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Abstract

We initiate the formal study of functional encryption by giving precise definitions of the concept and
its security. Roughly speaking, functional encryption supports restricted secret keys that enable a key
holder to learn a specific function of encrypted data, but learn nothing else about the data. For example,
given an encrypted program the secret key may enable the key holder to learn the output of the program
on a specific input without learning anything else about the program.

We show that defining security for functional encryption is non-trivial. First, we show that a natural
game-based definition is inadequate for some functionalities. We then present a natural simulation-based
definition and show that it (provably) cannot be satisfied in the standard model, but can be satisfied in the
random oracle model. We show how to map many existing concepts to our formalization of functional
encryption and conclude with several interesting open problems in this young area.
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1 Introduction

Encryption is a method for a user to securely share data over an insecure network or storage site. Before the
advent of public key cryptography, a widely held view was that for two users to communicate data confiden-
tially they would need to a priori establish a mutually held secret key k. While this might be acceptable for
some small or tightly knit organizations, such a solution was clearly infeasible for larger networks such as
today’s Internet consisting of billions of users. Over thirty years ago, Diffie and Hellman [DH76a, DH76b]
put forth a radically new idea in the concept of public key cryptography, where two parties can securely com-
municate with each other without having an a prior mutual secret — radically challenging the conventional
wisdom of the time.

Today public key encryption is an invaluable tool and its use is ubiquitous in building tools from secure
web communication (e.g., SSH, SSL), to disk encryption, and secure software patch distribution. However,
there is an ingrained view that: (1) Encryption is a method to send a message or data to a single entity
holding a secret key, and (2) Access to the encrypted data is all or nothing, in that one either can decrypt
and read the entire plaintext or learn nothing about at all about the plaintext (other than its length).

For many emerging applications such as “cloud” services this notion of public-key encryption is insuffi-
cient. For example, there is often a need to specify a decryption policy in the ciphertext and only individuals
who satisfy the policy can decrypt. More generally, we may want to only give access to a function of the
plaintext, depending on the decryptor’s authorization. As a concrete example, consider a cloud service stor-
ing encrypted images. Law enforcement may require the cloud to search for images containing a particular
face. Thus, the cloud needs a restricted secret key that decrypt images that contain the target face, but re-
veals nothing about other images. More generally, the secret key may only reveal a function of the plaintext
image, for example an image that is blurred everywhere except for the target face. Traditional public-key
cryptography cannot help with such tasks.

We believe that it is time to adopt a new broad vision of encryption systems. To this end, we explore
the concept of functional encryption. In a functional encryption system, a decryption key allows a user to
learn a function of the encrypted data. Briefly, in a functional encryption system for functionality F (·, ·)
(modeled as a Turing Machine) an authority holding a master secret key can generate a key skk that enables
the computation of the function F (k, ·) on encrypted data. More precisely, using skk the decryptor can
compute F (k, x) from an encryption of x. Intuitively, the security of the system guarantees that one cannot
learn anything more about x, but we shall see capturing this rigorously is quite challenging.

We can now see the power of functional encryption. Let us consider what can be achieved if we could
realize functional encryption for any polynomial-time Turing Machine F (·, ·). In applications of access
control, one could let x = (ind,m) encode a message m as well as an arbitrarily complex access control
program ind that will act over the description of a user’s credentials. The functionality F would interpret the
program ind over k and output the message m if and only if ind accepts on input k. Moreover, the program
ind would be hidden and thus one would not necessarily know why decryption was successful or what other
keys would satisfy ind. We give many more examples in Section 3.

Our Contributions Recently, there have been multiple systems suggest moving beyond the traditional
boundaries of encryption in proposing. Examples include Identity-Based Encryption [Sha84, BF03, Coc01],
searchable encryption [BCOP04] and Attribute-Based Encryption [SW05]. These and other related works
such as [BW07, KSW08] propose specific new systems for problems ranging from expressive access control
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to searching on encrypted data. In the last few years, the term “functional encryption1” was adopted to
describe this new area [LOS+10, OT10, AL10].

While these results contain special cases of functional encryption, the general concept has never been
formally defined or studied. In this paper we put forth a formal treatment of the subject and discuss many
of the remaining challenges. We begin with a general framework and syntax for functional encryption and
show how existing encryption concepts, such as attribute based encryption and many others, can be elegantly
expressed as particular functionalities of functional encryption.

Defining security of abstract functional encryption turns out to be highly non-trivial. We begin with
a natural indistinguishability game-based definition (based on a definition of secure predicate encryption
from [BW07, KSW08]). Unfortunately, we show that this simple definition is inadequate for certain func-
tionalities since trivially insecure constructions may satisfy it. We study a refined game-based definition in
the appendix and note that this refined definition is much harder to work with.

Given the inadequacy of game-based definitions we move to simulation-based definitions in the spirit of
the original notion of semantic security of Goldwasser and Micali [GM84]. The goal is to capture the notion
that the adversary learns nothing about the plaintext other than functions F (k, ·) of the plaintext for which
he has a secret key. Somewhat surprisingly, we show a connection to non-committing encryption [CFGN96,
Nie02] which proves that our definition cannot be satisfied for the same reason that non-interactive non-
committing encryption is impossible. However, we show that our definition can be satisfied in the random
oracle model, and we exhibit constructions for interesting functionalities that can be shown to be secure.
(Independently, O’Neill [O’N] also observed a gap between simulation and game-based definitions and a
connection to non-committing encryption.)

Functional encryption is still in its infancy with many fascinating open problems remain. We conclude
with several directions for future work.

2 Functional Encryption Syntax

We begin by describing the syntactic definition of functional encryption (FE) for a functionality F . The
functionality F describes the functions of a plaintext that can be learned from the ciphertext. More precisely,
a functionality is defined as follows.

Definition 1. A functionality F defined over (K,X) is a function F : K × X → {0, 1}∗ described as
a (deterministic) Turing Machine. The set K is called the key space and the set X is called the plaintext
space. We require that the key space K contain a special key called the empty key denoted ε.

A functional encryption scheme for the functionality F enables one to evaluate F (k, x) given the en-
cryption of x and a secret key skk for k. The algorithm for evaluation F (k, x) using skk is called decrypt.
More precisely, a functional encryption scheme is defined as follows.

Definition 2. A functional encryption scheme (FE) for a functionality F defined over (K,X) is a tuple of
four PPT algorithms (setup, keygen, enc, dec) satisfying the following correctness condition for all k ∈ K
and x ∈ X:

(pp,mk)← setup(1λ) (generate a public and master secret key pair)

1We note that both the term “functional encryption” and its underlying concept were introduced by the authors of this paper.
This term was first publicly used to describe the line of work starting with [SW05] in a talk “Functional Encryption: Beyond Public
Key Cryptography” [Wat08b] in 2008, given by one of the authors of this paper.
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sk← keygen(mk, k) (generate secret key for k)

c← enc(pp, x) (encrypt message x)

y ← dec(sk, c) (use sk to compute F (k, x) from c)

then we require that y = F (k, x) with probability 1.

