
A Note on Zero-Knowledge Proofs of Knowledge and

the ZKPOK Ideal Functionality∗

Carmit Hazay† Yehuda Lindell‡

October 28, 2010

Abstract

In this note, we provide a formal proof of the fact that any protocol that is a zero-knowledge
proof of knowledge for a relation R is also a secure protocol for the zero-knowledge proof of
knowledge functionality, where the latter is defined according to the standard framework of
stand-alone secure computation. Although this is a well-known fact, to the best of our knowl-
edge, no full proof of this has been published.

1 Introduction

In order to keep this note brief, we assume familiarity with the definitions of zero-knowledge, zero-
knowledge proofs of knowledge, and secure computation in the presence of malicious adversaries.
See [3, Chapter 4] and [4, Chapter 7] for definitions of zero-knowledge and secure computation,
respectively.

The goal. In this note, we show that any protocol that is a zero-knowledge proof of knowledge
fulfills the ideal zero-knowledge proof of knowledge functionality under the definition of secure
computation with malicious adversaries. This is very useful when using zero-knowledge proofs of
knowledge as subprotocols since it enables the use of the modular composition theorem of [2], and
so significantly simplifies proofs of security.

The problem. The problem that arises when attempting to prove the above is in the case that
the prover is corrupted. This is due to the fact that simulation of this case (in the setting of secure
computation) works by first verifying the proof from the prover. Then, if the proof is convincing,
the knowledge extractor is run, and it runs in time that is close to the inverse of the probability that
the proof was convincing. The problem that arises is that “close” here means a negligible difference,
and this does not guarantee that the expected running time of the simulator is polynomial. This is
explained and demonstrated in detail in the proof below. This problem was first dealt with by [5]
in the context of constant-round zero-knowledge proofs. We use their exact technique, and remark
that this problem actually arises quite often in secure computation. Thus, it is important to be
familiar with this technique, beyond its specific application to zero-knowledge and zero-knowledge
proofs of knowledge.

∗This note is an excerpt from [7].
†Dept. of Computer Science, Aarhus University, Denmark. email: carmit@cs.au.dk.
‡Dept. of Computer Science, Bar-Ilan University, Israel. email: lindell@cs.biu.ac.il.

1

Definitions. In order to be precise, we present the definition of proofs of knowledge that we use.
This is the original definition as it appeared in [1] and not the version of the definition as it appears
in [3].

Definition 1 Let κ : {0, 1}∗ → [0, 1] be a function. A protocol (P, V) is a proof of knowledge for
the relation R with knowledge error κ, if the following properties are satisfied:

Completeness: If P and V follow the protocol on input x and private input w to P where (x,w) ∈
R, then V always accepts.

Knowledge soundness (or validity): There exists a constant c > 0 and a probabilistic oracle
machine K, called the knowledge extractor, such that for every interactive prover function P ∗

and every x ∈ LR, the machine K satisfies the following condition. Let ϵ(x) be the probability
that V accepts on input x after interacting with P ∗. If ϵ(x) > κ(x), then upon input x and
oracle access to P ∗, the machine K outputs a string w such that (x,w) ∈ R within an expected
number of steps bounded by

|x|c

ϵ(x)− κ(x)

In addition, we use the zero-knowledge proof of knowledge functionality, defined as follows. Let
R be a relation and define the zero-knowledge functionality FR

zk by

FR
zk((x,w), w) = (λ,R(x,w)).

where λ is the empty output, signifying that the first party receives no output.

2 The Proof of Equivalence

Intuitively, any zero-knowledge proof of knowledge for R securely realizes FR
zk because simulation

takes care of the case that V is corrupted and witness extraction takes care of the case that P is
corrupted. However, for technical reasons that will become apparent in the proof below, this is not
so simple.

Before proving the theorem we remark on one technical change that must be made to the
zero-knowledge proof of knowledge protocol. Specifically, in the setting of secure computation, the
prover may be invoked with input (x,w) such that (x,w) /∈ R. In this case, the prover should just
send 0 to the verifier and do nothing else. Thus, we add an instruction to the protocol to have the
prover first verify that (x,w) ∈ R. If yes, it proceeds with the protocol, and if not it sends 0 to
the verifier and halts. Observe that in order for this to be possible, the relation R must be in NP.
(We also need the following property: for every x it is possible to efficiently find a value w such
that (x,w) /∈ R. This property holds for all “interesting” relations that we know of. Note that if it
does not hold, then a random witness is almost always a valid one, and so running such a proof is
meaningless.)

Theorem 2 Let π be a zero-knowledge proof of knowledge with negligible knowledge error for an
NP-relation R. Then, π securely computes the zero-knowledge functionality FR

zk in the presence of
malicious adversaries.

