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Abstract

In this work, we are interested in arithmetic in large prime field and
their extensions of small degree. We explain why it is very interesting to
use RNS arithmetic for the base field Fp when computations in Fpk have
to be done, essentially thanks to lazy reduction. This is for example the
case for pairing computations on ordinary curves (as MNT or BN curves).
We prove that using RNS can considerably decrease the number of basic
operations required for a pairing computation in many popular situations.
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1 Introduction

In recent years, pairing based cryptography became more and more popular.
Thus efficient software and hardware implementation are necessary. For some
time past, ordinary curves superseded supersingular curves [13, 43] on large
prime fields. Such pairing involve many arithmetic in extensions of small degrees
of the base field. Hence, one approach angle for efficient pairing computation
is the optimization of extension field arithmetic. The Residue Number System
(RNS) has already been introduced in elliptic curve cryptography in [4, 3]. This
is a system to represent numbers which uses the Chinese Remainder Theorem.
It is recalled in Section 2. Contrary to standard arithmetic in Fp, the RNS
introduces a gap of complexity between the multiplication and the reduction
step of a modular multiplication. In extension fields, we show in Section 3
how lazy reduction allow to considerably decrease the number of reduction.
Hence the RNS is particularly well suited for extension field arithmetic and
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consequently for pairing computations. In Section 4, after some background
on pairings and their computation, we study in details the complexity of an
RNS implementation of current pairings (Tate, Ate, R-Ate) and compare it to
standard complexities. We will concentrate on MNT and BN curves which are
the most popular today for embedding degrees 6 and 12 since their cardinality
can be prime or almost prime contrary to other constructions in the literature.
In all cases we obtain significant savings so that the RNS is very interesting for
future pairing implementations.

This work was supported by the ANR projects no. 07-BLAN-0248 ALGOL
and 09-BLAN-0020-01 CHIC

2 Efficient arithmetic on prime fields

2.1 Modular multiplication

The elliptic curve arithmetic over Fp mainly involves modular multiplications
modulo p. Such a modular multiplication can be decomposed into one classic
multiplication followed by one modular reduction. Because of the small size
of the numbers used in elliptic curve cryptography (192 to 512 bits, i.e. 6 to
16 32-bit words), the multiplication is performed by a common method. Let
us consider a and b, as two n-word integers given in radix representation (i.e.,
x =

∑n
i=0 xiB

i with 0 ≤ xi < B). Then ab can be computed by a succession
of word multiplications and additions (which will be considered in the following
as basic word operations). We can summarize this by the equation

ab = b0a+ B(b1a+ B(b2a · · ·+ Bbna) . . . ).

The complexity is then n2 word multiplications. We note that for the current
ECC key size, Karatsuba or Toom-Cook approaches are not competitive as
discussed in the study made by the GMP group [30].

The reduction of an integer modulo p consists of finding the remainder of
the Euclidean division of this integer by p. This operation is costly. It can be
substantially sped up by using the Montgomery reduction or by using a special
modulo.

2.1.1 Montgomery general reduction algorithm

In [42], Montgomery proposed to substitute the reduction modulo p by a division
by a power of the radix B (which is a simple shift). The result is not exactly a
mod p but aB−n mod p. This problem can be overcome by using Montgomery
representation where a′ = a×Bn mod p.
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Algorithm 1: Montgomeryp(c)

Data: c(= ab) < pBn, Bn−1 ≤ p < Bn

and a precomputed value (−p−1 mod Bn);
Result: r such that r ≡ cB−n (mod p) and r < 2p;
q ← −c×p−1 mod Bn ;
r ← (c+ qp)/Bn ;

The complexity of this reduction is n2 +n word operations [17]. For a < Bn,
its Montgomery representation is obtained via Algorithm 1 with c = a×(Bn

mod p). By the same way, if a′ is the Montgomery representation of a, then
we recover a using Algorithm 1 with c = a′. Of course, such conversion is done
only once at the beginning and once at the end of the complete cryptographic
computing so that all the computations can be done in Montgomery representa-
tions. Hence, we ignore the cost of the conversion from Montgomery to classic
representation (and reciprocally) in the following. We note, as r < 2p, that a
comparison and a final subtraction could occur, but the output of Algorithm 1
can be used as input by adding a condition on p, specifically 4p < Bn.

2.1.2 Reduction using special modulo

Usually, when using ECC, one can choose the underlying field without restric-
tions. In this case, the cost of a modular reduction can be reduced to several
shifts and additions. This is why the generalized Mersenne number class was in-
troduced [49, 19]. This is used in most of the standards. However this approach
has several drawback

• It requires a dedicated architecture to such a particular p which cannot
be used for other prime fields. Consequently, it is not practical in either
software or hardware implementation and many customers prefer flexible
products.

• In pairing based cryptosystems based on ordinary curves, the underlying
fields cannot be chosen because curves are build via complex multiplication
methods. Moreover, it has been shown in [44] that the use of such special
moduli can introduce weakness in pairing based cryptosystems.

For these reasons we do not consider this approach in this paper.

2.2 The Residue Number Systems (RNS)

The Residue Number Systems are a corollary of the Chinese Remainder Theo-
rem (CRT). They are based on the fact that a number a can be represented by
its residues (a1, a2, . . . , an) modulo a set of coprime numbers (m1,m2, . . . ,mn),
called RNS basis, thus ai = |a|mi = a mod mi. We generally assume that
0 ≤ a < M =

∏n
i=1mi. The elements ai are called RNS-digits. The strongest

advantage of a such system is that it distributes large integer operations on
the small residue values. The operations are performed independently on the
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residues. In particular, there is no carry propagation. These systems were in-
troduced and developed in [28, 50, 51]. A good introduction can be found in
[37].

For constructing an arithmetic over Fp , we assume that M =
∏n
i=1mi is

such that p < M . In this system, two numbers a and b can be represented by
their remainders modulo the mi, i = 1, . . . , n :

a = (a1, . . . , an) and b = (b1, . . . , bn).

A multiplication modulo M is reduced to n independent RNS-digit products.
A RNS-digit product is equivalent to a classical digit product followed by a
modular reduction modulo mi, which represents few additions (see [7, 8]).

r = (|a1×b1|m1 , . . . , |an×bn|mn) ≡ a×b (mod M) (1)

In this paper, we consider RNS basis (m1, ...,mn) with elements such that,
mi = 2h− ci, where ci is small and sparse, ci < 2h/2. The reduction modulo mi

is, in this case, obtained with few shift and additions as in 2.1.2. As explained
in [3] this property ensures that a RNS digit-product can be considered to be
equivalent to 1.1 word-product (word = h-bits).

We now focus on the multiplication modulo p using the Montgomery algo-
rithm presented in [1, 2]. For two numbers a and b given in RNS, this algorithm
evaluates r = abM−1 mod p in RNS. As in the classical Montgomery method
given in subsection 2.1.1, this problem can be overcome by using Montgomery
representation where a′ = a×M mod p which is stable for Montgomery product
and addition. Of course, the conversion is done only once at the beginning by
performing Montgomery product with a and (M2 mod p) as operands, and once
at the end of the complete cryptographic computing with 1 as second operand.
Hence, this transformation will be neglected in the following. Moreover, as
the RNS is not redundant, this representation is well suited for cryptography
without any conversion [6].

2.2.1 RNS Montgomery reduction

This algorithm is a direct transposition of the classical Montgomery method.
The main difference is due to the representation system. When the Montgomery
method is applied in a classical radix B number system, the value Bn occurs in
the reduction, division and Montgomery factor. In RNS, this value is replaced
by M . However, an auxiliary RNS basis is needed to handle the inverse of M .
Hence some operations as the initial product must be performed on the two
bases, which cost 2n words-products.

