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Abstract. The notion of PRO (pseudorandom oracle) is an important security notion of hash
functions because a PRO hash function inherits all properties of a random oracle up to the
PRO bound (e.g., security against generic attacks, collision resistant security, preimage resistant
security and so on). In this paper, we propose a new block cipher-based double-length hash
function for PROs. Our hash function uses a single block cipher, which encrypts an n-bit string
using a 2n-bit key, and maps an input of arbitrary length to a 2n-bit output. Since many block
ciphers supports a 2n-bit key (e.g. AES supports a 256-bit key), the assumption to use the
2n-bit key length block cipher is acceptable. We prove that our hash function is PRO up to
O(2n) query complexity as long as the block cipher is an ideal cipher. To our knowledge, this
is the first time double-length hash function based on a single (practical size) block cipher with
the birthday type PRO security.
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1 Introduction

The block cipher-based design method (e.g. [18, 20, 25]) is the most popular method for constructing
a cryptographic hash function. A hash function is designed by the following two steps: (1) designing a
block cipher and (2) designing a mode of operation. MD-family [26, 27], SHA-family [22] and SHA-3
candidates follow the design method. Another design method is to utilize a practical block cipher
such as AES. Such hash functions are useful when used on size restricted devices such as RFID
tags or smart cards: when implementing both a hash function and a block cipher, one has only to
implement a block cipher. However, the output length of most practical encryption functions is far
too short for a collision resistant hash function, e.g., 128-bits for AES. Thus the design of CR-DLHFs
(collision resistant double length hash functions) is an interesting topic. The core of the design of
CR-DLHFs is to design a DLCF (double-length compression functions) which maps an input of fixed
length (more than 2n-bits) to an output of 2n-bit length when using an n-bit output length block
cipher. When designing a DLCF, the security is proven in the ideal cipher model [8, 13, 16, 10, 23],
e.g., Hirose’s compression function, Tandem-DM, Abreast-DM and generalized DLCF ([13, 15, 23]).
Then hash functions combined a domain extension (e.g. strengthened Merkle-Damg̊ard (SMD) [5,
21]), which preserves CR security, with these compression functions yield CR-DLHFs in the ideal
cipher model.

The notion of PRO (Pseudorandom Oracle), which is one application of indifferentiability intro-
duced by Maurer et al. [19], is an important security notion for hash functions. Therefore, when
designing a DLHF, it is important to consider the PRO security. Roughly speaking, if a hash function
is PRO, we can use it as a random oracle. Namely, such hash functions inherit all properties of a ran-
dom oracle up to the PRO security bound. Therefore, the PRO security guarantees security against
generic attacks, e.g. the length extension attack, which is a requirement for SHA-3 candidates [11],
and if a hash function has the birthday security for PRO, it is CR because a random oracle is.

Hereafter a block cipher which encrypts an n-bit string using a k-bit key is denoted by (k,n)-BC.
Gong et al. [12] proved that the prefix-free Merkle-Damg̊ard using the PBGV compression function
[24] is PRO up to O(2n/2) query complexity as long as the (2n,n)-BC is an ideal cipher. When n = 128,
the PRO security is not enough because the query complexity is O(264). Chang et al. [2] and Hirose



Fig. 1. Our DLHF using Hirose’s compression function

et al. [14] proposed 2n-bit output length DLHFs using a compression function h : {0, 1}d → {0, 1}n

where d > 2n. Their proposals are PROs up to O(2n) query complexity as long as h is a random
oracle. Since an ideal cipher where the plain text element is fixed by a constant is a random oracle,
these hash functions can be modified to block cipher-based schemes which use a (d,n)-BC. However,
practical block ciphers (such as AES) don’t support d-bit key where d > 2n. So we rise the following
question:

Can we construct a DLHF from a “practical size”1 block cipher with “birthday security”
for PROs?

In this paper, we propose a DLHF using a single (2n,n)-BC with the O(2n) PRO security2 in the
ideal cipher model. Since many block ciphers support 2n-bit key length, e.g. AES supports 256-bit
key length, and the existing DLCFs (e.g. Hirose’s compression function, Tandem-DM, Abreast-DM,
and generalized DLCF) use a (2n,n)-BC, the assumption to use a (2n,n)-BC is acceptable. To our
knowledge, our hash function is the first time DLHF based on a practical size block cipher with the
birthday-type PRO security. Moreover, since our hash function uses only a single block cipher, it can
be utilized in size restricted devices.

Our DLHF. Our construction, which uses Hirose’s compression function, Tandem-DM or Abreast-
DM, iterates the compression function and uses a new finalization function f at the last iteration which
calls a (2n, n)-BC twice. Therefore, the complexity of our hash function is the number of (2n, n)-BC
calls of the SMD hash function plus two (2n, n)-BC calls. Let BC2n,n = (E,D) be a (2n,n)-BC
where E is an encryption function and D is a decryption function. Let DLCFBC2n,n be a double-
length compression function which is Hirose’s compression function, Tandem-DM, or Abreast-DM.
Let SMDDLCFBC2n,n : {0, 1}∗ → {0, 1}2n be the SMD hash function using the compression function
DLCFBC2n,n . Our DLHF is defined as follows:

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n (M))

where fBC2n,n(x) = E(x, c1)||E(x, c2) and c1 and c2 are n-bit constant values. Note that the first
element of the encryption function is the key element and the second element is the plain text element.
The DLHF using Hirose’s compression function is illustrated in Fig. 1 where rv1||rv2 is the output
of the hash function. Note that in this figure we omit the suffix free padding function. We use the
DLHF SMDDLCFBC2n,n to compress an arbitrary length input into an fixed input length value. Since
SMD hash functions are not PROs [4], to guarantee the PRO property, the final function fBC2n,n is
1 “Practical size” is the size supported by practical block ciphers.
2 The O(2n) PRO security means that the number of queries is at least O(2n) to differentiate the DLHF

from a random oracle with probability of 1/2.
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added to SMDDLCFBC2n,n . The use of constant values c1 and c2 of the final function is inspired by the
design technique of EMD proposed by Bellare and Ristenpart [1]. This realizes two facts: (1) our hash
function uses only a single block cipher and (2) the final function behaves like a random oracle. So we
can treat our hash function as a NMAC hash function. Thus we can use the PrA design framework
[6] when proving the PRO security of our hash function.

Proof Methodology. In the traditional PRO proof technique (e.g. [4, 1]), one has to consider the
difference between a random oracle and FBC2n,n at the same time. Since a random oracle is a monolithic
function while a hash function is not, there is a big structural gap between them. Therefore, the PRO
proofs are very complex. Instead, we prove the PRO security of FBC2n,n by using three techniques to
simplify the PRO proof: the PrA (Preimage Aware) design framework of Dodis et al. [6], PRO for a
small function [4], and indifferentiability from a hash function. The first two techniques are existing
techniques and the last technique is a new application of the indifferentiability framework [19]. Using
the first two techniques, we construct a block cipher-based DLHF using two block ciphers. Then using
indifferentiability from a hash function, we reduce the number of underlying block ciphers. We prove
the PRO security by the following three steps.