We define security of a functional encryption scheme in Section 4. For now, we briefly show that
standard public-key encryption is a simple example of functional encryption. Let K := {1, ε} and consider
the following functionality F defined over (K,X) for some plaintext space X:

F (k, x) :=

{
x if k = 1
len(x) if k = ε

A secret key for k = 1 fully decrypts valid ciphertexts, while the empty key k = ε simply returns the bit
length of the plaintext. Hence, this functionality syntactically defines standard public-key encryption.

The empty key ε: The special key ε inK captures all the information about the plaintext that intentionally
leaks from the ciphertext, such as the length of the encrypted plaintext. The secret key for ε is empty and also
denoted by ε. Thus, anyone can run dec(ε, c) on a ciphertext c R← enc(pp, x) and obtain all the information
about x that intentionally leaks from c.

Further parameterization. In some cases the key space K and plaintext space X are further parameter-
ized by quantities generated by the setup algorithm. For example, setup may output an RSA modulus N in
which case the sets K and X and the functionality F are defined as tuples over ZN . More generally, we
allow setup to output a third parameter π and we denote the key and plaintext space by Kπ and Xπ. The
functionality F is the defined as

Fπ : Kπ ×Xπ → {0, 1}∗ .

When π is clear from context, we avoid writing it as an explicit subscript.

2.1 Sub-classes of functional encryption

So far we defined the most general syntax for a functional encryption scheme. For the applications we have
in mind it is convenient to define two sub-classes of functional encryption where the plaintext space X has
additional structure.

Predicate encryption [BW07, KSW08]. In many applications a plaintext x ∈ X is itself a pair (ind,m) ∈
I ×M where ind is called an index and m is called the payload message. For example, in an email system
the index might be the sender’s name while the payload is the email contents.

In this context, an FE scheme is defined in terms of a polynomial-time predicate P : K × I → {0, 1}
where K is the key space. More precisely, the FE functionality over (K ∪ {ε}, (I ×M) ) is defined as

F
(
k ∈ K, (ind,m) ∈ X

)
:=

{
m if P (k, ind) = 1, and
⊥ if P (k, ind) = 0

Consequently, let c be an encryption of (ind,m) and let skk be a secret key for k ∈ K. Then dec(skk, c)
reveals the payload in c when P (k, ind) = 1 and reveals nothing new about m otherwise.

3



Predicate encryption with public index. A sub-class of predicate encryption makes the plaintext index
easily readable from the ciphertext. In particular, in this type of FE the empty key ε explicitly reveals the
index ind, namely

F
(
ε, (ind,m)

)
= (ind, len(m) )

Hence, dec(ε, c) gives anyone the index component of the plaintext as well as the bit length of m.

3 Capturing Cryptosystems in the Context of Functional Encryption

Many recently encryption concepts and constructions can be viewed as special cases of Functional Encryp-
tion. In this section we give a few examples to show how functional encryption captures these encryption
concepts. Security of these schemes is captured by the general security definitions of functional encryption
in the next section.

3.1 Predicate encryption systems with public index

The first class of systems that we consider are Predicate encryption schemes with public index.2 We begin
our study with the simplest interesting case of Identity-Based Encryption and then advance to more expres-
sive methods of access formulas. We will express these systems in terms off the specific notation defined
for predicate encryption in Subsection 2.1. 3

Identity-Based Encryption Identity-Based Encryption (IBE), first proposed by Shamir [Sha84], cipher-
texts and private keys are associated with strings (a.k.a identities) and a user can decrypt a ciphertext if the
two strings are equal. IBE represents the first functionality that is not directly realizable from public key
encryption [BPR+08]. IBE is formally described as a Predicate Encryption scheme where:

1. The key space K := {0, 1}∗ ∪ ε.

2. The plaintext is a pair (ind,m) where the index space I := {0, 1}∗.

3. The predicate P is defined as P
(
k 6= ε ∈ K, ind ∈ I

)
:=

{
1 if k = ind and
0 otherwise

Boneh and Franklin [BF03] and Cocks [Coc01] construct the first practical IBE systems, which were
proven secure according to an indistinguishability definition that is a special case of our definition of func-
tional encryption security (Definition 3 in Section 4). These first schemes were proven secure in the random
oracle model. Subsequent schemes were proven secure in the standard model, but under a weaker no-
tion known as selective security [CHK03, BB04a], and further subsequent systems were proven adaptively
secure [BB04b, Wat05, Gen06]. Recently, there have been multiple lattice-based constructions of IBE sys-
tems [GPV08, CHKP10, ABB10].

For these systems to properly support the empty key ε function, the ciphertext must explicitly include
ind and the length of the message in the clear.

2This class has also been informally referred to as “payload hiding” [BW07, KSW08] in the literature.
3Recall that for all predicate encryption schemes with public index we have that F

`
ε, (ind,m)

´
= (ind, len(m) ).
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Attribute-Based Encryption Sahai and Waters [SW05] proposed a new notion of encryption, called
Attribute-Based Encryption (ABE), where one could express complex access policies. Subsequently, Goyal,
Pandey, Sahai and Waters [GPSW06] refined this concept into two different formulations of ABE: Key Pol-
icy ABE and Ciphertext-Policy ABE.

We first describe Key-Policy ABE for boolean formulas, as was realized by Goyal et. al. [GPSW06]. 4

A Key-Policy ABE system over n variables can be described as a predicate encryption scheme (with public
index) for the predicate Pn : K × I → {0, 1} where:

1. The key space K is the set of all poly-sized boolean formulas φ over n variables z1, . . . , zn.

2. The plaintext is a pair (ind = ~z, m) where the index space is I := {0, 1}n, and where we interpret ~z
as a bit vector representing the boolean values z1, . . . zn.

3.

Pn
(
φ 6= ε ∈ K, ind = ~z ∈ I

)
:=

{
1 if φ(~z) = 1 where φ(~z) is the value of formula φ at ~z
0 otherwise

In these systems the key provides an access formula that operates over a set of n attributes that must
evaluate to true for decryption to yield the message m. Goyel et al. also describe how to construct a “Large
Universe” construction where ind can be viewed as a set of strings. ThenK consists of all monotone boolean
formulas over strings. To evaluate φ(ind) we evaluate a leaf labeled with string x in φ as ‘0’ if x /∈ ind.

Ciphertext-Policy ABE A dual concept of Attribute-Based Encryption is Ciphertext-Policy Attribute-
Based Encryption (CP-ABE), where the roles of the ciphertext and key are essentially reversed. A Ciphertext-
Policy ABE system over n variables can be described as predicate encryption scheme (with public index)
for the predicate Pn : K × I → {0, 1} where:

1. The key space K := {0, 1}n is the set of n bit strings representing boolean variables z1, . . . , zn.

2. The plaintext is a pair (ind = φ,m) where the index space I is the set of all poly-sized boolean
formulas φ over n variables.

