
1 
 

Symmetric-key 

Searchable 

keyword 

Concealment (SSC) 
10/26/2010     

  YACOV YACOBI
1
 

 

ABSTRACT 

We discuss what is commonly known as 

“searchable symmetric keywords 

encryption,” although we prefer to replace 

“encryption” with “concealment,” since 

many of these transformations are not 

(efficiently) reversible (they look more like 

one way hashing).  

The thrust of this paper is practical 

approaches to cryptographic solutions for 

cloud databases security and privacy. We 

limit the scope of this paper to symmetric 

key keyword concealment systems, and 

show the following: (i) for the attacker (with 

the DB admin as the attacker), any 

Symmetric-key Searchable keyword 

Concealment (SSC) with high probability 

behaves as far as the attacker is concerned 

like a deterministic cipher (therefore, we 

might as well use deterministic systems and 

rip their efficiencies).  (ii) Range queries can 

be handled more securely and more 

efficiently than current proposals, such as 

OPE, at the cost of some extra bandwidth, 

but good compromises are easy to find; (iii) 

                                                           
1
 This work was done when the author was with 

Microsoft Research.  

Conjunctions of keywords (and indeed any 

Boolean predicate) are easy to handle at the 

cost of some additional information leakage. 

We do not know of any real example where 

this extra leak matters.  

IACR Category: Cryptographic Protocols. 



2 
 

Keywords:

  Cloud cryptography, searchable 

encryption. 

1. INTRODUCTION 
 

Informal Glossary: 

Global vs. local Indexes:  A local index is 

similar to a keyword list attached to a paper 

(the document, or record). A global index is 

similar to the index at the end of a textbook 

(where pages play the roles of documents).   

Search system based on local indexes is 

inherently inefficient, since it requires 

searching the local indexes of each of the 

records in the DB, and hence must run in 

time linear in the number of records. In 

contrast, we can search a global index in 

time logarithmic in the number of records, 

just as we do with the index at the end of a 

textbook. We therefore view only the latter 

as a candidate for practical systems. All the 

papers that we know of about keywords 

conjunctions use local indexes (we 

contribute a small idea in this direction in 

section 5 of this paper, but we do not view it 

as a candidate for a practical system).  

Result vectors: For a given keyword, a result 

vector is a vector that specifies all the 

documents that match that keyword.  

Internal vs. external conjunctions: Readers 

of a database (DB) usually specify searches 

as conjunctions of keywords (KW). If the 

DB can see each KW separately, find its 

result vector and then intersect the vectors to 

find a vector matching the conjunction, then 

we call it external conjunction.  If the DB 

gets a representation of the conjunction and 

finds the result vector of the conjunction 

without seeing individual KW, nor their 

corresponding result vectors, then we call it 

internal conjunction.  The latter is more 

secure than the former (which leak 

individual result vectors).  

Range queries:  A range query has the 

general form: Give me all the (encrypted) 

variables to which I have read-access 

(within some context), whose values are in 

the range [u,v].   

A Bloom Filter (BF, [B]) has two inputs: 

Representations of a set, S, and of element u.  

Its output is the truth-value of the predicate 

uS. In its simplest form it works as 

follows: Represent keywords as binary L-

tuples. Let F denote a family of random 

functions [GGM], where for fF,  

f:{0,1}
L{0,1}

k
.  The Bloom Filter is a 

binary array of length 2
k
.  It is initially set to 

the all zeros vector. Pick r random functions 

fiF, i=1,2,…r.  Let S={wj}, j=1,2,..m,  

wj{0,1}
k
, compute fi(wj), i=1,…r,  j=1,2,..m 

and set bits fi(wj) in the BF array to 1. To 

check if a new word u  is included in S, 

compute fi(u), i=1,2,…r, and check if bits 

fi(u), i=1,2,…r are all set to 1 in the BF array 

of S. If the answer is positive, then with high 

probability (for a proper parameter choice) 

uS. If even in one of these locations the 

value of the BF entry is zero, then uS. In 

practice, the theoretical family of random 

functions is replaced by standard keyed one-

way hash functions.  



3 
 

Each user is associated with a vector of 

Boolean attributes. For example, an entry 

may be “older than 21,” another entry may 

be “holds a valid driver’s license,” a third 

may be “resident of Washington State.” The 

user may be associated with additional non 

binary fields, such as address, age, eye 

color, and height.  

Definition: A policy is a Boolean predicate 

over the vectors of binary attributes.  

Each record in a cloud DB is associated with 

read and write policy, and they may be 

distinct.  A user is allowed to read or write if 

and only if her binary attributes fulfill the 

read/write policies, respectively.  