– Step 1. Let BC1
2n,n = (E1, D1) be a (2n,n)-BC. In this step, we prove that Hirose’s compression

function, Tandem-DM, and Abreast-DM are PrA up to O(2n) query complexity as long as the
block cipher is an ideal cipher. Then the PrA design framework guarantees that the following
NMAC hash function is PRO up to O(2n) query complexity as long as the block cipher is an ideal
cipher and g : {0, 1}2n → {0, 1}2n is a random oracle.

F
BC1

2n,n

1 (M) = g(SMDDLCF
BC1

2n,n (M))

– Step 2. Let BC2
2n,n = (E2, D2) and BC3

2n,n = (E3, D3) be different (2n,n)-BCs. In this step, we
prove that the function fBC3

2n,n is PRO up to O(2n) query complexity as long as the block cipher
is an ideal cipher where c1 and c2 are n-bit different values. Therefore, fBC3

2n,n can be used instead
of g and thus the following hash function is PRO up to O(2n) query complexity as long as the
block ciphers are ideal ciphers.

F
BC2

2n,n,BC3
2n,n

2 (M) = fBC3
2n,n(SMDDLCF

BC2
2n,n (M))

– Step 3. This is the final step. In this step, we use indifferentiability from a hash function. So we

prove that FBC2n,n is indifferentiable from F
BC2

2n,n,BC3
2n,n

2 up to O(2n) query complexity as long

as the block ciphers are ideal ciphers. Therefore, FBC2n,n can be used instead of F
BC2

2n,n,BC3
2n,n

2 ,
namely, FBC2n,n is PRO up to O(2n) query complexity as long as the block cipher is an ideal
cipher.

By using our proof, one does not need to consider the “big” gap between the hash function and a
random oracle from the following reasons. Therefore, our proof is easier than the traditional proofs.

– Step 1: PrA is the weaker notion than PRO and the DLCFs are the simpler and smaller functions
than FBC2n,n . Therefore, the PrA proof for the DLCFs is easier than the traditional PRO proof
for FBC2n,n .

– Step 2: In this step, we have only to consider the structure of fBC3
2n,n . Since fBC3

2n,n is the simpler
and smaller function than FBC2n,n , the proof in Step 2 is easier than the traditional PRO security
proof for FBC2n,n .

– Step 3: The difference between FBC2n,n and F
BC2

2n,n,BC3
2n,n

2 is the number of block ciphers. Namely,

FBC2n,n = F
BC2n,n,BC2n,n

2 and the structure of FBC2n,n is the same as that of F
BC2

2n,n,BC3
2n,n

2 except
for the number of a block cipher. On the other hand, since a random oracle is a monolithic random
function while FBC2n,n is not, the structure of FBC2n,n is dissimilar from that of a random oracle.
Therefore, the proof in this step is easier than the traditional PRO security proof for FBC2n,n .
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In our proof, indifferentiability from a hash function is used to reduce the number of underlying
block ciphers and contributes to simplifying our proof. It may be useful for reducing the number
of primitives and simplifying a proof. We discuss the application of indifferentiability from a hash
function to other hash functions in Section 4.

Related Works. The PRO security proof of the EMD hash function using a random oracle com-
pression function [1] uses a similar technique to indifferentiability from a hash function. They proved
that (1) the NMAC hash function using random oracle compression functions is PRO and (2) the
difference in the behaviors of adversaries A and B is negligible where A interacts with the NMAC
hash function and B interacts with the EMD hash function. By combining the first step with the
second step, they concluded that the EMD hash function is PRO. The second step of the proof is
similar to indifferentiability from a hash function. However A is different from B and the interfaces
of these adversaries are different. On the other hand, when we consider that H2 is indifferentiable
from H1, an adversary of H2 is the same as that of H1 and the interface of the H2 adversary is the
same as that of the H1 adversary due to the indifferentiability framework [19]. Therefore, proofs using
indifferentiability from a hash function are easier than those using the technique of [1].

2 Preliminaris

Notation. For two values x, y, x||y is the concatenated value of x and y. x ← y means assigning
y to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For a set (list) T and an element W ,
T ← W means to insert W into T and T ∪←− W means T ← T ∪ {W}. For some d-bit value x,
x[0] is the first n bit value and x[1] is the last d − n-bit value. BCd,n = (E,D) be a block cipher
where E : {0, 1}d × {0, 1}n → {0, 1}n is an encryption function, D : {0, 1}d × {0, 1}n → {0, 1}n is a
decryption function, the key size is d bits and the cipher text size is n bits. Cd,n = (EI , DI) be a ideal
cipher where EI : {0, 1}d × {0, 1}n → {0, 1}n is an encryption oracle, DI : {0, 1}d × {0, 1}n → {0, 1}n

is a decryption oracle, the key size is d-bits and the cipher text size is n-bits. Fm,n : {0, 1}m → {0, 1}n

is a random oracle. An arbitrary input length random oracle is denoted by Fn : {0, 1}∗ → {0, 1}n.
For any algorithm A, we write Time(A) to mean the sum of its description length and the worst-case
number of steps.

Merkle-Damg̊ard. Let h : {0, 1}2n ×{0, 1}d → {0, 1}2n be a compression function using a primitive
P (more strictly hP ) and pad : {0, 1}∗ → ({0, 1}d)∗ be a padding function. Merkle-Damg̊ard hash
function MDh is described as follows where IV is a 2n-bit initial value.

MDh(M)
z ← IV ;
Break pad(M) into d-bit blocks, pad(N) = M1|| · · · ||Ml;
for i = 1, . . . , l do z ← h(z,Mi);
Ret z;

We denote MDh, when padding pad is a suffix-free padding sfpad, by SMDh, called strengthened
Merkle-Damg̊ard. We assume that it is easy to strip padding, namely that there exists an efficiently
computable function unpad : ({0, 1}d)∗ → {0, 1}∗∪{⊥} such that x = unpad(pad(x)) for all x ∈ {0, 1}∗.
Inputs to unpad that are not valid outputs of pad are mapped to ⊥ by unpad.

Indifferentiability. Let HP
1 be some cryptographic scheme (e.g. a hash function) that utilizes an

ideal primitive P . Let HQ
2 be another cryptographic scheme that utilizes an ideal primitive Q. We say
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that HP
1 is indifferentiable from HQ

2 if there exists an effcient simulator S that simulates P such that
for any distinguisher A outputting a bit it is the case that

Advindif
HP ,HQ,S(A) = Pr[AHP

1 ,P ⇒ 1] − Pr[AHQ
2 ,S ⇒ 1]

is small where the probabilities are taken over the coins used the experiments. S can make queries to
Q. The S’s task is to simulate P such that relations among responses of (HP

1 , P ) hold in responses
of (HQ

2 , S) as well. If the bound is small, we can use HP
1 instead of HQ

2 up to the indifferentiability
bound. Namely, if cryptosystem X using HQ

2 is secure, X using HP
1 is also secure.

