
Breaking Grain-128 with Dynamic Cube Attacks

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute

Rehovot 76100, Israel

Abstract. We present a new variant of cube attacks called a dynamic cube attack. Whereas stan-
dard cube attacks [4] find the key by solving a system of linear equations in the key bits, the new
attack recovers the secret key by exploiting distinguishers obtained from cube testers. Dynamic
cube attacks can create lower degree representations of the given cipher, which makes it possible
to attack schemes that resist all previously known attacks. In this paper we concentrate on the
well-known stream cipher Grain-128 [6], on which the best known key recovery attack [15] can re-
cover only 2 key bits when the number of initialization rounds is decreased from 256 to 213. Our
first attack runs in practical time complexity and recovers the full 128-bit key when the number of
initialization rounds in Grain-128 is reduced to 207. Our second attack breaks a Grain-128 variant
with 250 initialization rounds and is faster than exhaustive search by a factor of about 228. Fi-
nally, we present an attack on the full version of Grain-128 which can recover the full key but only
when it belongs to a large subset of 2−10 of the possible keys. This attack is faster than exhaustive
search over the 2118 possible keys by a factor of about 215. All of our key recovery attacks are the
best known so far, and their correctness was experimentally verified rather than extrapolated from
smaller variants of the cipher. This is the first time that a cube attack was shown to be effective
against the full version of a well known cipher which resisted all previous attacks.
Keywords: Cryptanalysis, stream ciphers, Grain-128, cube attacks, cube testers, dynamic cube
attacks.

1 Introduction

A well designed cipher is expected to resist all known cryptanalytic attacks, including distin-
guishing attacks and key recovery attacks. These two types of attacks are closely related since in
many cases a distinguisher can be extended to a key recovery attack. Examples include many of
the key-recovery attacks on iterated block ciphers such as differential cryptanalysis [1] and linear
cryptanalysis [2]: First, the attacker constructs a distinguisher for a certain number of rounds
of the iterated block cipher (usually one round less than the total number of rounds). Then,
the attacker guesses part of the secret key and uses it to partially decrypt several ciphertexts in
the final round. The distinguisher can be easily exploited to verify the guess: Under the correct
guess, the partially decrypted ciphertexts are expected to exhibit the non-random property of
the distinguisher. On the other hand, an incorrect guess is actually equivalent to adding an-
other encryption round, and hence ciphertexts decrypted with an incorrect guess are expected
to behave randomly. This is a very general technique for exploiting a distinguisher to recover the
secret key of block ciphers, but it cannot be typically applied to stream ciphers, where partial de-
cryption is not possible. Moreover, even when dealing with iterated block ciphers, more efficient
key-recovery techniques often exist. In this paper we focus on the specific case of distinguishers
obtained from cube testers (see [3]) and show how to use then in key recovery attacks.

Cube testers [3] are a family of generic distinguishers that can be applied to the black box
representation of any cryptosystem. Cube attacks [4] are related to cube testers since both
types of attacks sum the output of a cryptographic function over a subset of its input values.
However, cube testers use the resultant sums to distinguish the cipher from a random function,
whereas cube attacks use the sums to derive linear equations in the secret key bits. The success
of cube testers and cube attacks on a given cryptosystem depends on subtle properties of the
ANF (algebraic normal form) representation of the output function in the plaintext and key



bits over GF(2). Although the explicit ANF representation is usually unknown to the attacker,
cube testers and cube attacks can exploit a relatively low degree or sparse ANF representation
in terms of some of its variables to distinguish the cipher from a random function and to recover
the secret key.

Both cube attacks and cube testers are performed in two phases: The preprocessing phase
which is not dependent on the key, and the online phase in which the key has a fixed unknown
value. Whereas cube attacks are key recovery attacks and are thus stronger than cube testers,
the preprocessing phase of cube attacks is generally more complex and has a lower chance of
succeeding than the preprocessing phase of cube testers. The reason for this is that cube attacks
require that the sum of the cipher’s output function has a very specific property - it needs to
be of low degree when represented as a polynomial in the key bits. Cube testers do not require
such a specific property, but rather require that the value of the sum exhibits a property which
is easily testable. An example of such a property is balance (i.e. whether the sum (modulo 2)
is 0 and 1 with equal probabilities). Examples where cube testers succeed, while cube attacks
seem to fail include scaled-down variants of the stream cipher Grain-128 (see [5]). Even in the
case of scaled-down variants the stream cipher Trivium, where cube attacks succeed ([4]), the
preprocessing phase of cube attacks is much more time consuming than the one of cube testers.
The challenge that we deal with in this paper is to extend cube testers to key recovery attacks
in a new generic way. This combines the key recovery feature of cube attacks with the relatively
low computational complexity of the preprocessing phase of cube testers.

