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Abstract

This paper revisits the notion of determinsitic public-key encryption (DE) — introduced by Bellare, Boldyreva,
and O’Neill (CRYPTO 2007) and further studied by Bellare et al. (CRYPTO 2008), Boldyreva et al. (CRYPTO
2008), and Hemenway et al. (ePrint 2010) — which hides all possible partial information about high-entropy
messages. Our results serve to unify as well as generalize/strengthen the prior work. First, we propose a general
construction of DE that reduces the latter to trapdoor functions admitting certain kinds of hardcore functions.
Roughly, the latter should be robust, meaning remain hardcore when the input is conditioned on an event that occurs
with good probability; for the resulting DE scheme to be multi-message secure, the hardcore function should also
be “correlated-input secure.” We then show that most known DE schemes, both in the random oracle and standard
models, can be viewed as instantiations of our general construction or optimizations thereof, thereby explaining
how these different schemes come about. We also give novel instantiations in the standard model, in both the single
and multi-message cases:
• In the single-message case, we give an instantiation from one-way trapdoor functions, whereas previous con-

structions based on one-wayness due to Bellare et al. required a trapdoor permutation. The trapdoor function
should be only slightly more than super-polynomially hard on all allowed message distributions for resulting
the DE scheme but exponentially-hard on uniform inputs.

• In the multi-message case, we give an instantiation meeting a new notion of “q-bounded” multi-message se-
curity we introduce, for any polynomial q, based on lossy trapdoor functions losing an Ω(1− 1/q) fraction of
their input. Prior work achieved only q = 1 in the standard model. We also give an optimized version of this
instantiation by extending some ideas of Boldyreva et al. Both of these results are based on generalizations of
the (Crooked) Leftover Hash Lemma (LHL) that build on that of Kiltz et al. (EUROCRYPT 2009). Interest-
ingly, the optimized scheme relies on the fact that the Crooked LHL is more tolerant of “imperfection” of the
hash function than the classical one.

An additional contribution is to give a more precise definitional equivalence (between semantic security and in-
distinguishability style security notions) for DE as compared to prior work. In particular, this makes our security
proofs for instantiations based on one-wayness simpler than in prior work.

Keywords: Deterministic encryption, trapdoor functions, hardcore functions, lossy trapdoor functions, Leftover
Hash Lemma, q-bounded security.
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1 Introduction

We start with some background and motivation for our work and then overview our results.

1.1 Background and Motivation

One of the maxims of modern cryptography is that “randomness is needed for good encryption,” meaning the encryp-
tion algorithm of a scheme should be randomized. Such an encryption scheme is called probabilistic. Indeed, prob-
abilistic encryption is necessary to meet the fundamental notion of semantic security introduced by Goldwasser and
Micali [22]. An interesting question, however, is whether we can instead leverage message entropy to achieve security,
rather than requiring the encryption to be probabilistic. To the best of our knowledge, the encryption of high-entropy
messages was first explicitly considered by Russell and Wang [36] in the setting of one-time, information-theoretically
secure symmetric-key encryption, and later in various follow-up works [15, 11]. (Other works have, however, targeted
computationally-bounded security of a similar spirit [33, 34].)

The focus of our work is instead on the above question in the public-key (and thus computationally bounded)
setting. In this setting, the encryption of high-entropy messages was first considered by Bellare, Boldyreva, and
O’Neill [2]. Specifically, they proposed a notion of security for deterministic public-key encryption (DE) that essen-
tially guarantees semantic security for arbitrarily correlated, high-entropy messages, and showed how to achieve it in
the random oracle (RO) model of [5], in particular based on any semantically secure probabilistic scheme.1 Subsequent
works by Bellare et al. [4] and Boldyreva et al. [7] provided alternative security definitions and definitional equiva-
lences for DE (building on [15, 11]), as well as constructions without random oracles that achieve single-message
rather than multi-message security (except in the case of block-sources [7]). In particular, the former gave construc-
tions from one-way trapdoor permutations for high-entropy input distributions, and the latter gave constructions from
the recent notion of lossy trapdoor functions [31]. More recently, Hemenway et al. [26] showed that a “decisional”
version of the notion of correlated product trapdoor function of Rosen and Segev [35] suffices.

Besides being interesting from a foundational standpoint, DE has a number of practical applications, such as
efficient search on encrypted data and securing legacy protocols (cf. [2]). Additionally, its study has proven useful in
other contexts: Bellare et al. [3] showed how it extends to a notion of “hedged” public-key encryption that reduces
dependence on external randomness for probabilistic encryption more generally, and Dent et al. [10] adapted its
notion of privacy to a notion of confidentiality for digital signatures. However, our current understanding of DE is
a somewhat lacking. The constructions of [2, 4, 7, 26], as well as their analysis techniques, are rather disparate.
Furthermore, it is unclear to what extent the single-message security achieved by [4, 7, 26] represents an inherent
limitation of standard model schemes. Accordingly, in this work our main goals are to provide a unified framework
for the construction of DE and to achieve as-strong-as-possible notions of multi-message security without ROs. We
view our main contributions as mostly conceptual; in particular, we show how (by abstracting out new constructions
and notions) various DE schemes can be explained in a common way, their security proofs can be made simpler and
more modular, and their associated techniques can be pushed further.

1.2 Our Results

A MORE PRECISE DEFINITIONAL EQUIVALENCE. We begin by revisiting the definitional equivalences for DE proven
in [4] and [7]. At a high level, they showed that the semantic-security style definition for DE (called PRIV) introduced
in the intial work of [2], which asks that a scheme hides all public-key independent2 functions of the data is in some
sense equivalent to an indistinguishability-based notion for DE (called IND), which asks that a scheme hides the

1Actually, it should be noted that Russell and Wang [36] did observe using their schemes in hybrid encryption would result in (probabilistic)
public-key encryption schemes semantically secure for high-entropy messages. Thus, more accurately [2] were the first to consider the encryp-
tion of high-entropy messages in the public-key setting in its full generality and in particular to formulate a security notion which can be met
by deterministic schemes.

2As shown in [2], the restriction to public-key independent functions is inherent here.
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“source” from which the data is drawn, meaning it is hard to distinguish ciphertexts whose corresponding plaintexts
are drawn from one of two possible distributions. Notice that while PRIV can be meaningfully said to hold for a given
plaintext distribution, IND inherently talks of pairs of distributions. The works of [4, 7] compensated for this by giving
an equivalences in terms of entropy levels. That is, they showed that PRIV for all distributions on plaintext vectors of
min-entropy µ3 is equivalent to indistinguishability with respect to all pairs of plaintext distributions of min-entropy
slightly less than µ. However, a more precise equivalence would identify, for a fixed distribution X, a class of pairs of
distributions on which IND is equivalent to PRIV on X. Via a re-examination of the equivalence proof of [4], we do
exactly that. Namely, we show that PRIV on X is equivalent to IND on the class of pairs of complementary induced
distributions of X, meaning each pair in the class is obtained by conditioning X on whether some (efficiently testable)
event E occurs or not, where both possibilities happen with good probability. Besides being more technically precise,
this equivalence enables simpler and more modular security proofs, as we will see.

A CONSTRUCTION FROM “ROBUST” HARDCORE FUNCTIONS. Consider the following natural construction of DE.
We start with a one-way trapdoor function (OW-TDF) f on an input distribution X , a pseudorandom generator (PRG)
g, and a semantically-secure probabilistic encryption scheme Π = (K, E ,D). Furthermore, suppose that f has a
hardcore function (HCF) h whose output length is equal to the seed length of g, and that the output length of the latter
is equal to the number of random coins consumed by E . Then define the “Encrypt-with-Hardcore” DE scheme to
encrypt plaintext x as E(pk, f(x); g(h(x))); decryption is defined naturally.4 For now, let us just consider security of
the scheme for a single high-entropy message. Due to the pseudorandomness of h, one might expect PRIV security of
this scheme on X to follow. However, while h(x) is guaranteed to look random given f(x), that does not mean that
the former does not leak partial information on x (for example, h may output some of the input bits) and Π may not
protect partial information about its coins. Thus, some extra condition on h is needed to ensure security of the resulting
scheme. What is it? It is a new notion of “robustness” we introduce, roughly meaning h remains on distribution when
we condition the input to f on any (efficiently testable) event that occurs with good probability, which we call “slightly
induced” distributions. Security then follows according to our precise definitional equivalence.

Note that semantically secure encryption can be constructed from a OW-TDF on any input distribution. A PRG
with arbitrary polynomial stretch can also be constructed from any injective OWF (the trapdoor is not needed here)
that is one-way on the standard uniform distribution, which is a natural starting requirement for the OW-TDF that
we will anyway need to get security of the resulting DE scheme on all distributions of a certain min-entropy. So our
security analysis of the Encrypt-with-Hardcore scheme effectively reduces existence of a DE scheme for a given input
distribution to that of a TDF with a large robust HCF for it.

INSTANTIATIONS FROM ONE-WAYNESS. In the RO model, any trapdoor function that is one-way on a given input
distribution has a simple, large HCF on it, namely the RO hash itself. This follows because (1) any one-way function
(OWF) is also one-way on slightly induced input distributions and (2) a RO hash is a HCF for any OWF, regardless
of the input distribution on which the latter is one-way. This leads to an instantiation of the Encrypt-with-Hardcore
scheme in the RO model that, as shown in [2], can be optimized to not use the “inner” trapdoor function at all.
(However, as observed in [2], due to [20] such an optimization is not possible in the standard model, which explains
why we use a TDF in our general construction.)

To obtain robust HCF based on one-wayness without ROs, inspired by [4] we consider the well-known Goldreich-
Levin (GL) bit [21], where the description of the trapdoor function is augmented to contain public coins r and the GL
bit of an input x is the inner-product of x with r.5 Recall that [21] showed this bit is similarly hardcore for any OWF,
regardless of the input distribution on which the latter is one-way. Robustness then follows by the same argument
as above. This leads to instantiations of the Encrypt-with-Hardcore scheme from one-wayness in the standard model
based on trapdoor permutations (TDPs) and based on trapdoor functions (TDFs).