Algorithm 2 presents the RNS Montgomery reduction (c can be considered
as the result of an RNS product on the two bases), where all the operations
considered are in RNS. We clarify on which basis they are done.
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Algorithm 2: MontgR RNS(c, p)
Data: Two RNS bases B = (m1, . . . ,mn), and B′ = (mn+1, . . . ,m2n),

such that M =
∏n
i=1mi < M ′ =

∏n
i=1mn+i and gcd(M,M ′) = 1 ;

A prime number p such that 4p < M and gcd(p,M) = 1. p is represented
in basis B′ and −p−1 is precomputed in basis B ;
A positive integer c represented in RNS in both bases, with c < Mp.
Result: A positive integer r ≡ cM−1 (mod p) represented in RNS in

both bases, with r < 2p.
begin

q ← (c)×(−p−1) in B;1

[q in B] −→ [q in B′] First base extension;2

r ← (c+ q×p)×M−1 in B′ ;3

[r in B ]←− [r in B′] Second base extension;4

end

Instructions 1 and 3 of Algorithm 2 are RNS additions or multiplications
which are performed independently for each element of the basis, so they are
very efficient (linear). Instructions 2 and 4 represent RNS base extensions which
are quadratic and then costly. To reduce this cost, we can use two different full
RNS extensions as shown in [1, 2].

Finally, it is shown in [3] that the overall complexity of algorithm 2 is 7
5n

2 +
8
5n RNS digit-products.

If we operate with an architecture of n basic word-arithmetic cells, RNS
arithmetic can be easily performed in a parallel manner due to the independence
of the RNS digit operations. A parallel evaluation of the multiplication (in both
bases) requires only 2 steps whereas Algorithm 2 can be done in 12

5 n+ 3
5 steps

[3].

2.2.2 Advantages of the RNS

Even though the number of operations needed for the reduction is somewhat
higher than in a classical representation (n2 +n words products for the classical
Montgomery reduction), RNS has some important advantages.

• If we assume that for ECC size the multiplication needs n2 word-products,
the RNS approach is asymptotically quite interesting for a modular multi-
plication which represents 2n2 +n word-products in classical systems and(

7
5n

2 + 18
5 n
)
×1.1 in RNS.

• As shown in [5], RNS is easy to implement, particularly in hardware, and it
provides a reduced cost for multiplication and addition and a competitive
modular reduction. Furthermore, due to the independence of the modular
operations, computations can be performed in a random way and the
architecture can be parallelized.

• A RNS based architecture is flexible : with a given structure of n modular
digit operators, it is possible to handle any values of p such that 4×p < M .
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Hence, the same architecture can be used for different levels of security
and several base field for each of these levels.

• There is a gap between the cost of the reduction and the cost of the mul-
tiplication which does not occur in classical systems. We can take a great
advantage of this gap by accumulating multiplications before reduction.
This method is called lazy reduction.

2.3 Lazy reduction

Lazy reduction is often used in optimized implementations. It consists in delay-
ing the reduction step after computing several products which must be summed.
For example, assume that we want to compute ab + cd with a, b, c and d in Fp
where p is a n-word prime number. A classical implementation involves 2 modu-
lar multiplications and then requires 4n2+2n word-products. In a lazy reduction
implementation, we first compute the two multiplications and add them before a
unique reduction step. Thus it requires only 3n2 +n word-products. Of course,
this implies that the reduction algorithm can take larger integers as input (less
than 2p2 instead of less than p2 in the above example) but this is not really
cumbersome.

This method is particularly interesting if an RNS arithmetic is used because
of the gap of complexity between the multiplication and the reduction step. As
an example, while the classical computation of ab+ cd requires 14

5 n
2 + 36

5 n RNS
digit-products, the use of lazy reduction requires only 7

5n
2 + 28

5 n RNS digit-
products. Hence, lazy reduction is particularly well adapted to RNS arithmetic.
This has already been used in [4] and [3] for elliptic curve cryptography. The
goal of this paper is to use it for efficient arithmetic on extension fields and
consequently to pairing based cryptography.

3 Fast arithmetic in Fpk combining lazy reduc-
tion and RNS

3.1 Polynomial reduction

Efficient arithmetic in finite extensions of prime fields are usually done with
sparse polynomials with small coefficients so that the cost of the reduction
modulo this polynomial is given by some additions. More precisely, we give this
cost when the extension is defined by a trinomial, which is almost always the
case in practice.

Proposition 1. Let p be a prime number and Xk − δXd − ε in Fp[X] such
that d ≤ k/2 and δ, ε small (by small, we mean that the multiplication by such a
number is cheap in Fp). The reduction modulo Xk − δXd− ε of a degree 2k− 1
polynomial requires only few additions in Fp[X].
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Proof. Write a degree 2k − 1 polynomial P as X2k−dP1 + XkP2 + P3 where
P1, P2 and P3 are polynomials of degree respectively at most d − 1, k − d − 1
and k − 1.

P = (δXd + ε)Xk−dP1 + (δXd + ε)P2 + P3 mod Xk − δXd − ε
= δXkP1 + εXk−dP1 + δXdP2 + εP2 + P3 mod Xk − δXd − ε
= δ(δXd + ε)P1 + εXk−dP1 + δXdP2 + εP2 + P3 mod Xk − δXd − ε
= δ2XdP1 + δεP1 + εXk−dP1 + δXdP2 + εP2 + P3 mod Xk − δXd − ε
= δXd(δP1 + P2) + ε(δP1 + P2 +Xk−dP1) + P3 mod Xk − δXd − ε

It is easy to verify that all polynomials involved in this sum have degree less
than or equal to k − 1, so that this last expression is the reduced form of P .
This sum requires only

• 4 additions in Fp[X],

• 2 multiplications by monomials in Fp[X] which are nothing but shifts of
the coefficients and then are almost free,

• 3 multiplications by δ or ε which can be counted as few additions in Fp[X]
since δ and ε are assumed to be small.

This means that, if the irreducible polynomial defining Fpk is well chosen,
the cost of the reduction step in Fpk arithmetic is negligible compared to a
multiplication in Fp[X]. In all the cases we are interested in this paper, and
more generally in cryptography, such cheap reduction always holds. Hence we
will focus in this paper on multiplication in Fp[X].

3.2 Multiplication in Fpk

These multiplications can be done using Schoolbook method or using alterna-
tive well-known method like Karatsuba or Toom-Cook. In this paper, we are
interested in small values of k so that methods based on FFT are not interest-
ing. Several people already studied in details which method must be used for
each value of k and each construction of the extension. For example, [21] is
very complete for extensions used in pairing-based cryptography. We will not
recall these results here but use them for our comparisons. Anyway, whatever
the method used, it requires kλ multiplications in Fp, with 1 < λ ≤ 2. The use
of lazy reduction in this case is immediate. We just have to delay the reduction
steps at the end of the computation. Then, only k reductions in Fp are required.

Example with k = 2

Assume p ≡ 3 modulo 4 so that −1 is not a square in Fp. Then Fp2 can be
defined by Fp[X]/(X2 + 1). We want to compute the product of P = a0 + a1X
and Q = b0 + b1X. Using schoolbook multiplication, we have

PQ = a0b0 − a1b1 + (a0b1 + a1b0)X.
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This is the typical case where lazy reduction is interesting since ab + cd pat-
terns occur. Finally, such a multiplication in Fp2 involves 4 multiplications in
Fp but only 2 modular reductions. Note that, as elements in Fp2 have 2 inde-
pendent components, it is not possible to have less than 2 reductions in Fp in
the general case. Thus, using Karatsuba multiplication allow to perform only 3
multiplications in Fp but always 2 reductions thanks to the formula

PQ = a0b0 − a1b1 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)X.

The interest of using the RNS for the arithmetic in Fpk then becomes evident.
Indeed, the expensive step of the RNS, namely the reduction step, is used lin-
early when Fpk arithmetic is performed whereas, the cheaper step, namely the
multiplication step, is used quadratically or sub-quadratically. More precisely,
we have the following property

Proposition 2. Let p be a prime number which can be represented by n words
in radix representation and n RNS-digit in RNS representation. Let Fpk be a
finite extension of Fp defined by a sparse polynomial with small coefficients. We
assume that the multiplication in Fp[X] requires kλ multiplications in Fp, with
1 < λ ≤ 2 and that we use lazy reduction in Fp. A multiplication in Fpk then
requires

• (kλ + k)n2 + kn word multiplications in radix representation,

• 1.1×
(

7k
5 n

2 + 10kλ+8k
5 n

)
word multiplications if RNS is used.