We present a new attack called a dynamic cube attack that recovers the secret key of a
cryptosystem by exploiting distinguishers given by cube testers. The main observation that we
use for the new attack is that when the inputs of the cryptosystem are not mixed thoroughly
enough, the resistance of such a marginal cipher to cube testers usually depends on very few
(or even one) non-linear operations that are performed at the latest stages of the encryption
process. These few non-linear operations produce most of the relatively high degree terms in the
ANF representation of the output function. If we manage to simplify the ANF representation of
the intermediate encryption state bits that are involved in these non-linear operations (e.g. by
forcing one of the two inputs of a multiplication operation to be zero), then the degree of the
polynomial will be much lower, making it much more vulnerable to cube testers. In dynamic
cube attacks, we analyze the cipher, find these crucial state bits and force them to be zero by
using dedicated input bits called dynamic variables. Since the values of the state bits typically
depend also on some key bits, we have to either guess them, or to assume that they have a
particular value in order to apply the attack. For each guess, we use a different cube tester (that
assigns the dynamic variables according to the guess) to distinguish the cipher from random.
For the correct guess, the ANF representation of the crucial intermediate encryption state bits
is simplified to zero, and the cube tester is likely to detect a strong non-random property in
the output. On the other hand, for a large portion of wrong guesses, the cube tester is unlikely
to detect this non-random property. Thus, we can efficiently eliminate wrong guesses and thus
recover parts of the secret key.

We applied the attack to two reduced variants of the stream cipher Grain-128 [6], and
obtained the best known key recovery results for these variants. More significantly, we present
an attack on the full version of Grain-128 which is faster than exhaustive search by a factor of
215, for a subset of 2−10 of all the possible keys. The attack can probably be optimized to break
a larger set of weak keys of Grain-128, but even in its current form, it can break a practically
significant fraction of almost one in a thousand keys. This is much better than other weak key
attacks, which can typically break only a negligible fraction of keys.



Next, we briefly describe the standard cube testers and cube attacks (for more details, refer
to [3] and [4]). We then describe the new attack in detail and present our results on the cipher
Grain-128 [6]. Finally, we conclude and list some open problems.

2 Cube Attacks and Cube Testers

2.1 Cube Attacks

In almost any cryptographic scheme, each output bit can be described by a multivariate master
polynomial p(x1, .., xn, v1, .., vm) over GF (2) of secret variables xi (key bits), and public variables
vj (plaintext bits in block ciphers and MACs, IV bits in stream ciphers). The cryptanalyst is
allowed to tweak the master polynomial by assigning chosen values for the public variables,
which result in derived polynomials, and his goal is to solve the resultant system of polynomial
equations in terms of their common secret variables. The basic cube attack [4] is an algorithm
for solving such polynomials, which is closely related to previously known attacks such as high
order differential attacks [11] and AIDA [12].

To simplify our notation, we now ignore the distinction between public and private variables.
Given a multivariate polynomial with n variables p(x1, .., xn) over GF (2) in algebraic normal
form (ANF), and a term tI containing variables from an index subset I that are multiplied
together, the polynomial can be written as the sum of terms which are supersets of I and terms
that miss at least one variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Note that the superpoly of I in p is a polynomial that
does not contain any common variable with tI , and each term in q(x1, .., xn) does not contain
at least one variable from I. Moreover, compared to p, the algebraic degree of the superpoly is
reduced by at least the number of variables in tI .