2

Proof: Let A be an adversary. We separately consider the case that A corrupts the prover P and
the case that A corrupts the verifier V . In the case that the verifier is corrupted, the simulator S
for FR

zk receives a bit b ∈ {0, 1} from the trusted party. If b = 0, then S hands 0 to A as if coming
from P and halts. Otherwise, if b = 1, then S runs the zero-knowledge simulator that is guaranteed
to exist for π with A as the verifier. In the case that b = 0, the adversary A sees exactly what an
honest prover would send. In the case that b = 1, by the security properties of the zero-knowledge
simulator, the output generated by S is computationally indistinguishable from the output of A in
a real execution with P . This therefore completes this corruption case.

We now consider the case that P is corrupted by A. Intuitively, the simulator S works as
follows:

1. S plays the honest verifier with A as the prover.

(a) If A sends 0 to the verifier in this execution, then S sends the trusted party computing
FR
zk an invalid witness w such that (x,w) /∈ R. Then, S outputs whatever A outputs

and halts.

(b) If S, playing the honest verifier, is not convinced by the proof with A, then it sends
abortP to the trusted party computing FR

zk, outputs whatever A outputs and halts.

(c) If S is convinced by the proof with A, then it records the output that A outputs and
proceeds to the next step.

2. S runs the knowledge extractor K that is guaranteed to exist for π on the prover A, and
receives back a witness w such that (x,w) ∈ R. S then sends w to the trusted party computing
FR
zk and outputs the output of A recorded above.

The intuition behind this simulation is clear. In the case that A would not convince the verifier in
a real execution, the same behavior (output of the value 0 or abortP) is achieved in the simulation.
However, in the case that A would convince the verifier, the simulator S has to send a valid witness
w to the trusted party computing FR

zk. It therefore runs the knowledge extractor K to do this.
However, K runs in expected time

|x|c

ϵ(x)− κ(x)

where ϵ(x) is the probability that A would convince the verifier and κ(x) is the (negligible) knowl-
edge error. Now, since S only runs the extractor in the case that A convinces it in the proof while
S plays the honest verifier, we have that S only runs the extractor with probability ϵ(x). Thus,
the expected running-time of S is

ϵ(x) · |x|c

ϵ(x)− κ(x)
= |x|c · ϵ(x)

ϵ(x)− κ(x)

It may be tempting at this point to conclude that the above is polynomial because κ(x) is negli-
gible, and so ϵ(x) − κ(x) is almost the same as ϵ(x). This is true for “large” values of ϵ(x). For
example, if ϵ(x) > 2κ(x) then ϵ(x)− κ(x) > ϵ(x)/2. This then implies that ϵ(x)/(ϵ(x)− κ(x)) < 2.
Unfortunately, however, this is not true in general. For example, consider the case that κ(x) = 2−|x|

and ϵ(x) = κ(x) + 2−|x|/2 = 2−|x| + 2−|x|/2. Then,

ϵ(x)

ϵ(x)− κ(x)
=

2−|x| + 2−|x|/2

2−|x|/2 = 2|x|/2 + 1,

3

which is exponential in |x|. In addition to the above problem, the guarantee regarding the running-
time of K and its success only holds if ϵ(x) > κ(x). Thus, if K runs for time ϵ(x)−2 whenever
ϵ(x) ≤ κ(x), we once again have a similar problem. For example, consider the case that κ(x) =
ϵ(x) = 2−|x|. Then, the expected running time of S for such an A is

(1− ϵ(x)) · poly(|x|) + ϵ(x) · 1

ϵ(x)2
>

1

ϵ(x)
= 2|x|.

This technical problem was observed and solved by [5] in the context of zero-knowledge. We now
show how to use their technique here.

Both of the problems described above are solved by ensuring that the extractor never runs “too
long”. Specifically, if S is convinced of the proof by A, and so proceeds to the second step of
the simulation, then it first estimates the value of ϵ(x), where ϵ(x) denotes the probability that A
successfully proves that it knows a witness w such that (x,w) ∈ R. This is done by repeating the
verification until m(x) successful verifications occur, for a large enough polynomial m(·). Then, an
estimate ϵ̃ of ϵ is taken to be m/T , where T is the overall number of attempts until m successful
verifications occurred. As we will see, this suffices to ensure that the probability that ϵ̃ is not within
a constant factor of ϵ(x) is at most 2−|x|. We show this using the following bound:

Lemma 2.1 (Tail inequality for geometric variables [6]): Let X1, . . . , Xm be m independent random
variables with geometric distribution with probability ϵ (i.e., for every i, Pr[Xi = j] = (1−ϵ)j−1 ·ϵ).
Let X =

∑m
i=1Xi and let µ = E[X] = m/ϵ. Then, for every δ,

Pr[X ≥ (1 + δ)µ] ≤ e
− mδ2

2(1+δ)

Proof: In order to prove this lemma, we define a new random variable Yα for any α ∈ N as follows.
Consider an infinite series of independent Bernoulli trials with probability ϵ (i.e., the probability of
any given trial being 1 is ϵ). Then, write the results of these trials as a binary string and let Yα be
the number of ones appearing in the prefix of length α. It is clear that

µα = E[Yα] = α · ϵ .