Proof. A complete multiplication in Fpk requires kλ multiplications in Fp thanks
to Karatsuba-like methods and k reductions in Fp thanks to the use of the lazy
reduction method. We have seen in subsection 2.1 that a multiplication in Fp
requires n2 word multiplications and that a reduction requires n2 + n of them.
This trivially gives the first assertion. The second one is obtained thanks to the
cost of RNS multiplication (2n RNS digit-products) and reduction ( 7

5n
2 + 8

5n
RNS digit-products) given in subsection 2.2 which must be multiplied by 1.1 to
have an equivalent in word multiplications.

Most of the gain is due to the accumulation of many products before reducing
and not only 2 as in [4] or [3]. Of course, both the classical and the RNS
reduction algorithms must be adapted. Indeed, input data can have a large size
compared to p because of this accumulation process. More precisely, input data
have maximal size k′p2 where k′ has the same size than k (it is not equal to k
only because of the polynomial reduction step). Then it is sufficient to choose
the radix such that Bn > k′p (or the RNS basis such that M > k′p). Moreover,
if we want to use the output of the reduction algorithm (which is in [0, 2p[)
as an input without a final comparison and subtraction, each product becomes
less than 4p so that we have to choose Bn > 4k′p (or M > 4k′p). This is not
restrictive in practice as long as k is not too large.

For values of k and n greater than or equal to 6, the gain is spectacular. For
instance if n = k = 6 and λ = 1.5 (which is a mean between Karatsuba and
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Toom-Cook complexities), a multiplication in Fp6 requires 781 word multiplica-
tions in radix representation while it requires only 590 in RNS. Of course this
is just a rough estimation to give an idea of the expected gain. Each particular
situation must be studied in details. In this paper, we do it for the extension
degrees 6 and 12 for two reasons :

• there are of particular interest in pairing-based cryptography as we will
see at the end of this paper,

• the classical arithmetic on such extensions is well studied ([21, 22]) which
facilitates comparisons.

Some other extension degrees, like 2, 8 or 10, also have an interest in pairing-
based cryptography but do not involve new materials relatively to 6 and 12.
They can be done by the interested reader or asked to the author.

3.3 Lazy arithmetic in Fp6

In this section, we recall the different ways to perform efficient arithmetic in Fp6
and combine them with lazy reduction and of course RNS arithmetic. In fact,
we are especially interested in multiplication in Fp6 . There are three different
ways to build Fp6 , namely as a quadratic extension of a cubic one, as a cubic
extension of a quadratic one or directly as a sextic extension (i.e. with an
irreducible polynomial of degree 6). For each of these constructions Devegilli
et al [21] studied in details all the possible arithmetic (Schoolbook, Karatsuba,
Toom-Cook and Chung-Hasan for squaring). There conclusions are

• Toom-Cook method requires asymptotically less multiplications or squar-
ings in Fp but is inefficient in practice for cryptographic sizes because it
requires many additions in Fp.

• The most efficient implementation for multiplication and squaring is ob-
tained when Fp6 is build as a quadratic extension of a cubic one. This
is due to the fact that there are very efficient formulas for quadratic and
cubic extensions, but not for higher degrees.

We then assume in the following that Fp6 is build as a quadratic extension of
a cubic one. Of course, those extensions are build as in Proposition 2 so that the
reduction step in Fp6 is negligible compared to the multiplication step. In this
case, according [21], the most efficient way to perform a multiplication is to use
Karatsuba method for both the multiplication in the quadratic extension and in
the cubic extension. The cost of a multiplication in Fp6 is then 18 multiplications
in Fp. Concerning squaring, there are several method more or less equivalent
in [21]. The choice is depending on the cost of the squaring in Fp compared
to a multiplication. In this paper, we assume that these costs are the same so
that the best squaring in Fp6 requires 12 multiplications in Fp using Karatsuba
squaring for the cubic extension and the complex method for the quadratic one.

Performing lazy reduction is immediate assuming that it is possible to re-
duce sums of several products. To ensure this, we have to relax the condition
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on Bn > 4p (for Montgomery reduction) or M > 4p (for RNS arithmetic). This
condition can become several hundreds times larger than p depending on the
polynomial representing Fp6 . However this is not restrictive for cryptographic
implementation. Indeed field sizes are usually a multiple of 32 so that an ad-
ditional word is necessary to handle Bn or M if lazy reduction is used. Even
on a 16 bit architecture, this additional word can easily handle integers of size
several hundreds. If larger words are used like 36 bits words on FPGA, there
is also sufficiently extra bits to handle Bn or M for cryptographic applications
[5].

Finally the cost of a multiplication in Fp6 is 18 multiplication in Fp and 6
modular reductions whereas a squaring requires only 12 multiplications but also
6 reductions.

3.4 Example of degree 6 extension in 192 bits

In this section, we give an explicit example of degree 6 extension of a 192 bits
prime field. This example comes from [43] and is linked to a MNT curve suitable
for pairing based cryptography, which is the subject of the next section. Let Fp
be defined by the prime number

p = 4691249309589066676602717919800805068538803592363589996389.

In this case Fp6 can be defined by a quadratic extension of a cubic one thanks
to the polynomials X3 − 2 and Y 2 −α where α is a cubic root of 2.

Fp3 = Fp[X]/(X3 − 2) = Fp[α] and

Fp6 = Fp3 [Y ]/(Y 2 −α) = Fp3 [β].

As we want to use lazy reduction, the arithmetic of this extension must be
completely unrolled. Hence let

A = a0+a1α+a2α
2
+
(
a3+a4α+a5α

2
)
β and

B = b0+b1α+b2α
2
+
(
b3+b4α+b5α

2
)
β

be two elements of Fp6 . Using Karatsuba on the quadratic extension leads to

AB =
(
a0+a1α+a2α

2
) (

b0+b1α+b2α
2
)

+α
(
a3+a4α+a5α

2
) (

b3+b4α+b5α
2
)

+[(
a0+a3+(a1+a4)α+(a2+a5)α2

) (
b0+b3+(b1+b4)α + (b2+b5)α2

)
−
(
a0+a1α+a2α

2
) (

b0+b1α+b2α
2
)
−
(
a3+a4α+a5α

2
) (

b3+b4α+b5α
2
)]

β

11



Using Karatsuba again to compute each of these 3 products leads to

AB = a0b0+2(a4b4+(a1+a2)(b1+b2)−a1b1+(a3+a5)(b3+b5)−a3b3−a5b5)

+ [a3b3+(a0+a1)(b0+b1)−a0b0−a1b1+2(a2b2+(a4+a5)(b4+b5)−a4b4−a5b5)]α
+ [a1b1+2a5b5+(a0+a2)(b0+b2)−a0b0−a2b2+(a3+a4)(b3+b4)−a3b3−a4b4]α2

+ [(a0+a3)(b0+b3)−a0b0−a3b3+2((a1+a2+a4+a5)(b1+b2+b4+b5)−(a1+a4)(b1+b4)

− (a2+a5)(b2+b5)−(a1+a2)(b1+b2)+a1b1+a2b2−(a4+a5)(b4+b5)+a4b4+a5b5)]β
+ [(a0+a1+a3+a4)(b0+b1+b3+b4)−(a0+a3)(b0+b3)−(a1+a4)(b1+b4)−(a0+a1)(b0+b1)

+a0b0+a1b1−(a3+a4)(b3+b4)+a3b3+a4b4+2((a2+a5)(b2+b5)−a2b2−a5b5)]αβ
+ [(a1+a4)(b1+b4)−a1b1−a4b4+(a0+a2+a3+a5)(b0+b2+b3+b5)−(a0+a3)(b0+b3)

− (a2+a5)(b2+b5)−(a0+a2)(b0+b2)+a0b0+a2b2−(a3+a5)(b3+b5)+a3b3+a5b5]α2β

It is easy to verify that this formula requires 18 multiplications in Fp. Of course
it also requires many additions but this is due to the Karatsuba method, not
to lazy reduction. As explained in subsection 3.3, it requires only 6 reductions
thanks to the accumulation of all the operations in each component. However,
this accumulation implies that the input of the reduction step can be very large.
More precisely, thanks to the existence of the schoolbook method for computing
AB, we can easily prove that if the components of A and B (ie the ai and the
bi) are between 0 and 2p (which is the case when algorithm 1 or 2 is used for
reduction) then each component of AB is between 0 and 44p2. This means
that Bn in Montgomery representation and M in RNS representation must be
greater than 44p to perform lazy reduction in this degree 6 field.