Namely, in order to instantiate the Encrypt-with-Hardcore scheme on plaintext distribution X using a TDP, we
3This means that each individual component has min-entropy µ.
4Ultimately, g can be “absorbed” into h, but conceptually we prefer to make the former explicit.
5Indeed, in the standard model no hardcore function h that does not use public coins can be robust; otherwise we could find an induced

distribution on which the function is no longer hardcore.
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need a TDP that is one-way on all “permutation distributions” of X . Then we can use “BMY iteration” [6, 38],
extracting a GL bit on each iteration; thus, the TDF we use to instantiate the scheme is the iterated TDP. Note that we
do not need to use a separate PRG in this case. (One might view this as an optimization of the construction, but the PRG
can always be “absorbed” into the HCF anyway.) The scheme we obtain is exactly that of [4]. In order to instantiate the
Encrypt-with-Hardcore scheme on plaintext distribution X using a TDF, one straightforward possibilty is to assume
a TDF that is exponentially hard to invert on X . Then [21] tells us the TDF has a linear size HCF on X , which
can be expanded using a PRG (which can by built by assuming the TDF is also super-polynomially hard to invert on
uniform inputs). Furthermore, it is robust because if a OWF is exponentially hard on a given input distribution then it
is exponentially hard on slightly induced distributions. A more appealing (though strictly incomparable) possibility is
to assume a TDF that is exponentially hard to invert on standard uniform inputs and use it to construct an exponentially
hard PRG (e.g. as in [24]). Then the HCF of the TDF on X need only have super-logarithmic rather linear length,
translating to a much reduced the hardness requirement for the TDF on X (just slightly more than super-polynomial;
see Section 5.1 for details.). Achieving DE from one-way TDFs is new to our work.

We make some remarks about the above instantiations. First, while our security analyses allow us to “zero-in” on
what makes these constructions secure on a fixed input distribution, as in [4, 7] we ultimately want to target security
of these instantiations on all distributions of a given min-entropy level. What we then need to assume is (respectively)
a TDP that is super-polynomially hard on all such distributions or a TDF that is slightly more than super-polynomially
hard on all such distributions as well as exponentially-hard on the uniform distribution. Second, the instantiation from
TDFs has a slight disadvantage in that it requires the input entropy to be slightly more than just super-logarithmic.
But for all such input distributions it uses a potentially weaker assumption. (For example Gertner et al. [19] showed a
black-box separation of OW-TDPs from OW-TDFs on uniform inputs.) Finally, although the scheme we obtain from
TDPs is known, our approach enables a simple and modular security proof as compared to [4] (which is facilitated by
our precise definitional equivalence; see Appendix A for a discussion). Our analysis is also more general and shows
that any robust hardcore bit (not just GL) would work.

INSTANTIATIONS FROM LOSSINESS. We next show that lossy trapdoor functions (LTDFs) [31], which have a public
description indistinguishable from that of a lossy function, also admit a large robust hardcore function. Recall that [31]
showed LTDFs admit a simple, large hardcore function, namely a pairwise-independent hash function as per the
(generalized) Leftover Hash Lemma (LHL) [25, 13]. Notice that (1) randomness extractors simply require a high-
entropy distribution, and (2) a slightly induced distribution of a high-entropy distribution is also high-entropy. It
follows that the hardcore function here is also robust on any input distribution with sufficient entropy. We thus obtain
another instantiation of the Encrypt-with-Hardcore scheme from any LTDF losing a constant fraction of its input.
Boldyreva et al. [7] previously obtained DE from LTDFs by encrypting under (an augmented version of) the latter
directly. Their construction can be viewed as an optimization of our instantiation that drops the “outer” encryption;
on the other hand, their security proof requires the less-standard “Crooked” LHL [15].)

One should note the the argument to show robustness here is entirely analogous that to show robustness of the GL
function. We believe this gives a unified view of how DE can be derived from both one-wayness and lossiness.

RELATION TO DECISIONAL CORRELATED PRODUCT. We briefly discuss the relation of our general construction
to the recent one of Hemenway et al. [26] from “decisional” 2-correlated product trapdoor functions. Essentially,
these are trapdoor function families F for which f1(x1), f2(x2) where x1, x2 are equal is indistinguishable from
f1(x1), f2(x2) where x1, x2 are sampled independently (for two independent public instances f1, f2 of F). They
show such a trapdoor function is a secure DE secure for uniform messages. It seems plausible to show that such F
has a large robust hardcore function and thus can be used to instantiate the Encrypt-with-Hardcore scheme as well.
Namely, we would augment F so that its public description contains f1, f2 sampled independently from F and a key
K for a pairwise independent hash function H . (Note that only f1 is used for evaluation and invertion, in particular we
do not need the trapdoor for f2.) The hardcore function hc(x) would be defined as H(K, f2(x)). It is clear that this
function is hardcore, but showing robustness is more subtle. For this, one might apply the techniques of [16, Lemma
3]. However, due to the non-standard nature of the assumption we have not worked out the details. (Note that [26]
only constructs decisional correlated product functions without a trapdoor.)
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SECURITY FOR MULTIPLE MESSAGES. An important point is that, as in [4, 7], we can only prove the above standard-
model DE schemes secure for the encryption of a single high-entropy plaintext, or, what was shown equivalent in [7],
an unbounded number of messages drawn from a block source [8], where each subsequent message brings “fresh”
entropy. (This equivalence requires either efficient conditional re-sampleability of the blocks or single-message secu-
rity even for plaintext distributions that are not efficiently sampleable6). On the other hand, the strongest and most
practical security model for DE introduced by [2] considers the encryption of an unbounded number of plaintexts
that have individual high entropy but may not have any conditional (i.e., “fresh”) entropy. In order for our Encrypt-
with-Hardcore scheme to achieve this, the hardcore function must also be secure on correlated inputs; see Section 4.1
for the definition. (A general study of correlated-input security for the more basic case of hash functions rather than
hardcore functions was concurrently initiated in [23].) In particular, it follows from the techniques of [2] that a RO
hash satisfies such a notion. This leads to a multi-message secure scheme in the RO model (as obtained in [2]). We
thus have a large gap between what is (known to be) achievable there versus the standard model.

BOUNDED MULTI-MESSAGE SECURITY. To help bridge this gap, we propose a notion of “q-bounded” multi-message
(or just q-bounded) security for DE, where up to q high entropy but arbitrarily correlated messages may be encrypted
under the same public key. Following [7], we extend this to a notion of unbounded multi-message security where the
messages are drawn from what we call a “q-block source.” Essentially, this is a block source where the “blocks” are of
size q, and within each block the messages may be arbitrarily correlated (but have individual high entropy). Theorem
4.2 of [7] extends to this context to show (under an analogous requirement to that mentioned above) that q-bounded
multi-message security and unbounded multi-message security for q-block sources are equivalent (for a given entropy
level). While still weaker than the PRIV definition for unbounded messages achievable in the RO model, we feel
this notion may be helpful in practice (indeed, it seems hard to guarantee in a given application that not even a small
number of messages will have low conditional entropy).

q-BOUNDED DE FROM LOSSY TRAPDOOR FUNCTIONS. We show q-bounded DE schemes (for long enough mes-
sages), for any polynomial q, based on a LTDFs losing an Ω(1 − 1/q) fraction of the input. For any polynomial
q, such constructions are known from the decisional Diffie-Hellman [31], d-linear [18], and decisional composite
residuosity [7, 18] assumptions. Even achieving any constant q > 1 was an open problem prior to our work.

We first give our “basic scheme,” which is an instantiation of our general Encrypt-with-Hardcore scheme with
such LTDFs, using a 2q-wise independent hash function as the hardcore function. That is, we show that the a 2q-wise
independent hash function is a “correlated-input secure” hardcore function for such lossy TDFs for up to q inputs. To
prove this, we introduce a generalization of the LHL to t-many correlated sources, following Kiltz et al. [28, Lemma
3.2] who considered t = 2. We then give an “optimized scheme” — which improves both ciphertext length and
required input entropy — by extending some ideas of [7]. (On the other hand, it has a more complicated analysis; we
view the fact that our basic scheme as a feasibility result has a simpler analysis as an additional benefit of our general
Encrypt-with-Hardcore construction.) The idea is to drop the “outer” encryption and first pre-process a message with
a 2q-wise independent permutation (instead of a pairwise-indepndent permutation as in [7]). However, explicit and
efficiently computable permutations with independence greater than 3-wise are not known to exist. So, we instead use
a 2q-wise “δ-dependent” permutations (see e.g. [27]) for appropriate δ. We prove security via a similar generalization
of the “Crooked” LHL [14] (which was used in [7]) we introduce, but which also takes into account an “error” term
for the 2q-wise independent permutation. In fact, there are two error terms to deal with here: one from δ and one
from the fact that in the proof we must “switch” from a random permutation to random function. While by using the
constructions of [27] the former term can be made arbitrarily small, the latter term cannot. Interestingly, we are still
able to tolerate it because the Crooked LHL turns out to be more tolerant than the classical one in this regard. (More
explaination of this technical issue can be found in Section 6.4.)

Note that our constructions show that it is not non-block-sources but an unbounded number of messages with low
conditional entropy that forms the “separating line” between what we can achieve in the RO and standard models using
current techniques. (It also shows that it is when considering non-block-source multi-message security we need to

6For constructions based on lossy trapdoor function this requirement is immaterial since they are actually secure for plaintext distributions
that are not efficiently sampleable. We also observe that this is true for some instantiations based on one-wayness; see Section 5.1.
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exploit the extra power of lossiness over one-wayness.) Indeed, the above approach cannot extend to unbounded multi-
message security since, information-theoretically, the messages plus the public key do not contain enough entropy.
Achieving unbounded multi-message security without random oracles in the remains an interesting open problem.
Some partial results in the case of hash functions (i.e., without supporting decryption) were recently obtained in [23].

2 Preliminaries

An adversary is either an algorithm or a tuple of algorithms. Unless otherwise indicated, an adversary or algorithm
may be randomized and must run in probabilistic polynomial-time (PPT) in its input size. In the case of a tuple of
algorithms, each constituent must be PPT. By convention, the running-time of an adversary includes both its actual
running-time and the time to run its overlying experiment. The security parameter is denoted by k, and 1k denotes the
string of k ones. We often surpress dependence of variables on k for readability. A function f : N → [0, 1] is called
negligible if it approaches zero faster than any inverse polynomial.

