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Abstract

We formalize the emergent notion of “functional encryption,” as well as introduce various
security notions for it, and study relations among the latter. In particular, we show that in-
distinguishability and semantic security based notions of security are inequivalent for functional
encryption in general. This is alarming given the large body of work employing (special cases of)
the former. We go on to show, however, that an equivalence does hold between indistinguisha-
bility and some form of semantic security for what we call multi-preimage sampleable schemes.
Our interpretation is that for multi-preimage sampleable schemes an indistinguishability based
notion is probably fine in practice. We show that common functionalities considered in the
literature satisfy this requirement.

1 Introduction

Functional encryption. In recent years, a notion of “functional encryption” (FE) has emerged
as a new paradigm for public-key encryption, wherein a receiver, given a ciphertext, is able to learn
certain functions of the underlying message based on its secret keys (not necessarily the decryption).
Special cases of FE include (anonymous) identity-based encryption [BF03, ABC+08], public-key
encryption with keyword search [BCOP04, ABC+08], attribute-based encryption [SW05, GPSW06,
BSW07, OT10], and predicate encryption [BW07, KSW08, LOS+10, OT10].1 However, a general
study of FE and its security seems not to have appeared. Here we initiate one, and in doing so we
uncover some interesting definitional issues that have important implications for work in this area.

Syntax and security notions. First we give a syntactical definition of FE, which extends
that for predicate encryption introduced by Boneh and Waters [BW07]. We then formulate an
“indistinguishability based” notion of privacy (IND), which again extends the security notion for
predicate encryption introduced in [BW07]. Informally, the IND notion asks that it be hard for
an adversary to distinguish between the encryptions of any two messages that agree on all the
functions corresponding to the secret keys it requested. We go on to introduce a more complicated
but more natural “semantic security based” (SS) notion of privacy in the spirit of the classical
notion for public-key encryption [GM84], to capture the intuition that anything the adversary
can compute from a ciphertext it could as well compute from the evaluations of the functions
corresponding to the secret keys it requested on underlying message. We note that a novel feature

∗University of Texas at Austin. Work done in part while the author was a Ph.D. student at Georgia Institute of
Technology.

1We do not mean here to claim credit for the general concept of functional encryption and its generalizing these
primitives; indeed, we believe that this view was present in prior work (e.g., [SW05, BW07, KSW08]) and in a talk
by Waters [Wat].
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of our definitions, which turns out to be important when considering relations among them, is that
they distinguish between adaptive and non-adaptive access to the secret-key derivation oracle to
aid in the adversary’s task (roughly, this distinction is analogous to that between access to the
decryption oracle in adaptive versus non-adaptive chosen-ciphertext attack, see e.g. [BDPR98]).

Relations among security notions. In the classical setting of public-key encryption, seman-
tic security and indistinguishability based formulations of security are well-known to be equiva-
lent [MRS88]. We ask whether the same is true for FE. Surprisingly, we show that IND under
adaptive access to the secret-key derivation oracle does not imply SS even under non-adaptive such
access. To see why, consider a functional encryption scheme for a single function f . But suppose
there is another function g that has the same “equality pattern” as f on the message space (i.e., two
messages have the same f -value just when they have the same g-value). Furthermore, suppose g(m)
is hard to compute given f(m). Now, if the functional encryption scheme is such that the secret
keys created by the scheme, which are supposed to allow computing f , also allow computing g, the
scheme is certainly not semantically secure. However, an IND adversary is “bound” to choosing
messages that agree on f , hence also on g, and so cannot use computing g to its advantage. Our
counter-example formalizes this intuition. Another shortcoming of the IND notion we observe is
that it is essentially vacuous2 for some functions, such as a collision-resistant hash function. Then,
it is hard for the adversary to find two messages that agree on the function.