When considering the PRO (Pseudorandom Oracle) security for a hash function HP
1 : {0, 1}s →

{0, 1}t, we replace the above primitive HQ
2 with a random oracle Fs,t. That is, HQ

2 = Q = Fs,t. We
write the pro-advantage by Advpro

HP
1 ,S

= Advindif
HP

1 ,Fs,t,S
. Thus

Advpro
HP

1 ,S
(A) = Pr[AHP

1 ,P ⇒ 1] − Pr[AFs,t,S ⇒ 1]

where S can makes queries to Fs,t.

Preimage Awareness. The notion of preimage awareness is useful for PRO security proofs of NMAC
hash functions. We only explain the definition of preimage awareness. Please see Section 3 of [7] for
the spirit of the notion. Let FP be a hash function using an ideal primitive P . The preimage awareness
of FP is estimated by the following experiment.

Exppra
F P ,P,E,A

x
$←− AP,Ex;

z ← FP (x);
Ret (x 6= V[z] ∧ Q[z] = 1);

oracle P(m)
c ← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex(z)
Q[z] ← 1;
V[z] ← E(z, α);
Ret V[z];

Here an adversary A is provided two oracles P and Ex. The oracle P provides access to the ideal
primitive P and records a query histry α. The extraction oracle Ex provides an interface to an extractor
E , which is a deterministic algorithm that uses z and the query history α of P , and returns either ⊥
or an element x′ such that FP (x′) = z. If x′ can be constructed from α, it returns x′ and otherwise
returns ⊥. In this experiment, the (initially everywhere ⊥) array Q and the (initially empty) array V
are used. When z is queried to Ex, Q[z] ← 1 and then the output of E(z, α) is assigned to V[z]. For
the hash function FP , the adversary A, and the extractor E , we define the advantage relation

Advpra
F P ,P,E = Pr[Exppra

F P ,P,E,A
⇒ true]

where the probabilities are over the coins used in running the experiments. When there exists an
efficient extractor E such that for any adversary A the above advantage is small, we say that FP is
preimage aware (PrA).

The pra-advantage can be evaluated from the cr-advantage (collision resistance advantage) and
the 1-wpra (1-weak PrA) advantage [7]. The 1-WPrA experiment is described as follows.

Exp1wpra
F P ,P,E+,A

x
$←− AP,Ex+ ;

z ← FP (x);
Ret (x 6∈ L ∧ Q[z] = 1);

oracle P(m)
c ← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex+(z)
Q[z] ← 1;
L ← E+(z, α);
Ret L;

The difference between the 1-WPrA experiment and the PrA experiment is the extraction oracle. In
the 1-WPrA experiment, a multi-point extractor oracle Ex+ is used. Ex+ provides an interface to a
multi-point extractor E+, which is a deterministic algorithm thatuses z and α, and returns either ⊥ or
a set of an element in the domain of FP . The output (set) of E+ is stored in list L. Thus, if L 6= {⊥},
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for any x′ ∈ L FP (x′) = z. In this experiment, an adversary A can make only a single query to Ex+.
For a hash function FP , an adversary A, and a multi-point extractor E+, we define the advantage
relation

Adv1wpra
F P ,P,E = Pr[Exp1wpra

F P ,P,E+,A
⇒ true]

where the probabilities are over the coins used in running the experiments. When there exists an
efficient multi-point extractor E+ such that the above advantage is small for any adversary A, we say
that FP is 1-WPrA.

The definition of the cr-advantage as follows. Let A be an adversary that outputs a pair of values
x and x′. To hash function FP using primitive P and adversary A we associate the advantage relation

Advcr
F P ,P (A) = Pr[(x, x′) $←− AP : FP (x) = FP (x′) ∧ x 6= x′]

where the probability is over the coins used by A and primitive P .
Then the pra-advantage can be evaluated as follows.

Lemma 1 (Lemmas 3.3 and 3.4 of [7]). Let E+ be an arbitrary multi-point extractor. There exists
an extractor E such that for any pra-advarsary Apra making qe extraction queries and qP primitive
queries there exists 1-wpra adversary A1wpra and cr-adversary Acr such that

Advpra
F P ,P,E(Apra) ≤ qe · Adv1wpra

F P ,P,E+(A1wpra) + Advcr
F P ,P (Acr).

A1wpra runs in time at most O(qeTime(E+)) and makes the same number of P queries as Apra. Acr

asks qP queries and run in time O(qe · Time(E+)). E runs in the same time as E+. ¨

NMAC Hash Function. Let g : {0, 1}n → {0, 1}n be a function and HP : {0, 1}∗ → {0, 1}n be a
hash function using primitive P such that g is not used in HP . The NMAC hash function is defined
as follows.

NMACHP ,g(M) = g(HP (M)).

Dodis et al. [7] proved that the PRO security of NMACHP ,g can be reduced into the PrA security of
HP .

Lemma 2 (Theorem 4.1 of [7]). Let P be an ideal primitive, g be a random oracle and E be any ex-
tractor for HP . Then there exists a simulator S = (SP , Sg) such that for any PRO adversary A making
at most qF , qP , qg queries to its three oracles (OF ,OP ,Og) where (OF ,OP ,Og) = (NMACHP ,g, P, g)
or (OF ,OP ,Og) = (Fn, SP , Sg), there exists a PrA adversary B such that

Advpro

NMACHP ,g,S
(A) ≤ Advpra

HP ,P,E(B).

S runs in time O(qP +qg ·Time(E)). Let l be the length of the longest query made by A to OH . B runs
in time O(Time(A) + qF tH + qP + qg), makes qP + qHqF queries, qg extraction queries, and outputs
a preimage of length at most l where for any input M to HP the output of HP (M) can be calculated
within at most tH times and qH queries to P . ¨

Dodis et al. proved that the SMD construction preserves the PrA security as follows. Therefore, the
PRO security of the NMAC hash function using the SMD hash function can be reduced into the PrA
security of the compression function.

Lemma 3 (Theorem 4.2 of [7]). Let hP be a compression function using an ideal primitive P .
Let Eh be an arbitrary extractor for hP There exists an extractor EH for SMDhP

such that for any
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adversary AH making at most qP primitive queries and qe extraction queries and outputting a message
at most l blocks there exists an adversary Ah such that

Advpra

SMDhP
,P,EH

(AH) ≤ Advpra
hP ,P,Eh

(Ah)

EH runs in time at most l(Time(Eh) + Time(unpad)). Ah runs in time at most O(Time(AH) + qel),
makes at most lqH + qP ideal primitive queries, and makes at most qel extraction queries where qH is
the maximum number of P queries to calculate SMDhP

(x) for any input x. ¨

3 Block Cipher-based Double-length Hash Functions for PROs

In this section, we propose double-length hash functions using a single block cipher with the O(2n)
PRO security. We prove the PRO security by using the three technique, the PrA design framework,
PRO for a small function and indifferentiability from a hash function.