If A is an algorithm then x
$←A(. . .) denotes that x is assigned the output of running A on the elided inputs and a

fresh random tape, while if S is a finite set then s
$← S denotes that s is assigned a uniformly random element of S. We

let A(. . .)⇒y denote the event that A outputs y in the above experiment. We use the abbreviation x1, . . . , xn
$←A(. . .)

for x1
$←A(. . .); . . . ; xn

$←A(. . .), and similarly for sets. If A is deterministic then we drop the dollar sign above the
arrow. We denote by {0, 1}∗ the set of all (binary) strings, and by {0, 1}n the set of strings of length n. By x1∥ · · · ∥xm
we denote an encoding of strings x1, . . . , xm from which x1, . . . , xm are uniquely recoverable. We denote by x⊕ y
the bitwise exclusive-or (xor) of equal-length strings x, y. An n-bit string may also be interpreted as an n-dimensional
vector over GF (2). In particular, for two n-bit strings x, y we denote by ⟨x, y⟩ the inner-product of x and y over
GF (2). Vectors are denoted in boldface, for example x. If x is a vector then |x| denotes the number of components
of x and x[i] denotes its ith component, for 1 ≤ i ≤ |x|. For convenience, we extend algorithmic and functional
notation to operate on each vector of inputs component-wise. For example, if A is an algorithm and x,y are vectors
then z

$←A(x,y) denotes that z[i] $←A(x[i],y[i]) for all 1 ≤ i ≤ |x|.
STATISTICAL NOTIONS. Let X be a random variable on a finite set X . We write PX for the distribution of ran-
dom variable X and PX(x) for the probability that X puts on value x ∈ X , i.e., PX(x) = P[X = x]. We of-
ten identify X with PX when there is no danger of confusion. By x

$←X we denote that x is assigned a value
drawn according to PX . When this experiment is PPT we say that X is efficiently sampleable. We write X | E for
the random variable X conditioned on an event E . When X is vector-valued we denote it in boldface, for exam-
ple X. The min-entropy of X is H∞(X) = − log(maxx PX(x)), the (worst-case) conditional min-entropy of X
given Y is H∞(X|Y ) = − log(maxx,y PX|Y=y(x)), and the average conditional min-entropy of X given Y [13]
is H̃∞(X|Y ) = − log(

∑
y PY (y)maxx PX|Y=y(x)). Following [2, 4], for vector-valued X the min-entropy is the

minimum individual min-entropy of the components, i.e., H∞(X) = − log(maxx,i PX[i](x[i])). The collision prob-
ability of X is Col(X) =

∑
x PX(x)2. The statistical distance between random variables X and Y with the same

domain is ∆(X,Y ) = 1
2

∑
x |PX(x)− PY (x)|. If ∆(X,Y ) is negligible then we say X and Y are statistically close,

and the square of the 2-distance is between X and Y is D(X,Y ) =
∑

x

(
PX(x)− PY (x)

)2.

t-WISE INDEPENDENT FUNCTIONS. Let F : K ×D → R be a function. We say that F is t-wise independent if for
all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈ R

Pr
[
F (K,x1) = y1 ∧ . . . ∧ F (K,xt) = yt : K

$←K
]

=
1

|R|t
.

In other words, F (K,x1), . . . , F (K,xt) are all uniformly and independently random over R. 2-wise independence is
also called pairwise independence.

LEFTOVER HASH LEMMA. Next we recall the Generalized Leftover Hash Lemma due to Dodis et al [13], which
extends the original version of [25] to average conditional min-entropy.
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Lemma 2.1 (Generalized Leftover Hash Lemma) [13] Let H : K × D → R be a pairwise-independent function.
Let X be a random variable over D and Y be another random variable. Then

∆
(
(K,Y,H(K,X)), (K,Y, U)

)
≤ 1

2

√
|R|H̃∞(X|Y ) ,

where K
$←K and U is uniform and independent on R.

PUBLIC-KEY ENCRYPTION. A (probabilistic) public-key encryption scheme with plaintext-space PtSp is a triple of
algorithms Π = (K, E ,D). The key-generation algorithm K takes input 1k to return a public key pk and matching
secret key sk. The encryption algorithm E takes pk and a plaintext m to return a ciphertext. The deterministic
decryption algorithm D takes sk and a ciphertext c to return a plaintext. We require that for all plaintexts m ∈ PtSp

Pr
[
D(sk, E(pk,m)) = m : (pk, sk)

$←K(1k)
]

= 1 .

Next we define security against chosen-plaintext attack [22]. To an encryption scheme Π = (K, E ,D), an adver-
sary A = (A1, A2), and k ∈ N we associate

Experiment Expind-cpa
Π,A (k):

b
$←{0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state)
$←A1(pk)

c
$←E(pk,mb)

d
$←A2(pk, c, state)

If d = b return 1 else return 0

where we require A1’s output to satisfy |m0| = |m1|. Define the IND-CPA advantage of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k)⇒ 1
]
− 1 .

We say that Π is IND-CPA secure if Advind-cpa
Π,A (·) is negligible for any PPT adversary A.

LOSSY TRAPDOOR FUNCTIONS. A lossy trapdoor function (LTDF) generator [31] is a pair LTDF = (F ,F ′) of algo-
rithms. Algorithm F is a usual trapdoor function (TDF) generator, namely on inputs 1k outputs outputs (a description
of a) function f on {0, 1}n for n = n(k) along with (a description of) its inverse f−1, and algorithm F ′ outputs a
(description of a) function f ′ on {0, 1}n. For a distinguisher D, define its LTDF advantage against LTDF as

Advltdf
LTDF,D(k) = Pr

[
D(f)⇒ 1 : (f, f−1)

$←F(1k)
]
− Pr

[
D(f ′)⇒ 1 : f ′ $←F ′(1k)

]
.

We say that LTDF is secure if Advltdf
LTDF,D(·) is negligible for any PPT D. We say LTDF has residual leakage s if for

all f ′ output by F ′ we have |R(f ′)| ≤ 2s. The lossiness of LTDF is ℓ = n− s.

3 Deterministic Encryption and its Precise Definitional Equivalence

We recall the notion of deterministic encryption and two security notions for it that have been introduced. We then
give a more precise equivalence between these definitions than in prior work.

3.1 Deterministic Encryption and its Security

We say that an encryption scheme Π = (K, E ,D) is deterministic if E is deterministic.

SEMANTIC SECURITY. We recall the semantic-security style PRIV notion for DE from [2]. (More specifically, it is
a “comparison-based” semantic-security style notion; this was shown equivalent to a “simulation-based” formulation
in [4].) To encryption scheme Π = (K, E ,D), an adversary A = (A0, A1, A2), and k ∈ N we associate
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Experiment Exppriv-1
Π,A (k):

state
$←A0(1

k)

(x1, t1)
$←A1(state)

c
$←E(pk,x1)

g
$←A2(pk, c, state)

If g = t1 Return 1 Else Return 0

Experiment Exppriv-0
Π,A (k):

state
$←A0(1

k)

(x1, t1), (x0, t0)
$←A1(state)

c
$←E(pk,x0)

g
$←A2(pk, c, state)

If g = t1 Return 1 Else Return 0

We require that there are functions v = v(k), ℓ = ℓ(k) such that (1) |x| = v, (2) |x[i]| = ℓ for all 1 ≤ i ≤ v, and (3)
the x[i] are all distinct with probability 1 over (x, t) $←A1(state) for any state output by A0. (Since in this work we
only consider the definition relative to deterministic Π requirement (3) is without loss of generality.) In particular we
say A outputs vectors of size v for v as above. Define the PRIV advantage of A against Π as

Advpriv
Π,A(k) = Pr

[
Exppriv-1

Π,A (k)⇒ 1
]
− Pr

[
Exppriv-0

Π,A (k)⇒ 1
]
.

Let M be a class of distributions on message vectors. Define AM to be the class of adversaries {A = (A0, A1, A2)}
such that for each A ∈ AM there is a M ∈ M for which x has distribution M over (x, t) $←A1(state) for any state
output by A0. We say that Π is PRIV secure for M if Advpriv

Π,A(·) is negligible for any PPT A ∈ AM. Note that
(allowing non-uniform adversaries as usual) we can without loss of generality consider only those A with “empty”
A0, since A1 can always be hardwired with the “best” state. However, following [4] we explicitly allow state because
it greatly facilitates some proofs.

INDISTINGUISHABILITY. Next we recall the indistinguishability-based formulation of security for DE given (in-
dependently) by [4, 7] (and which is adapted from [15]). To an encryption scheme Π = (K, E ,D), an adversary
D = (D1, D2), and k ∈ N we associate

Experiment Expind
Π,A(k):

b
$←{0, 1} ; (x, t) $←D1(b)

c
$←E(pk,x)

d
$←D2(pk, c)

If b = d return 1 else return 0

We make the analgous requirements on D1 as on A1 in the PRIV definition. Define the IND advantage of D against
Π as

Advind
Π,D(k) = 2 · Pr

[
Expind

Π,D(k)⇒ 1
]
− 1 .

Let M∗ be a class of pairs of distributions on message vectors. Define DM∗ to be the class of adversaries {D =
(D1, D2)} such that for each D ∈ DM∗ , there is a pair of distributions (M0,M1) ∈M∗ such that for each b ∈ {0, 1}
the distribution of x $←D1(b) is M b. We say that Π is IND secure for M∗ if Advind

Π,D(·) is negligible for any PPT
D ∈ DM∗ .

3.2 A Precise Definitional Equivalence

Notice that, while the PRIV definition is meaningful with respect a single message distribution M , the IND definition
must inherently talk of pairs of different message distributions. Thus, in proving an equivalence between the two
notions, the best we can hope to show is that PRIV security for a message distribution M is equivalent to IND
security for some class of pairs of message distributions (depending on M ). However, prior works [4, 7] fell short
of providing such a statement. Instead, they showed that PRIV security on all distributions of a given entropy µ is
equivalent to IND security on all pairs of distributions of slightly less entropy.

INDUCED DISTRIBUTIONS. To state our result we first give some definitions relating to a notion of “induced distri-
butions.” Let X,X ′ be distributions (or random variables) on the same domain. For α ∈ N, we say that X ′ is an
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α-induced distribution of X if X ′ is a conditional distribution X ′ = X | E for an event E such that Pr [ E ] ≥ 2−α. We
call E the corresponding event to X ′. We require that the pair (X,E) is efficiently sampleable (where we view event E
as a binary random variable). Define X[α] to be the class of all α-induced distributions of X . Furthermore, let X0, X1

be two α-induced distributions of X with corresponding events E0, E1 respectively. We call X0, X1 complementary
if E1 = E0. Define X∗[α] = {(X0, X1)} to be the class of all pairs (X0, X1) for which there is a pair (X ′

0, X
′
1) of

complementary α-induced distributions of X such that X0 (resp. X1) is statistically close to X ′
0 (resp. X ′

1).
7

THE EQUIVALENCE. We are now ready to state our equivalence result.