Remark: In the literature (ABE [GPSW]) 

sometimes the starting point is access 

structures realizable by threshold secret 

sharing scheme, but they end up 

implementing Boolean predicates as above 

(an n out of n threshold implements logical 

AND, and a 1 out of n implements a logical 

OR) 

In any system we can implement any logical 

NOT in a policy by propagating all the 

NOTs to basic attributes, using De Morgan’s 

Law, and treating them as any other 

attribute.  

2. LIMITATIONS ON SECURITY    

We find the definitions in [CGKO] very 

illuminating. They led us to the observation 

that as far as the cryptanalyst is considered 

any keyword concealment system behaves 

with high probability like a deterministic 

cipher (see below).  

Let K, M, C denote the key, message
2
, and 

cryptogram spaces, resp. More specifically, 

M is the set of messages {m1, m2…mL}, 

where Pr[mi]>0, i=1,2,…L.  For a given 

deterministic encryption algorithm, E, and a 

key kK, let CE,k={c | mM, c=Ek(m)}.  It 

follows that for any deterministic 

encryption, E and any key k, CE,k has the 

same distribution as M.  

Let n denote the number of records in a DB. 

Suppose that keyword wi has probability 

0<qi<1 to be included in any given record 

(record=file; a keyword with q=1 is useless 

since it filters nothing). That means that the 

average Hamming Weight of its result 

vector is ~qin. Two keywords wi wj are 

independent if their result vectors are 

uncorrelated.  

The result vectors of keywords wi and wj are 

more likely to be identical when qi=qj=q 

(than when qiqj).  But even then the 

probability is close to zero when a realistic 

size DB is considered. In that case, on 

average the probability that the two result 

vectors are identical is  = (1-q)
n(1-q)

q
nq

.  A 

practical DB can easily have n=10
6
, in 

which case  is practically zero regardless of 

the value of q, as long as 0<q<1. We 

therefore proceed under the assumptions that 

each keyword has a unique result vector. 

Therefore the space of result vectors, S, has 

the same distribution as the message space 

M. Knowledge of the distribution of S 

(which is visible to the attacker; the DB 

admin) gives the attacker the same benefits 

as knowing the distribution of C in 

deterministic systems. I.e. these systems are 

                                                           
2
 Messages=keywords. 



4 
 

(with Pr  1- ) as vulnerable as 

deterministic systems.   

Therefore, regardless of how we encrypt the 

keywords, when viewed together with their 

result-vectors the encryption is essentially 

deterministic.  

It is therefore a waste to encrypt the 

keywords using complex semantically 

secure techniques and pay the extra cost of 

(greatly) reduced efficiency. 

3. RANGE QUERIES 

[ABO] and [BCLO] propose solutions to 

range queries. However, [ABO] exposes 

prefixes, and [BCLO] exposes the relative 

order of values. We hope to achieve the goal 

while leaking less info, even if we have to 

raise the cost a bit. [SBCSP] uses a local 

index, hence runs in time linear in the DB 

size, and is not practical. 

Trading bandwidth for security: 

Range queries are of the form “Give me all 

the records, to which I have read access, in 

which the value of field x is v(x)[v1 ,v2].”  

The goal is to answer such queries when 

v(x), v1 and v2 are encrypted in such a way 

that the DB cannot decrypt them, and 

without leaking more information than is 

necessary.  

One approach is Order Preserving 

Encryption (OPE) [BCLO]. An encryption 

function is order preserving if the 

cryptograms (viewed as integers) maintain 

the same relative order as the underlying 

messages. A reader then issues a query by 

encrypting the range values v1 and v2 with 

the same function and the same key as the 

stored data, x, and the DB can respond the 

same way it would respond in the absence of 

encryption. Such systems leak the order by 

definition.  

We propose a different approach. In our 

approach the DB may return more records 

than needed. The user decrypts all of them 

(she gets only records to which she has read 

access) and throws away the extra records. 

There is a tradeoff between bandwidth and 

computation.  

The idea is to tag records with a range 

keyword. For example, if the field is body-

temperature, we can have encrypted 

keywords A, B, C, D, corresponding to the 

ranges [90-95), [95,97), [97,99), [99,101).  

If the exact value of the field is 98.6, then 

the record is tagged with C.  Keywords are 

concealed (encrypted or one-way hashed).  

If the reader wants to retrieve all the records 

with body temperature in the range (96,100), 

she specifies (encrypted) keywords C,D, and  

she may get records outside the range.   