3.5 Lazy arithmetic in Fp12

The same work as in the section 3.3 can be done in the case of Fp12 . This has
already been done in the recent literature because of the success of Barreto-
Naehrig curves. For example Devegili, Scott and Dahab explain in [22] that
Fp12 must be build as a tower of extensions: quadratic on top of a cubic on
top of a quadratic. This is nothing but the section 3.3 applied to a quadratic
extension of Fp. Then, if Karatsuba method is used for the multiplication in
this quadratic extension, a multiplication in Fp12 requires 54 multiplications in
Fp and 12 modular reductions and a squaring requires 36 multiplications in Fp
and 12 modular reductions.

3.6 Other useful operations in Fpk

Three other operations in Fpk are necessary for pairing computation, the in-
version, the Frobenius action (ie powering to the p) and the squaring of unit
elements in quadratic extensions.

Performing an inversion in Fpk must be done very carefully because it is
an expensive operation. The general idea is that the inverse of an element is
the product of its conjugates divided by its norm. This allows to replace an
inversion in Fpk by an inversion in Fp and some multiplications. For example
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in Fp2 = Fp[X]/X2 − ε, we have

1
a0 + a1

√
ε

=
a0 − a1

√
ε

a2
0 − εa2

1

and an inversion in Fp2 requires 1 inversion, 2 squarings, 2 multiplications and 3
reductions in Fp. In the same way an inversion in Fp3 (defined by a cubic root)
requires 1 inversion, 9 multiplications, 3 squarings and 7 reductions in Fp [46].
We can easily deduce that an inversion in Fp6 , build as a quadratic extension
of a cubic one, requires 1 inversion, 36 multiplications and 16 reductions in Fp.
In the same way, if Fp2 is build as in section 3.5, it is easy to show that an
inversion requires 1 inversion, 97 multiplications ([31]) and 35 reductions in Fp.

Contrary to the inversion, the Frobenius action in Fpk is cheap. Indeed, it is
easy to prove that if {ξi}i=0..k−1 (with ξ0 = 1) is a basis for Fpk as a Fp vector
space, we have (

k−1∑
i=0

aiξi

)p
= a0 +

k−1∑
i=1

aiξ
p
i .

Thus, if the ξpi are precomputed this Frobenius operation requires only k(k− 1)
multiplications in Fp and k − 1 reductions. In fact, we can do even better with
a good choice of the basis. For example if the extension is defined by a root γ
of the polynomial Xk − ε then ξi = γi and for 1 ≤ i ≤ k − 1,

ξpi = γip = ciγ
ri = ciξri

with ci ∈ Fp and 0 ≤ ri < k. In this case computing the Frobenius require only
k−1 multiplications and k−1 reductions in Fp. This is the case for the example
given in 3.4 where additionally p ≡ 1 mod 6 so that ri = i. Of course, the same
holds also for raising up an element to any power of p.

Finally, squaring in a quadratic extension requires 2 multiplications (and
2 reductions) in the base field thanks to the complex method. However, as
noticed in [29, 31], if the element to be squared is a unit, this can be done with
2 squarings in the base field (and always 2 reductions) assuming the extension
is defined by a polynomial of the form X2 − ε. Indeed, if a0 + a1X is such an
element (which means that a2

0 − εa2
1 = 1), we have

(a0 + a1X)2 = a2
0 + εa2

1 +
[
(a0 + a1)2 − a2

0 − a2
1

]
X

= 1 + 2εa2
1 +

[
(a0 + a1)2 − 1− εa2

1 − a2
1

]
X

4 Pairing on elliptic curves and their computa-
tion

4.1 Pairings in cryptography

Bilinear pairings on elliptic curves have been introduced in cryptography in
the middle of 90’s for cryptanalysis. Indeed, they allow to transfer the discrete
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logarithm on an elliptic curve to a discrete logarithm in the multiplicative group
of a finite field, where subexponential algorithms are available [25, 40]. In
2000, Joux introduces the first constructive use of pairings with a tripartite
key exchange protocol [34]. Since, it has been shown that pairings can be
used to construct new protocols like identity based cryptography [15] or short
signature [16]. As a consequence, pairings become very popular in asymmetric
cryptography and computing them as fast as possible is very important. There
are essentially three ways to speed up the computation of the pairings. Let us
first briefly recall the state of the art in this field and then explain how a RNS
arithmetic can be helpful.

4.2 The Tate pairing

The most popular pairing used in cryptography is the Tate pairing. We present
it here in a simplified and reduced form because it is the one usually used in
cryptographic applications. More details and generalities can be found in [20]
or [14]. In this paper we assume that E is an elliptic curve defined on Fp by an
equation

y2 = x3 + a4x+ a6. (2)

Let ` be a prime divisor of #E(Fp) = p + 1 − t, where t is the trace of the
Frobenius map on the curve. The embedding degree k of E with respect to ` is
the smallest integer such that ` divides pk−1. This means that the full `-torsion
of the curve is defined on the field Fpk . For any integer m and `-torsion point P ,
if Pm is the point mP on E, f(m,P ) is the function defined on the curve whose
divisor is div(f(m,P )) = mP − Pm − (m − 1)O. The Tate pairing can then be
defined by

eT : E(Fp)[`]×E(Fpk) → F∗pk/
(
F∗pk
)`

(P,Q) 7→ f(`,P )(Q)
pk−1
`

The first step to compute the Tate pairing is the computation of f(`,P )(Q). It
is done thanks to an adaptation of classical scalar multiplication algorithm due
to Miller [41] which is given here in a more general case to cover other pairings.
In this algorithm g(A,B) is the equation of the line passing through the points
A and B (or tangent to A if A = B) and vA is the equation of the vertical line
passing by A, so that g(A,B)

vA+B
is the function on E involved in the addition of A

and B.
The second step is to raise f to the power pk−1

` . There are several ways to
speed up the pairing computation :

• simplifying and optimizing the operations inside the Miller loop [9, 11, 12,
45],

• constructing pairing-friendly elliptic curves [10, 13, 18, 23, 26, 35, 39, 47]
and a good survey is [24],
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Algorithm 3: Miller(m,P,Q)
Data: An integer m with binary representation (ms−1, · · · ,m0)2, two

points P and Q in E(Fpk).
Result: f(m,P )(Q) ∈ Fpk .
begin

T ← P
f ← 1
for i from s− 2 downto 0 do

f ← f2.
g(T,T )(Q)

v2T (Q)

T ← 2T
if mi = 1 then

f ← f.
g(T,P )(Q)

vT+P (Q)

T ← T + P
endif

endfor
return f

end

• more recently, reducing the length of the Miller loop [32, 33, 38, 52] thanks
to the introduction of new pairings,

• simplifying the final exponentiation [27, 48].

Note that it is not interesting to use better exponentiation techniques as sliding
windows for pairing computations. This is because even if 3P , for instance,
can be precomputed, the writing up of f requires an additional (expensive)
multiplication in Fpk by the function involved in the computation of 3P .