Theorem 3.1 Let Π = (K, E ,D) be an encryption scheme. For any distribution M on message vectors, PRIV
security of Π with respect to M is equivalent to IND security of Π with respect to M∗[2]. In particular, let A ∈ AM

be a PRIV adversary against Π. Then there is a IND adversary D ∈ DM∗[2] such that for all k ∈ N

Advpriv
Π,A(k) ≤ 18 ·Advind

Π,D(k) +

(
3

4

)−k

.

Furthermore, the running-time of D is the time for at most that for k executions of A (but 4 in expectation).

The theorem essentially follows from the techniques of [4]. Thus, our contribution here is not in providing any new
technical tools used in proving this result but rather in extracting it from the techniques of [4]. For completeness, we
give the entire proof (incorporating simplifications due to [10] that lead to better concrete security) in Appendix B. We
note the fact that M∗[2] contains pairs of complementary 2-induced distributions of M is needed for our equivalence
proof but is not used for our constructions.

DISCUSSION. One may wonder why our equivalence result is any better than that in prior work. After all, in practice it
is natural to characterize data according to its min-entropy level, and we certainly do not intend to design a different DE
scheme for each distribution. However, we argue that our equivalence is more desirable from a technical perspective.
First, it is more technically precise, and it implies the results of [4, 7] since one can show that if X has min-entropy
µ (recall that this refers to the individual min-entropy of any component) then any α-induced distribution of X has
min-entropy at least µ − α (cf. Lemma 5.8, which extends to this case). More importantly, our equivalence allows
us to give simpler and more modular and unified security proofs for various determinsitic encryption schemes, giving
more insight into their security. It especially simplifies the security proofs for constructions based on one-wayness
including the one based on trapdoor permutations from [4].

4 Deterministic Encryption from Robust Hardcore Functions

We show a general construction of secure deterministic encryption from trapdoor functions admitting what we call
robust hardcore functions.

4.1 Robust Hardcore Functions

ONE-WAYNESS AND HARDCORE FUNCTIONS FOR NON-UNIFORM DISTRIBUTIONS. We extend the usual notions of
one-wayness and hardcore functions to vectors of inputs drawn from non-unform and possibly correlated distributions,
similar to the case of deterministic encryption. Let F be a TDF generator and X be a distribution on input vectors.
To F ,X , an inverter I , and k ∈ N we associate

7We need to allow a negligible statistical distance for technical reasons; cf. Proposition B.3. (This relaxation is reminiscent of the notion
of smooth entropy [32] by Renner and Wolf.) Since we will be interested in indistinguishability of functions of these distributions this will not
make any appreciable difference, and hence we mostly ignore this issue in the remainder of the paper.
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Experiment Expowf
F ,X,I(k):

(f, f−1)
$←F

x
$←X

x′
$← I(f, f(x))

If ∃i such that x[i] = x′ return 1 else return 0

Define the OWF advantage of I against F,X as

Advowf
F ,X,I(k) = Pr

[
Expowf

F ,X,I(k)⇒ 1
]
.

We say that F is one-way on a class of distributions on input vectors X if for every X ∈ X and every PPT inverter
I , Advowf

F ,X,I(·) is negligible. We extend hardore functions (HCFs) in a similar way. Namely, to a trapdoor function
generator F , function hc : {0, 1}k → {0, 1}n, distribution on input vectors X , a distinguisher D, and k ∈ N we
associate

Experiment Exphcf
F ,hc,X,D(k):

b
$←{0, 1} ; (f, f−1)

$←F
x

$←X

h0 ← hc(f,x) ; h1
$← ({0, 1}n)×|x|

d
$←D(f, f(x),hb)

If d = b return 1 else return 0

Define the HCF advantage of D against F, hc,X as

Advhcf
F ,hc,X,D(k) = 2 · Pr

[
Exphcf

F ,hc,X,D(k)⇒ 1
]
− 1 .

We say that hc is hardcore for F on a class of distributions on input vectors X if for every X ∈ X and every PPT
distinguisher D, Advhcf

F ,hc,X,D(·) is negligible.
Note that we depart somewhat from standard treatments in that we allow a HCF to also depend on the description

of the trapdoor function (via the argument f ). This allows us to simplify our exposition.

ROBUSTNESS. We are now ready to define our new notion of robustness for HCFs. Intuitively, robust HCFs are those
that remain one-way when the input is conditioned on an (efficiently testable) event that occurs with good probability.
We expand on this below.

Definition 4.1 Let F be a TDF generator and let hc be a HCF such that hc is hardcore for F with respect to a
distribution X on input vectors. For α = α(k), we say hc is α-robust for F on X if hc is also hardcore for F with
respect to the class X[α] of α-induced distributions of X .

Robustness as we defined it is actually a combination of two different notions. To see this, first consider the
classical definition of HCFs, where hc is boolean and a single uniform input x is generated in the secuirty experiment.
Here robustness means that hc remains hardcore even when x is conditioned on an event that occurs with good
probability. (Note for example that while every bit of the input to RSA is well-known to be hardcore assuming RSA
is one-way [1], they are not even 1-robust since when we may condition on a particular bit of the input being a
fixed value.) Now observe that the definition furthermore asks for a notion of correlated-input security, meaning that
outputs of hc on correlated inputs look uniformly and independently random. (In fact, robustness asks that hc remain
hardcore even when such an input vector is conditioned on an event that occurs with good probability.) We note that
a treatment of correlated-input security for the more basic case of hash functions was concurrently initiated in [23].

It may also be interesting to explore robustness in other contexts. In particular, leakage resilience [30] and com-
putational randomness extraction (or key derivation) [29] come to mind. In these applications, robustness for large α
may be interesting.
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4.2 The Encrypt-with-Hardcore Scheme

THE SCHEME. Let Π = (K, E ,D) be a probabilistic encryption scheme, F be a TDF generator, g be a pseudorandom
generator (PRG) — see e.g. [4] for the standard definition) — and hc be a HCF. Assume that hc, g have the property
g(hcf (x)) ∈ Coinspk(|x|) for all pk output by K and all x ∈ {0, 1}∗. Define the associated “Encrypt-with-Hardcore”
deterministic encryption scheme EwHCore[Π,F , hc, g] = (K,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Algorithm K(1k):
(pk, sk)

$←K(1k)
(f, f−1)

$←K(1k)
Return ((pk, f), (sk, f−1)

Algorithm DE((pk, f), x):
r ← g(hc(f, x))
c← E(pk, f(x); r)
Return c

Algorithm DD((sk, f−1), c):
y ← D(sk, c)
x← f−1(y)
Return x

SECURITY ANALYSIS. To gain some intuition, suppose hc is hardcore for F on some distribution X on input vectors.
One might think that PRIV security of EwHCore = EwHCore[Π,F , hc, g] on X then follows by pseudorandomness of
g by IND-CPA security of Π. However, this is not true. To see this, suppose hc is a “physical” hardcore function (i.e.,
ouputs some bits of the input). Define Π′ = (K, E ′,D′) to be like Π = (K, E ,D) except that the coins consumed by E ′
are extended by one bit, which E ′ outputs in the clear and D′ ignores. That is, define E ′(pk, x; r∥b) = E(pk, x; r)∥b
andD′(sk, y∥b) = D(sk, y). Then IND-CPA security of Π′ follows from that of Π, but a straightforward attack shows
EwHCore is not PRIV on X . This is how our notion of robustness comes into play.

Theorem 4.2 Suppose Π is IND-CPA secure, hc is 2-robust for F on a distribution M on input vectors, and g is
pseudorandom. Then EwHCore[Π,F , hc, g] is PRIV-secure on M .

Note that Π can be built from any one-way trapdoor function, regardless of the input distribution on which the
former is one-way. The PRG g (which we may allow to use public randomness put in the public key of the DE scheme)
can similarly be be built from any injective one-way function (which we are already assuming), although we need the
latter to be one-way on the standard uniform distribution, which is a natural basic requirement for it that we will
need anyway to achieve security on all distributions of a given min-entropy. Thus, essentially the only cryptographic
assumption we need for security of EwHCore is security of hc. The theorem follows from combining Theorem 3.1
with the following lemma, which shows that what does follow if hc is hardcore (but not necessarily robust) is the IND
security of EwHCore.

Lemma 4.3 Suppose Π is IND-CPA, hc is hardcore for F on a distribution M on input vectors, and that g is pseu-
dorandom. Then EwHCore = EwHCore[Π,F , hc, g] is IND secure on M . In particular, let D ∈ DM be a IND
adversary against EwHCore. Then there is an IND-CPA adversary A against Π, an adversary B against hc on M , and
an adversary B′ against g such that for all k ∈ N

Advind
EwHCore,D(k) ≤ Advind-cpa

Π,A (k) + 2 ·Advhcf
F ,hc,M ,B(k) +Advprg

g,B′(k) . (1)

Furthermore, the running-times of A,B,B′ are the time to run D.

The proof is in Appendix C.
A subtle point worth mentioning is where in the proof we use the fact that the Theorem 4.3 considers IND security

of EwHCore rather than PRIV (which, as we have said, does not follow). It is in the step that uses security of the
hardcore function. If we considered PRIV security, in this step the constructed HCF adversaries against F would
need to test whether the output of the PRIV adversary against EwHCore is equal to a “target value” representing
partial information on the input to F , which these adversaries are not given. Indeed, this is exactly what caused
complications in the original analysis of the scheme of [4], who used the PRIV notion directly. (The reason they did
so is that their definitional equivalence is awkward to apply in arguing security of schemes based on one-wayness; see
Section 5.1 and Appendix A for further discussion.)
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5 Instantiations

Here we provide several instantiations of robust hardcore functions and hence of the Encrypt-with-Hardcore scheme.

5.1 Instantiations from One-Wayness

Our instantiations based on one-wayness rely on the following simple lemma, which describes how “one-way hard-
ness” on an input distribution is preserved on induced distributions.

Lemma 5.1 LetF be a TDF generator. Let X be a distribution on input vectors and let X ′ be a α-induced distribution
of X . Then for any inverter I against F on X there is an inverter I ′ against F on X ′ such that for all k ∈ N

Advowf
F ,X,I(k) ≤ 2−α ·Advowf

F ,X′,I′(k) . (2)

Furthermore, the running-time of I ′ is the time to run I .

The proof is in Appendix D.
Note that when α = O(log k) the reduction incurs a polynomial loss in advantage.

ROBUSTNESS OF A RANDOM ORACLE. In the random oracle (RO) model [5], the random oracle hash itself is a
hardcore function satisfying the properties we need.

Proposition 5.2 Let F be a OW-TDF on a distribution X on input vectors. Then a random oracle hash is O(log k)-
robust for F on X .