For example, consider the polynomial of degree 3 in 5 variables

p(x1, x2, x3, x4, x5) = x1x2x3 + x1x2x4+

x2x4x5 + x1x2 + x2 + x3x5 + x5 + 1

Let I = {1, 2} be an index subset of size 2. We can represent p as:

p(x1, x2, x3, x4, x5) = x1x2(x3 + x4 + 1)+

(x2x4x5 + x3x5 + x2 + x5 + 1)

tI = x1x2

pS(I) = x3 + x4 + 1

q(x1, x2, x3, x4, x5) = x2x4x5 + x3x5 + x2 + x5 + 1

The basic idea behind cube attacks is that the symbolic sum over GF (2) of all the derived
polynomials obtained from the master polynomial p(x1, .., xn) by assigning all the possible 0/1
values to the subset of variables in the term tI is exactly pS(I) which is the superpoly of tI in
p(x1, .., xn). For example, consider the sum of the four polynomials derived from the master
polynomial p(x1, x2, x3, x4, x5) defined above, by assigning all four possible values of x1 and x2

(which appear in the term tI = x1x2). The result of this summation is the superpoly of tI ,
pS(I) = (x3 + x4 + 1). A maxterm of p is a term tI such that the superpoly of I in p is a linear
polynomial which is not a constant.



The cube attack has two phases: the preprocessing phase, and the online phase. The prepro-
cessing phase is not key-dependant and is performed once per cryptosystem. In this phase, the
attacker finds maxterms of the master polynomial. For each maxterm, he computes the coeffi-
cients of the secret variables in the symbolic representation of the linear superpoly. The main
challenge of the attacker in the preprocessing phase is to find sufficiently many maxterms with
linearly independent superpolys. Linear superpolys are not guaranteed to exist, and even when
they exist, finding them can be a challenging preprocessing task. However, once sufficiently many
linearly independent superpolys are found for a particular cryptosystem, we can repeatedly use
them to easily find any secret key during the online phase. This is done by summing the outputs
of the cryptosystem for every possible assignment to the public variables which correspond to
each of the maxterms, and solving the resultant system of linear equations.

2.2 Cube Testers

Similarly to cube attacks, cube testers [3] work by evaluating superpolys of terms of public
variables. However, while cube attacks aim to recover the secret key, the goal of cube testers is
to distinguish a cryptographic scheme from a random function, or to detect some kind of non-
randomness by using algebraic property testing on the superpoly. When the cipher employs low
degree components, its output function in the public and private variables may be algebraically
sparse, and is likely to have some property that is efficiently detectable. One of the natural
algebraic properties that can be tested is balance: A random function is expected to contain as
many zeroes as ones in its truth table. A superpoly that has a strongly unbalanced truth table
can thus be distinguished from a random polynomial by testing whether it evaluates as often to
one as to zero. Other efficiently detectable properties include low degree, the presence of linear
variables, and the presence of neutral variables.

In the preprocessing phase of cube testers, the attacker finds terms whose superpolys have
some efficiently testable property.

3 A Simple Example of Dynamic Cube Attacks

Both standard (static) cube testers and dynamic cube attacks sum the output of the cipher
over a given cube defined by a subset of public variables, which are called cube variables. In
static cube testers, the values of all the public variables that are not summed over are fixed
to a constant (usually zero), and thus they are called static variables. However, in dynamic
cube attacks the values of some of the public variables that are not part of the cube are not
fixed. Instead, each one of these variables (called dynamic variables) is assigned a function that
depends on some of the cube public variables and some expressions of private variables. Each
such function is carefully chosen, usually in order to zero some state bits in order to amplify the
bias (or the non-randomness in general) of the cube tester. Dynamic cube attacks are clearly a
generalization of standard cube testers, but also allow us to directly derive information on the
secret key without solving any algebraic equations. Moreover, choosing the dynamic variables
carefully may help to improve the time complexity of distinguishers obtained by using standard
cube testers (we will need fewer cube variables to obtain a distinguisher). We note that the
drawback of the new attack compared to basic cube attacks and cube testers, is that it requires
a more complex analysis of the internal structure of the cipher.