The distribution of documents in intervals 

(which is different from the distribution of 

queries discussed in section 3.2) is visible to 

the attacker.  We can flatten it to reduce 

information leak. For example, if some 

variable has a Gaussian distribution, we can 

choose smaller intervals at the center of the 

bell-curve. This method is more secure than 

OPE, since (after smoothing the 

distributions) it does not leak the order. For 

optimization analysis, see Appendix A.     

The above method applies both to 

symmetric and to asymmetric keyword 

encryption. 



5 
 

This method leaks less than OPE, but it 

leaks. For example, two encrypted ranges 

that are queried together usually mean that 

the two ranges are adjacent.  With this 

method the attacker does not know the order 

of the ranges, while with OPE she does
3
.  If 

we have k ranges, then this method has 

log2(k!) extra security bits compared with 

OPE, which leaks the order (since we have 

k! permutations to choose from).  

4. CONJUNCTIONS 

 External conjunctions (see glossary):  

Local indexes require search time linear in 

the number of documents.  This is not 

practical. All the algorithms for internal 

conjunctions known to us use local indexes, 

and inherit their impracticality. We do not 

know of any real example where the inferior 

security of external conjunction compared to 

internal conjunction matters. External 

conjunctions leak all the individual result 

vectors, while internal conjunctions leak 

only their intersection. Note that if a user 

builds the query gradually, adding keywords 

until she gets good filtering, then the DB 

learns a lot about individual result vectors 

(although not everything) even when using 

internal conjunctions.  

Note also that externally we can handle any 

binary predicate, not just conjunctions.  

Internal conjunctions: We discuss a 

potential new internal conjunction system, 

which is simpler than current proposals. 

Like its predecessors, it uses local indexes, 

                                                           
3
 Randomizing the queries would not buy extra 

security (over deterministic) even here, since the DB 
admin can glean the same info from the result 
vectors. 
 

and hence its search time is linear in the 

number of docs. 

We can extend [G] to do simple internal 

conjunctions as follows:  use an encrypted 

Bloom Filter ([B] see glossary in section 2), 

BF1, for each doc as is done now, and create 

another encrypted Bloom Filter, BF2, for a 

conjunctive query. Then just as we check for 

inclusion of a single word in BF1 we can 

check if BF2  BF1 (do all the 1’s of BF2 

fall on 1’s of BF1?).  This construction may 

leak some information about the number of 

conjuncts. For example, when we have two 

conjuncts, in ordinary BF the Hamming 

weight of BF2 is between k and 2k, where k 

is the number of hash functions used with 

each individual conjunct. We can mitigate 

this leak using blinding of BF2 similar to 

step 3 in BuildIndex of [G].  This increases 

the probability of false positives, and we 

have to increase filter sizes to compensate.  

Maybe this construction leaks nothing more, 

but we still do not have a proof. Note that if 

we do not care about the above leak, we do 

not have to increase the size of the BF’s over 

the case of a single query, since this internal 

conjunction gives precisely the same results 

as the corresponding external conjunction. It 

is also true that the security of individual 

keywords is not degraded by this 

construction (compared with [G]).  

The new system inherits its impractical 

search complexity (linear in the number of 

docs) from [G], and is sub-linear in the 

number of conjuncts (external conjunction is 

linear in the number of conjuncts).  

 [ABO] with external conjunctions is overall 

more efficient (logarithmic in the global 



6 
 

index size, and linear in the number of 

conjuncts). 

 

REFERENCES 

[ABO] Georgios Amanatidis Alexandra 

Boldyreva Adam O’Neill, New Security 

Models and Provably-Secure Schemes for 

Basic Query Support in Outsourced 

Databases. 

[BBO] M. Bellare, A. Boldyreva, A. 

O’Neill, Deterministic and Efficiently 

Searchable Encryption, Crypto’07 Proc. 

LNCS, Vol. 4622, pp. 535-5 52, A. Menezes 

ed. Springer, 2007.  

[B] BURTON H. BLOOM, Space/Time 

Trade-offs in Hash Coding with Allowable 

Errors, Communications of the ACM 

Volume 13 / Number 7 / July, 1970, pp.  

422-426. 

[BCLO] Alexandra Boldyreva, Nathan 

Chenette, Younho Lee, and Adam O’Neill, 

Order-Preserving Symmetric Encryption,  A. 

Joux (Ed.): EUROCRYPT 2009, LNCS 

5479, pp. 224–241, 2009. 

[BKM] L. Ballard, S. Kamara, and F. 

Monrose, Achieving Efficient Conjunctive 

Keyword Searches over Encrypted Data, 

ICICS 2005, LNCS 3783, pp. 414-426, 

2005. 