The proof combines Lemma 5.1 with the techniques of [2, Theorem 5.1] and is omitted here. We thus obtain
an instantiation of the Encrypt-with-Hardcore scheme in the RO model based on an input distribution X based on
any trapdoor function that is one-way on X . In fact, the “Encrypt-with-Hash” scheme of [2] can be viewed as an
optimization of this instantiation, where the trapdoor function itself is dropped (and only the outer encryption is used,
with the hash of the message as the coins). Note the these RO model schemes are in fact secure in the strongest
multi-message sense of [2], as a RO is correlated-input secure.

ROBUSTNESS OF GOLDREICH-LEVIN. In the standard model, for single-message security we can replace the RO
with the Goldreich-Levin (GL) hardcore function [21]. To define the latter, let F be a trapdoor function genera-
tor and let H : K × {0, 1}k → {0, 1}n be a function. Define its H-padded version F [H] that on input 1k returns
(f,K), (f−1,K) where (f, f−1)

$←F(1k) and K
$←K; evaluation is defined for x ∈ {0, 1}k as f(x) (i.e., eval-

uation just ignores K) and inversion is defined analogously. Define the length-i Goldreich-Levin (GL) function
GLi : {0, 1}i×k × {0, 1}k → {0, 1}i as GLi(M,x) = Mx, where Mx is the matrix-vector product of M and x
over GF (2). We recall the following.

Theorem 5.3 (Goldreich-Levin Theorem [21]) Let F [GLi] be as defined above and let X be a distribution on inputs
to F . Let D be a distinguisher against GLi. Then there is a inverter I such that for all k ∈ N

Advhcf
F [GLi],GLi,X,D

(k) ≤ 2i+3 ·Advowf
F ,X,I(k) . (3)

Furthermore, the running-time of I is the time for O(ε−4k3) executions of D where ε = Advhcf
F [GLi],GLi,X,D

(k).

Then we have the following result.

Proposition 5.4 Let F [GLi] be as defined above and suppose GLi is hardcore for F [GLi] on single-input distribution
X . Then GLi is O(log k)-robust for F [GLi] on X .
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The proof follows by combining Lemma 5.1 and Theorem 5.3. We stress that while the above proposition gives us
robust hardcore functions in the standard model, a major difference between Proposition 5.4 and Proposition 5.2 is that
the former only considers distributions on single inputs to the given trapdoor function while the latter considers vectors
of correlated inputs. This restriction is inherited by the standard-model instantiations of the Encrypt-with-Hardcore
scheme we obtain based on one-wayness. We detail these instantiations next.

ENCRYPT-WITH-HARDCORE INSTANTIATIONS FROM TRAPDOOR FUNCTIONS. In the case of trapdoor functions, to
instantiate the Encrypt-with-Hardcore scheme on plaintext distribution M one possibility is to use a TDF F that is
exponentially-hard to invert on M . Namely, we say that F is δ-hard for δ = δ(k) on input distribution X if for every
PPT inverter I , Advowf

F ,X,I(k) ≤ δ (for all sufficiently large k). Exponential hardness on X then means δ(k) = 2−Ω(k).
Theorem 5.3 combined with Proposition 5.3 tells us that if F is exponentially hard on M then it has a robust hardcore
function (namely the GL function) on M with output size Ω(k). This gives us a long enough hardcore function to
expand using a PRG. To realize the latter from F , we can also assume F is super-polynomially hard to invert on the
standard uniform distribution.

A more appealing (but strictly incomparable) way to instantiate the Encrypt-with-Hardcore scheme on plaintext
distribution M is to assume a TDF that is exponentially-hard on the standard uniform distribution and use it to build an
exponentially-hard PRG (here “exponentially-hard” is defined analogously) to use in the construction. For example, by
starting with such a TDF on {0, 1}n, Haitner et al. [24] construct an exponentially-hard PRG with seed length O(n2).
When using the resulting PRG in the Encrypt-with-Hardcore construction, the TDF then only needs to have a robust
HCF on M with output size ω(log k) rather than Ω(k), since the latter can then be expanded via the exponentially-hard
PRG to any polynomial length with super-polynomial security. For this we only need the TDF to be 2−ω(log3 k)-hard
on M , which is much better. (In principle this could be reduced to 2−ω(log2 k)-hard if the PRG construction had linear
seed length.) We make explicit the following corollary.

Corollary 5.5 Suppose F is a TDF that is exponentially-hard on the uniform distribution as well as 2−ω(log3 k)-hard
on an input distribution M . Then we obtain a PRIV secure DE scheme on M . As a consequence, if F is 2−ω(log3 k)-
hard on the class of all input distributions with min-entropy µ as well as exponentialy-hard on the uniform distribution,
then we obtain a PRIV secure DE scheme for this class.

Obtaining DE from one-way TDFs rather than permutations is new to this work.

ENCRYPT-WITH-HARDCORE INSTANTIATIONS FROM TRAPDOOR PERMUTATIONS. In the case of trapdoor per-
mutations, instead of assuming a TDP generator F that is exponentially hard to invert on input distribution X , we
would like to use Blum-Micali-Yao iteration [6, 38] to extract many simultaneously hardcore bits assuming F is
only super-polynomially hard to invert on X . The catch is that to use the latter we will actually need to assume
that F is super-polynomially hard to invert on all (efficiently sampleable) permutation distributions of X , i.e., dis-
tributions obtained by a re-labeling of the points of X . (But still there is no inherent restriction on H∞(X) other
than H∞(X) = ω(log k).) Namely, let F be a trapdoor permutation generator and hc be a hardcore bit for F . For
i ∈ N denote by F i the trapdoor permutation generator that iterates F i-many times. Define the Blum-Micali-Yao
(BMY) [6, 38] hardcore function for F i via

BMY i[GL](f, x) = hc(x)∥hc(f(x))∥ . . . ∥hc(f i−1) .

The following shows how Blum-Micali-Yao iteration expands one robust hardcore bit to many.

Proposition 5.6 Let F be a trapdoor permutation generator, and let X be an input distribution such thathc is α-robust
for F on all efficiently sampleable permutation distributions of X . Then for any polynomial i, BMY i[hc] is α-robust
for F i[hc] on X .

The proof combines the hybrid argument of [6, 38] with Proposition 5.4 and the observation that a permutation
distribution of an α-induced sub-distribution of X is an α-induced sub-distribution of a permutation distribution of X
(in other words, the permuting and conditioning “commutes”).

In particular, by taking hc = GL (the Goldreich-Levin hardcore bit) above, we have the following corollary.
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Corollary 5.7 Suppose F is a TDP generator that is one-way on all permutation distributions of an input distribution
M . Then we obtain a PRIV secure DE scheme on M . As a consequence, if F is one-way on the class of all input
distributions with min-entropy µ, then we obtain a PRIV secure DE scheme for this class.

Note that we do not need to use a separate PRG for this instantiation, since we already obtain a HCF with arbitrary
polynomial length. This scheme is exactly the one given in [4]. However, we believe our proof based on robustness
properties of Goldreich-Levin is simpler and more modular, giving more insight into the scheme (though we note that
the robustness aspect is somewhat implicit in the security proof of [4], in particular in their notion of “PRGs with help”
and their using the “balanced boolean” version of PRIV in showing how to achieve it via GL bits). It also reveals why
the Goldreich-Levin bit “works” in the construction. Indeed, any robust hardcore bit for the TDP would do.

INSTANTIATIONS FROM ONE-WAYNESS ON (JUST) UNIFORM INPUTS. To instantiate the above schemes on all input
distributions of some min-entropy µ, we can in fact obtain the required assumptions from (respectively) a TDF or
TDP that is sufficiently hard to invert on the standard uniform distribution, where the required hardness depends on
µ. This follows by Lemma 5.1 and a technical lemma [17, Lemma 4] saying that every distribution on {0, 1}k with
min-entropy k − α can be viewed as an α-induced distribution of the uniform distribution on {0, 1}k, although the
corresponding event may not be efficiently testable (which is not needed for Lemma 5.1, though). Indeed, it follows
that, on inputs of min-entropy µ = k − α, for we can use (respectively) TDF that is 2−α−ω(log3 k)-hard on uniform
inputs (where we assume this is at least exponential hardness) or a TDP that is 2−α−ω(log k)-hard on uniform inputs.

While less general, an advantage of this approach is that it implies security even for input distributions that are not
necessarily efficiently sampleable. As a consequence, we are able to apply the equivalence between single-mesage
PRIV security and unbounded multi-message PRIV security to for block sources proven in [7] to the resulting DE
schemes without any “conditional re-sampleability” requirement on the block source.

5.2 Instantiations from Lossiness

Peikert and Waters [31] showed that LTDFs admit a simple, large hardcore function in the standard model, namely a
pairwise-independent hash function. We show robustness of the latter based on the following simple lemma, which
says that min-entropy of a given input distribution is preserved on sub-distributions induced by an event that occurs
with good probability.

Lemma 5.8 Let X be a random variable with H∞(X) ≥ µ, and let X ′ be a random variable where PX′ is a an
α-induced sub-distribution of PX . Then H∞(X ′) ≥ µ− α.

The proof is in Appendix D.
By combining Lemma 2.1 with the “chain rule” for average conditional min-entropy [13, Lemma 2.2], it follows

that if F is a lossy trapdoor function generator with residual leakage s, then a pairwise-independent hash function
H : K×{0, 1}k → {0, 1}r is hardcore forF [H] on any single-input distribution X with min-entropy s+r+2(log 1/ε)
for negligible ε (as compared to [31, Lemma 3.4], we simply observe that the argument does not require the input to
be uniform). Then, using Lemma 5.8 we furthermore have the following.

Proposition 5.9 Let LTDF be a LTDF generator with residual leakage s, and let H : K × {0, 1}k → {0, 1}r be a
pairwise-independent hash function. Then H is a O(log k)-robust hardcore function for F [H] on any single-input
distribution X with min-entropy s+ r + 2(log 1/ε) for negligible ε.

The corresponding instantiation of the Encrypt-with-Hardcore scheme requires an LTDF with residual leakage
s ≤ H∞(X) − 2 log(1/ε) − r. In particular, we need r = k so the hardcore function can be expanded using a PRG,
thus the LTDF should lose a constant fraction of its input. Previously, Boldyreva et al. [7] gave a construction of DE
from lossy trapdoor functions that can be viewed as an optimization of the one we obtain here; namely it encrypts
under (an augmented version of) the LTDF directly and does not use the “outer” encryption scheme at all. Its analysis
requires the “Crooked” LHL of Dodis and Smith [14] rather than the standard one but gets rid of r in the above bound
leading to a better requirement on lossiness or input entropy.
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6 Bounded Multi-Message Security for Deterministic Encryption

In this section, we propose a new notion of “q-bounded ” multi-message security for DE and provide constructions
meeting it (for long enough messages) from any sufficiently lossy trapdoor function.