3.

Pn
(
~z 6= ε ∈ K, ind = φ ∈ I

)
:=

{
1 if φ(~z) = 1 where φ(~z) is the value of formula φ at ~z
0 otherwise

CP-ABE systems are constructed in [BSW07, GJPS08, Wat08a]. Most constructions of ABE (both Ciphertext-
Policy and Key-Policy) were proven secure in a weaker selective model of security. Recently Lewko et.
al. [LOS+10] showed how to give fully secure realizations meeting our security definition.

4The ABE solutions of Goyal et. al. and others [BSW07, OSW07, GJPS08, Wat08a] actually extend to formulas over threshold
gates and to Monotone Span Programs; however, we restrict our description to Boolean formulas for simplicity.
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3.2 Predicate Encryption Systems

While the previous systems described allowed for expressive forms of access control, they are limited in
two ways. First, the policy ind is given in the clear as part of the empty functionality — often this in itself
can be considered sensitive. Second, it does not allow for computation on the encrypted data, which might
include such applications as search. Here we describe current Predicate Encryption systems that do not leak
the index ind.

Anonymous Identity-Based Encryption The problem of Anonymous Identity-Based Encryption was
first proposed by Boneh et. al. [BCOP04] and later formalized by Abdalla et. al. [ABC+08]. Other con-
structions include [BW06, Gen06, CHKP10, ABB10]. The functionality of Anonymous IBE is similar to
IBE except that the string representing the ciphertext identity is hidden and one can only determine it if they
have the corresponding private key. Therefore, we can describe Anonymous IBE in the exact same manner
as above, except we have that F

(
ε, (ind,m)

)
= len(m)). The empty functionality only gives the message

length, but ind stays hidden.

Hidden Vector Encryption Boneh and Waters [BW07] proposed what they called a hidden vector en-
cryption system. In such a system a ciphertext will consist of a vector of n strings and and private key a
vector of n elements which are either strings or ∗ wildcard values. The predicate will match if

1. The key space K := (v1, . . . vn) where each vi ∈ {0, 1}∗ ∪ ∗.

2. The plaintext is a pair (m, ind = (w1, . . . , wn)) where each wi ∈ {0, 1}∗.

3.

Pn
(
(v1, . . . , vn) 6= ε ∈ K, ind = (w1, . . . , wn)) :=

{
1 if for all i where wi 6= ∗ we have vi = wi

0 otherwise

Applications of the predicate include conjunctive and range searches. Independently, Shi et. al. [SBC+07]
proposed a similar system. Again we note that F

(
ε, (ind,m)

)
= len(m)).

Inner Product Predicate The previous system was limited to conjunctive searches. Katz, Sahai and
Waters [KSW08] proposed a system for testing if a dot product operation over the ring ZN was equal to
0, where N is the product of three random primes chosen by the setup algorithm. This enabled more
complex evaluations on disjunctions, polynomials, and CNF/DNF formulae. Subsequently, Okamoto and
Takashima [OT09] and Lewko et. al. [LOS+10] gave constructions over the field Fp. We describe the this
predicate for the later systems for vectors of length n. We now define our system

1. The setup algorithm defines a randomly chosen prime p of length κ, where κ is the security parameter.

2. The key space K := ~v = (v1, . . . vn) where each vi ∈ Fp.

3. The plaintext is a pair (m, ind = ~w = (w1, . . . , wn)) where each wi ∈ Fp.

4.

Pn,p
(
(v1, . . . , vn) 6= ε ∈ K, ind = (w1, . . . , wn)) :=

{
1 if Σi=1,...,nvi · wi = 0
0 otherwise
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3.3 Other systems and combinations

Different researchers have realized different combinations of the above core systems. Examples of these
include combinations of: Attribute-Based Encryption and Broadcast Encryption [AI09], Identity-Based
Broadcast Encryption [Del07, DPP07, SF07, GW09], and Inner-Product Encryption and ABE [OT10]. All
are captured as special cases of functional encryption.

4 Security definitions

Given the syntactic definitions of Functional Encryption (FE) from Section 2 we now turn to defining secu-
rity of an FE scheme. In this section we give game based definitions. In Section 5 we discuss simulation-
based definitions.

Let E be an FE scheme for functionality F defined over (K,X). Our goal is to define security against an
adaptive adversary that repeatedly asks for secret keys skk for keys k ∈ K of the attacker’s choice. As we
shall see, defining security against such attackers is more delicate than one might first expect. The problem
is how to define the challenge ciphertext in a semantic security game. As usual, once the attacker obtains
all the secret keys he desires, he outputs two challenge messages m0,m1 ∈ X and expects to get back an
encryption c of m0 or m1 chosen at random by the challenger. Clearly, if the attacker has a secret key skk
for some k ∈ K for which F (k,m0) 6= F (k,m1) then he can easily answer the challenge c by outputting{

0 if dec(skk, c) = F (k,m0), and
1 otherwise

Hence, for the definition to be satisfiable we must severely restrict the attacker’s choice of m0,m1 and
require that they satisfy

F (k,m0) = F (k,m1) for all k for which the attacker has skk. (1)

Since the empty key ε reveals the plaintext length, condition (1) ensures that |m0| = |m1|, as in the standard
PKE definition of semantic security.

Security definition. With requirement (1) in place we obtain a natural game for defining security of an FE
scheme E . For b = 0, 1 define experiment b for an adversary A as follows:

• Setup: run (pp,mk)← setup(1λ) and give pp to A.

• Query: A adaptively submits queries ki in K for i = 1, 2, . . . and is given ski ← keygen(mk, ki).

• Challenge: A submits two messages m0,m1 ∈ X satisfying (1) and is given enc(pp,mb).

• A continues to issue key queries as before subject to (1) and eventually outputs a bit in {0, 1}.
For b = 0, 1 let Wb be the event that the adversary outputs 1 in Experiment b and define

FEadv[E ,A](λ) :=
∣∣Pr[W0]− Pr[W1]

∣∣
Definition 3. An FE scheme E is secure if for all PPT A the function FEadv[E ,A](λ) is negligible.

Definition 3 is a generalization of related definitions from [BW07, KSW08]. In Appendix A we show
that for certain complex functionalities this definition is too weak. For these functionalities we construct
systems that are secure under Definition 3, but should not be considered secure. Nevertheless, for function-
alities such as predicate encryption we show in Section 5 that Definition 3 is adequate.
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4.1 A “brute force” construction

We briefly show that any functionality F where the key space K has polynomial size can be easily realized.
Write s = |K| − 1 and K = {ε, k1, . . . , ks}. In this brute force construction, the size of public parameters,
secret key, and ciphertext are all proportional to s. A closely related construction is given in [BW07].