3.1 Primage Aware Double-length Hash Functions

In this subsection, we prove that Hirose’s compression function [13] is PrA up to O(2n) query com-
plexity as long as the block cipher is an ideal cipher. Similarly, we can prove that Abreast-DM and
Tandem-DM [15] are PrA. The PrA proofs for Abreast-DM and Tandem-DM are given in Appendix
A and B. Let BC1

2n,n = (E1, D1) be a block cipher. Let DLCFBC1
2n,n be Hirose’s compression function,

Tandem-DM, or Abreast-DM using the block cipher BC1
2n,n. Let g : {0, 1}2n → {0, 1}2n be a func-

tion. Then, Lemmas 2 and 3 guarantee that the following hash function is PRO up to O(2n) query
complexity as long as the block cipher is an ideal cipher and g is a random oracle.

F
BC2n,n,g
1 (M) = NMACSMDDLCF

BC1
2n,n

,g(M) = g(SMDDLCF
BC1

2n,n (M))

We call the function SMDDLCF
BC1

2n,n “inner hash function” and the function g “final function”.
Hirose’s compression function incorporates two Davies-Meyer (DM) single block length compres-

sion functions which are used side-by-side. The compression function is given in Definition 1.

Definition 1. Let BC1
2n,n = (E1, D1) be a block cipher. Let CFHirose[BC1

2n,n] : {0, 1}2n × {0, 1}n →
{0, 1}2n be a compression function such that (Gi,Hi) = CFHirose[BC1

2n,n](Gi−1||Hi−1,Mi) where
Gi,Hi, Gi−1,Hi−1 ∈ {0, 1}n and Mi ∈ {0, 1}n. (Gi,Hi) is calculated as follows:

Gi = Gi−1 ⊕ E1(Hi−1||Mi, Gi−1) (1)
Hi = C ⊕ Gi−1 ⊕ E1(Hi−1||Mi, Gi−1 ⊕ C, ) (2)

We call the procedure 1 “first block” and the procedure 2 “second block”. ¨

Theorem 1 (Hirose’s Compression Function is PrA). Let C1
2n,n = (E1I , D1I) be an ideal ci-

pher. There exists an extractor E such that for any adversary A making at most qP queries to C2n,n

and qe extraction queries we have

Advpra
CFHirose[C1

2n,n],C2n,n,E(A) ≤ 2q2
P

(2n − 2qP )2
+

2qP

2n − 2qP
+

2qP qe

(2n − qP )2

where E runs in time at most O(qeqP ). ¨

Proof. We prove that Hirose’s compression function is 1-WPrA, and then Lemma 1 gives the final
bound. We note that Theorem 3 of [10] upperbounds the cr-advantage of A by 2q2

P /(2n − 2qP )2 +
2qP /(2n − 2qP ), yielding the first two terms.

We define the multi-point extractor to utilize the preimage resistant bound, proven in [10], of
Hirose’s compression function as follows.
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algorithm E+(z, α)
Let L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α; //E1(kj , xj) = yj

For j = 1 to i do
If z[0] = xj ⊕ yj then

y ← E1I(kj , xj ⊕ C);
If z[1] = C ⊕ xj ⊕ y then L

∪←− (xj ||k[0], k[1]);
If z[1] = xj ⊕ yj then

y ← E1I(kj , xj ⊕ C);
If z[0] = C ⊕ xj ⊕ y then L

∪←− ((xj ⊕ C)||k[0], k[1]);
If L is not an empty list then return L otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input of the second block is
defined, and vice versa, from the definition of the compression function. For a query (z, α) to E+,
when there is an input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point extractor E+

checks whether the output of the second block is equal to z[1] or not and if this holds the multi-point
extractor stores it in the return list L, and vice versa. Therefore, A must find a preimage of z to win
the 1-WPrA experiment. Thus one can straightforwardly adapt the preimage resistant advantage of
the compression function (described in Theorem 5 of [10]). The advantage is at most 2qP /(2n − qP )2.

ut

Remark 1. Using the above technique, we can obtain PrA security bounds of other DLHFs from
bounds of collision resistant security and preimage resistant security (e.g. schemes in [10, 23]).

3.2 Double-length Hash Function Using Two Block Ciphers

Let BC2
2n,n = (E2, D2) and BC3

2n,n = (E3, D3) be block ciphers. In this subsection, we propose a
function fBC3

2n,n : {0, 1}2n → {0, 1}2n that uses the block cipher BC3
2n,n and prove that fBC3

2n,n is

PRO up to O(2n) query complexity as long as the block cipher is an ideal cipher. Since F
BC1

2n,n,g

1 is
PRO up to O(2n) query complexity as long as the block cipher is an ideal cipher and g is a random
oracle, the following hash function, which uses f instead of g, is PRO up to O(2n) query complexity
as long as the block ciphers are ideal ciphers.

F
BC2

2n,n,BC3
2n,n

2 (M) = fBC3
2n,n(SMDDLCF

BC2
2n,n (M))

where DLCFBC2
2n,n is the double-length compression function, Hirose’s compression function, Tandem-

DM or Abreast-DM, using the block cipher BC2
2n,n.

We define the function fBC3
2n,n : {0, 1}2n → {0, 1}2n as follows.

Definition 2. Let BC3
2n,n = (E3, D3) be a block cipher. The function fBC3

2n,n is built as

fBC3
2n,n(x) = E3(x, c1)||E3(x, c2)

where c1 and c2 are n-bit constant values such that c1 6= c2. ¨

Theorem 2 (fC3
2n,n is PRO). Let C3

2n,n = (E3I , D3I) be an ideal cipher. Let g = F2n,2n. There exists
a simulator S = (SE , SD) such that for any distinguisher A making at most qf , qE and qD queries
to oracles (Of ,OE ,OD) where (Of ,OE ,OD) = (fC3

2n,n , E3I , D3I) or (Of ,OE ,OD) = (g, SE , SD), we
have

Advpro

f
C3
2n,n ,S

(A) ≤ qf + qE + qD

2n

where S works in time O(Time(A) + qE + qD) and makes at most queries qE + qD. ¨
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Intuition. Consider the fixed plain text encryption oracle of the ideal cipher fc(x) = E3I(x, c) where
c is an n-bit constant value. Since the second input is fixed by c, the output of fc(x) is chosen from
the uniformly distribution on {0, 1}n. Therefore, when considering two functions fc1 and fc2 where
c1 6= c2, the output y1 of fc1(x) is chosen from the uniformly distribution on {0, 1}n and the output
y2 of fc2(x) is chosen from the uniform distribution on {0, 1}n\{y1}. Namely, the first n-bit value
of fC3

2n,n(x) is chosen uniformly from {0, 1}n and the last n-bit value is chosen from the uniform
distribution on {0, 1}n\{y1}. Since g is a random oracle, if for any query to g(x) the first n-bit value
of the output is not equal to the last n-bit value, fC3