6.1 The New Notion and Variations

THE NEW NOTION. The notion of q-bounded multi-message security (or just q-bounded security) for DE is quite
natural, and parallels the treatment of “bounded” security in other contexts (e.g. [9]). In a nutshell, it asks for security
on up to q arbitrarily correlated but high-entropy messages (where we allow the public-key size to depend on q). More
formally, fix an encryption scheme Π = (K, E ,D). For q = q(k) and µ = µ(k), let Mq,µ be the class of distributions
on message vectors Mµ,q = (Mµ,q

1 , . . . ,Mµ,q
q ) where H∞(Mµ,q

i ) ≥ µ and for all 1 ≤ i ≤ q and Mµ
1,q, . . . ,M

µ
q,q are

distinct with probability 1. We say that Π is q-bounded multi-message PRIV (resp. IND) secure for µ-sources if it is
PRIV (resp. IND) secure for Mq,µ. Note that our definitional treatment here is less general than in Section 3 in that
we just define the strongest possible notion of q-bounded multi-message security, i.e., one that puts the least possible
restrictions on the message-vector distributions subject to the fact that they have a most q components. We do this for
simplicity since all our results in this section concern such a notion.

SEMANTIC SECURITY VERSUS INDISTINGUISHABILITY. We note that Theorem 3.1 (combined with Lemma 5.8)
tells us that PRIV on Mq,µ is equivalent to IND on Mq,µ−2.

UNBOUNDED MULTI-MESSAGE SECURITY FOR q-BLOCK SOURCES. Generalizing the approach of Boldyreva et
al. [7] for single-message security, we also consider unbounded multi-message security for what we call a q-block
source, a generalization of a block-source [8] where every q-th message introduces some “fresh” entropy. More
formally, fix an encryption scheme Π = (K, E ,D). For q = q(k), n = n(k), and µ = µ(k), let Mq,n,µ be the class
of distributions on message vectors M q,n,µ = (M q,n,µ

1 , . . . ,M q,n,µ
qn ) such that H∞(Xqi+j | X1 = x1, . . . , Xqi−1 =

xqi−1) ≥ µ for all 1 ≤ i ≤ n, all 0 ≤ j ≤ q − 1, and all outcomes x1, . . . , xqi−1 of X1, . . . , Xqi−1. We say that
Π is q-bounded multi-message PRIV (resp. IND) secure for (µ, n)-block-sources if Π is PRIV (resp. IND) secure on
Mq,n,µ. Using a similar argument to [7, Theorem 4.2], one can show equivalence of PRIV on Mq,n,µ to IND on Mq,n,µ

(essentially, this is done by viewing each “block” as consisting of q components in the hybrid arguments). However,
as in [7], when considering efficiently sampleable message distributions one must make some extra restrictions for
this to hold (which are immaterial for our actual constructions since they are secure even for inefficient distributions).
In any case, we omit formalizing this since one can prove our constructions secure for q-block sources directly.

6.2 Extensions to the Crooked Leftover Hash Lemma

Note that we cannot trivially achieve q-bounded security by running say q copies of a scheme secure for one message
in parallel (and encrypting the i-th message under the i-th public key), since this approach (if it works) would lead to
a stateful scheme. The main technical tool we use to achieve the notion is a generalization of the classical Leftover
Hash Lemma (LHL) to t-many correlated sources, following [28] who considered the case t = 2.

It turns out that for our “optimized” scheme we need to use a similar generalization of the “Crooked” LHL due
to Dodis and Smith [14] that is even further generalized to the case that the hash function is a t-wise ‘δ-dependent”
function. Namely, say that H : K ×D → R is t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

∆((H(K,x1), . . . , H(K,xt)), (U1, . . . , Ut)) ≤ δ ,

where K
$←K and U1, . . . , Ut are independent and uniform over R.

Since our generalization of the classical LHL is a special case of our generalization of the Crooked LHL, we just
state the latter here.
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Lemma 6.1 (CLHL for Correlated Sources) LetH : K×D → R be a 2t-wise δ-dependent function for t > 0 with
range R, and let f : R → S be a function. Let X = (X1, . . . , Xt) where the Xi are random variables over D such
that H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and moreover Pr [Xi = Xj ] = 0 for all 1 ≤ i ̸= j ≤ t. Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1

2

√
|S|t(t22−µ + 3δ) (4)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and independent over R (recall that functions

operate on vectors component-wise).

Note that the lemma implies the corresponding generalization of the classical LHL by taking H to have range S
and f to be the identity function.

The proof of the above lemma, which extends the proof of the Crooked LHL in [7], is in Appendix E.

Remark 6.2 We can further extend Lemma 6.1 to the case of average conditional min-entropy using the techniques
of [13]. Such generalization will be needed for our basic scheme. Such a generalization (without considering corre-
lated sources) is similarly useful in the context of randomized encryption from lossy TDFs [31].

6.3 The Basic Scheme

By Theorem 4.2, in order to instantiate the Encrypt-with-Hardcore scheme to achieve q-bounded security, it suffices
for the trapdoor function F to have a hardcore function hc that is robust for F on Mq,µ. We call such a hardcore
function q-bounded correlated-input secure. The following shows that in the case of sufficiently lossy TDFs, this
notion is achievable for any polynomial q.

Proposition 6.3 For any q, let LTDF = (F ,F ′) be an LTDF generator with input length n and residual leakage
s, and let H : K × D → R where r = log |R| be a 2q-wise indpendent hash function. Then H is a q-bounded
correlated-input secure hardcore function for F on any input distribution X = (X1, . . . , Xq) such that H∞(X) ≥
q(s+ r) + 2 log q + 2 log(1/ε)− 2 for negligible ε.

Proof: The first step in the proof is to switch the HCF experiment to execute not (f, f−1)
$←F(1k) but f ′ ← F ′(1k).

Now, by the “chain rule” for average conditional min-entropy from [13], we have H̃∞(X | f ′(X1) . . . , f
′(Xq)) ≥

H∞(X)− qs. We can conclude by applying Lemma 6.1 coupled with Remark 6.2 with t = q.

Note that in the corresponding instantiation of the Encrypt-with-Hardcore scheme, we take r = k in order to
expand the latter using a PRG, and thus need (H∞(X) − 2 log q − log(1/ε))/q − k ≥ s. In particular, F must lose
a Ω(1 − 1/q) fraction of its input; concretely, the r term roughly puts a factor 2 on q here (or we need to increase n
by a factor 2). The DDH-based construction of Peikert and Waters [31], the Paillier-based one of [7, 18], and the one
from d-linear of [18] can all satisfy this requirement for any polynomial q.

6.4 The Optimized Scheme

We show that by extending some ideas of [7], we obtain a more efficient DE scheme meeting q-bounded security that
achieves better parameters.

INTUITION AND PRELIMINARIES. Intuitively, for the optimized scheme we modifying the scheme of [7] to first pre-
process an input message using a 2q-wise independent permutation (instead of pairwise as in [7]). However, there are
two issues to deal with here. First, for q > 1 such a permutation is not known to exist (in an explicit and efficiently
computable sense). Second, Lemma 6.1 applies to t-wise independent functions rather than permutations. (In the case
t = 2 as considered in [7] the difference turns out to be immaterial.)
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To solve the first problem, we turn to 2q-wise “δ-dependent” permutations (as constructed in e.g. [27]). Namely,
say that a permutation H : K ×D → D is t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

∆((H(K,x1), . . . , H(K,xt)), (P1, . . . , Pt)) ≤ δ ,

where K
$←K and P1, . . . , Pt are defined iteratively by taking P1 to be uniform on D and, for all 2 ≤ i ≤ t, taking

Pi to be uniform on R \ {p1, . . . , pi−1} where p1, . . . , pi−1 are the outcomes of P1, . . . , Pi−1 respectively.
To solve the second problem, we use the following lemma, which says that a t-wise δ-dependent permutation is a

t-wise δ′-dependent function where δ′ is a bit bigger than δ.

Lemma 6.4 Suppose H : K × D → D is a t-wise δ-dependent permutation for some t ≥ 1. Then H is a t-wise
δ-dependent function for δ′ = δ + t2/|D|.

Thr proof uses the fact that the distribution of (P1, . . . , Pt) equals the distribution of (U1, . . . , Ut) | DIST where
DIST is the event that U1, . . . , Ut are all distinct and then applies a union bound. It will be useful to now restate
Lemma 6.1 in terms of δ-dependent permutations, which follows by combining Lemma 6.1 and Lemma 6.4.

Lemma 6.5 (CLHL for Correlated Sources with Permutations) Let H : K × D → D be a δ-dependent t-wise
permutation for t > 0 with range R, where δ = t2/|D|. Let f : R → S be a function. Let X = (X1, . . . , Xt) where
the Xi are random variables over D such that H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and moreover Pr [Xi = Xj ] = 0 for
all 1 ≤ i ̸= j ≤ t. Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1

2

√
7|S|tt22−µ (5)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and independent over R (recall that functions

operate on vectors component-wise).

It is interesting to note here that the the bound in Equation 5 is essentially as good as the one in Equation 4.
At first one might not expect this to be the case. Indeed, when the classical LHL is extended to “imperfect” hash
functions [37, 12], the error probability must be taken much smaller than 1/|R|, where R is the range of the hash
function. But in Lemma 6.1 we have δ = t2/|D|, which is large compared to 1/|D| (where D the range of the hash
function in our case as it is a permutation). The reason we can tolerate this is that it is enough for t2/|D| to be much
smaller than 1/|R| where R is the output range of f in the lemma, which is indeed the case in applications. In other
words, the Crooked LHL turns out to be more tolerant than the classical one in this respect.

THE CONSTRUCTION. We now detail our construction. Let LTDF = (F ,F ′) be an LTDF and let P : K × {0, 1}k →
{0, 1}k be an efficiently invertible family of permutations on k bits. Define the associated deterministic encryption
scheme Π[LTDF,P] = (K,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Algorithm K(1k):
(f, f−1)

$←F(1k) ; K $←K
Return ((f,K), (f−1,K))

Algorithm DE((f,K), x):
c← f(P(K,x))
Return c

Algorithm DD((sk, f−1), c):
x← f−1(P−1(K, c))
Return x

We have the following result.