The brute force FE scheme realizingF uses a semantically secure public-key encryption scheme (G,E,D)
and works as follows:

• setup(1λ): for i = 1, . . . , s run (ppi,mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . ,mks)

• keygen(mk, ki): output ski := mki.

• enc(pp, x): output ~c :=
(
F (ε, x), E

(
pp1, F (ki, x)

)
, . . . , E

(
pps, F (ks, x)

) )
.

• dec(ski,~c): output c0 if ski = ε, and output D(ski, ci) otherwise.

Clearly, a ciphertext ~c leaks the bit lengths of F (ki, x) for i = 1, . . . , s. Therefore, for this construction to
be secure we must assume that this information is already leaked by the empty functionality F (ε, ·), namely
that |F (ki, x)| for i = 1, . . . , s is contained in F (ε, x). If so then we say that F reveals functional bit
lengths.

Theorem 1. Let F be a functionality that reveals functional bit lengths. If (G,E,D) is a semantically
secure public-key encryption scheme then the brute force FE system implementing F is secure.

Proof Sketch. The proof is by a standard hybrid argument across the s components of the challenge cipher-
text.

5 Simulation based definitons

In this section, we explore security definitions for functional encryption that arise from the simulation
paradigm [GM84, GMR85, GMW86] that has served us so well, especially in the closely related context of
secure computation protocols.

We begin by considering a simulation-based definition5 of security for functional encryption that cap-
tures the most basic intuition we have: That getting the secret key skk corresponding to the key k ∈ K
should only reveal F (k, x) when given an encryption of x.

It turns out that we can achieve this simulation-based definition for natural functionalities in the random
oracle model, where in the ideal model the random oracle would also be simulated. We argue that in fact
this (very strong) random oracle model seems necessary for a meaningful simulation-based definition of
security for functional encryption: we show that even in the non-programmable random oracle model (where
the simulator, too, only has oracle access to the same random oracle that is provided to the distinguisher),
simulation-secure functional encryption (for a seemingly “minimal” formulation of simulation-security)
even just for the IBE functionality is impossible to achieve. At a high level, this is because any simulation-
based definition that allows the adversary to query for secret keys after seeing the challenge ciphertext must

5We note that there are several natural variants possible for such a definition. We have chosen a definition that is strong in the
sense that it requires a universal black-box simulator. We will later discuss some weaker formulations.
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achieve something very similar in spirit to non-interactive non-committing encryption, where exactly these
kinds of impossibility and possibility results are known [Nie02].

In our main definition below (that we will achieve in our positive results), we will use some non-standard
syntax for representing a stateful oracle6. When we write AB(·)[[x]], we mean that the algorithm A can issue
a query q to its oracle, at which point B(q, x) will be executed and output a pair (y, x). The value y is then
communicated to A as the response to its query, and the output x is set to be the private updated value for x,
that is fed to the algorithm B the next time it is queried as an oracle, or fed to any algorithms executed later
in an experiment.

Definition 4. An FE scheme E is simulation-secure if there exists an (oracle) PPT algorithm Sim =
(Sim1, SimO, Sim2) such that for any (oracle) PPT algorithms Message and Adv, we have that the fol-
lowing two distribution ensembles (over the security parameter λ) are computationally indistinguishable:

Real Distribution:
1. (pp,mk)← setup(1λ)
2. (~x, τ)←Messagekeygen(mk,·)(pp)
3. ~c← enc(PP, ~x)
4. α← Advkeygen(mk,·)(pp,~c, τ)
5. Let y1, . . . , y` be the queries to keygen made by Message and Adv in the previous steps.
6. Output (pp, ~x, τ, α, y1, . . . , y`)

Ideal Distribution:

1. (pp, σ)← Sim1(1λ)

2. (~x, τ)←MessageSimO(·)[[σ]](pp)

3. α← Sim
F (·,~x), Adv(pp,·,τ)
2 (σ, F (ε, ~x))

4. Let y1, . . . , y` be the queries to F made by Sim in the previous steps7.

5. Output (pp, ~x, τ, α, y1, . . . , y`)

We note that this definition can be extended further to allow the adversary to receive challenge cipher-
texts adaptively (instead of as a single vector), and all our positive results below would extend to this setting.
We omit this generalization due to the notational complexity that would be required to formulate such a def-
inition.

5.1 Impossibility of simulation-secure functional encryption

In this section, we briefly sketch the impossibility result for simulation-secure functional encryption, even
for a quite simple functionality (the functionality corresponding to IBE), in the non-programmable ran-
dom oracle model. As the proof closely mirrors the argument of Nielsen [Nie02] for non-interactive non-
committing encryption, we give only a high-level overview of the proof.

6The more standard way to formalize this communication structure would be through interactive Turing Machines, but we find
this notation to be simpler to parse.

7Note that Sim does not need to query the oracle for F (ε, ~x), as this is provided as an explicit input to Sim2. We choose this
formulation since in the real distribution, the Adversary does not explicitly need to ask keygen for the key corresponding to ε in
order to gain knowledge about F (ε, ~x).
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We note that our impossibility result in fact holds for much less stringent formulations of simulation
security for functional encryption. In particular, we consider the following weaker version of our main
definition:

Definition 5. An FE scheme E is weakly simulation-secure if for any (oracle) PPT algorithms Message
and Adv, there exists an (oracle) PPT algorithm Sim such that we have that the following two distribution
ensembles (over the security parameter λ) are computationally indistinguishable:
Real Distribution:

1. (pp,mk)← setup(1λ)
2. (~x, τ)←Message(1λ)
3. ~c← enc(PP, ~x)
4. α← Advkeygen(mk,·)(pp,~c, τ)
5. Let y1, . . . , y` be the queries to keygen made by Adv in the previous steps.
6. Output (~x, τ, α, y1, . . . , y`)

Ideal Distribution:

1. (~x, τ)←Message(1λ)

2. α← SimF (·,~x)(1λ, F (ε, ~x))

3. Let y1, . . . , y` be the queries to F made by Sim in the previous step.

4. Output (~x, τ, α, y1, . . . , y`)

We note another weakening of the definition above would be to have the distributions output the queries
y1, . . . , y` as an unordered set, instead of an ordered tuple. Our impossibility proof can be extended to this
weakening as well. A proof sketch of the following theorem can be found in Appendix B.1.

Theorem 2. Let F be the functionality for IBE. There does not exist any weakly simulation-secure FE
scheme for F in the non-programmable random oracle model.

5.2 Schemes

In this section, we provide FE schemes that are simulation-secure in the random oracle model (where the
scheme algorithms and the Message and Adv algorithms all have oracle access to a random oracle).

The modified “brute-force” construction. We first consider the following slight modification of the
brute-force construction given earlier. The modification just uses the random oracle to randomly mask
the output values of the function.