To demonstrate the idea of the attack, we consider a polynomial P which is a function of
the three polynomials P1, P2, and P3:

P = P1P2 + P3



P1, P2, and P3 are polynomials over five secret variables x1, x2, x3, x4, x5 and five public
variables v1, v2, v3, v4, v5:

P1 = v2v3x1x2x3 + v3v4x1x3 + v2x1 + v5x1 + v1 + v2 + x2 + x3 + x4 + x5 + 1

P2 = arbitrary dense polynomial in the 10 variables

P3 = v1v4x3x4 + v2x2x3 + v3x1x4 + v4x2x4 + v5x3x5 + x1x2x4 + v1 + x2 + x4

Since P2 unrestricted, P is likely to behave randomly and it seems to be immune to cube
testers (or to cube attacks). However, if we can set P1 to zero, we get P = P3. Since P3 is a
relatively simple function, it can be easily distinguished from random. We set v4 = 0 and exploit
the linearity of v1 in P1 to set v1 = v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1
which forces P1 to zero. During the cube summation, the value of the dynamic variable v1 will
change according to its assigned function. This is in contrast to the static variable v4, whose
value will remain 0 during the cube summation. At this point, we assume that we know the
values of all the secret expressions that are necessary to calculate the value of v1: x1x2x3, x1,
and x2 + x3 + x4 + x5 + 1. Plugging in the values for v1 and v4, we get:

P = v2x2x3 + v3x1x4 + v5x3x5 + x1x2x4 + v1 + x2 + x4+

(v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1) =

v2v3x1x2x3 + v2x2x3 + v3x1x4 + v5x3x5 + x1x2x4 + v5x1 + x3 + x5 + 1

After these substitutions, we can see that the simplified P is of degree 2 in the public
variables, and there is only one term (v2v3x1x2x3) of this degree. We have 3 free public variables
(v2, v3, v5) that are not assigned. We can now use them as cube variables: The sum over the big
cube v2v3v5 and two of its subcubes v2v5 and v3v5 is always zero. Moreover, the superpoly of v2v3

is x1x2x3, which is zero for most keys. Thus, we can easily distinguish P from a random function
using cube testers. However, the values of the expressions x1x2x3, x1, and x2 + x3 + x5 + 1 are
unknown in advance, and it is not possible to calculate the dynamic values for v1 without them.
Thus, we guess the 3 values of the expressions (modulo 2). For each of the 8 possible guesses
(there are actually 6 possible guesses since x1 = 0 implies x1x2x3 = 0, but this optimization is
irrelevant at this point), we run the cube tester, and get 4 0/1 values - a value for each cube
sum. The 7 wrong guesses will not zero P1 throughout the cube summations. Hence the 4 cube
sums for each wrong guess are likely to behave randomly, and it is unlikely that more than 1
wrong guess will give 4 zero cube sum values. On the other hand, the 4 cube sums for the correct
guess will all equal to 0 with high probability. Hence, for most keys, we expect to remain with at
most 2 possible guesses for the 3 expressions and we can recover the values for the expressions
that are assigned a common value by these 2 guesses. This gives us a distinguisher for P and
allows us to derive information regarding the secret key.

In the general decomposition of a polynomial P as P = P1P2 + P3, we call P1 (according to
which we assign the dynamic variable) the source polynomial, P2 the target polynomial and P3

the remainder polynomial. There are many ways to express P is such a way, and the choice of
source and target polynomials requires careful analysis of the given cipher.

4 Dynamic Cube Attacks on Grain-128

4.1 Description on Grain-128

We give a brief description of Grain-128, for more details refer to [6]. The state of Grain-128
consists of a 128-bit LFSR and a 128-bit NFSR. The feedback functions of the LFSR and NFSR



are respectively defined to be
si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13 + bi+17bi+18 + bi+27bi+59 +
bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap positions bi+12,
si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, and with a 96-bit
IV that is loaded into the LFSR, while the remaining 32 LFSR bits are filled with the value
of 1. The state is then clocked through 256 initialization rounds without producing an output,
feeding the output back into the input of both registers.

4.2 Previous Attacks

Several attacks have been published on Grain-128 variants: [7] found a distinguisher when the
number of initialization rounds is reduced from 256 to 192 rounds, [8] described shortcut key-
recovery attacks on a variant with 180 initialization rounds, and [9] exploited a sliding property to
speedup exhaustive search by a factor of two. [10] presented related-key attacks on the full cipher.
However, the relevance of related-key attacks is disputed, and the most powerful distinguishing
attack on Grain-128 in the single key model was given in [5], where cube testers were used in
order to distinguish the cipher from random for up to 237 initialization rounds. Moreover, the
authors claim that by extrapolating their experimentally verified results, one can argue that cube
testers may be used in order to attack the full cipher. However, this conjecture has not been
verified in practice due to the infeasibility of the attack. Note that [5] only gives a distinguisher,
and leaves the problem of exploiting cube testers (or cube attacks) for key recovery open. More
recently [15] used conditional differential cryptanalyses to recover 2 key bits of Grain-128 with
213 initialization rounds, which gives the best known key-recovery attack in the single key model
up to this point.