Furthermore,
Pr[X ≥ (1 + δ)µ] = Pr[Yα < m]

for α = (1+ δ)µ. In order to see why this holds, observe that one can describe the random variable
X =

∑m
i=1Xi by writing an infinite series of Bernoulli trials with probability ϵ (as above), and then

taking X to be the index of the mth one to appear in the string. Looking at it in this way, we
have that X is greater than or equal to (1+ δ)µ if and only if Y(1+δ)µ < m (because if Y(1+δ)µ < m
then this means that m successful trials have not yet been obtained). Observe now that µα = α · ϵ,
α = (1 + δ)µ, and µ = m/ϵ. Thus, µα = (1 + δ) ·m. This implies that(

1− δ

1 + δ

)
· µα =

(
1− δ

1 + δ

)
· (1 + δ) ·m = (1 + δ) ·m− δ ·m = m ,

and so

Pr[Yα < m] = Pr

[
Yα <

(
1− δ

1 + δ

)
· µα

]
.

4

Applying the Chernoff bound1, we have that

Pr
[
Yα < m

]
= Pr

[
Yα <

(
1− δ

1 + δ

)
µα

]
< e−

µα
2
·(δ

1+δ)
2

Once again using the fact that µα = (1 + δ) ·m we conclude that

Pr[X ≥ (1 + δ)µ] = Pr
[
Yα < m

]
< e−

(1+δ)m
2

·(δ
1+δ)

2

= e
− mδ2

2(1+δ)

as required.

Define Xi to be the random variable that equals the number of attempts needed to obtain the
ith successful verification (not including the attempts up until the i − 1th verification), and let
δ = ±1/2. Clearly, each Xi has a geometric distribution with probability ϵ. It therefore follows
that

Pr

[
X ≤ m

2ϵ
∨X ≥ 3m

2ϵ

]
≤ 2 · Pr

[
X ≥ 3

2
· m
ϵ

]
≤ 2 · e−

m
12

Stated in words, the probability that the estimate ϵ̃ = m/X is not between 2ϵ/3 and 2ϵ is at most
2e−m/12. Thus, if m(x) = 12|x| it follows that the probability that ϵ̃ is not within the above bounds
is at most 2−|x|, as required.

Next, S repeats the following up to |x| times: S runs the extractor K and answers all of K’s
oracle queries with the A as the prover. However, S limits the number of steps taken by K to
|x|c+1/ϵ̃ steps, where c is the constant from the knowledge soundness (or validity) condition in the
definition of proofs of knowledge (every extractor K has a single constant c associated with it and so
S can use the appropriate c). Note that a “call” to A as the prover is counted by S as a single step.
Now, if within this time K outputs a witness w, then S sends w to the trusted party computing
FR
zk and outputs the output of A that it first recorded. (We note that S does not need to check

if w is a valid witness because by the definition of K, it only outputs valid witnesses.) If K does
not output a witness within this time, then S aborts this attempt and tries again. As mentioned
above, this is repeated up to |x| times; we stress that in each attempt, K is given independent
coins by S. If the extractor K did not output a witness in any of the |x| attempts, then S halts
and outputs fail. We will show that this strategy ensures that the probability that S outputs fail
is negligible. Therefore, the probability that the initial verification of the proof succeeded, yet S
does not output a valid witness, is negligible.

In addition to the above, S keeps a count of the overall running time of K and if it reaches 2|x|

steps, then it halts, outputting fail. (This additional time-out is needed to ensure that S does not
run too long in the case that the estimate ϵ̃ is not within a constant factor of ϵ(x). Recall that this
“bad event” can only happen with probability 2−|x|.)

We first claim that S runs in expected polynomial-time.

Claim 2.2 Simulator S runs in expected-time that is polynomial in |x|.

Proof: Recall that S initially verifies the proof provided by A. Since S merely plays an honest
verifier, this takes a strict polynomial number of steps. Next, S obtains an estimate ϵ̃ of ϵ(x). This

1We use the following version of the Chernoff bound. Let X1, . . . , Xm be independent Bernoulli trials where
Pr[Xi = 1] = ϵ for every i, and let X =

∑m
i=1 Xi and µ = E[X] = mϵ. Then, for every δ it holds that Pr[X <

(1− β)µ] < e−
µ
2
·β2

.

