− 1)(k − 1), there exist i1, i2, · · · , ik−1 such that i1i2 · · · ik−1 ∈ Ik,d, that is,
Nk,d ≥ 1. For example, when d = k − 1, set ij = 1 for 1 ≤ j ≤ k − 1, then
i1 · · · ik−1 ∈ Ik,k−1; when d = (k − 1)(n − 1), setij = n − 1 for 1 ≤ j ≤ k − 1,
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then i1 · · · ik−1 ∈ Ik,(k−1)(n−1). By Theorem 11, we have

| lim
n→∞

cor(1; 1k)|

= lim
n→∞

2−(k−1)n

(k−1)(n−1)/2∑
d=(k−1)/2

Nk,2d2
2d

≥ lim
n→∞

2−(k−1)n

(k−1)(n−1)/2∑
d=(k−1)/2

22d

= lim
n→∞

2−(k−1)n 2
(k−1)(n−1)+2 − 2k−1

22 − 1

=
1

3
2−(k−3).

�

6 Conclusion

In this paper we discuss properties of linear approximations of the addition
modulo 2n − 1. As results, an exact formula is given for the case when two
inputs are involved, and an iterative formula for the case when more than two
inputs are involved. For a class of special linear approximations with all masks
being equal to 1, we further discuss the limit of their correlations when n goes
to infinity. Let k be the number of inputs of the addition modulo 2n − 1. It’s
shows that when k is even, the limit is equal to zero, and when k is odd, the
limit is bounded by a constant depending on k.

Finally when both n and k trend to infinite, we give a conjecture on cor(1; 1k).

Conjecture 1. lim
k→∞

lim
n→∞

cor(1; 1k) = 0.
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