Theorem 6.6 Suppose LTDF is a lossy trapdoor funtion on {0, 1}n with residual leakage s, and let q, ε > 0. Suppose
P is a 2q-wise δ-dependent permutation on {0, 1}n for δ = t2/2n. Then for any q-message IND adversary D with
min-entropy µ ≥ qs+ 2 log q + log(1/ε) + 5, there is a LTDF distinguisher D such that for all k ∈ N

Advind
Π[LTDF,P],A(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running-time of D is the time to run A.
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Proof: The first step in the proof is to switch the HCF experiment to execute not (f, f−1)
$←F(1k) but f ′ ← F ′(1k).

We can conclude by applying Lemma 6.5 with t = 2q andH = P .

An efficiently invertible 2q-wise δ-dependent permutation on {0, 1}n for δ = t2/2n can be obtained from [27]
using key length nt+ log(1/δ) = n(t+ 1)− 2t.

Now, combining Theorem 6.6 with Theorem 3.1 and Lemma 5.8 (extended to message vectors rather than single-
input distributions) gives us bounded multi-message PRIV (rather than IND) security for any distribution on message
vectors of size q with sufficient entropy. We make explicit the following corollary.

Corollary 6.7 Suppose LTDF is a lossy trapdoor function on {0, 1}n with residual leakage s. Then we obtain a
q-bounded multi-message PRIV secure DE scheme for the class of distributions on {0, 1}n with min-entropy µ ≥
qs+ 2 log q + 2 log(1/ε) + 7 for negligible ε.

Comparing to Proposition 6.3, we see that we have dropped the r in the entropy bound (indeed, there is no
hardcore function here). This translates to savings on the input entropy or lossiness requirement on the trapdoor
function. Namely, while we still need to lose a Ω(1 − 1/q) fraction of the input, we get rid of the factor 2 on q. We
also note that we can prove that the optimized scheme meets our notion of unbounded multi-message PRIV security
on q-block sources of the same entropy directly by using our precise definitional equivalence, as follows. First, its IND
security on q-block sources follows by extending Lemma 6.1 to q-block sources by a hybrid argument as in the case of
the original LHL [39]. Then, its PRIV security on q-block sources (of 2 bits greater entropy) follows by Theorem 3.1
after extending Lemma 5.8 to show that a 2-induced distribution of a q-block source with min-entropy µ is a q-block
source with min-entropy µ− 2.

DISCUSSION. We believe that q-bounded security better illuminates the technical gap between achieving unbounded
security for DE in the RO and standand models. In particular, note that for an unbounded number of arbitrarily
correlated messages the information-theoretic approach we use to achieve q-bounded multi-message security breaks
down (since there would not be enough randomness in the key plus the inputs to extract). One approach towards
achieving unbounded security in the standard model would be to give a computational analogue of Lemma 6.1 (or
rather, the version in the context of the “standard” LHL) for an unbounded number of arbitrarily correlated sources.
We consider finding a hash function (in the standard model) that satisfies such an analogue to be a very interesting
open problem. Some partial results in this direction were obtained recently in [23].
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A Comparison with the Approach of Prior Work

Here we discuss how to prove PRIV security of the Encrypt-with-Hardcore scheme when working with the original
definitional equivalence in [4, 7] in terms of entropy levels. In particular, we argue it then becomes awkward to prove
security of instantiations based on one-wayness. Testifying to this fact [4] did not use their definitional equivalence to
IND at all in proving security of their scheme. For simplicity, we just deal here with single-message security.

First, let us rephrase some definitions from Section 4.1 in terms of entropy levels. Let F be a trapdoor function
and hc a hardcore function. Denote by Xℓ the class of all input distributions X where H∞(X) ≥ ℓ, and suppose hc is
hardcore for F on Xℓ. Then we say hc is α-entropically robust for Xℓ if hc is also hardcore for F on Xℓ−α. Using the
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definitional equivalences proven in [4, 7] and an analogous argument to the proof of Theorem 4.2, one can show that
if hc is 2-entropically robust for Xℓ then EwHCore is PRIV-secure on Xℓ.

Now let us consider proving PRIV security of the instantiations based on one-wayness in Section 5.1. For this,
we need to show that if a trapdoor function is one-way on Xℓ then it remains one-way on Xℓ−2. By Lemma 5.1,
this reduces showing that given any input distribution X ′ ∈ Xℓ−α there is an input distribution X ∈ Xℓ that is
distributed like X ′ with probability about 2−α. A way to do this is to “mix” (i.e., take a convex combination of) X ′

with the uniform distribution. (We stress that [4] did not take such an approach, but instead used the PRIV definition
directly in the security proof of their scheme; the following represents a way they could have applied their definitional
equivalence.) We then get the following:

Proposition A.1 Let X ′ ∈ Xℓ−α be a random variable on {0, 1}k, for any 1 ≤ ℓ < k and 0 ≤ α ≤ ℓ− 1 . Then there
is a random variable X ∈ Xℓ and an event E such that Pr [ E ] = 2−α−1 and PX′ = PX | E .

Proof: Define X to be such that PX = 2−α−1 · PX′ + (1− 2−α−1) · PU where U is uniform on {0, 1}k. Then there
is an event E as required: we can sample from X by first flipping a coin that is heads with probability 2−α−1 and then
sample from X ′ if so and otherwise U , so E is the event that the coin is heads. Furthermore, for any x ∈ {0, 1}k

PX(x) = 2−α−1 · PX′(x) + (1− 2−α−1) · PU (x)

≤ 2−α−1 · 2−ℓ+α + 2−k

= 2−ℓ−1 + 2−k

≤ 2−ℓ ,

where on the last line we use that ℓ < k. So H∞(X) ≥ ℓ as required.

This gives us what we want for ℓ < k. However, the proposition does not easily extend to the case that ℓ = k.
Intuitively, the problem is that when mixing X with the uniform distribution we always end up with something that has
min-entropy appreciably less than k. The case ℓ = k is needed to show security of DE schemes for uniform plaintexts
based on the standard assumptions of one-way trapdoor functions or permutations secure for uniform inputs; this case
has been recognized as important in [4, 26]. The case ℓ = k can ultimately be handled by appealing to a completely
different technical lemma [17, Lemma 4]. On the other hand, our precise definitional equivalence allows us to avoid
using any of these auxilliary claims (which have nothing to do with one-wayness) in all cases entirely and apply
Lemma 5.1 directly. Indeed, to show PRIV security on Xℓ we only need to show on-wayness on induced distributions
of slightly less min-entropy (rather than all such distributions), which is very easy and is what Lemma 5.1 gives us by
definition.

B Proof of Theorem 3.1

We focus on the IND to PRIV implication; the other direction is straightforward.8 Following [4], the high-level
intuition for the proof is as follows. For the given distribution M on message vectors, we first show that it suffices
to consider PRIV adversaries for which A2 outputs (x, t) where t is boolean. Now, we would like to use the fact
if t is easy to guess from the encryption of x then the encryption of x conditioned on (1) the output (x, t) of A2

being such that t = 1, or (2) the output (x, t) of A2 being such that t = 0 are easy to distinguish; indeed, these are
induced distributions of M (viewing the binary t as the random variable indicating the event E). However, one of
these distributions may be hard to sample from and have low entropy. Therefore, we show it additionally suffices to
consider PRIV adversaries on M for which t is not just boolean but also balanced, meaning the probability it is 0 or
1 is about the same. Then, we can easily sample from the above-mentioned distributions by repeatedly running A.

8The idea for the latter is to have the constructed PRIV adversary sample according to M and let the partial information be whether the
corresponding event for the induced complementary distributions of the given IND adversary occured or not; note that here we use that these
induced distributions are complementary.
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REDUCTION TO THE BOOLEAN CASE. Call a PRIV adversary A boolean if it outputs test strings of length 1. We first
show that is suffices to consider boolean PRIV adversaries (this was previously shown in both [4] and [7]).

Proposition B.1 Let Π = (K, E ,D) be an encryption scheme and A ∈ AM be a PRIV adversary that outputs test
strings of length ℓ. Then there is a boolean PRIV adversary B ∈ AM such that

Advpriv
Π,A(k) ≤ 2 ·Advpriv

Π,B(k) .

Furthermore, the running-time of B is the time to run A plus O(ℓ).

Proof: The proof is identical to an argument in [11] for the information-theoretic setting. Adversary B works as
follows:

Algorithm B1(1
k):

r
$←{0, 1}n

Return r

Algorithm B2(r):
(x, t)

$←A1(1
k)

Return (x, ⟨t, r⟩)

Algorithm B3(pk, c, r):
g

$←A3(pk, c)
Return ⟨g, r⟩

For d ∈ {0, 1}, let Ad denote the event Exppriv-d
Π,A (k)⇒ 1 and similarly Bd denote Exppriv-d

Π,B (k)⇒ 1. Then

Advpriv
Π,B(k) = Pr [B1 ]− Pr [B0 ]

=
(
Pr [A1 ] +

1

2
· (1− Pr [A1 ])

)
−

(
Pr [A0 ] +

1

2
· (1− Pr [A0 ])

)
=

1

2
· (Pr [A1 ]− Pr [A0 ])

=
1

2
·Advpriv

Π,A(k) .

The claimed running-time of B is easy to verify.

REDUCTION TO THE BALANCED BOOLEAN CASE. As in [4] the next step is to show that it in fact suffices to consider
boolean PRIV adersaries that are balanced, meaning the probability the partial information is 1 or 0 is approximately
1/2. Namely, call a boolean PRIV adversary A = (A0, A1, A2) δ-balanced [4] if for all b ∈ {0, 1}∣∣∣∣Pr [ t = b : (x, t)

$←A1(1
k, state)

]
− 1

2

∣∣∣∣ ≤ δ

for all state output by A0.

Proposition B.2 Let Π = (K, E ,D) be an encryption scheme and B ∈ AM be a boolean PRIV adversary. Then for
any 0 ≤ δ < 1/2 there is a δ-balanced boolean PRIV adversary B′ ∈ AM such that

Advpriv
Π,B(k) ≤

(
2

δ
+ 1

)
·Advpriv

Π,B′(k) .

Furthermore, the running-time of B′ is the time to run B plus O(1/δ).