4.3 Ordinary curves with prescribed embedding degrees

The embedding degree k is usually very large so that computing in Fpk is not
reasonable. This is reassuring regarding the destructive use of pairings but
annoying if one wants to use pairing based cryptosystems. Curves with small
embedding degrees can be obtain in two different ways. The first one is to use
supersingular curves. However, this work focuses on large characteristic base
fields and, in this case, the embedding degree is less than or equal to 2 which
is too small for security reasons. The second one is to use ordinary curves
with prescribed embedding degrees constructed via the complex multiplication
method as surveyed in [24]. We will focus here on the most popular ones, namely
the MNT curves having an embedding degree equal to 6 [39] and the BN curves
having embedding degree equal to 12 [13].
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4.3.1 MNT curves

In [39], the authors explain how to use the complex multiplication method to
construct ordinary elliptic curves with embedding degrees 3, 4 and 6. Their
goal was to characterize elliptic curves with small embedding degrees to pro-
tect against destructive use of pairings but it has also been used as a mean to
construct ordinary curves with embedding degree 6.

Theorem 1. Let p be a large prime and E be an ordinary elliptic curve defined
over Fp such that #E(Fp) = p + 1 − t is prime. E has embedding degree 6 if
and only if there exists l ∈ Z such that p = 4l2 + 1 and t = 1± 2l.

The strategy to generate ordinary elliptic curve of prime order with embed-
ding degree 6 is the following :

• Select a small discriminant D which is 3 mod 8 but not 5 mod 10 and
such that −8 is a quadratic residue modulo 3D.

• Compute solutions (X = 6l± 1, Y ) of the generalized Pell equation X2 −
3DY 2 = −8 until the values of p and #E(Fp) corresponding to this value
of l are primes of the desired size.

• Repeat with another D if not found.

The main drawback of this method is that the consecutive solutions of gener-
alized Pell equation grow exponentially so that only very few curves are found.
However, it is possible to relax the constraints in order to obtain more curves as
done in [47] and in [26]. As an example, the following 192 bits curve has been
find with this method [43].

Proposition 3. Let p be the prime number given in 3.4. The curve defined
over Fp by the equation

y2 = x3−3x+3112017650516467785865101962029621022731658738965186527433

has embedding degree 6 and cardinality 2` where ` is the prime number

` = 2345624654794533338301358959942345572918215737398529094837.

4.3.2 Barreto-Naehrig curves

Barreto and Naerigh devised in [13] a method to generate pairing friendly elliptic
curves over a prime field, with prime order and embedding degree 12. The
equation of the curve is

y2 = x3 + a6, a6 6= 0

and the trace of the Frobenius t, the cardinality of the curve r and the base
field Fp are parametrized as

• t = 6l2 + 1
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• r = 36l4 − 36l3 + 18l2 − 6l + 1

• p = 36l4 − 36l3 + 24l2 − 6l + 1

For example, a6 = 3 and l = −6000000000001F2D (hex) are such that both r
and p are prime numbers [22].

4.4 Fast Tate pairing computation

In this section we explain how to efficiently compute the Tate pairing.

4.4.1 Formulas for Miller loop

Of course, the easiest way to speed up the pairing computation is to choose `
as sparse as possible. As this can be done in many cases we give only formulas
for the ”doubling” step of the Miller loop which are therefore representative of
the whole Miller loop.

Moreover, we assume in this section that Jacobian coordinates have been
chosen. Of course other choices are possible but this has almost no consequences
for the pairing computation and for the results obtained in this paper. Let E
be an elliptic curve defined as (2).

Let P = (XP , YP , ZP ) and T = (XT , YT , ZT ) be two points in E(Fpk) given
in Jacobian coordinates and Q = (xQ, yQ) ∈ E(Fpk) given in affine coordinates.
Formulas for the ”doubling” step of the Miller loop are given by

A = 3X2
T + a4Z

4
T

C = 4XTY
2
T

X2T = A2 − 2C
Y2T = A(C −X2T )− 8Y 4

T

Z2T = 2YTZT

gT,T (Q) =
2YTZ3

T yQ −A(Z2
TxQ −XT )− 2Y 2

T

2YTZ3
T

vT,T (Q) =
xQZ

2
2T −X2T

Z2
2T

If the Tate pairing is used, then the point P (and consequently the point T )
is in E(Fp) so that most of the terms in these formulas are in Fp. The only
elements lying in the extension field Fpk are xQ and yQ and we will now see
that, thanks to the use of twists, we can almost assume that there are lying in a
proper subfield of Fpk . This will have important consequences on the efficiency
of the Miller loop.

4.4.2 Use of twists

Definition 1. Two elliptic curves E and Ẽ defined over Fq are said to be twisted
if there exists an isomorphism Ψd between E and Ẽ defined over an extension
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Fdq of Fq. The degree of this twist is the degree of the smallest extension on
which Ψd is defined.

The possible twist degree are 2,3,4 and 6 depending on the embedding degree
k. We will focus in this paper on even embedding degrees k and twists of degree
2 and 6. We have the following properties

• Let ν be a non quadratic residue in Fpk/2 . The curves E and Ẽ given by
the equations

E : y2 = x3 + a4x+ a6 Ẽ : νy2 = x3 + a4x+ a6

are twisted by the twist of order 2 (ie defined over Fpk)

Ψ2 : Ẽ → E

(x, y) 7→ (x, yν
1
2 )

• An elliptic curve E defined as in (2) has a degree 6 twist if and only if
a4 = 0. If ν is an element in Fpk/6 which is not a sixth power, then E is
the twisted of the curve Ẽ defined by

y2 = x3 +
b

ν

by the twist of order 6

Ψ6 : Ẽ → E

(x, y) 7→ (xν
1
3 , yν

1
2 )

Let Ψ be such a twist. As E and Ẽ are isomorphic over Fpk , we can define

a variant of the Tate pairing as eT (P,Q) = f(`,P )(Ψ(Q))
pk−1
` without loss of

generality. This is nothing but the Tate pairing defined on E(Fp)[`]×Ẽ(Fpk).
For the twists given above, this means that the coordinates of Q can be written
as (xQ, yQν

1
2 ) or (xQν

1
3 , yQν

1
2 ) where xQ and yQ are defined over Fpk/d . There

are three important consequences on the Miller loop.

• The computation of f involves only Fpk/d arithmetic (but the result is still
in Fpk).

• The denominators, and more generally all the factors of f lying in a proper
subfield of Fpk (as Fp or Fpk/d), are wiped out by the final exponentiation.
Hence, only the expression 2YTZ3

T yQ − A(Z2
TxQ − XT ) − 2Y 2

T has to be
computed before the writing up of f . This is the famous denominator
elimination introduced in [9].

• In the case of twists of order 6 for Tate pairings, this expression has the
particular form

g0 + g2ν
1
2 + g3ν

1
3
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where g0 ∈ Fp and g1, g2 ∈ Fp2 which contains only 5 coefficients instead
of 12. Hence the multiplication by such an element during the writing up
of f is cheaper than a complete multiplication in Fpk . More precisely the
multiplication of an arbitrary element of Fpk by g0 requires 12 multiplica-
tions in Fp and the one by g2ν

1
2 + g3ν

1
3 requires 27 multiplications in Fp

using Karatsuba. Finally this operation requires 39 multiplications in Fp
instead of 54 for a complete Karatsuba multiplication in Fpk . Even if this
expression has a different form for other pairings, it is still sparse and we
can also perform this multiplication with only 39 multiplications in Fp.

4.4.3 Final exponentiation

For the Tate pairing (but also for other pairings), the exponent of the final ex-
ponentiation is pk−1

` which has the size of pk−1 and the base field is Fpk . Hence,
at first sight, the final exponentiation seems to be very expensive. Hopefully,
Koblitz and Menezes show in [36] that this cost can be reduced thanks to the
factorization

pk − 1
`

=
(
pk/2 − 1

)(pk/2 + 1
Φk(p)

)(
Φk(p)
`

)
where Φk is the kth cyclotomic polynomial. The fact that Φk(p) divides pk/2 +1
(as polynomials in p) is a direct consequence of the definition of k as the smallest
integer such that ` divides pk−1. Thanks to this factorization is the two first part
of the exponentiation are very fast since there are obtained via cheap Frobenius
computations.

The hard part of the exponentiation is given by the exponent Φk(p)
` . In the

general case, the best way is to develop this exponent in base p so that, thanks
to multi-exponentiation, its cost is the same as if an exponent of the size of p
were used. However, both in the case of MNT curves and BN curves, we can
do better thanks to the parametrization of p and `.