4.3 Outline of the New Attacks on Grain-128

We present 3 attacks:

1. A feasible full key recovery attack on a Grain-128 variant that uses 207 initialization rounds,
while utilizing output bits 208− 218.

2. An experimentally verified full key recovery attack on a Grain-128 variant with 250 initial-
ization rounds.

3. An experimentally verified attack on the full Grain-128, which can recover a large subset of
weak keys (containing 2−10 of all the possible keys).

We begin by describing the common steps shared by these three attacks. We then elaborate
on each attack in more detail.

The preprocessing phase of the attacks on Grain-128 consists of 2 initial steps:

Step 1 We first choose the state bits to nullify, and show how to nullify them by setting certain
dynamic variables to appropriate values.

This is a complex process that cannot be fully automated and involves manual work to ana-
lyze the cipher: When applying the attack to Grain-128, we would like to decompose its output



function into a source and target polynomials (representing intermediate state bits multiplied
together), and a remainder polynomial which should be more vulnerable to cube testers than
the original output. In our small example, this was easy since we could explicitly write down
and analyze its ANF in terms of the public and private variables. However, the output function
of Grain-128 is too complex to decompose and analyze in a way similar to the one used in the
example. Our approach in this paper is to use the recursive description of the cipher’s output
function in order to find a good decomposition.

In the case of Grain-128, specific non-linear terms in the cipher’s output stand out as being
of higher degree than others and are good candidates to be nullified or simplified. The output
function of Grain-128 is a multivariate polynomial of degree 3 in the state. The only term of
degree 3 is bi+12bi+95si+95, and hence we focus on nullifying it. Since bi+12 is the state bit that is
calculated at the earliest stage of the initialization steps (compared to bi+95 and si+95), it should
be the least complicated to nullify. However, after many initialization steps, the ANF of bi+12

becomes very complicated and we were not able to nullify it when more than 230 initialization
rounds are used (i.e. for i > 230). The compromise we make is to simplify (and not nullify)
bi+12bi+95si+95: We write the most significant term of degree 3 that is used in the calculation
of these state bits, which for bi+12 is bi−128+12+12bi−128+95+12si−128+95+12 = bi−104bi−21si−21.
The most significant term for both bi+95 and si+95 is bi−128+12+95bi−128+95+95si−128+95+95 =
bi−21bi+62si+62. We can see that bi−21 participates in all terms, and thus nullifying it is likely to
simplify the ANF of bi+12bi+95si+95 significantly.

The ANF of the earlier bi−21 is much easier to analyze compared to the one of bi+12, but it is
still very complex. Thus, we perform more iterations in which we simplify bi+12 further by using
its recursive description to nullify previous state bits. When the ANF representation of bi+12

is simple enough, we select a linear public variable in its ANF and assign to it an expression
which will make the whole expression identically zero. We elaborate on this multistage process for
output bit 215 of Grain-128 (used in attack 1): We would like to zero b215−21 = b194. However, we
do not zero it directly. We first zero 4 other state bits in order to simplify its ANF representation.
The details of how these bits were chosen are given in Appendix A.

Step 2 We choose a big cube and a set of subcubes to sum over during the online phase. We
then determine the secret expressions that need to be guessed in order to fully calculate the
values of all the dynamic variables during the cube summations.

Some choices of the big cube give better results than other, and choosing a cube that gives
good results is a crucial part of the preprocessing. One can use heuristics in order to find cubes
that give better results (an example of a heuristic is given in [5]). However, it is difficult to
predict in advance which cubes will give good results without actually executing the attack and
calculating the results for many cubes.

The secret expressions that need to be guessed are calculated according to the symbolic
expressions of the dynamic variables and the chosen big cube. This is a simple process that can
be easily automated:

1. Given the symbolic form of a dynamic variable, look for all the terms which are combinations
of variables from the big cube. In our simple example, the symbolic form of the single dynamic
variable is v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1. Our big cube is v2v3v5.
The terms which are combinations of variables from the big cube in the symbolic form are
v2v3, v2, v5 and the empty combination.