Achievability. Finally, we ask the question of whether the SS notion for FE is achievable. In
particular, we note that achieving SS under adaptive access to the key derivation oracle seems
difficult. In the proof, the simulator seemingly must choose a “dummy” ciphertext on which to run
the adversary before knowing what values the challenge message should have when evaluated under
the functions for which the adversary will later request secret keys. Intuitively, this means the
number of possible keys for a given function should at least be as large as the number of possible
outputs of the latter. This situation is reminiscent of that for (non-interactive) non-committing
encryption, for which impossiblity results are known [Nie02].

Fortunately, we also bring some good news. In the case of non-adaptive SS, we identify a key
property of functional encryption schemes that we call multi-preimage sampleability. Intuitively,
this means that the functions of the messages an adversary is allowed to compute does not “narrow
down” the message space too severely; given the function values of some underlying message it
should always be possible to find two different messages consistent with them. We show that for
multi-preimage sampleable FE schemes, IND is equivalent to SS (both under non-adaptive access to
the key-derivation oracle). The reason we believe this is important is that non-adaptive SS suffices
to rule out the “pathological” examples of schemes we gave that meet IND but not SS.3 Thus,
our interpretation is that for multi-preimage sampleable schemes, IND (under adaptive access to
the key-derivation oracle) is probably fine in practice. We conclude by showing that some common
function classes considered in the literature, including the powerful inner-product predicates realized
in [KSW08, LOS+10, OT10], are multi-preimage sampleable.

Concurrent and independent work. Independently of our work, Boneh et al. [BSW10] also

2At least, it is vacuous with respect to attacks that require the adversary to query its key derivation oracle; i.e.,
attacks where the adversary actually uses the secret keys. A functional encryption scheme may of course already not
be semantically secure in the classical sense.

3On the other hand, it is possible to extend them to even more extreme examples that violate SS only under
adaptive access to the key-derivation oracle, but these start to really stretch plausibility. In any case, for SS non-
adaptivity may be what we are stuck with.
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undertook a general study of FE. In particular they gave a syntactical definition as well as indis-
tinguishability and semantic security based formulations of privacy (their formulation of the latter
differs somewhat from ours; see the discussion in Section 2). Under their formulations, they give a
(again, somewhat different4) example showing that IND does not imply SS. They further showed
that SS under adaptive access to the key derivation oracle (although they do not distinguish be-
tween adaptive versus non-adaptive here) is not achievable at all without (programmable) random
oracles (following [Nie02]), but is achievable in the random oracle model. We feel this further
highlights the importance of our results on the (standard model) achievability of non-adaptive SS.

2 Functional Encryption and its Security

We define the syntax of functional encryption and various security notions for it.

2.1 Syntax

A functional encryption scheme for the class of PT functions (aka. functionality) F on message-
space Σ is a tuple of algorithms FE = (Setup,KDer,Enc,Eval) such that:

• Setup on input 1k outputs a master public key pk and master secret key sk.

• KDer on input the master secret key sk and a (description of a) function f ∈ F outputs an
evaluation token (aka. secret key) skf for f .

• Enc on input a public key pk and a message (aka. attribute) m ∈ Σ outputs a ciphertext c.

• Eval on input an evaluation token skf and a ciphertext c outputs a string y or ⊥.

For correctness we require that for all k ∈ N, all f ∈ F , and all m ∈ Σ,

Eval(skf ,Enc(pk,m)) = f(m)

with probability 1 over (pk, sk)
$← Setup(1k) and skf

$← KDer(sk, f).
Note that this notion is in particular a generalization of (anonymous) identity-based encryp-

tion [BF03, ABC+08] (IBE), public-key encryption with keyword search [BCOP04, ABC+08],
attribute-based encryption [SW05, GPSW06, BSW07, OT10], and predicate encryption [BW07,
KSW08, LOS+10, OT10].5 For example, in the case of identity-based encryption, the “message”
would consist of the identity concatenated with the actual payload, and the secret key would be
associated with the function fID(ID

′∥x) = x if ID = ID′ and ⊥ otherwise.

2.2 Security Definitions

We present various formulations of privacy for functional encryption. Broadly, the definitions are
either indistinguishability based or semantic-security based. In each case we also define a token non-
adaptive (TNA) variant, where the adversary gets access to a token derivation oracle only before
it sees the challenge ciphertext.