5

involves repeating the verification until m(|x|) successes are obtained. Therefore, the expected
number of repetitions in order to obtain ϵ̃ equals exactly m(|x|)/ϵ(x) (since the expected number of
trials for a single success is 1/ϵ(x)). After the estimation ϵ̃ has been obtained, S runs the extractor
K for a maximum of |x| times, each time for at most |x|c+1/ϵ̃ steps.

Given the above, we are ready to compute the expected running-time of S. In order to do this,
we differentiate between two cases. In the first case, we consider what happens if ϵ̃ is not within
a constant factor of ϵ(x). The only thing we can say about S’s running-time in this case is that
it is bound by 2|x| (since this is an overall bound on its running-time). However, since this event
happens with probability at most 2−|x|, this case adds only a polynomial number of steps to the
overall expected running-time. We now consider the second case, where ϵ̃ is within a constant
factor of ϵ(x). In this case, we can bound the expected running-time of S by

poly(|x|) · ϵ(x) ·
(
m(|x|)
ϵ(x)

+
|x| · |x|c+1

ϵ̃

)
= poly(|x|) · ϵ(x)

ϵ̃
= poly(|x|)

and this concludes the analysis.

It is clear that the output of S is distributed exactly like the output of A in a real execution. This is
because S just plays the honest verifier with A as the prover, and so the view of A in this simulation
is identical to a real execution. Thus, the only problem that arises is if S accepts A’s proof, but
fails to obtain a valid witness. Notice that whenever A’s proof is accepting, S runs the extractor
K and either obtains a proper witness w or it outputs fail. That is, in the case of accepting proofs,
if S does not output fail, then it outputs a proper witness. Therefore, it suffices to show that the
probability that S outputs fail is negligible.

Claim 2.3 The probability that S outputs fail is negligible in |x|.

Proof: Notice that the probability that S outputs fail is less than or equal to the probability that
the extractor K does not succeed in outputting a witness w in any of the |x| extraction attempts
plus the probability that K runs for 2|x| steps.

We first claim that the probability thatK runs for 2|x| steps is negligible. We have already shown
in Claim 2.2, that S (and thus K) runs in expected polynomial-time. Therefore, the probability
that an execution will deviate so far from its expectation and run for 2|x| steps is negligible. (It is
enough to use Markov’s inequality to establish this fact.)

We now continue by considering the probability that in all |x| extraction attempts, the extractor
K does not output a witness within |x|c+1/ϵ̃ steps. Consider the following two possible cases (recall
that ϵ(x) equals the probability that A succeeds in proving the proof, and that κ is the negligible
knowledge-error function of the proof system):

1. Case 1: ϵ(x) ≤ 2κ(x): In this case, A succeeds in proving the proof with only negligible
probability. This means that the probability that S even reaches the stage that it runs K is
negligible (and thus S outputs fail with negligible probability only).

2. Case 2: ϵ(x) > 2κ(x): Recall that by the definition of proofs of knowledge, the constant
c is such that the expected number of steps taken by K to output a witness is at most
|x|c/(ϵ(x)−κ(x)). Now, since in this case ϵ(x) > 2κ(x), it holds that the expected number of
steps required byK is less than 2|x|c/ϵ(x). Assuming that ϵ̃ is within a constant factor of ϵ(x),
we have that the expected number of steps is bound by O(|x|c/ϵ̃). Therefore, by Markov’s

6

inequality, the probability that K runs longer than |x|c+1/ϵ̃ steps in any given extraction
attempt is at most O(1/|x|). It follows that the probability that K runs longer than this time
in |x| independent attempts is negligible in |x| (specifically, it is bound by O(1/|x|)|x|). This
covers the case that ϵ̃ is within a constant factor of ϵ(x). However, the probability that ϵ̃ is
not within a constant factor of ϵ(x) is also negligible. Putting this together, we have that S
outputs fail with negligible probability only.

Combining the above two claims, together with the fact that the simulation by S is perfect when
it does not output fail, we conclude that S is a valid simulator for the case that P is corrupted.
Thus, π securely computes the FR

zk functionality.

References

[1] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In CRYPTO’92, Springer-
Verlag (LNCS 740), pages 390–420, 1992.

[2] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[3] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge University
Press, 2001.

[4] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[5] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[6] S. Har-Peled. Lecture Notes on Approximation Algorithms in Ge-
ometry, Chapter 27, Excercise 27.5.3, 2010. Currently found at
http://valis.cs.uiuc.edu/∼sariel/teach/notes/aprx/.

[7] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols – Techniques and Construc-
tions. Springer, 2010.

7