We will make use of a random oracle H : {0, 1}∗ → {0, 1}. Note that we will abuse notation and also
write H(x) to produce strings of arbitrary length (which will be clear from context). This can be accom-
plished by interpreting H(x) to mean the concatenation of H((x, 1)), . . . ,H((x, `)) to produce strings of
length `.

Recall that we write s = |K| − 1 and K = {ε, k1, . . . , ks}. The brute force FE scheme realizing F uses
a semantically secure public-key encryption scheme (G,E,D), and works as follows:

• setup(1λ): for i = 1, . . . , s run (ppi,mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . ,mks)

10



• keygen(mk, ki): output ski := mki.

• enc(pp, x): choose random values r1, . . . , rs ∈R {0, 1}λ.
output ~c :=

(
F (ε, x), E

(
pp1, r1

)
, H(r1)⊕ F (k1, x), . . . , E

(
pps, rs

)
, H(rs)⊕ F (ks, x)

)
.

• dec(ski,~c): output c0 if ski = ε, and output H
(
D(ski, c2i−1)

)
⊕ c2i otherwise.

A proof sketch of the following theorem can be found in Appendix B.2.

Theorem 3. Let F be a functionality that reveals functional bit lengths. If (G,E,D) is a semantically
secure public-key encryption scheme then the modified brute force FE system above implementing F is
simulation-secure in the random oracle model.

Other Simulation-Secure Functional Encryption Schemes. In Appendix B, we provide two additional
examples of constructions in the random oracle model that achieve simulation-security for different func-
tionalities. We first show that all public index functional encryption schemes that meet the game-based
Definition 3 can be slightly modified to meet our simulation security definition. Then we prove the simula-
tion security of the Boneh-Franklin construction for the anonymous IBE functionality.

6 Extending Functional Encryption

In this work, we focus on the “core” case of functional encryption. However, there are multiple ways to
extend the concept. We briefly outline these here. We hope future work will develop these extensions and
give precise definitions of security and constructions.

Delegation Delegation is the ability of a algorithm to transform a key k in a functional encryption system
to another key k′. For example, one might want to share the ability to decrypt all messages of a certain sub-
ject to another user. Typically, we think of the resulting key k′ as being more restricted than the source key
k. We observe that the set of allowed delegations must respect the security definition of the system. Del-
egation in functional encryption systems is typically associated with Hierarchical Identity-Based Encryp-
tion [HL02, GS02], but was also considered in Attribute-Based Encryption [GPSW06] and other predicate
encryption systems [SW08].

Encryption over Multiple Parameters and Multiple Systems Our functional encryption systems allow
for functionalities F : K×X → {0, 1}∗ that take in a single key and plaintext as inputs. However, we could
extend our system to allows for functionalities that take in multiple keysF : (K1, . . . ,Kn)×X → {0, 1}∗.
This be useful in applications where we want users to combine their capabilities in a specified manner or
when one of the keys can represent an event such as a certain time period arriving, or publication of a
revocation list [BGK08].Another interesting direction is to allow for a functional encryption system that
operates over multiple ciphertexts.

Taking things further we could consider an encryption system where encryption takes in multiple public
parameters each from different authorities and where the functionality is evaluated over private keys gen-
erated by different master secret keys. One notable application of this is Attribute-Based Encryption over
multi-authorities [Cha07, CC09].

11



Hiding Information about the key capabilities One consistent feature of all systems is that there do
not exist any security notions about the attacker’s inability to distinguish what type of key k he is given a
secret key for. A natural reason for this is that in a public key system, he can distinguish whether he has the
capability for k0, k1 by simply encrypting an x ∈ X such that F (k0, x) 6= F (k1, x). However, one might
try to consider such a problem when encryption in not public key [SSW09, BIP10].

7 Future directions in functional encryption

The results to date scratch the surface of functional encryption and only implement relatively simple func-
tionalities. Here we list a few fascinating open problems that remain.

• The grand challenge is to construct a secure functional encryption scheme for all polynomial-time
functionalities. A more modest goal is to do the same for predicate encryption for all polynomial-time
predicates. Currently, the best we can do is predicates defined by inner products [KSW08]. The inner
product construction uses bilinear maps and our inability to move beyond inner products is due to the
“bi” in bilinear maps. Other tools, perhaps borrowing from fully homomorphic encryption [Gen09],
may lead to a more general class of predicates.

• If not all polynomial time functionalities, can we realize complex interesting ones such as data-mining
functionalities? That is, can we build a secret key that given an encrypted data set will produce a
cleartext model (e.g. a decision tree) for the data set, but reveal nothing else about the data? Nothing
in this vain is currently known.

• Are there black box separations between different functionalities? Currently, the only result in this
direction separates IBE from public-key encryption [BPR+08]. Is there a generic separation result
that separates any two functionalities that are not trivially implied one by the other?
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A Insufficiency of the game-based security definition

We give a simple example of a functionality for which the game-based definition of security from Section 4
is insufficient. Let π be a one-way permutation and consider the functionality F that only admits the trivial
key ε, defined as follows:

F (ε, x) = π(x)
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It is clear that the “right” way to achieve functional encryption for this very simple functionality is to have
the functional encryption algorithm itself simply output π(x) on input x, namely enc(pp, x) = π(x). This
scheme would also clearly achieve the simulation-based definition of security presented in Section 5.

However, consider an “incorrect” realization of this functionality where the functional encryption al-
gorithm outputs x on input x, namely enc(pp, x) = x. Clearly this system leaks more information about
the plaintext than needed. Nevertheless, it is easy to verify that this construction satisfies the game-based
definition from Section 4. This is because for any two values x and y, it is the case that F (ε, x) = F (ε, y)
if and only if x = y and therefore the attacker can only issue challenge messages m0,m1 where m0 = m1.

This problematic system, however, would clearly not achieve the simulation-based definition of security
presented in Section 5, since if x is chosen at random, the real-life adversary would be able to recover
x always, while the simulator would not be able to recover x without breaking the one-wayness of the
permutation π.

While the simple example above may seem to be “abusing” the role of the trivial key ε, it is easy to
modify the functionality example F above so that there is exactly one non-trivial key k ∈ K that outputs
π(x). The only difference to the construction above would be that the functional encryption algorithm would
output a public-key encryption8 of either π(x) (in the “correct” implementation) or x (in the “incorrect”
implementation), and the secret key for key k would be the secret key of the public-key encryption scheme.
Again, it is easy to verify that the incorrect implementation satisfies the game-based definition.

B Simulation Proofs

In this Section we provide the missing proofs from Section 5, and also provide some additional constructions
and proofs.

B.1 Proof of Impossibility

In this section, we provide the missing proof of Theorem 2.

Brief Proof Sketch. The overall idea of this proof is almost identical to the impossibility proof of Nielsen [Nie02]
for non-interactive non-committing encryption. Let H represent the random oracle. Consider the following
concrete adversary algorithms:

Message(1λ) works as follows: Let lensk be the maximum bit length produced by the keygen algorithm
for the key 0 for security parameter λ. Then the vector ~x consists of the following elements: for i =
1, . . . , lensk + λ, the element (ri, 0) where ri is a randomly and independently chosen bit for each i. The
value τ is empty.