4Our counter-example is slightly more general. In particular, ours shows a separation even for schemes (such as
those proposed in the literature) where the adversary can find two messages that agree on the functions corresponding
to the secret keys it requested.

5To capture non-anonymous IBE or attribute-based encryption, we would need to enhance our definition to output
a special part of the message in the clear, which we omit for simplicity.
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Indistinguishability based privacy. The indistinguishability-based formulation follows [BW07]
and tries to capture the intuition that the adversary is unable to distinguish between the en-
cryptions of two different messages that it cannot trivially distinguish using its tokens. Let
FE = (Setup,KDer,Enc,Eval) be a functional encryption scheme for the class of functions F over
message-space Σ and let A = (A1, A2) be an adversary. For mode ∈ {full, tna} 6 and k ∈ N we
associate to FE and A the experiments

Experiment Expind-mode
FE,A (k):

b
$← {0, 1}

(pk, sk)
$← Setup(1k)

(m0,m1, st)
$← A

KDer(sk,·)
1 (pk)

c
$← Enc(pk,mb)

b′
$← A

O(sk,·)
2 (pk, c, st)

If b = b′ return 1 else return 0

where if mode = full then O(sk, ·) = KDer(sk, ·) and if mode = tna then O(sk, ·) = ε (the empty
oracle). We require that every query f that A1 or A2 makes to its oracle satisfies f(m0) = f(m1).
Denote by Pr

[
Expind-mode

FE,A (k) = 1
]
the probability that the corresponding IND-MODE experiment

outputs 1, and define

Advind-mode
FE,A (k) = 2 · Pr

[
Expind-mode

FE,A (k) = 1
]
− 1 .

We say that FE is IND-MODE secure if Advind-mode
FE,A (·) is negligible for all PPT adversaries A.

Semantic-security based privacy. The semantic-security formulation is new and tries to
capture the intuition that anything the adversary can compute from a ciphertext and the tokens
it can compute from the tokens and the values of the corresponding functions on the underlying
message. Let FE = (Setup,KDer,Enc,Eval) be a functional encryption scheme for the class of
functions F over message-space Σ, let A = (A1, A2, A3) be an adversary, let S be a simulator. For
mode ∈ {full, tna} and k ∈ N we associate to FE , A, and S the experiments

Experiment Expss-real-mode
FE,A (k):

(pk, sk)
$← Setup(1k)

st
$← A

KDer(sk,·)
1 (pk)

(m, t)
$← A2(pk, st)

c
$← Enc(pk,m)

t′
$← A

O(sk,·)
3 (pk, c, st)

If t = t′ return 1 else return 0

Experiment Expss-ideal-mode
FE,A,S (k):

(pk, sk)
$← Setup(1k)

st
$← A

KDer(sk,·)
1 (pk)

(m, t)
$← A2(pk, st)

Let f1, . . . , fq be the queries made by A1

t′
$← SO′(sk,·)(pk, f1(m), . . . , fq(m), st)

If t = t′ return 1 else return 0

where if mode = full then O(sk, ·) = KDer(sk, ·) and for any f oracle O′(sk, f) returns (skf , f(m))
where skf

$← KDer(sk, f), and if mode = tna then O(sk, ·) = O′(sk, ·) = ε (the empty oracle). We
assume for simplicity that A1’s output (the state st) includes its oracle queries and the responses.
Think of the string t ∈ {0, 1}∗ in the output of A2 as partial information on m. Note that in

6We stress that our use of the terminology “full” security differs from the literature in that it refers to adaptive
access to the key derivation oracle rather than adaptive choice of the challenge messages.
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the above formalization of semantic security, even in the ideal experiment we run A1 and A2. A
more standard formalization would have the simulator also run at these stages. However, we want
to “bind” the simulator to making the same key derivation queries as the adversary.7 Denote by
Pr

[
Expss-real-mode

FE,A (k) = 1
]
the probability that the SS-REAL-MODE experiment outputs 1 and

by Pr
[
Expss-ideal-mode

FE,A,S (k) = 1
]
the probability that the SS-IDEAL-MODE experiment outputs 1.