2. Rewrite the symbolic form as a sum of these terms, each one multiplied by an expression of
secret variables. In our example, we write v2v3x1x2x3 +v2x1 +v5x1 +v2 +x2 +x3 +x4 +x5 +1
= v2v3(x1x2x3) + v2(x1 + 1) + v5(x1) + (x2 + x3 + x4 + x5 + 1),



3. Add the expressions of secret variables to the set of expressions that need to be guessed. In
the example, we add x1x2x3, x1 and x2 + x3 + x4 + 1 (note that guessing the value of x1 is
the same as guessing the value of x1 + 1, and we do not add it twice). In addition, we do
not add expressions whose value can be deduced from the values of the expressions already
in the set. For example, if x1 and x2 are is the set, we do not add x1x2 or x1 + x2.

In steps 3 − 4, the attacker uses the parameters obtained in the first two steps in order to
derive information regarding the secret key. These steps constitute the online phase of the attack
that is executed by the attacker after the secret key has been set. In addition, steps 3 − 4 are
simulated by the attacker in the preprocessing phase for several pseudo random keys, in order
to verify his choices in steps 1− 2.

Step 3

1. For each possible value (guess) of the secret expressions, sum over the subcubes chosen in
the previous step with the dynamic variables set accordingly, and obtain a list of sums (one
sum per subcube).

2. Given the list of sums, calculate the guess score (which measures the non-randomness in the
subcube summations). The output of this step is a sorted guess score list in which guesses
are sorted from the lowest score to the highest.

Given that the dimension of our big cube is d, the complexity of summing over all its subcubes
is bounded by d2d (this can be done using the Moebius transform [13]). Given that we need to
guess the values of e expressions, the complexity of this step is bounded by d2d+e. However, the
data complexity of this step can by significantly lower than the time complexity: Assuming that
we have only y ≤ e dynamic variables, the data complexity is bounded by 2d+y (an output bit
for every possible value of the cube and dynamic variables is sufficient).

After we obtain the summation values for each of the subcubes for a specific guess, we
determine its score. The simple score function that we use in this paper measures the percentage
of 1 values in the summations. The reason that we consider summation values which are biased
towards 0 as non-random (but not summation values which are biased towards 1) is that the
superpolys of the cubes in our attacks tend to be extremely sparse, and their ANF contains the
constant 1 (or any other term) with very low probability. Such sparse polynomials evaluate to
zero for almost all keys.

Step 4 Given the sorted guess score list, we determine the most likely values for the secret
expressions, for a subset of the secret expressions, or for the entire key. The straight forward
approach to calculate the values for the secret expressions is to simply take the values for the
expressions from the guess that has the lowest score (or the least percentage of 1 values in
its summations values), in the sorted guess list. However, this approach does not always work.
Depending on the setting of the attack, there could be guesses that have a score that is at least
as low as the correct guess score: In our small example, the correct guess score is expected to be
0, however there is a reasonable probability that there is another arbitrary guess with the score
of 0. Therefore, the details of this step vary according to the attack and are specified separately
for each attack.

4.4 Details of the First Attack

The first attack is a full key recovery attack on a Grain-128 variant that uses 207 initialization
rounds, while utilizing output bits 208− 218. The key bits are recovered in small groups of size



1− 3, where each group is recovered using a different set of parameters that was obtained in the
preprocessing phase.

One set of parameters for the attack is given in Table 1 in Appendix B. We now specify how
the attack is carried out given the parameters of this table: First, we assign to each one of the
dynamic variables in the table its symbolic value. Appendix B shows how to do this given the
parameters of Table 1, and the assignment algorithm for the other tables in this paper is similar.