For example, in the case of MNT curves, we have

p6 − 1
`

=
(
p3 − 1

)(p3 + 1
Φ6(p)

)(
Φ6(p)
`

)
with

Φ6(p) = p2 − p+ 1
p = 4l2 + 1
` = 4l2 − 2l + 1

and an elementary calculation gives

p6 − 1
`

=
(
p3 − 1

)
(p+ 1) (p+ 2l) .

Then, the final exponentiation is obtained thanks to several easy Frobenius
applications and an exponentiation with 2l as an exponent (which size is the
half of the size of p). Note that it also involves an inversion in Fp6 .

19



Of course, it is better to chose l as sparse as possible, but MNT curves are
rare so that it is not feasible in practice. So efficient exponentiation methods,
as sliding window, must be used. On the contrary, the parameter can be chosen
sparse for BN curves and it is not so easy to reduce the size of the exponent.
More precisely, the hard part of the final exponentiation for BN curves is [22]

fp
3
(
b (fp)2

fp
2
)6l2+1

b (fpf)9
af4

with a = f6l−5 and b = ap+1. So the cost is around three-quarters of the cost
of an exponentiation with an exponent having the same size than p.

Finally, the first step of the final exponentiation is fp
k/2−1 so that its result

has order pk/2+1. Then, as noticed in [29, 31], it is a unit so squaring such an el-
ement (which is the most used operation in the hard part of the exponentiation)
is less expensive than a classical squaring in Fpk as explain in 3.6.

4.5 Other pairings

More recently, some variants of the Tate pairing appear in the literature. The
main goal is to reduce the length of the Miller loop. The price to be paid is that
the points P and Q are swapped. This means that the elliptic curve arithmetic
will hold in Fpk (or Fpk/d for twisted versions) instead of Fp so that even if
the number of steps in the Miller loop will decrease, the cost of each step will
increase. We give here the twisted versions of the Ate and R-Ate pairings.

4.5.1 The Ate pairing

This pairing were first introduced in [33]. It is defined by

eA : E(Fpk) ∩Ker(π − p)×E(Fp)[`] → F∗pk/
(
F∗pk
)`

(Q,P ) 7→ f(t−1,Q)(P )
pk−1
`

where π is the Frobenius map on the curve. This construction works because,
since Q ∈ Ker(π−p) and `|#E(Fp) = p+1−t, we have π(Q) = (t−1)Q. Finally,
because t − 1 ≈

√
`, the length of the Miller loop is divided by 2 compared to

the Tate pairing. This pairing is optimal for MNT curves in the sense of [52].

4.5.2 The R-Ate pairing

This is a generalization of the Ate pairing introduced in [38]. We give here its
expression only in the case of BN curves. If l is the parameter used to construct
the BN curve and b = 6l + 2, the R-Ate pairing is defined by

eR : E(Fpk) ∩Ker(π − p)×E(Fp)[`] → F∗pk/
(
F∗pk
)`

(Q,P ) 7→
(
f(b,Q)(P ).

(
f(b,Q)(P ).g(bQ,Q)(P )

)p
.g(π((b+1)Q),bQ)(P )

) pk−1
`

20



where g(A,B) is the equation of the line passing through A and B. In this case,
l ≈ 4
√
`, so the length of the Miller loop is divided by 4 compared to the Tate

pairing. This pairing is optimal for BN curves in the sense of [52].

5 RNS arithmetic for fast pairing computation

When the embedding degree is large, the RNS does not yield to any noteworthy
improvement on the computation of T or g(Q) but, thanks to its linear complex-
ity regarding the extension degree, we obtain very important improvements on
the writing up of f and the final exponentiation. As these are the most expen-
sive steps of the Tate pairing computation, we can say that the RNS arithmetic
is particularly well adapted to fast pairing computation. But let us see more
in details the expected gains for most popular pairing friendly curves (in large
characteristic), say MNT curves and BN curves.

5.1 Using RNS for MNT curves

We assume in this section that E is an elliptic curve defined over Fp by an
equation (2) and obtained as described in section 4.3.1 so that p = 4l2 + 1 for
some integer l. We also assume that Fp6 is built as a quadratic extension of Fp3

Fp6 = Fp3 [Y ]/(Y 2 − ν) = Fp3 [β].

5.1.1 Tate Pairing

As MNT curves have a twist of order 2, the input elements of the Tate pairing
can be written in the form P = (xP , yP ) ∈ E(Fp)[`] and Q = (xQ, yQβ) with
xQ and yQ ∈ Fp3 . Applying the improvements explained in section 4.4 the Tate
pairing is then given by the algorithm 4.

Let us now precisely analyze the complexity of each line of this algorithm.
Note that we choose to not distinguish multiplication and squaring in Fp for
simplicity and because this has no notable consequence on our study.

• The lines 1 to 4 are the standard doubling of the point T ∈ E(Fp) in
Jacobian coordinates and require 10 multiplications in Fp (if a4 has no
special form). Lazy reduction can be used when computing A and Y2T so
that 8 modular reductions are necessary.

• In the same way, the lines 7 to 10 are for the mixed addition of T and P
and require 11 multiplications and 10 reductions in Fp.

• As xQ and yQ are in Fp3 , the line 5 requires 9 multiplications in Fp. Note
that this is not a good idea to write A(Z2

TxQ + XT ) in line 5 because
it requires two multiplications of an element of Fp3 by an element of Fp
instead of one. However, we can use the lazy reduction technique on
the constant term of this expression. Finally, 8 modular reductions are
necessary.
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Algorithm 4: Tate(P,Q)

Data: p = 4l2 + 1 prime, E a MNT elliptic curve defined over Fp.
`|#E(Fp) prime with binary representation (`s−1, · · · , `0)2.
P = (xP , yP ) ∈ E(Fp)[`], Q = (xQ, yQβ) with xQ and yQ ∈ Fp3
Result: eT (P,Q) ∈ Fp6 .
begin

T = (XT , YT , ZT )← (xP , yP , 1)
f ← 1
for i from s− 2 downto 0 do

A = 3X2
T + a4Z

4
T , C = 4XTY

2
T1

X2T = A2 − 2C2

Y2T = A(C −X2T )− 8Y 4
T3

Z2T = 2YTZT4

g = Z3TZ
2
T yQβ −AZ2

TxQ +AXT − 2Y 2
T5

f ← f2.g6

T ← [X2T , Y2T , Z2T ]
if `i = 1 then

E = XT − xPZ2
T , F = YT − yPZ3

T7

XT+P = F 2 − 2XTE
2 − E3

8

YT+P = F (XTE
2 −XT+P )− YTE3

9

ZT+P = ZTE10

g = ZT+P yQβ − ZT+P yP − F (xQ − xP )11

f ← f.g12

T ← [XT+P , YT+P , ZT+P ]
endif

endfor
f ← fp

3−1
13

f ← fp+1
14

f ← fp.f2l
15

return f
end
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• The situation is the same for the line 11 which requires 7 multiplications
and 6 modular reductions in Fp.

• The line 6 involves both a multiplication and a squaring in Fp6 . The cost
of such operations is detailed in section 3.3. We deduce that the total
complexity for this line is 30 multiplications and 12 modular reductions
in Fp.

• The situation for the line 12 is similar and leads to 18 multiplications and
6 reductions.

• The line 13 is computed as fp
3

f . As f ∈ Fp6 , the exponentiation by p3 is
nothing but the conjugation on Fp3 [β] so it is for free. Finally, this step
requires a multiplication and an inversion in Fp6 . As recalled in section 3.6,
such an inversion can be done with only one inversion, 36 multiplications
and 16 reductions in Fp. Finally, this first step of the final exponentiation
requires 54 multiplications, 22 modular reductions and one inversion in
Fp.

• The line 14 involves one multiplication in Fp6 and one application of the
Frobenius map. We have seen in section 3.6 that, if the polynomial defining
Fp6 is well chosen (which is always the case in practice) the Frobenius map
requires only 5 modular multiplications in Fp. Hence this second step of
the final exponentiation require 23 multiplications and 11 reductions in
Fp.