Advkeygen(mk,·)(pp,~c, τ) works as follows: Call the random oracle H on the input (pp,~c) to obtain a
string w length λ. Now request the secret key for the identity (w) first, and then for the identity 0. Use the
key for identity 0 to decrypt the entire ciphertext. Output a full transcript of the entire computation done by
Adv, including all calls to the random oracle and the interaction with the keygen oracle.

Now consider what Sim must do in order to output a distribution indistinguishable from the real inter-
action. Because Adv only makes a single key query of the form (w), it is the case that Sim must make
exactly one query – its first query – to F of this form as well. Furthermore, the distinguisher can check if
this w is the output of H applied to some string of the form (pp,~c). Thus, the simulator must perform this

8The public-key encryption would need to be non-committing to achieve the simulation-based definition of security for the good
case.

16



query toH before making any queries to F . The simulator at this point has no information whatsoever about
the plaintexts ri (which is only revealed when the simulator queries F for identity 0 afterwards). Thus, this
fixed string z = (pp,~c) has the (impossible) property that after receiving only lensk bits of information, it
can deterministically “decode” z to be a an arbitrary string of length lensk + λ.

We remark that the proof above made use of the fact that the simulator’s queries to F are recorded
in order. However, we note that the same impossibility result would hold even if the security definition
only recorded the unordered set of queries to F , but using a slightly more involved adversary and message
distribution. Roughly speaking, the only identities in the system would be of the form (i, 0) and (i, 1) for
i = 1, . . . , λ, and the messages to be encrypted would be random long messages for each identity. The
adversary would apply the random oracle to (pp,~c) to obtain a single string w of length λ exactly as above,
but it would now use this string to obtain keys (i, wi) for i = 1, . . . , λ. The argument would now proceed
by looking at the point when the simulator has made at least λ/2 queries to F . By now with overwhelming
probability, a single query (pp,~c) to H would be compatible with these queries, and that could be used to
define the “impossible string” needed above.

B.2 Proof of simulation security for modified brute-force scheme

In this section, we provide a proof sketch for Theorem 3.

Proof Sketch. We shall construct the universal simulators Sim1, SimO, and Sim2 that are demanded by
the security definition. These algorithms work as follows:

• Sim1(1λ) simply executes setup(1λ) to obtain pp and mk. It outputs pp unmodified, and outputs
σ = (mk, O, κ), where O and κ are empty lists. This list O will keep track of the simulated random
oracle, and κ will keep track of key queries.

• SimO(·)[[σ]] works as follows:

1. It now responds to random oracle queries and keygen queries the adversary Message makes. It
responds to these queries as follows:

– Random Oracle Queries: On query q, the simulator first checks to see if a pair (q, y)
already exists in the list O. If so, it provides y as the response to the adversary’s query.
If not, the simulator chooses a fresh random string y, adds the pair (q, y) to the list O,
and provides y as the response to the adversary’s query. This list O is updated in the state
variable σ.

– Key Queries: If the adversary asks for the key ki, then the simulator sends the secret key
mki to the adversary. The simulator adds ki to the list κ. This list κ is updated in the state
variable σ.

• SimF (~x,·), Adv(pp,·,τ)
2 (σ, F (~x, ε)) works as follows:

1. The next simulation algorithms begins by preparing a “fake” vector of ciphertexts as follows: Let
m be the number of elements in ~x (this number is known from the input F (~x, ε) that is provided
to Sim2). For i = 1 . . .m, it chooses random strings ri,1, . . . , ri,s and Ri,1, . . . Ri,s, and for
j = 1 . . . s, it creates the ciphertext components ci,2j−1 = E

(
ppj , ri,j

)
and ci,2j = Ri,j . If the

list O already contains any oracle queries to any of the randomly chosen ri,j’s, the simulator
aborts.
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2. For all keys ki in the list κ of keys already queried, the simulator invokes the F oracle and
obtains F (ki, ~x) = (z1, . . . , zm). It now adds the pairs (ri,1, Ri,1 ⊕ z1), . . . , (ri,m, Ri,m ⊕ zm)
to the list O. If any of these ri,j values were already in the list O, the simulation aborts.

3. Then it invokes Adv(pp,~c, τ) using this “fake” ciphertext as created above.

4. It now monitors which random oracle queries and keygen queries the adversary Adv makes. It
responds to these queries as follows:

– Random Oracle Queries: On query q, the simulator first checks to see if a pair (q, y)
already exists in the list O. If so, it provides y as the response to the adversary’s query. If
not, then it checks to see if q is equal to any of the random ri,j values chosen above. If so,
the simulator aborts. (We will later argue that the probability of such an abort is negligible.)
Finally if none of the conditions apply, the simulator chooses a fresh random string y, adds
the pair (q, y) to the list O, and provides y as the response to the adversary’s query.

– Key Queries: If the adversary asks for the key ki, then the simulator invokes the F oracle
and obtainsF (ki, ~x) = (z1, . . . , zm). It now adds the pairs (ri,1, Ri,1⊕z1), . . . , (ri,m, Ri,m⊕
zm) to the list O. Finally, it sends the secret key mki to the adversary. Note: it is easy to
confirm that the decryption procedure will work as it should after we have modified the
random oracle as detailed above.

5. When the adversary terminates and outputs α, then the simulator outputs this α as well, finishing
the simulation.

We observe that if the above simulation only aborts with negligible probability, then the ideal distribution
is statistically close to the real distribution, since (except for the abort condition) the simulation above
behaves exactly as the real execution.

We now argue that the simulation only aborts with negligible probability. Suppose not. This means
that with noticeable probability δ, the adversary queries the random oracle for some ri,j value before asking
for the key ki. We will use this to break the one-wayness security of the underlying public-key encryption
scheme.

Suppose we are given externally the public key pk for an encryption scheme and a ciphertext C =
E(pk, r) for a random value r ∈ {0, 1}λ. We will construct an attacker that outputs r with probability at
least δ/sM2, whereM is some polynomial upper bound onm and the number of random oracle queries that
the adversary can make. The attacker runs the simulation above, however it chooses i ∈ [1, s] and j ∈ [1,M ]
at random ahead of time, and it replaces ppi with pk and ri,j with r and ci,2j−1 with C (if j > m, then the
attacker aborts). The attacker continues the simulation until the attacker finishes or until the attacker asks
for key ki. At this point, it randomly picks one of the queries q made by the adversary so far, and outputs
this query as its guess for r. This attack will succeed with probability at least δ/sM2 by construction, which
contradicts the security of the public-key encryption scheme.