After all the dynamic variables are assigned, we determine the secret expressions that need
to be guessed in order to fully calculate the values of the dynamic variables during the cube
summations (step 2). Altogether, there are 7 expressions that need to be guessed, and since the
big cube is of dimension 19, the total complexity of the step 3 of the attack with this specific
set of parameters is about 19× 219+7 < 231. We will use only linear expressions for the full key
recovery (step 4), hence we concentrate on retrieving their value from the sorted guess list. The
two linear expressions actually contain only a single key bit and are listed in the ”Expressions
Retrieved” row. We sum on all subcubes of dimension at least 19 − 3 = 16 of the big cube (of
dimension 19), and the score for each guess is simply the fraction of 1 values among all the
subcube sums. In step 4, we retrieve the value of the 2 expressions by taking the corresponding
values from the best guess. We simulated the attack with the above parameters with hundreds
of random keys. The attack failed to retrieve the correct values for the expressions x127, x122 + 1
for about 10% of the keys. However for all the failed keys, the score of the best guess was at least
0.44 (i.e. the dynamic cube tester did not give a strong distinguisher), and thus we know when
we fail by declaring the expressions as ”undetermined” whenever we encounter a key for which
the best guess score is at least 0.44 (this occurs for about 15% of the keys). This is important
for the full key recovery attack that is described next.

We showed how to retrieve 2 key bits with high probability with one carefully chosen set
of parameters. It is not difficult to find more sets of parameters that allow us to retrieve more
key bits. Another example of such a set of parameters that uses the same output bit is given in
table 2 in Appendix B. Note that we only changed the chosen big cube, which in turn changed
the retrieved expressions. A different set of parameters that uses output bit 218 is given in table
3 in Appendix B. Altogether, we have 55 sets of parameters that ideally allow us to recover
86 of the 128 key bits. For each set of parameters, the score calculation method is identical to
the one described above, i.e. we compute the percentage of 1 values in the cube sums for all
cubes of dimension at least d − 3. The key recovery method is identical as well, i.e. we recover
the values of the secret linear expressions from the guess with the best score, but only if its
score is at least 0.44. We simulated the full attack on hundreds of random keys. On average, we
could retrieve about 80 secret key bits per key. The remaining 48 key bits can be recovered with
feasible complexity by exhaustive search.

We note that it is possible to retrieve more key bits in a similar way by using more output bits
(e.g. output bits 219, 220, etc.), or using the same output bits with different sets of parameters. A
more efficient key recovery method can try to determine values of non-linear secret expressions,
some of which can be made linear by plugging in values for secret key bits which we already
recovered. However, our main goal is to attack much stronger variants of Grain-128, as described
next.

4.5 A Partial Simulation Phase

When attacking Grain-128, we perform the preprocessing steps (1, 2) and then simulate the
online steps of the attack (3, 4) for several random keys. In this case, steps 3 and 4 are performed
in order to estimate the success of the attack and are called the simulation phase. If we are not
satisfied with the results, we can repeat steps 1 and 2 by choosing different parameters and
performing another simulation phase. This process can be very expensive and its complexity



is generally dominated by step 3. We can significantly reduce the complexity of the simulation
phase by calculating the cube summations only for the correct guess and observing whether
the correct guess exhibits a significant non-random property for most keys. This is unnecessary
for the first attack in which we can run the full simulation phase and recover the secret key.
However, in the second and third attacks, we try to attack variants of Grain-128 which are
significantly stronger and the simulation phase becomes infeasible even for a single random key.
In these cases, the observed non-randomness for the correct guess provides strong evidence that
the stronger variants of Grain-128 can also be broken by the full key recovery version of the
attack.

Given that we choose a big cube of size d and guess e expressions, the complexity of the cube
summations when running the full simulation phase on one key is about d2d+e bit operations.
However, the complexity of the simulation phase is actually dominated by the 2d+e executions of
the cipher: Assuming that each execution requires about b bit operations, the total complexity
is about b2d+e (for Grain-128 b > 210 >> d). Similarly, the partial simulation phase on one key
requires b2d bit operations. Since the complexity does not depend on e, we can feasible verify
the behavior of dynamic cube attacks even when their total complexity is infeasible when the
dimension of the cube d is not too large. This ability to experimentally verify the performance
of dynamic cube attacks is a major advantage over static cube attacks and cube testers.

4.6 A Generic Key Recovery Method

In the first attack, we run the full simulation phase and obtain the sorted guess list in step 3.
Since we can do this many times and calculate the complexity of the attack, we tailored the key
derivation algorithm used in step 4 such that it is very efficient for our chosen parameter sets.
On the other hand, in the second and third attacks, we must perform the partial simulation
phase as described above and we obtain only the score for the correct guess. Since we do not
have the sorted guess list, we cannot calculate the exact complexity of the attack and we cannot
customize the algorithm used in step 4 as in the first attack (for example, we cannot verify that
the first guess in the sorted guess list assigns correct values for some expressions, as in the first
attack). As a result, we use a key recovery method which is more generic in a sense that it is
not tailored to a specific cipher, or to a specific set of parameters. The only property of the
parameter sets for the attacks that it exploits, is that many guessed key expressions are linear.
We now describe the details of this method as performed in real time (not in the simulation
phase) and then estimate its complexity.