[BW] D. Boneh, and B. Waters, 

Conjunctive, Subset, and Range Queries on 

Encrypted Data, S.P. Vadhan (Ed.): TCC 

2007, LNCS 4392, pp. 535–554, 2007 

[CGKO] R. Curtmola, J. Garay, S. Kamara, 

R. Ostrovsky, Searchable Symmetric 

Encryption: Improved Definitions and 

Efficient Constructions, CCS’06, October 

30–November 3, 2006 ACM 1-59593-518-

5/06/0010 

[CKGS] B. Chor, E. Kushilevitz, O. 

Goldreich, M. Sudan: Private Information 

Retrieval. J. ACM 45(6): 965-981 (1998) 

[CM] Yan-Cheng Chang and Michael 

Mitzenmacher, Privacy Preserving Keyword 

Searches on Remote Encrypted Data, J. 

Ioannidis, A. Keromytis, and M.Yung 

(Eds.): ACNS 2005, LNCS 3531, pp. 442–

455, 2005. 

[G] E.J. Goh, Secure Indexes. 

[GSW] Philippe Golle, J. Staddon, and B. 

Waters, Secure Conjunctive Keyword 

Search over Encrypted Data,  M. Jakobsson, 

M. Yung, J. Zhou (Eds.): ACNS 2004, 

LNCS 3089, pp. 31–45, 2004. 

[KL] S. Kamara, and K. Lauter, 

Cryptographic Cloud Storage. 

[OS]  R. Ostrovsky, W.E. Skeith III, A 

Survey of Single-Database PIR:  Techniques 

and Applications.  

[S] C. E. SHANNON, Communication 

Theory of Secrecy Systems, Bell Systems J. 

1949. 

 [SBCSP] E. Shi, J. Bethencourt,T-H. 

Hubert, C. D. Song and A. Perrig, Multi-

Dimensional Range Query over Encrypted 

Data. 

 

http://en.wikipedia.org/wiki/Oded_Goldreich
http://en.wikipedia.org/wiki/Oded_Goldreich
http://en.wikipedia.org/wiki/Madhu_Sudan


7 
 

APPENDIX A:  Optimization of 

range queries 

The function f(k) that we want to minimize 

is the number of Concealed  Keywords (CK) 

(times some constant c₁)  plus the number of 

items that the DB sends back as a spill 

(times some constant c₂). These constants 

for example include the complexity of 

cryptographic operations. Let c1=ac2. 

Assume n items evenly distributed in k 

compartments. The user specifies m 

compartments (out of the total k) and gets 

nm/k items back. We want to find the 

optimal k.  The overall range of Real 

numbers is of size U, and the range query is 

a subset Real interval of size R≤U.  The 

following is an optimization for uniform 

distribution.  For other distributions it makes 

sense to use non uniform interval sizes, with 

smaller intervals where density is higher. 

The user wants to get back a fraction nR/U 

items. She specifies kR/U concealed 

keywords.  Due to the "quantization” effect 

of the intervals, there is a "spill" and she 

gets some items which are not in the subset 

of size R.  This is a waste that we want to 

minimize 

    A typical spill is roughly the compartment 

size, i.e. Un/k (in the worst case it is 2 

compartments, i.e. 2Un/k).  Wlg assume 

c2=1.  So, 

f(k)≈akR/U+Un/k 

The value of k that minimizes f(k) is 

k₀=U(n/(aR))
1/2

. 

EXAMPLE-1: Suppose the variable is 

human body temperature, with overall range 

[80,110], and a physician is looking for all 

records with body temperature in the range 

[97,103].  So, U=110-80=30, and R=103-

97=6.  Suppose a=1, and there are n=10⁶ 

record to which that physician has read 

access then the spill to payload ratio is 

30/((10⁶/6)
1/2

)=7.3485×10⁻². Namely, there 

is ~7% waste compared to precise DB (that 

has no spill). For this query the physician 

will use k=U(n/R)
1/2

=30(10⁶/6)
1/2

= 12247  

concealed keywords.  She will get back a 

payload of nU/R=10⁶∗30/6= 5.0×10⁶ of 

useful data (and throw away the ~7% spill).  

EXAMPLE-2: Suppose that c₁=ac₂.  Then, 

assuming c₂=1,  f(k)≈akR/U+Un/k,  and the 

optimal k  is k₀=U(n/(aR))
1/2

. This is a factor 

a
1/2

 better than in the previous example.  It 

could be even that a=10⁴ (eg, if delivery of 

a record takes 1μs and a pairing op takes 

10ms). In that case, a
1/2

 =100.  For the 

previous parameters, namely U=30, R=6, 

n=10⁶, we get k₀=122.   

 

      

  

 