Define

Advss-mode
FE,A,S (k) = Pr

[
Expss-real-mode

FE,A (k) = 1
]
− Pr

[
Expss-ideal-mode

FE,A,S (k) = 1
]
.

We say that FE is SS-MODE secure if for every PPT adversary A there exists a PPT simulator S
such that Advss-mode

FE,A,S (·) is negligible.

3 Inequivalence of the Definitions in General

We investigate relations among the notions of security we introduced for FE. First, we note that
when giving the adversary adaptive access to the token derivation oracle (i.e., what we call FULL
security), one reason semantic security seems stronger than indistinguishability is that the simulator
apparently needs to commit to a “dummy” ciphertext on which to run the adversary before knowing
what values the challenge message should have when evaluated under the functions for which the
adversary will later request tokens.

But we show that there is actually a more subtle reason for inequivalence of the definitions. In
fact, we show that in general IND-FULL security does not even imply SS-TNA security. To show
the separation we start with a IND-FULL secure functional encryption scheme for any class of
functions F of a certain form. We then modify it to construct a new scheme that is still IND-FULL
secure for F but not SS-TNA secure. We show the latter by presenting a concrete attack. We first
describe a concept our counter-example scheme employs.

Hidden functions. Let G = {gk}k∈N and F = {fk}k∈N be families of functions on a common
domain D = D(k). We say G is hidden by F if any PPT adversary A on inputs fk, fk(x) where
x

$← D outputs gk(x) with only negligible probability in k. Note that such functions can be con-
structed under standard assumptions; for example, let fk be a one-way function applied to the first
half of the bits of the input and let gk just output these bits (that is, the first half of the bits of
the input).8 We say F and G are isomorphic if fk and gk are isomorphic for every k, meaning

fk(d1) = fk(d2)⇔ gk(d1) = gk(d2) .

for all d1, d2 ∈ D. In other words, fk and gk have the same equality pattern across the domain.
This is the case, for example, if fk in the example above is an injective one-way function on the first

7On the other hand, in the case of FULL security this is not enforced by the definition. This was an oversight
on our part that we leave in here, since we only noticed it after [BSW10] appeared; following [BSW10] one might
ask that A3 and S have the same query distributions in thie case. Other differences between their SS definition and
ours include: theirs considers only adaptive access to the key derivation oracle whereas ours distinguishes between
adaptive and non-adaptive, theirs allows the challenge message to depend only on the security parameter whereas
ours also allows it to depend on public parameters and key derivation queries, and theirs considers the encryption of
multiple messages whereas ours considers only a single message (in particular, the former is important for the proof
of impossibility they give for meeting their notion without random oracles).

8Indeed, a simpler example is to take fk to be a one-way function and gk to be the identity. However, in our
counter-example this will prevent the adversary from even being able to find two messages that agree on fk. We
believe this points to a separate shortcoming of the IND definition.
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half of the input bits. We supress dependence on k below for convenience, just talking of functions
rather than function families.

The counter-example scheme. Let AE∗ = (KDer∗,Enc∗,Dec∗) be a (standard) public-key
encryption scheme, and let FE ′ = (Setup′,KDer′,Enc′,Eval′) be a functional encryption scheme
over message-space Σ for a class of functions F = {f1, . . . , fn} satisfying the following: there is a
function g on Σ such that the pointwise concatenated function9 f = f1∥ . . . ∥fn is isomorphic to g
and moreover g is hidden by f . (For simplicity, we assume here that n is polynomial in k. The
counter-example can easily be extended to larger function sets by instead requiring the forgoing
condition on some fixed subset of the fi’s.) Then we define a new functional encryption scheme
FE = (Setup,KDer,Enc,Eval) over Σ for F as follows.