2n,n is equal to g, namely, in this case no A can
differentiate fC3

2n,n from g. Since g is a random oracle, the probability that A can differentiate fC3
2n,n

from g is negligible. ¨

Proof. We define S = (SE , SD) such that it simulates C3
2n,n = (E3I , D3I) and the relation among re-

sponses of (fC3
2n,n , E3I , D3I) holds in responses of (g, SE , SD) as well. Since fC3

2n,n(k) = E3I(k, c1)||E3I(k, c2),
we define S such that g(k) = SE(k, c1)||SE(k, c2). Namely, the output of SE(k, c1) is y[0], the output
of SE(k, c2) is y[1], the output of SD(k, y[0]) is c1, and the output of SD(k, y[1]) is c2 where y = g(k).
Since S simulates the ideal cipher, if x 6= c1 and x 6= c2, the output SE(k, x) is chosen from the
uniform distribution on the set of {0, 1}n except for previous responses, and if a query to SD(k, y)
does not correspond with c1 and c2, the output is chosen from the uniform distribution on the set of
{0, 1}n except for previous responses. Thus we define S as follows.

simulator SE(k, x)
01 If E[k, x] 6=⊥ then ret E[k, x];
02 y∗ ← g(k);
03 If x = c1, y ← y∗[0];
04 Else if x = c2, y ← y∗[1];

05 Else y
$←− {0, 1}n\({y∗[0], y∗[1]} ∪ TE [k]);

06 E[k, x] ← y;
07 D[k, y] ← x;
08 Ret y;

simulator SD(k, y)
11 If D[k, y] 6=⊥ then ret D[k, y];
12 y∗ ← g(k);
13 If y = y∗[0], x ← c1;
14 Else if y = y∗[1], x ← c2;

15 Else x
$←− {0, 1}n\({c1, c2} ∪ TD[k]);

16 E[k, x] ← y;
17 D[k, y] ← x;
18 Ret x;

S has (initially everywhere ⊥) arrays E, D and (initially empty) tables TE , TD. When y = SE(k, x),
y is stored in E[k, x] and x is stored in D[k, y]. If E[k, x] is defined, E[k, x] is stored in TE [k], and if
D[k, y] is defined, D[k, y] is stored in TD[k].

We give the proof via a game-playing argument by the following game sequences Game G0, Game
G1, Game G2 and Game G3. In each game, A can make queries to three oracles (Of ,OE ,OD).

– Game G0: This is the C3
2n,n scenario, that is, (Of ,OE ,OD) = (fC3

2n,n , E3I , D3I).
– Game G1: In this game, we replace (OE ,OD) from C3

2n,n to S. Thus (Of ,OE ,OD) = (fS , SE , SD).
Note that fS(k) = SE(k, c1)||SE(k, c2)

– Game G2: In this game, we modify Of from fS to a new function fS
1 . fS

1 is that for query k it
calculates fS(k) and returns the output of g(k). Thus (Of ,OE ,OD) = (fS

1 , SE , SD).
– Game G3: This is the final game. This game is the g scenario. That is, (Of ,OE ,OD) =

(g, SE , SD).

Let Gj be the event that in Game Gj distinguisher A outputs 1.

G0→G1: Since OE and OD are modified from C3
2n,n to S, we show that S behaves like an ideal cipher.

For a key k, first the output SE(k, c1) (= y∗[0]) is chosen from the uniform distribution on {0, 1}n

(due to g) and second the output of SE(k, c2) (= y∗[1]) is chosen from the uniform distribution on
{0, 1}n (due to g). The output of SE(k, x) such that x 6= c1 and x 6= c2 is chosen from the uniform
distribution on {0, 1}n\({y∗[0], y∗[1]}∪TE [k]) after the outputs of SE(k, c1) and SE(k, c2) are defined.
Thus, if the output of SE(k, c2) (= y∗[1]) does not collide with that of SE(k, c1) (= y∗[0]), SE behaves
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like an encryption oracle of an ideal cipher. Similarly, if y∗[1] does not collide with y∗[0], SD behaves
like a decryption oracle. Thus the A’s view in Game G1 is identical with that in Game G0 if for any
query to g(x) y[1] 6= y[0] where y = g(x). Since the number of g queries is at most qf + qE + qD, we
have that |Pr[G1] − Pr[G0]| ≤ qf+qE+qD

2n .

G1→G2: In Game G1 the output of Of (k) is defined by fS(M), while in Game 2 the output of
Of (k) is defined by g(k). Since in Game G1 Of (k) (= SE(k, c1)||SE(k, c2)) is defined by g(k) due to
Lines 02-04 and 12-14, the A’s view in Game G2 is identical with that in Game G1 and we have that
Pr[G1] = Pr[G2].

G2→G3: This is the final game transformation. In both games, the output of Of (k) is defined by
g(k). However, in Game G2, for any query to Of (k) it makes queries to SE(k, c1) and SE(k, c2) and
then SE returns y∗[0] and y∗[1] respectively where y∗ is the output value of g(k), while in Game G3
Of does not makes these SE queries. Since the output of SE(k, c1) is always defined by y∗[0], the
output of SE(k, c2) is always defined by y∗[1] and in Game G2 A cannot see queries from Of to S,
the modification in the game transform does not change the A’s view. Therefore, Pr[G2] = Pr[G3].

Consequently, the above discussion guarantees the claim of Theorem 2. ut

3.3 Double-length Hash Function Using Single Block Cipher

Let BC2n,n = (E,D), BC2
2n,n = (E2, D2) and BC3

2n,n = (E3, D3) be block ciphers. In this subsection,
we prove that the following hash function is PRO up to O(2n) query complexity as long as the block
cipher is an ideal cipher.

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n (M))

where DLCFBC2n,n is Hirose’s compression function, Tandem-DM, or Abreast-DM using the block
cipher BC2n,n. To prove the PRO security, we consider a new application of indifferentiability [19].
We call the new application indifferentiability from a hash function. We apply this to FBC2n,n and

F
BC2

2n,n,BC3
2n,n

2 and prove that FBC2n,n is indifferentiable from F
BC2

2n,n,BC3
2n,n

2 up to O(2n) query com-

plexity as long as the block ciphers are ideal ciphers. Then, since F
BC2

2n,n,BC3
2n,n

2 is PRO up to O(2n)
query complexity as long as the block ciphers are ideal ciphers, the indifferentiability framework guar-
antees that FBC2n,n is PRO up to O(2n) query complexity as long as the block cipher is an ideal
cipher.

In the following proof, we only consider the case of Hirose’s compression function. Using the same
proof, we can prove the cases of Tandem-DM and Abreast-DM. So we omit these proofs. Note that
when using Hirose’s compression function, we use the constant values c1 and c2 of the final function
f such that c1 and c2 are not equal to C ⊕ IV [0] where IV is the initial value of SMDDLCFBC2n,n and
C is the constant value used in Hirose’s compression function.