B.3 A simulation-secure predicate encryption with public index

Next, we show that any predicate encryption system with public index that is secure under the game-based
Definition 3 also satisfies the simulation based Definition 4 in the random oracle model.

Let E := (setup, keygen, enc, dec) be an FE predicate encryption system with public index for predicate
P : K × I → {0, 1}. We convert the system into a scheme EH := (setup, keygen, encH , decH) where
encryption is done using a random oracle H:
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• encH(pp, (ind,m) ): choose a random value r ∈ {0, 1}λ and output

c :=
(

enc(pp, (ind, r) ), H(r)⊕m
)
.

• decH(sk, (c1, c2) ): if dec(sk, c1) = ⊥ output ⊥, otherwise output dec(sk, c1)⊕ c2.

The following theorem shows that this construction is simulation secure.

Theorem 4. If the system E is game-secure (Definition 3) then EH is simulation secure (Definition 4) in the
random oracle model.

Proof Sketch. We construct the universal simulators Sim1, SimO, and Sim2 needed for simulation secu-
rity. These algorithms work as follows:

• Sim1(1λ) simply executes setup(1λ) to obtain pp and mk. It outputs pp unmodified, and outputs
σ = (mk, O, κ), where O and κ are empty lists. This list O will keep track of the simulated random
oracle, and κ will keep track of key queries.

• SimO(·)[[σ]] works as follows: It responds to random oracle queries and keygen queries the adversary
Message makes as follows:

– Random Oracle Queries: On query q, the simulator first checks to see if a pair (q, y) already
exists in the list O. If so, it provides y as the response to the adversary’s query. If not, the
simulator chooses a fresh random string y, adds the pair (q, y) to the list O, and provides y as
the response to the adversary’s query. This list O is updated in the state variable σ.

– Key Queries: When the adversary asks for the key k, the simulator sends the secret key sk ←
keygen(mk, k) to the adversary. The simulator adds k to the list κ. This list κ is updated in the
state variable σ.

• SimF (~x,·), Adv(pp,·,τ)
2 (σ, F (~x, ε)) works as follows:

1. The algorithm begins by preparing a “fake” vector of ciphertexts as follows: Let n be the number
of elements in ~x and let ind1, . . . , indn be the indices in ~x. Sim2 obtains n and these indices by
querying its F oracle at F (ε, ~x).
Now, for i = 1 . . . n, it chooses random strings r1, . . . , rn and R1, . . . Rn, and creates the ci-
phertext components

ci,1 := enc
(
pp, (indi, ri)

)
and ci,2 = Ri for i = 1, . . . , n.

Let ~c be the vector of n ciphertexts ~c := (ci,1, ci,2)i=1,...,n .

2. For each key k in the list κ of keys already queried, the simulator does the following:
(1) it invokes the F oracle and obtains F (k, ~x) = (z1, . . . , zn),
(2) for i = 1, . . . , n if zi 6= ⊥ it adds the pair (ri, Ri ⊕ zi) to the list O. If any of these ri values
were already in the list O, the simulation aborts.

3. Then it invokes Adv(pp,~c, τ) using this “fake” ciphertext vector ~c created above.

4. It now monitors which random oracle queries and keygen queries the adversary Adv makes. It
responds to these queries as follows:
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– Random Oracle Queries: On query q, the simulator first checks to see if a pair (q, y)
already exists in the list O. If so, it provides y as the response to the adversary’s query. If
not, the simulator chooses a fresh random string y, adds the pair (q, y) to the list O, and
provides y as the response to the adversary’s query.

– Key Queries: If the adversary asks for the key k, then the simulator invokes the F oracle
and obtains F (k, ~x) = (z1, . . . , zn). For i = 1, . . . , n if zi 6= ⊥ it adds the pair (ri, Ri⊕zi)
to the listO. If for any i there is already a pair (ri, R) in the listO withR 6= Ri⊕zi then the
simulation aborts. Finally, it sends the secret key sk← keygen(mk, k) to the adversary. It is
easy to confirm that the decryption procedure will work as it should after we have modified
the random oracle as detailed above.

5. When the adversary terminates and outputs α, then the simulator outputs this α as well, finishing
the simulation.

An argument very similar to the proof given in the previous section shows that the simulator aborts with
negligible probability and that the distribution generated by these simulators is statistically close to the real
distribution. In particular, the negligible probability of abort follows from the game-based security of E ,
since game-based security implies one-way security for encrypting random values, which implies that the
adversary is extremely unlikely to query the random oracle on the ri values prior to obtaining a secret key
that can open the i’th ciphertext.

B.4 The Boneh-Franklin [BF03] Anonymous IBE

We now show a proof of security for an anonymous-IBE functionality in our simulation definition using a
slightly modified version of the Boneh-Franklin IBE. This is the first example of non public index scheme
proven secure under such a definition. We use the functional encryption formulation given in Section 3.

The Boneh-Franklin IBE makes use of groups G that have an efficiently computable bilinear map e :
G×G→ GT . We refer the reader to [BF03, BB04a] for further discussion on such groups. For simplicity
we will assume all messages to be of length λ.

• setup(1λ): The setup algorithm chooses a prime p of length λ and creates a bilinear group G with
generator g of order p. It then picks a secret exponent a ∈ Zp. The parameters are. In addition, it
defines a hash functions T : {0, 1}∗ → G and H : GT → {0, 1}2·λ that we will model as random
oracles. For simplicity we will assume that messages to be encrypted are of the length λ.

output: pp := (Description of G and T,H , g, ga) and mk := a

• keygen(mk, k): output skk := T (k).

• enc(pp, x = (ind,m)): choose random value s,∈ Zp, r ∈R {0, 1}λ.
compute y = e(T (ind), ga)s = e(T (ind), g)as

output ~c :=
(
c1 = gs, c2 = H(y)⊕ 0λ|m

)
.

• dec(skk,~c): compute (z1 ∈ {0, 1}λ, z2 ∈ {0, 1}λ) = H(e(skk, c1))⊕ c2
output ⊥ if z1 6= 0λ and z2 otherwise.
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Theorem 5. Let F be the anonymous IBE functionality. If the modified Boneh-Franklin construction is a
secure anonymous IBE system under our game based Definition 3, then it is secure under our simulation
Definition 4.

The proof of our simulation relies on the fact that no information about either the ciphertext identity
ind or the message m is present until the attacker calls the random oracle H on the randomness r. Once,
an attacker makes a private key query for an identity k, the simulator can then program the random oracle
to make any ciphertext for k appear correctly. This simulation is perfect unless an attacker queries H on r
for a given ciphertext before learning the private key for its identity. We can then show that the game-based
security of Boneh-Franklin implies this will happen with negligible probability.

Proof Sketch. We shall construct the universal simulators Sim1, SimO, and Sim2 that are demanded by
the security definition. These algorithms work as follows:

• Sim1(1λ) simply executes setup(1λ) to obtain pp and mk. It outputs pp unmodified, and outputs
σ = (mk, O,OT , κ), where O,OT and κ are empty lists. This lists O,OT will keep track of the
simulated random oracles, and κ will keep track of key queries.