• Setup on input 1k first runs (pk′, sk′)
$← Setup′(1k), and (pk∗, sk∗)

$← KDer∗(1k). It then
selects w1, . . . , wn−1

$← {0, 1}|sk∗| and computes wn ← sk∗ ⊕ w1 ⊕ · · · ⊕ wn−1. Finally, it
returns master public key pk = pk′∥pk∗ and master secret key sk = sk′∥w1∥ . . . ∥wn.

• KDer on input the master secret key sk = sk′∥w1∥ . . . ∥wk and a (description of a) function
fi ∈ F first runs KDer′sk′(fi) to obtain sk′

fi
. Then, it outputs skfi = sk′

fi
∥wi.

• Enc on input the master public key pk = pk′∥pk∗ and a message m ∈ Σ first computes
c′

$← Enc′(pk′,m) and c∗
$← Enc∗(pk∗, g(m)). It returns c′∥c∗.

• Eval on input a secret key skfi = sk′
fi
∥wi and a ciphertext c = c′∥c∗ computes d ←

Eval′(sk′
fi
, c′), and outputs d.

Theorem 3.1 If AE∗ is IND-CPA secure and FE ′ is IND-FULL secure for F = {f1, . . . , fn} as
above (i.e., where g is hidden by f1∥ . . . ∥fn), then FE is also IND-FULL secure for F . However, it
is not SS-TNA secure.

Note that the assumptions of the theorem do not constitute any additional complexity assump-
tions beyond the (minimal) one of FE ′ being IND-FULL secure for F , meaning based on the latter
we can construct the other schemes and functions that are assumed.

We also remark that the separation also holds in the case of “selective-security,” where the
challenge messages are chosen up-front by the adversary, as considered in e.g. [BW07, KSW08]. It
also holds in the case of predicate encryption [BW07, KSW08], since we can take fi for 1 ≤ i ≤ n
to output the i-th bit of a function f such that g is hidden by f (i.e., a function can always be
decomposed bit-wise into predicates).

Proof: (Sketch.) To see FE is IND-FULL secure for F , first consider an adversary A that does
not request tokens for all of f1, . . . , fn. Then in addition to interacting with FE ′ in the IND-FULL
experiment, the adversary is just given additional random strings when it requests tokens, which
in particular are independent of b, so security of FE follows from that of FE ′. Now consider A that
requests tokens for all of f1, . . . , fn. In this case, in addition to interacting with FE ′ the adversary
obtains g(mb) where mb is the challenge message. But by the rules of the experiment we know that
f1(m0)∥ . . . ∥fn(m0) = f1(m1)∥ . . . ∥fn(m1) and thus by assumption g(m0) = g(m1), meaning again
this information is independent of b and so IND security of FE follows from that of FE ′.

9By pointwise concatenation f∥g of functions f and g on a set D we mean that f∥g(x) = f(x)∥g(x) for all x ∈ D.
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To show that FE is not SS-TNA secure, we describe an SS-TNA adversary B = (B1, B2, B3) for
which there is no simulator with comparable probability of guessing t = t′. Namely, B1 requests
evaluation tokens for all of f1, . . . fn and passes them along as the state, and B2 chooses a random
challenge message m ∈ Σ, sets t← g(m), and outputs (m, t). Then, by construction B3 can always
output t = t′ by decrypting the part of the challenge ciphertext formed by AE∗ (note that B3

makes no queries itself as required). However, a simulator who outputs t = t′ with non-negligible
probability would contradict the fact that g is hidden by f since the simulator is not given any
ciphertext but just the value of f1(m)∥ . . . ∥fn(m) (also pk and the evaluation tokens for f1, . . . , fn,
but a hidden function adversary can generate these itself).

4 An Equivalence under Multi-Preimage Sampleability

We show that for token non-adaptive (TNA) security the counter-example in Section 3 is essentially
tight. Namely, we show an equivalence between indistinguishability and semantic-security under
TNA security for what we call multi-preimage sampleable schemes. Note that TNA security seems
reasonable in practical applications where what tokens a party receives does not depend on the
encrypted messages.