Theorem 3. Let C2n,n = (EI , DI) be an ideal cipher. Let C2
2n,n = (E2I , D2I) and C3

2n,n = (E3I , D3I)
be different ideal ciphers. There exists a simulator S = (SE , SD) such that for any distinguisher A mak-
ing at most qF , qE and qD queries to its oracles (OF ,OE ,OD) where (OF ,OE ,OD) = (F C2n,n , EI , DI)

or (OF ,OE ,OD) = (F
C2
2n,n,C3

2n,n

2 , SE , SD), we have

Advindif
F,F2,S(A) ≤ 8(2lqF + qE + qD)

2n − (2lqF + qE + qD)

where S works in time O(Time(A) + qE + qD) and makes at most ideal cipher queries qE + qD. l is
the maximum number of n-bit blocks of a query to OF . ¨
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Intuition. The difference between F C2n,n and F
C2
2n,n,C3

2n,n

2 is the number of underlying ideal ciphers.

F C2n,n uses the single ideal cipher, while F
C2
2n,n,C3

2n,n

2 use two ideal ciphers. In F
C2
2n,n,C3

2n,n

2 , C2
2n,n is

used in the inner hash function and C3
2n,n is used in the final function. Therefore, if in F C2n,n input-

output triples of C2n,n used in the inner hash function are not used in the final function, then we can
see that in F C2n,n the ideal cipher used in the inner hash function is different from that used in the
final function. Therefore, since in F C2n,n the second input of the encryption function used in the final
function is c1 or c2, if no second input of the encryption function used in the inner hash function

is equal to c1 or c2, no A can differentiate (F C2n,n , EI , DI) from (F
C2
2n,n,C3

2n,n

2 , SE , SD). Since second
inputs of the encryption function used in the inner hash function are determined by chaining values
which are determined by outputs of the ideal cipher, the probability that some second input of the
encryption function in the inner hash function is equal to c1 or c2 is negligible. ¨

Proof. We define a simulator S = (SE , SD) such that it simulates the ideal cipher C2n,n = (EI , DI)

and the relation among responses of (F
C2
2n,n,C3

2n,n

2 , SE , SD) holds in responses of (F C2n,n , EI , DI) as

well, namely, FS(M) = F
C2
2n,n,C3

2n,n

2 (M). Since E2I is used in inner calculations and E3I is used in
final calculations, if for a query to SE(k, x) (k, x) is used in the final calculations, it returns the output
of E3I(k, x), and otherwise it returns the output of E1I(k, x). Since in the final calculation the second
input x of a SE query is c1 or c2, we define S such that if x = c1 or x = c2, SE(k, x) is defined by
E3I(k, x), and otherwise defined by E2I(k, x).

simulator SE(k, x)
01 If E[k, x] 6=⊥ then ret E[k, x];
02 y ← E3I(k, x);
03 If x 6= c1 and x 6= c2, y ← E2I(k, x);
04 E[k, x] ← y;
05 D[k, y] ← x;
06 Ret y;

simulator SD(k, y)
11 If D[k, y] 6=⊥ then ret D[k, y];
12 x ← D3I(k, y);
13 If x 6= c1 and x 6= c2, x ← D2I(k, y);
14 E[k, x] ← y;
15 D[k, y] ← x;
16 Ret x;

The simulator has (initially everywhere ⊥) arrays E and D. For an input-output triple (k, x, y) of SE

and SD, y is stored in E[k, x] and x is stored in D[k, y] where y = SE(k, x) and x = SD(k, y).
We give the proof via a game-playing argument by using the following game sequences G0, G1, G2,

and G3. In each game, A can make queries to three oracles (OF ,OE ,OD).

– Game G0: This is the C2n,n scenario. Thus (OF ,OE ,OD) = (F C2n,n , EI , DI).
– Game G1: In this game, (OE ,OD) is modified from C2n,n to S. Thus (OF ,OE ,OD) = (FS , SE , SD).
– Game G2 In this game, the ideal cipher used in the final function is modified from S to C3

2n,n.

Namely, OF = F
S,C3

2n,n

2 and thus (OF ,OE ,OD) = (F
C2
2n,n,S

2 , SE , SD).
– Game G3 This is the final game. In this game, the ideal cipher used in the inner hash function is

modified from S to C2
2n,n. Namely, OF = F

C2
2n,n,C3

2n,n

2 and thus (OF ,OE ,OD) = (F
C2
2n,n,C3

2n,n

2 , SE , SD).

Let Gj be the event that in Game Gj A outputs 1.

G0→G1: The underlying block cipher used in both games is different. Therefore, if S behaves like an
ideal cipher, the A’s view in Game G1 is equal to that in Game G0. If any output of E2I(k, ·) does not
collide with E3I(k, c1) and E3I(k, c2) (¬Event1) and the output of D2I(k, y) does not collide with
c1 and c2 (¬Event2), S is an ideal cipher because a fixed key ideal cipher is a random permutation.

– Event1: The output of SE(k, x) (defined by E2I(k, x)) such that x 6= c1 and x 6= c2 is equal to y1

or y2 where y1 = E3I(k, c1) and y2 = E3I(k, c2).
– Event2: The output of SD(k, y) (defined by D2I(k, y)) such that y 6= E3I(k, c1) and y 6= E3I(k, c1)

is equal to c1 or c2.
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Therefore,

|Pr[G1] − Pr[G0]| ≤ Pr[Event1] + Pr[Event2].

First we evaluate Pr[Event1]. Note that since no A can make a query to D2I , she does not know
the input (k, x) of E2I such that E2I(k, x) is equal to E3I(k, c1) or E3I(k, c2) before Event1 occurs.
Therefore, the probability Pr[Event1] is determined by randomness of outputs of E2I . The number
of E2I and D2I queries is at most 2lqF + qE + qD, the number of queries to SE is at most 2lqF + qE

where the second inputs are not equal to c1 and c2. Thus,

Pr[Event1] ≤ (2lqF + qE) × 2
2n − (2lqF + qE + qD)

.

Second we evaluate Pr[Event2]. Note that since no A can make a query to E2I , she does not know
the input (k, y) of D2I before Event2 occurs such that D2I(k, y) = c1 or c2. Therefore, the probability
Pr[Event2] is determined by randomness of outputs of D2. Since the number of SD queries is at most
qD,

Pr[Event2] ≤ qD × 2
2n − (2lqF + qE + qD)

.

Consequently, we have

|Pr[G1] − Pr[G0]| ≤ 2(2lqF + qE + qD)
2n − (2lqF + qE + qD)

.