• SimO(·)[[σ]] works as follows:

1. It now responds to random oracle queries and keygen queries the adversary Message makes. It
responds to these queries as follows:

– Random Oracle Queries to H: On query q, the simulator first checks to see if a pair (q, y)
already exists in the list O. If so, it provides y as the response to the adversary’s query.
If not, the simulator chooses a fresh random string y, adds the pair (q, y) to the list O,
and provides y as the response to the adversary’s query. This list O is updated in the state
variable σ.

– Random Oracle Queries to T : The simulator will maintain a separate list OT of queries
to T . If a query has already been made it will return that value, other wise it picks a random
element in G (the group chosen in setup) and records the input/output pair.

– Key Queries: If the adversary asks for the key ki, then the simulator sends the secret key
mki to the adversary. The simulator adds ki to the list κ. This list κ is updated in the state
variable σ.

• SimF (~x=(x1,...,x`),·), Adv(pp,·,τ)
2 (σ, F (~x, ε)) works as follows:

1. Then, it prepares a “fake” vector of ciphertexts as follows: Let ` be the number of elements in
~x (this number is known from the input F (~x, ε) that is provided to Sim2). For j = 1 . . . `, it
chooses random strings sij ∈ Zp and Rj . It then creates the ciphertext components cj,1 = gsj

and cj,2 = Rj .

2. For each j from 1 to ` and each key ki in the list κ the simulator calls the F oracle and obtains
F (ki, xj). For any j ∈ [1, `] if there exists an i such that F (ki, xj) = mj 6= ⊥, it sets zj = mj

and setswj = ki. Otherwise, it sets zi = ⊥. Intuitively, this is is denoting that the j-th ciphertext
is set an encryption of message zj to identity wj . If zj = ⊥ this indicates, that no key has yet
been queried that matches the ciphertext. We note that the semantics of the anon-IBE scheme
mean that there will be no conflicts in setting zj , since the only possible outputs from the oracle
are ⊥ and a unique message mj .
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For each j where zj 6= ⊥ it adds the pair (e(g, T (wj))sja, Rj ⊕ 0λ|zj) to the list O, where key
a is the master secret from the setup. If any of these e(g, T (wj))sja values were already in the
list O, the simulation aborts.

3. Then it invokes Adv(pp,~c, τ) using this “fake” ciphertext as created above.
4. It now monitors which random oracle queries and keygen queries the adversary Adv makes. It

responds to these queries as follows:
– Key Queries: If the adversary asks for the key ki, the simulator first checks if the key has

already been queried for and returns back the same key in that case. This is suitable since
keygen is deterministic in the Boneh-Franklin scheme.
Otherwise it runs keygen(ki,mk). Then it tests for all j where zj = ⊥ if F (ki, xj) =
mj 6= ⊥. If so for each of these it updates zj = mj and wj = ki. Then it adds the
pair (e(g, T (wj))sja, Rj ⊕ 0λ|zj) to the oracle. Finally, it sends the secret key mki to the
adversary. Note: it is easy to confirm that the decryption procedure will work as it should
after we have modified the random oracle as detailed above.

– Random Oracle Queries: On query q, to the oracle H the simulator first checks to see if a
pair (q, y) already exists in the list O. If so, it provides y as the response to the adversary’s
query. Otherwise, the simulator checks if it must abort.
Let V = {vk} be the set of queries (of identities) in the list OT , that were queried on, but
that there was no private key asked for in the list κ. For every vk ∈ V and every j where
zj = ⊥, the simulator tests is the query q = e(T (vk), g)asj . If this occurs the simulation
aborts. The reason for aborting, is that answering this query would take away the simulator’s
ability to program the random oracle at that point further in the simulation. We will argue
this abort event happens with negligible probability.
Finally, if neither of these conditions occur the simulator chooses a fresh random string y,
adds the pair (q, y) to the list O, and provides y as the response to the adversary’s query.
For queries to T , the simulator continues the same simulation from the previous algorithm.

5. When the adversary terminates and outputs α, then the simulator outputs this α as well, finishing
the simulation.

We observe that if the above simulation only aborts with negligible probability, then the ideal distribution
is statistically close to the real distribution, since (except for the abort condition) the simulation above
behaves exactly as the real execution.

We now sketch why the abort condition will be given with negligible probability. Let M be some
polynomial upper bound on the ` and the number of random oracle queries made. In Sim2 there are two
places, Steps 2 and 4, where the simulator may abort. At step 2, each ciphertext is created with a fresh
sj ∈ Zp, thus the probability of the attacker querying e(g, T (wj))sja for a particular j before its creation is
a most M/p and for any j is bounded by M2/p, which is negligible.

We argue that any attacker that would cause an abort to happen in Step 4 with non-negligible probability
u , can break the computation Bilinear Diffie-Hellman (BDH) problem with non-negligible probability. 9

Suppose there did exist such an attacker, then we build a reduction. Our reduction first takes in a BDH
challenge (G, p, (g, ga, gb, gc)). The attacker first chooses uniformly at random i∗, j∗, t∗ ∈ [1,M ], guessing
that the attacker would have caused an in the simulation abort due to the i∗ query to H , the j∗-th ciphertext
and the t∗-th query to T . Since the number of ciphertexts and queries to the oracle are both bounded by M ,
the guess will be correct with probability at least u/M3, which is non-negligible.

9We refer the reader to [BB04a] for the description of the BDH problem in our notation.
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The reduction begins by running the attacker algorithms in the real game. It publishes G, g, ga as the
public parameters. For every query to H , until the i∗ one it outputs a random value and keeps track of
it in a table. For each query to T , it first checks if it has already answered it and if so repeats the value.
Otherwise, if it is the t 6= t∗ it chooses a random yt ∈ Zp as the response. For t∗ it replies with gb. For
the j 6= j∗ ciphertext it simply encrypts xj according to the algorithm. For j = j∗ it sets cj∗,1 = gc and
cj∗,2 to a random string. To answer key queries for identity k, the algorithm first identifies the index t for
which the attacker called T (k) (if none exists, the reduction can simply call T (k) itself). For any index
t 6= t∗ the reduction replies with (ga)yt , which is distributed as a well formed key. If t = t∗, the reduction
halts and quits. In this case the guess of t∗ was wrong since the abort condition of 4 only happens when the
identity for t∗ was not already for. Finally, whenever the i∗ query to H occurs the reduction outputs this as
its solution to the BDH problem.

We first observe that if the reduction did not halt, then the view is distributed equally to the real scheme.
Finally, the condition that the attacker would cause an abort on the i∗-th query to H in Step 4 due to the j∗

ciphertext and t∗ query to T is implies that it must have submitted e(g, g)abc which is a solution to the BDH
problem.
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