• The hard part of the final exponentiation involves one Frobenius (ie 5
modular multiplications), one multiplication in Fp6 (18 multiplications and
6 reductions) and one exponentiation by 2l. We have already seen that l
cannot be chosen sparse for MNT curves, so that advanced exponentiation
methods must be used. In line 13, f has been raised to the power p3−1, so
that it is a unit and can be squared with only 2 squarings and 2 reductions
in Fp3 (and then 12 multiplications and 6 reductions in Fp) as explained
in section 3.6. Then, for each step of this exponentiation, the cost is 12
multiplications and 6 reductions and 18 additional multiplications and 6
reductions if a multiplication is required by the exponentiation algorithm.

It is now necessary to fix the security level to have an idea of the overall
complexity of the Tate pairing. We choose a 96 bits security level which is quite
reasonable for MNT curves, so that ` has bit-length s = 192. This means that
lines 1 to 6 are done 191 times and lines 7 to 12 around 96 times. Hence the
Miller loop requires

191×(10 + 9 + 30) + 96×(11 + 7 + 18) = 12815 multiplications and
191×(8 + 8 + 12) + 96×(10 + 6 + 6) = 7460 reductions

The easy parts of the final exponentiation requires one inversion, 77 multiplica-
tions and 33 reductions in Fp. Concerning the hard part of the final exponenti-
ation, as 2l is 96 bits long, it is reasonable to use sliding window method with
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a window size of 3 for computing f2l. This requires 96 squarings in Fp6 and,
on average, 24 multiplications in Fp6 (plus 3 for precomputations). Finally, the
hard part of the final exponentiation requires

5 + 18 + 97×12 + 27×18 = 1673 multiplications and
5 + 6 + 97×6 + 27×6 = 755 reductions

Then, the full Tate pairing computation requires 14565 multiplications but only
8248 reductions. This is only an estimate. We can have more precise complexity
if the curve is given but it will have negligible consequences on our result. For
example, for the curve given in proposition 3, ` has Hamming weight 102 and
the computation of f2l involves 28 multiplication using 3 as window size.

For this level of security, 6 (32 bits) words are necessary so a radix implemen-
tation requires 14565×62

+ 8248×(62
+ 6) = 870756 word multiplications whereas

a RNS implementation requires 1.1
(
14565×2×8 + 8248×

(
7
582

+
8
58
))

= 736626
word multiplications. This represents a gain of 15.4%.

5.1.2 Ate pairing

The algorithm is very similar to the algorithm 4 but the arguments P and Q are
swapped. This means that operations of the lines 1 to 4 are done in Fp3 so they
require 10 multiplications and 8 reductions in Fp3 , i.e. 60 multiplications and
24 reductions in Fp. In the same way the lines 7 to 10 require 11 multiplications
and 10 reductions in Fp3 , i.e. 66 multiplications and 30 reductions in Fp. It is
easy to prove that, if the coordinates of T are (XT , YTβ, ZT ), the lines 5 and
11 must be replaced by

5′ g = Z2TZ
2
T yPβ +A(XT − Z2

TxP )− 2νY 2
T

11′ g = −ZT+P yQβ + ZT+P yP − F (xP − xQ)

where Z2T , Z2
T , A = 3X2

T−a4Z
4
T , Y 2

T , ZT+P and F = YT−yQZ3
T were computed

in Fp3 during the previous steps. The first requires 18 multiplications and 12
reductions in Fp whereas the second requires 15 multiplications and 6 reductions.

Finally, since t−1 has bitlength 96 and Hamming weight around 48 the total
cost of the Miller loop is

95×(60 + 18 + 30) + 47×(66 + 15 + 18) = 14913 multiplications and
95×(24 + 12 + 12) + 47×(30 + 6 + 6) = 6534 reductions

The final exponentiation is the same as for the Tate pairing then, the full Ate
pairing computation requires 16663 multiplications but only 7322 reductions.
This yields to 907392 word multiplications in radix representation but only
703204 in RNS. This represents a gain of 22.5%. Note that the Ate pairing
is not really interesting for MNT curves because most of the conputations are
done in Fp3 . This is not the case for BN curves because the twist used has order
6 so that the arithmetic involved in Ate pairing will be in Fp2 . Moreover, we
can again half the exponent in this case thanks to the R-Ate pairing.
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5.2 Using RNS for BN curves

BN curves have a twist of order 6 so that all the improvements given in section
4.4 can be used. One of the reasons of the current success of BN curves.

We assume in this section that E is an elliptic curve defined over Fp by an
equation of the form

y2 = x3 + a6

and obtained as described in 4.3.2. We also assume that Fp12 is built as a
quadratic extension of a cubic extension of Fp2 which is easily compatible with
the use of twists of order 6. More precisely, let ν be an element in Fp2 which is
not a sixth power, we built

Fp6 = Fp2 [Y ]/(Y 3 − ν) = Fp2 [β]
Fp12 = Fp6 [Z]/(Z2 − β) = Fp6 [γ].

Thus Fp12 can also be defined by Fp2 [γ]

5.2.1 Tate pairing

Thanks to the twist defined by ν, the second input of the Tate pairing can be
written

Q = (xQγ2, yQγ3) with xQ and yQ ∈ Fp2 .

Applying the improvements explained in section 4.4 the Tate pairing is given
by to the algorithm 5.

Let us now analyze the complexity of each line of this algorithm.

• As explained for MNT curves, the lines 1 to 4 require 7 multiplications and
6 modular reductions whereas the lines 7 to 10 require 11 multiplications
and 10 modular reductions.

• As xQ and yQ are in Fp2 , the line 5 requires 8 modular multiplications in
Fp and lazy reduction cannot be used.

• In the same way, the line 11 requires 6 multiplications but only 5 modular
reductions because lazy reduction is used on the constant term.

• The line 6 involves both a squaring and a multiplication in Fp6 . As ex-
plained in section 3.5, such a squaring involves 36 multiplications and 12
modular reductions. We have seen in 4.4.2 that, thanks to its special form,
the multiplication by g requires only 39 multiplications and 12 reductions.
We deduce that the total complexity for this line is 75 multiplications and
24 reductions in Fp.

• The situation for the line 12 is similar and leads to 39 multiplications and
12 reductions.
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Algorithm 5: Tate(P,Q)
Data:

P = (xP , yP ) ∈ E(Fp)[`], Q = (xQγ2, yQγ3) with xQ and yQ ∈ Fp2
Result: eT (P,Q) ∈ Fp12 .
begin

T = (XT , YT , ZT )← (xP , yP , 1)
f ← 1
for i from l − 2 downto 0 do

A = 3X2
T , C = 4XTY

2
T1

X2T = A2 − 2C2

Y2T = A(C −X2T )− 8Y 4
T3

Z2T = 2YTZT4

g = Z2TZ
2
T yQγ3 −AZ2

TxQγ2 +AXT − 2Y 2
T5

f ← f2.g6

T ← [X2T , Y2T , Z2T ]
if mi = 1 then

E = XT − xPZ2
T , F = YT − yPZ3

T7

XT+P = F 2 − 2XTE
2 − E3

8

YT+P = F (XTE
2 −XT+P )− YTE3

9

ZT+P = ZTE10

g = ZT+P yQγ3 − FxQγ2 − ZT+P yP + FxP )11

f ← f.g12

T ← [XT+P , YT+P , ZT+P ]
endif

endfor
f ← fp

6−1
13

f ← fp
2+1

14

a← f6l−5, b← ap+1
15

f ← fp
3
.
[
b.(fp)2.fp

2
]6l2+1

.b.
(
fp+1

)9
.a.f4

16

return f
end
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• The line 13 is computed as fp
6

f . As computing fp
6

is for free (conjugation),
this step requires a multiplication and an inversion in Fp12 . We have seen
in section 3.6 that an inversion can be done with only one inversion, 97
multiplications and 35 reductions in Fp. Finally, this first step of the final
exponentiation requires 151 multiplications, 47 modular reductions and
one inversion in Fp.