Multi-preimage sampleability. Let FE = (Setup,KDer,Enc,Eval) be a functional encryption
scheme over message-space Σ for the class of functions F . We call FE multi-preimage sampleable
(MPS) if there is a PPT algorithm that given (f1, y1 = f1(m)), . . . , (fi, yi = fi(m)) for any polyno-
mial i = i(k), any f1, . . . , fi ∈ F and any m ∈ Σ samples uniformly from the set

Sy1,...,yi = {m′ ∈ Σ | f1(m′) = y1, . . . , fi(m
′) = yi}

and moreover |Sy1,...,yi | ≥ 2. Note that multi-preimage sampleability as we have defined it is thus
a property of F .

It is sometimes more useful to consider (cf. Section 5) multi-preimage sampleability not as a
property of a functionality F itself but rather of an SS adversary. Namely, call an SS adversary
A = (A1, A2, A3) multi-preimage samplable if there is a PPT algorithm that given the queries
f1, . . . , fq made by A1 in any run of the SS-REAL-TNA experiment samples uniformly from the
set

Sf1(m),...,fq(m) = {m′ ∈ Σ | f1(m′) = f1(m), . . . , fq(m
′) = fq(m)}

where m is the message output by A2, and moreover |Sf1(m),...,fq(m)| ≥ 2.
In essence, we show that multi-preimage sampleability provides a “test” of whether equivalence

between the IND and SS definitions is maintained in the case of TNA security.

Theorem 4.1 Let FE be an MPS functional encryption scheme. Then FE is SS-TNA secure if
and only if it is IND-TNA secure.

An analogous theorem holds for any functional encryption scheme when considering only MPS
adversaries in the SS-TNA case.

Proof: (Sketch.) Suppose that FE is not IND-TNA secure, in particular let A = (A1, A2) be a
successful IND-TNA adversary against it. Consider a SS-TNA adversary B = (B1, B2, B3) that
works as follows. B2 runs A1 on pk to receive messages m0,m1. It then chooses d ∈ {0, 1} at
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random and returns (md, d). B3 runs A2 on its input and outputs the result. Note that no SS-TNA
simulator can output d with probability better than 1/2 in the SS-TNA-REAL experiment because
it gets no information about it (recall that A only makes key-derivation queries whose results are
independent of b, and the simulator makes no queries).

Now suppose FE is IND-TNA secure. Let A = (A1, A2, A3) be an SS-TNA adversary against
FE . We construct a simulator S with comparable probability of outputting t = t′ in the SS-
IDEAL-TNA experiment to A in the SS-REAL-TNA experiment, meaing FE is SS-TNA secure.
Simulator S works as follows: given the queries f1, . . . , fq made by A1 and their values y1, . . . , yq
on the challenge message m, S will sample uniformly a “dummy” message m′ ∈ Σ such that
f1(m

′) = y1, . . . , fq(m
′) = yq using the sampler guaranteed by the definition of MPS. It runs A3

on the encryption of m′ and outputs the result. If A3’s success probability differs in this simulated
environment, then we can use A to construct a successful IND-TNA adversary B, as follows. B
runs A1, A2 on the appropriate inputs to receive m, t. Let f1, . . . , fq be the queries made by A1.
Using the sampler guaranteed by the definition of MPS, B samples uniformly a message m′ such
that f1(m

′) = f1(m), . . . , fq(m
′) = fq(m). It then submits m,m′ as its challenge messages, runs A3

on the result and checks whether it returns t′ = t or not; if so, it outputs 0, and otherwise 1. Note
that it is important here that m ̸= m′, which holds with probability at least 1/2 by the definition
of MPS. This contradicts our assumption.

5 On Multi-Preimage Sampleability of Some Functionalities

We examine whether some specific functionalities (i.e., function classes) for FE considered in the
literature satisfy our multi-preimage sampleability condition. In those we consider we show that
either the answer is “yes” or the restriction to MPS adversaries for them under the SS-TNA notion
is relatively natural.