Proof: As compared to [4] we give a simplified proof due to [10] (which also leads to better concrete security), where
for simplicity we assume 1/δ is an integer. Adversary B′ works as follows:
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Algorithm B1(1
k):

(x, t)
$←A1(1

k)

i
$← [2(1/δ) + 1]

If i ≤ 1/δ then return (x, 0)
Else if i ≤ 2(1/δ) then return (x, 1)
Else return (x, t)

Algorithm B2(pk, c):
g

$←A2(pk, c)

j
$← [2(1/δ) + 1]

If j ≤ δ then return 0
Else if j ≤ 2(1/δ) then return 1
Else return g

Note that B is δ-balanced, since for all b ∈ {0, 1}∣∣∣∣Pr [ t = b : (x, t)
$←A1(1

k)
]
− 1

2

∣∣∣∣ ≤ 1

2(1/δ) + 1
.

As before, for d ∈ {0, 1}, let Ad denote the event Exppriv-d
Π,A (k)⇒1 and similarly Bd denote Exppriv-d

Π,B (k)⇒1. Then

Advpriv
Π,B(k) = Pr [B1 ]− Pr [B0 ]

= Pr [B1 | E ]− Pr [B0 | E ] + Pr
[
B1 | E

]
− Pr

[
B0 | E

]
= Pr [B1 | E ]− Pr [B0 | E ] +

1

2
− 1

2

=
1

2
·Advpriv

Π,A(k) .

As before, the claimed running-time of B′ is easy to verify.

REDUCTION TO DISTRIBUTION HIDING. Similar to [4] the final component for the proof is as follows.

Proposition B.3 Let Π = (K, E ,D) be an encryption scheme and B ∈ AM be a δ-balanced boolean PRIV adversary.
Then there is an IND adversary D ∈ DM∗[log(1/(1/2−δ))] such that

Advpriv
Π,B(k) ≤ Advind

Π,D(k) +

(
1

2
+ δ

)−k

.

In particular, D samples from message distributions that are statistically 2Ω(k)-close to complementary log(1/(1/2−
δ))-induced message distributions of B. Furthermore, the running-time of D is the time for at most k executions of
B.

Proof: Adversary D works as follows.

Algorithm D1(b):
For i = 1 to k do:

(x, t)
$←B1(1

k)
If t = b then return x

Return x

Algorithm D2(pk, c):
g

$←B2(pk, c)
Return g

For the analysis, let BAD denote the event that the final return statement is executed. Let CORRECTD be the event
that b = d when D is executed in the PRIV experiment with Π and simiarly let CORRECTB denote the event that
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t = g when B is executed in the PRIV experiment with Π. Then

Advpriv
Π,D(k) = Pr [ CORRECTD | b = 1 ] + Pr [ CORRECTD | b = 0 ]

≥
(
Pr

[
CORRECTD | b = 1 ∧ BAD

]
+ Pr

[
CORRECTD | b = 0 ∧ BAD

])
· Pr

[
BAD

]
= (Pr [ CORRECTB | t = 1 ] + Pr [ CORRECTB | t = 0 ]) · Pr

[
BAD

]
= Advpriv

Π,B(k) · Pr
[
BAD

]
≥ Advpriv

Π,B(k)

(
1−

(
1

2
+ δ

))−k

≥ Advpriv
Π,B(k)−

(
1

2
+ δ

)−k

,

where the second-to-last line uses that B is δ-balanced. The claimed running-time of D is easy to verify. It remains
to argue that D ∈ DM∗[log(1/(1/2−δ))]. Let MD,i be the message distribution sampled by D1 on input b = i for
i ∈ {0, 1} and similarly let MB,i be the message distribution sampled by B1 when t = i in its output for i ∈ {0, 1}.
Observe that MB,0 and MB,1 are complementary log(1/(1/2− δ))-induced distributions of the message distribution
of B, with corresponding events t = 0 and t = 1 respectively. Furthermore, we have MD,i | BAD = MB,i for
i ∈ {0, 1}. Since Pr [ BAD ] ≤ (1/2 + δ)−k, it follows that MD,i | BAD is statistically 2−Ω(k)-close to MB,i for
i ∈ {0, 1}, which concludes the proof.9

Theorem 3.1 now follows by combining Propositions B.1, B.2, and B.3 with δ = 1/4.

C Proof of Lemma 4.3

We first note that it is not hard to see that if a robust hardcore function is expanded via a pseudorandom generator
it remains robust. Thus, in the following we ignore the pseudorandom generator and “absorb” it into the hardcore
function.

Let Game G1 correspond to the IND experiment with D against EwHCore, and let Game G2 be like G1 except
that the coins used to encrypt the challenge plaintext vector are truly random. For i ∈ {0, 1} let Bi = (Bi

1, B
i
2) be the

HCF adversary against F hc defined via

Algorithm Bi
1(1

k):
x

$←D1(i)
Return x

Algorithm Bi
2(pk,y,h):

c← E(pk,y;h)
d

$←D2(pk, c)
Return d

Then

Pr
[
GD

1 ⇒ b
]

= Pr
[
GD

1 ⇒ b | b = 1
]
+ Pr

[
GD

1 ⇒ b | b = 0
]

= Pr
[
GD

2 ⇒ b | b = 1
]
+Advhcf

F ,hc,B1(k)

+ Pr
[
GD

2 ⇒ b | b = 0
]
+Advhcf

F ,hc,B0(k)

≤ Pr
[
GD

2 ⇒ b
]
+ 2 ·Advhcf

F ,hc,B(k)

where we take B to be whichever of B0, B1 has the larger advantage. Now define IND-CPA adversary A against Π
via

9Note that as compared to [4] our approach avoids having to analyze the min-entropy of D, which is more involved.
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Algorithm A1(pk):
x0

$←D1(0)

x1
$←D1(1)

Return (x0,x1)

Algorithm A2(pk, c):
d

$←D2(pk, c)
Return d

Then Equation 1 follows from taking into account the definition of the advantages of D,A.

D Proofs of Simple Lemmas

Here we provide the proofs of Lemma 5.1 and Lemma 5.8. One should note the commonalities in the proofs, showing
the connection between the analysis of our corresponding DE instantiations from one-wayness and lossiness.

Proof: (of Lemma 5.1) Let I ′ be the inverter that simply runs I on its input, and let E be the corresponding event to
X ′. Let G be the event that Expowf

F ,X′,I′(k)⇒ 1. Then

Advowf
F ,X′,I′(k) = Pr [G | E ] · Pr [ E ] + Pr

[
G | E

]
· Pr

[
E

]
≥ Pr [G | E ] · Pr [ E ]

= Advowf
F ,X,I(k) · 1/2−α ,

from which Equation 2 follows by re-arranging terms. Note that the proof did not need to use that E is efficiently
testable.

Proof: (of Lemma 5.8) Suppose not, and let E be the corresponding event to X ′. Then there exists an x′ such that
PX′(x′) > 2−µ+α. But then

PX(x′) ≥ Pr
[
X = x′ | E

]
· Pr [ E ] + Pr

[
X = x′ | E

]
· Pr

[
E

]
≥ Pr

[
X = x′ | E

]
· Pr [ E ]

> 2−µ+α · 2−α

= 2−µ

a contradiction.

E Proof of Lemma 6.1

Writing Ek for the expectation over the choice of k according to the distribution of K, it follows that

∆
(
(K, f(H(K,X))), (K, f(U))

)
= Ek

[
∆
(
f(H(k,X)), f(U)

)]
≤ 1

2
Ek

[√
|S|t ·D

(
f(H(k,X)), f(U)

)]
≤ 1

2

√
|S|t · Ek

[
D
(
f(H(k,X))), f(U)

)]
where the first inequality is by Cauchy-Schwarz and the second inequality is due to Jensen’s inequality. We will show
that

Ek

[
D
(
f(H(k,X)), f(U)

)]
≤ t22−µ + 6t22−r + 3δ ,
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which completes the proof. Write Y = H(k,X) for an arbitrary but fixed k. Then

D
(
f(Y), f(U))

)
=

∑
s

(
Pf(Y)(s)− Pf(U)(s)

)2
=

∑
s

Pf(Y)(s)
2 − 2

∑
s

Pf(Y)(s)Pf(U)(s) + Col(f(U)) .

For a set Z ⊆ Rt, define δr,Z to be 1 if r ∈ Z and else 0. For s ∈ St we can write Pf(Y)(s) =
∑

x PX(x)δH(k,x),f−1(s)

and thus ∑
s

Pf(Y)(s)
2 =

∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(∑
x′

PX(x′)δH(k,x′),f−1(s)

)
=

∑
s,x,x′

PX(x)PX(x′)δH(k,x),f−1(s)δH(k,x′),f−1(s) ,

so that

Ek

[∑
s

Pf(Y)(s)
2
]

=
∑
s

∑
x,x′

PX(x)PX(x′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

=
∑
s

∑
∃i,j, x[i]=x′[j]

PX(x)PX(x′)

+
∑
s

∑
∀i,j, x[i]̸=x′[j]

PX(x)PX(x′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

≤ t22−µ +Col(f(U)) + t22−r + δ

where the first term is by a union bound over all 1 ≤ i, j ≤ t and for the remaining terms we use the δ-almost 2t-wise
independence ofH and note that

Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)] = Pr
[
f(H(K,x)) = f(H(K,x′))

]
.

Similarly, ∑
s

Pf(Y)(s)Pf(U)(s) =
∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(
1

|R|
∑
u

δu,f−1(s)

)
=

1

|R|
∑
s

∑
u,x

PX(x)δH(k,x),f−1(s)δu,f−1(s)

so that

Ek

[∑
s

Pf(Y)(s)Pf(U)(s)
]

=
1

|R|
∑
s

∑
u,x

PX(x)Ek[δH(k,x),f−1(s)δu,f−1(s)]

≥ Col(f(U))− δ

using δ-almost t-wise independence ofH. By combining the above, it follows that

Ek

[
D
(
f(Y), f(U)

)]
≤ t22−µ + 3δ

which was to be shown.

25


	Introduction
	Background and Motivation
	Our Results

	Preliminaries
	Deterministic Encryption and its Precise Definitional Equivalence
	Deterministic Encryption and its Security
	A Precise Definitional Equivalence

	Deterministic Encryption from Robust Hardcore Functions
	Robust Hardcore Functions
	The Encrypt-with-Hardcore Scheme

	Instantiations
	Instantiations from One-Wayness
	Instantiations from Lossiness

	Bounded Multi-Message Security for Deterministic Encryption
	The New Notion and Variations
	Extensions to the Crooked Leftover Hash Lemma
	The Basic Scheme
	The Optimized Scheme

	Comparison with the Approach of Prior Work
	Proof of Theorem 3.1
	Proof of Lemma 4.3
	Proofs of Simple Lemmas
	Proof of Lemma 6.1