G1→G2: The difference between both games is an ideal cipher of the final function: in Game G1 S
is used while in Game G2 C3

2n,n. Therefore, in the final function in Game G2 OF does not make a SE

query. We assume that in both games Event1 and Event2, which are defined in the previous game
transform, do not occur. Then, for a value k, S(k, ·) is a random permutation. This means that the
output of any query to SE(k, x) is not doubly defined, namely, if x = c1 or x = c2, the output SE(k, x)
is always defined by E3I(k, x). Therefore, if in both games Event1 and Event2 does not occur, the
modification of OF in the game transform does not change the A’s view. In both games, the number
of queries to E2 and D2 is at most 2lqF + qE + qD, the number of queries to SE is at most 2lqF + qE

where the second inputs are not equal to c1 and c2, and the number of queries to SD is at most qD.
Therefore, the probability Pr[Event1] + Pr[Event2] is the same as that in previous game transform
and we have that

|Pr[G2] − Pr[G1]| ≤ 2(2lqF + qE + qD)
2n − (2lqF + qE + qD)

.

G2→G3: The following figure illustrates Game G2 and Game G3. When boxed statements are in-
cluded, the following figure illustrates Game G2. When boxed statements are removed, the following
figure illustrates Game G3.
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OE(k, x)
01 If E[k, x] 6=⊥, ret E[k, x];
02 y ← E3I(k, x);
03 If x 6= c1 and x 6= c2, y ← E2I(k, x);
04 E[k, x] ← y;
05 D[k, y] ← x;
06 Ret y;

OF (M)
21 M1|| . . . ||Mi ← sfpad(M); x1 ← IV [0]; x2 ← IV [1];
22 For j = 1, . . . , i,
23 y1 ← E2I(x2||Mj , x1);
24 If x1 = c1 or x1 = c2, bad ← true; y1 ← OE(x2||Mj , x1);
25 y2 = E2I(x2||Mj , x1 ⊕ C);
26 If x1 ⊕ C = c1 or x1 ⊕ C = c2, bad ← true; y1 ← OE(x2||Mj , x1 ⊕ C);
27 x2 ← x1 ⊕ C ⊕ y2;
28 x1 ← x1 ⊕ y1;
29 z1 ← E3I(x1||x2, c1); z2 ← E3I(x1||x2, c2);
30 Ret z1||z2;

OD(k, y)
11 If D[k, y] 6=⊥ then ret D[k, y];
12 x ← D3I(k, y);
13 If x 6= c1 and x 6= c2, x ← D2I(k, y);
14 E[k, x] ← y;
15 D[k, y] ← x;
16 Ret x;

When boxed statements are removed, the figure explicitly illustrates Game G3. So we demonstrate
that when boxed statements are included, the figure illustrates Game G2. If A sets bad, Lines 23-24
and 25-26 simulates SE . If A does not set bad, in Lines 23-24 the output of E2I(x2||Mj , x1) is used
and in Lines 25-26 the output of E2I(x2||Mj , x1 ⊕ C) is used. Since if x 6= c1 and x 6= c2 the output
of SE(k, x) is always defined by E2I(k, x), in this case, Lines 23-24 and 25-26 simulate SE . Therefore,
when boxed statements are included, the figure illustrates Game G2. Thus the A’s view in Game G3
is identical with that in Game G2 unless A sets bad and we have that

|Pr[G3] − Pr[G2]| ≤ Pr[bad ← true]|.

We evaluate the probability Pr[bad ← true]. When A sets bad, for some input-output triple (k, x, y)
of E2I where y = E2I(k, x), x ⊕ y is equal to c1, c2, c1 ⊕ C or c2 ⊕ C. Since the number of queries to
C2
2n,n is at most 2lqF + qE + qD,

Pr[bad ← true] ≤ 4 × 2lqF + qE + qD

2n − (2lqF + qE + qD)

Consequently, we can obtain the bound of the theorem. ut

4 Other Applications of Indifferentiability from a Hash Function.

Indifferentiability from a hash function may be useful for reducing the number of underlying primitives.
For example, we consider the polynomial-based hash function [17] which uses two random oracles and
is PRO. Using indifferentiability from a hash function, this hash function can be easily modified that
using a single random oracle with the same PRO security. In this case, it is proven that the hash
function using a single ideal cipher is indifferentiable from that using two ideal ciphers. In this proof,
we have only to consider the difference of the number of the ideal ciphers and don’t need to consider
the gap between a random oracle and the hash function.

Other applications are PRO proofs for the MD variants (e.g. prefix-free MD [4], EMD [1] and MDP
[14]). The PRO security can be proven by (1) the NMAC hash function is PRO (this can be easily
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proven by the PrA design framework [6]) and (2) the MD variant is indifferentiable from the NMAC
hash function. The inner hash function of both the NMAC hash function and the MD variant uses the
iterated hash function of a compression function. But the final calculations of the two hash function
are different. Therefore, in the second step, we have only to consider the difference between the final
functions. The proof of the first step is easy, since the PRO security of the NMAC hash function can
be easily proven by the PrA design framework and PRO from a small primitive, like the proof of our
double-length hash functions. Therefore, the proof method is easier than the traditional proof.

5 Block Cipher-based Double-pipe Hash Function

Since a chopped random oracle is also a random oracle, the hash function chop ◦ F C2n,n is PRO
with O(2n) PRO security where F C2n,n is our hash function proposed in Section 3 and chop is a chop
function that chops n-bits of the input and outputs remaining bits. That is, the chopped hash function
is the double-pipe hash function using a single block cipher with the PRO security beyond the birthday
bound. Note that several double-pipe hash functions using a random oracle compression function with
the PRO security beyond the birthday bound were proposed (e.g. [3]). The output length of these hash
function is n-bits and the compression function maps a d-bit input to a n-bit output where d > 2n.
Since a fixed plaintext ideal cipher is a random oracle, these double-pipe hash function using a d-bit
key length ideal cipher is also PRO with the security beyond the birthday bound. However, the key
length of the block cipher used in our double-pipe hash functions is shorter than that used in existing
hash functions. Therefore, our double-pipe hash functions are better than existing double-pipe hash
functions.

6 Conclusion

In this paper, we proposed the first time double-pipe hash function based on a practical size block
cipher with the PRO birthday security. We proved the PRO security by using three techniques: the
PrA design framework [6], PRO [4] for a small function, and indifferentiability from a hash function.
First, we proved that Hirose’s compression function [13], Tandem-DM [15], and Abreast-DM [15], are
PrA up to O(2n) query complexity. To our knowledge, this is the first time PrA proof of double-
length compression functions (hash functions). Second, we proposed the block cipher-based function
f and proved that f is PRO up to O(2n) query complexity. Thus, the first result and the second
result yield the double-length hash functions using two block ciphers which is PRO up to O(2n)
query complexity. Finally, using indifferentiability from a hash function which is a new application of
indifferentiability [19], we reduced the number of the underlying block ciphers. Thus the final result
yields the double-length hash functions using a single block cipher which are PROs up to O(2n) query
complexity.
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4. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revis-
ited: How to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 430–448. Springer, 2005.

14



5. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1989.

6. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical
Applications. In EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 371–388.
Springer, 2009.

7. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical
Applications. In ePrint 2009/177, 2009.

8. Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Collision Resistant Double-Length
Hashingl. In ProvSec, pages 102–118, 2010.

9. Ewan Fleischmann, Michael Gorski, and Stefan Lucksl. On the Security of Tandem-DM. In FSE, pages
84–103, 2009.

10. Ewan Fleischmann, Michael Gorski, and Stefan Lucksl. Security of Cyclic Double Block Length Hash
Functions. In IMA Int. Conf, pages 153–175, 2009.

11. National Institute for Standards and Technology. cryptographic hash project . 2007.

12. Zheng Gong, Xuejia Lai, and Kefei Chen. A synthetic indifferentiability analysis of some block-cipher-
based hash functions. In Des. Codes Cryptography 48, pages 293–305, 2008.

13. Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In FSE, pages
210–225, 2006.

14. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with
a Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–129.
Springer, 2007.

15. Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, pages 55–70,
1992.

16. Jooyoung Lee, Martijn Stam, and John Steinberger. The collision security of Tandem-DM in the ideal
cipher model. ePrint 2010/409, 2010.

17. Jooyoung Lee and John Steinberger. Multi-property-preserving Domain Extension Using Polynomial-
based Modes of Operation. In EUROCRYPT and ePrint 2010/131, 2010.

18. S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with cryptographic algorithms.
In IBM Technical Disclosure Bulletin 27(10a), pages 5658–5659, 1985.

19. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes
in Computer Science, pages 21–39. Springer, 2004.

20. Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. In
CRC Press, 1996.

21. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in
Computer Science, pages 428–446. Springer, 1989.

22. National Institute of Standards and Technoloty. FIPS PUB 180-3 Secure Hash Standard. In FIPS PUB,
2008.
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A Abreast-DM Is PrA

Abreast-DM [15] incorporates two Davies-Meyer (DM) single block length compression functions which
are used side-by-side. The compression function is formally given in Definition 3.
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Definition 3. Let BC2n,n = (E,D) be a block cipher. Let CFADM[BC2n,n] : {0, 1}2n × {0, 1}n →
{0, 1}2n be a compression function such that (Gi,Hi) = CFADM[BC2n,n](Gi−1||Hi−1,Mi) where Gi,Hi,Mi, Gi−1,Hi−1 ∈
{0, 1}n. (Gi,Hi) is calculated as follows:

Gi = Gi−1 ⊕ E(Hi−1||Mi, Gi−1)
Hi = Hi−1 ⊕ E(Mi||Gi−1, Hi−1)

where H denotes the bit-by-bit complement of H. We call the first procedure “first block” and the
second procedure “second block”.

We show that the Abreast-DM compression function is PrA with O(2n) security.

Theorem 4 (Abreast-DM is PrA). Let C2n,n = (EI , DI) be an ideal cipher. There exists an
extractor E such that for any adversary A making at most qP queries to C2n,n and qe extraction
queries we have

Advpra
CFADM[C2n,n],C2n,n,E(A) ≤ 18

( qP

2n−1

)2

+
2qP qe

(2n − qP )2

where E runs in time at most O(qeqP ).

Proof. We will prove that any such compression function is 1-WPrA, and then Lemma 1 gives the
final bound. We note that Theorem 1 of [10] upperbounds the cr-advantage by 18(qP /2n−1)2, yielding
the first term above. Let us define the multi-point extractor E+ as follows.

algorithm E+(z, α)
Let L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α;
For j = 1 to i do

If z[0] = xj ⊕ yj then
y ← EI(kj [1]||xj , kj [0]);
If z[1] = kj [0] ⊕ y then L

∪←− (xj ||kj [0], kj [1]);
If z[1] = xj ⊕ yj then

y ← EI(xj ||kj [0], kj [1]);
If z[0] = kj [1] ⊕ y then L

∪←− (kj [1]||xj , kj [0]);
If L is not an empty list then return L and otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input of the second block is
defined, and vice versa, from the definition of the compression function. For a query (z, α) to E+,
when there is an input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point extractor E+

checks whether the output of the second block is equal to z[1] or not and if this holds the multi-point
extractor stores it in the return list L, and vice versa. Therefore, A must find a preimage (k, x) of z to
win the 1-WPrA experiment. Thus one can straightforwardly adapt the preimage resistant advantage
of the compression function (Theorem 2 in [10]). The advantage is at most 2qP /(2n − qP )2. ut

B Tandem-DM Is PrA

Tandem-DM [15] incorporates two Davies-Meyer (DM) single block length compression functions
which are used side-by-side. The compression function is formally given in Definition 4.

Definition 4. Let BC2n,n = (E,D) be a block cipher. Let CFTDM[BC2n,n] : {0, 1}2n × {0, 1}n →
{0, 1}2n be a compression function such that (Gi,Hi) = CFTDM[BC2n,n](Gi−1||Hi−1,Mi) where
Gi,Hi,Mi, Gi−1,Hi−1 ∈ {0, 1}n. (Gi,Hi) is calculated as follows:

Wi = E(Hi−1||Mi, Gi−1) (3)
Gi = Gi−1 ⊕ Wi (4)
Hi = Hi−1 ⊕ E(Mi||Wi,Hi−1) (5)

We call the procedures of 3 and 4 “first block” and the procedures of 5 “second block”.
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We show that the Tandem-DM compression function is PrA with O(2n) security.

Theorem 5 (Tandem-DM is PrA). Let C2n,n = (EI , DI) be an ideal cipher. There exists an
extractor E such that for any adversary A making at most qP queries to C2n,n and qe extraction
queries we have

Advpra
CFTDM,Cd,n,E(A) ≤ p +

2qP qe

(2n − qP )2

where E runs in time at most O(qeqP ) and p is the cr-advantage of Tandem-DM described in Theorem
1 of [16].

Proof. We will prove that any such compression function is 1-WPrA, and then Lemma 1 to give the
final bound. We note that Theorem 1 of [9] upperbounds the cr-advantage by p, yielding the terms
excluding the last term. Let us define the multi-point extractor E+ as follows:

algorithm E+(z, α)
L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α;
For j = 1 to i do

If z[0] = xj ⊕ yj then
y ← EI(kj [1]||yj , kj [0]);
If z[1] = kj [0] ⊕ y then L

∪←− (xj ||kj [0], kj [1]);
If z[1] = xj ⊕ yj then

x ← DI(xj ||kj [0], kj [1]);
If z[0] = kj [1] ⊕ x then L

∪←− (x||xj , kj [0]);
If L is an empty list then return L otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input triple of the second block
is defined, and vice versa, from the definition of the compression function. For a query (z, α) to E+,
when there is an input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point extractor E+

checks whether the output of the second block is equal to z[1] or not and if this holds the multi-point
extractor stores it in the return list L, and vice versa. Therefore, A must find a preimage (k, x) of z to
win the 1-WPrA experiment. Then one can straightforwardly adapt the preimage resistant advantage
of Tandem-DM (Theorem 2 in [9]). This advantage is at most 2qP /(2n − qP )2. ut
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