Inner-products. We first show that multi-preimage sampleability is satisfied by the important
class of inner-product predicates realized in prior work [KSW08, LOS+10, OT10]. Hence, by The-
orem 4.1, schemes in the literature for this functionality proven secure relative to the IND notion
also meet SS, at least under non-adaptive access to the token-derivation oracle. Namely, consider
the evaluation of inner products over ZN for a composite N (of which it assumed hard to find
a non-trivial factor). More formally, let n ∈ N be given and let N be such a composite. Let
Σ = Zn

N \{0n} 10 and define the associated class of inner-product predicates Piprod = {px | x ∈ Zn
N}

where px(y) = 1 if ⟨x,y⟩ =
∑n

i=1 xi · yi = 0 mod N , and 0 otherwise.

Proposition 5.1 The class Piprod as defined above is multi-preimage sampleable.

Proof: (Sketch.) For any polynomial r = r(k), given y1 = px1(m), . . . , yr = pxr(m) for any
px1 , . . . , pxr ∈ Piprod and m ∈ Σ, we construct an algorithm A that samples uniformly from Sy1,...,yr .
Let Ib denote the set {i ∈ [r] | yi = b} for b ∈ {0, 1}, and let B be an |I1| × n matrix where each
row is a unique element of {xi | i ∈ I1}.
The sampling algorithm A first finds a basis W = {w1, . . . ,ws} for ker(B) in the space Zn

N . This
can be done by solving the homogeneous system of equations Bx = 0 using Gaussian elimination

10We need to disallow the all zeros vector as a message in order for multi-preimage sampleability to hold.
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over ZN . (Note that while ZN is not a field, if Gaussian elimination fails we have found a non-
trivial factor of N .) Next, A samples a uniformly random element w ∈ ker(B) by taking a random
ZN -combination of the basis vectors in W . A then tests if ⟨w,xi⟩ ̸= 0 for all i ∈ I0. If so, A outputs
w and terminates, and if not, then A continues to re-sample w from ker(B) until this is true (but
halts after say a maximum k attempts).

First of all, A is a PPT algorithm, since a random vector from ker(B) is overwhelmingly likely to be
non-orthogonal to each xi, i ∈ I0, and thus by a union bound the termination condition is achieved
with overwhelming probability in each attempt. Furthermore, A correctly samples Sy1,...,yr because
Sy1,...,yr consists precisely of all vectors whose inner product with the elements of {xi | i ∈ I1} is
zero and with the elements of {xi | i ∈ I0} is non-zero. Finally |Sy1,...,yr | ≥ 2 because, by definition
of Σ, s ≥ 1 (i.e., ker(B) has dimension at least 1).

Anonymous IBE and PEKS. Observe that the (anonymous) IBE [BF03, ABC+08] and public-
key encryption with keyword search (PEKS) [BCOP04, ABC+08] functionalities are not multi-
preimage sampleable as we defined it. For example, in the case of anonymous IBE, if we know that
fID(ID

′∥x) = x then there is only one possible preimage, namely ID∥x (an analogous argument
applies in the case of PEKS). However, for such schemes, asking that SS-TNA security hold only
relative to MPS adversaries seems relatively natural. For example, in the case of anonymous IBE,
it corresponds to asking that the adversary not ask for a secret key corresponding to the challenge
identity; indeed, in this case, we can sample uniformly from the set of possible “messages” by
sampling a random identity other than those for which the adversary has requested secret keys and
a random payload. By an analogue of Theorem 4.1, we conclude that such schemes in the literature
proven secure under an IND notion also meet SS-TNA under this condition.

Fuzzy IBE and attribute-based encryption. Fuzzy IBE [SW05] and more generally attribute-
based encryption [GPSW06, BSW07, OT10] are also not multi-preimage sampleable as we have
defined it for similar reasons to anonymous IBE and PEKS. However, we believe that by asking
that the SS-TNA security hold only relative to MPS adversaries for these functionalities, we again
get the relatively natural condition that the adversary not ask for a secret key that allows it to
decrypt the challenge message. However, we have not checked the details.
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