• The line 14 involves one multiplication in Fp12 and one powering to p2.
We have seen in section 3.6 that the Frobenius map (and its iterations)
requires 11 modular multiplications in Fp. Thus, this step requires 65
multiplications and 23 reductions in Fp.

• The hard part of the final exponentiation is given by the lines 15 and
16. The line 15 involves one Frobenius (i.e. 11 modular multiplications),
one multiplication in Fp12 (54 multiplications and 12 reductions) and one
exponentiation. Contrary to MNT curves, l can be chosen sparse for BN
curves, so classical square-and-multiply can be used. Moreover, in line 13,
f has been raised to the power p6 − 1, so it is a unit and can be squared
with only 2 squarings and 2 reductions in Fp6 (and then 24 multiplications
and 12 reductions in Fp) as explained in section 3.6. Thus, for most steps
of this exponentiation, the cost is 24 multiplications and 12 reductions.
For the steps corresponding to non-zero bits of the exponent, 54 additional
multiplications and 12 additional reductions are necessary.

• The line 16 involves 4 applications of the Frobenius map (or its iterations),
9 multiplications and 6 (unit) squarings in Fp12 (which means 674 multi-
plications and 224 reductions in Fp). It also involves an exponentiation
which has the same properties as the one of line 15 but which is two times
larger.

Again, it is necessary to fix the security level to have an idea of the overall
complexity of the Tate pairing. We choose a 128 bits security level for which
BN curves are well suited. We also have to fix the Hamming weight of l (and
consequently the one of `). We assume here that l has weight 11 and ` has
weight 90 as in the example given in section 4.3.2. Of course, smaller values of
these weight can probably be found but this is not the aim of this paper and it
has negligible effects on our results. This means that lines 1 to 6 are done 255
times and lines 7 to 12 89 times. Hence the Miller loop requires

255×(7 + 8 + 75) + 89×(11 + 6 + 39) = 27934 multiplications and
255×(6 + 8 + 24) + 89×(10 + 5 + 12) = 12093 reductions

The easy parts of the final exponentiation require one inversion, 216 multiplica-
tions and 70 reductions in Fp. Finally, the hard part of the final exponentiation
involves one exponentiation by 6l − 5 which has Hamming weight 11 and by
6l2 + 1 which has hamming weight 28. However, as mentioned in [31] the sec-
ond exponentiation can be split in 2 parts with exponents l and 6l both having
Hamming weight 11. Hence, only 21 multiplications are required for this expo-
nentiation and the lines 15 and 16 require
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11 + 54 + 65×24 + 9×54 + 674 + 127×24 + 21×54 = 6967 multiplications and
11 + 12 + 65×12 + 9×12 + 224 + 127×12 + 21×12 = 2911 reductions.

Then, the full Tate pairing computation requires 35117 multiplications but only
15074 reductions. Note that we obtain the same number of multiplications than
in [31] (since we use the same optimizations) but the number of reductions is
much smaller.

For this level of security, 8 (32 bits) words are necessary so a radix imple-
mentation requires 35117×82

+ 15074×(82
+ 8) = 3332816 word multiplications

whereas a RNS implementation requires 1.1
(
35117×2×8 + 15074×

(
7
582

+
8
58
))

=
2315994 word multiplications. This represents a gain of 30.5%.

5.2.2 Ate pairing

The algorithm is very similar to algorithm 5 but the arguments P and Q are
swapped. This means that operations of the lines 1 to 4 are done in Fp2 so
they require 3 multiplications, 4 squaring and 6 reductions in Fp2 , i.e. 17 mul-
tiplications and 12 reductions in Fp. In the same way the lines 7 to 10 require
8 multiplications, 3 squaring and 10 reductions in Fp2 , i.e. 30 multiplications
and 20 reductions in Fp. It is easy to prove that, if the coordinates of T are
(XTγ2, YTγ3, ZT ), the lines 5 and 11 must be replaced by

5′′ g = Z2TZ
2
T yP −AZ2

TxPγ + (AXT − 2Y 2
T )γ3

11′′ g = ZT+P yP − FxPγ + (FxQ − ZT+P yQ)γ3

where Z2T , A = 3X2
T , Y 2

T , ZT+P and F = YT − yQZ3
T were computed during

the previous steps. The first requires 15 multiplications and 12 reductions in
Fp whereas the second requires 10 multiplications and 6 reductions. Moreover,
the value obtained for g has only terms in γ,γ3 and a constant term, so that a
multiplication by g requires only 39 multiplications instead of 54 as explained
in 4.4.2.

Finally as, in our example, t− 1 has bitlength 128 and Hamming weight 29
the total cost of the Miller loop is

127×(17 + 15 + 36 + 39) + 28×(30 + 10 + 39) = 15801 multiplications and
127×(12 + 12 + 24) + 28×(20 + 6 + 12) = 7160 reductions

The final exponentiation is the same as for the Tate pairing. Then, the full
Ate pairing computation requires 22984 multiplications but only 10241 reduc-
tions. This yields to 2208328 word multiplications in radix representation but
only 1558065 in RNS. This represents a gain of 29.5%.

5.2.3 R-ate pairing

In the R-ate pairing, the operations in the (shorter) Miller loop are the same
but an additional step is necessary at the end of the Miller loop. This step is
the computation of

f.
(
f.g(T,Q)(P )

)p
.g(π(T+Q),T )(P )
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where T = (6l+ 2)Q is computed during the Miller loop and π is the Frobenius
map on the curve. This step involves following operations.

• One step of addition as in the Miller loop (computation of T + Q and
g(T,Q)(P )) which requires 40 multiplications and 26 reductions in Fp.

• One application of the Frobenius map on the curve. As p ≡ 1 mod 6
for BN curves, this operation requires only 2 multiplications in Fp2 by
precomputed values.

• One non-mixed addition step (computation of g(π(T+Q),T )(P )). It is easy
to prove that it requires 60 multiplications and 40 reductions in Fp.

• Two multiplication by the previous results, both requiring 39 multiplica-
tions and 12 reductions in Fp.

• One Frobenius requiring 11 modular multiplications.

• One full multiplication in Fp12 requiring 54 multiplications and 12 reduc-
tions in Fp.

Then, this step requires 249 multiplications and 117 reductions in Fp. On the
other hand, in our example, 6l + 2 has bitlength 66 and Hamming weight 9 so
the cost of the Miller loop is

65×(17 + 15 + 36 + 39) + 8×(30 + 10 + 39) = 7587 multiplications and
65×(12 + 12 + 24) + 8×(20 + 6 + 12) = 3424 reductions

The final exponentiation is the same as for the Tate pairing then, the full
R-Ate pairing computation requires 15019 multiplications but only 6405 reduc-
tions. This yields to 1422376 word multiplications in radix representation but
only 985794 in RNS. This represents a gain of 30.7%.

6 Conclusion

In this work we explained why the RNS arithmetic is particularly well suited for
computation in extension fields essentially thanks to the use of lazy reduction.
As a consequence, it is interesting to use such an arithmetic for pairing compu-
tation in large characteristic especially in contexts where the other advantages
of the RNS arithmetic can be exploited (like hardware and/or parallel imple-
mentation). More precisely, we proved that using RNS for MNT curves when
96 bits of security are required involves 15 to 22.5% less basic operations. This
gain reach 30% for BN curves with 128 bits of security whatever the pairing
used (Tate, Ate, R-Ate). Most of the gains comes from arithmetic in extension
fields so that choosing other systems of coordinate (affine, projective, Edwards,
...) or other pairings will not change these results. Moreover, it is beyond doubt
that better gain will occur in other situations in pairing-based cryptography for
two main reasons.
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• For larger security levels or for curves of non-prime order (i.e. such that
log(p)
log(`) > 1), the number of words necessary to represent elements in Fp
will increase which is favorable to RNS arithmetic.

• Larger embedding degrees involve arithmetic in larger extension field which
is linear in RNS but quadratic in radix representation.

Finally RNS arithmetic is very interesting for efficient pairing implementation
and it would be attractive to develop a dedicated architecture such as the one
described in [5].
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