Assume that we have executed steps 1 − 3 for Grain-128 with n = 128 secret key bits. Our
big cube is of dimension d and we have e expressions to guess, out of which l are linear. Our
sorted guess score list is of size 2e and the correct guess is located at index g in the sorted list.

1. Consider the guesses from the lowest score to the highest: For each guess (that assigns values
to all the expressions), perform Gaussian Elimination on the l linear expressions and express
l variables as linear combinations of the other n− l variables.

2. Exhaustively search the possible 2n−l values for those n− l variables: For each value, get the
remaining part of the key from the linear expressions, execute the cipher with the key, and
compare the result to the given data. If there is equality, return the full key.

Overall, we have 2n−l iterations per guess. The evaluation of the linear expressions can be
performed efficiently if we iterate over the 2n−l values using Gray Codes. Hence, we assume that
the evaluation of the linear expressions takes negligible time compared to the execution of the
cipher. The total running time per guess is thus about 2n−l cipher executions and the overall
running time of step 4 is g×2n−l. We can also to try improve the running time by using some of



the e− l non linear expressions which can be efficiently evaluated (compared to a single cipher
execution): For each key we first check if the key satisfies these non linear equations before
executing the cipher.

The complexity of the generic key recovery method is dependent on g which denotes the
index of the correct guess in the sorted guess list. The expected value of g can be estimated for
a random key by running several simulations of the attack on random keys. However, when the
simulation phase is infeasible and we are forced to perform a partial simulation phase, we cannot
estimate g this way since we do not have the guess list. A possible solution to this problem is to
assume that all the incorrect guesses behave randomly (i.e. the subcube sums are independent
uniformly distributed boolean random variables). Under this assumption, we run the partial
simulation on an arbitrary key. If the cube sums for the correct guess detect a property that is
satisfied by a random cipher with probability p, then we can estimate g ≈ max{p× 2e, 1}.

The assumption that incorrect guesses behave randomly is clearly an oversimplification. In
the first attack, we retrieve the value of a carefully chosen subset of the expressions by taking the
corresponding values from the best guess. However for about half of the keys the best guess is not
the correct guess, i.e. it does not assign the correct values for all the expressions, but rather to
our chosen set of expressions. In other words, there are specific (non arbitrary) incorrect guesses
that are likely to have a low score that can be at least as low as the score of the correct guess.
These incorrect guesses usually assign a correct value to a fixed subset of the guessed expressions.
In order to understand this, consider the following example: assume that P = P1P2 + P3, the
source and target polynomials P1 and P2 are of degree 3, and the remainder polynomial is of
degree 5 (all degrees are in terms of the public variables). We choose a dynamic variable to
nullify P1, and assume for the sake of simplicity that the degrees of P2 and P3 do not change
after assigning this variable. We choose a cube of dimension 7, and sum on all its subcubes of
dimension 6 and 7. Clearly, the correct guess will have a score of 0. However, any other which
reduces the degree of P1 to 1 or 0 will also have a score of 0.

To sum up, our estimation of g (and hence our estimation for the complexity of the attack)
may not be completely accurate since incorrect guesses do not behave randomly. However, our
simulations on Grain-128 variants on which the simulation phase is feasible, show that the
effect of the incorrect guesses biased towards 0 is usually insignificant, and our estimation of
g is reasonable. In addition, even incorrect non-uniform guesses are still likely to be highly
correlated with the correct guess, and thus they can actually speed up the attack (this was
experimentally verified in our first attack, which has a feasible complexity). Hence, our estimation
of the complexity of step 4 of the attack is a reasonable upper bound.

4.7 Details of the Second Attack

In order to attack the almost full version of Grain-128 with 250 initialization rounds (out of 256),
we nullify b251−21 = b230. The parameters of the attack are specified in Table 4 in Appendix B.
As in the first attack, most of the dynamic variables are used in order to simplify b230. Note that
we need many more dynamic variables compared to the previous attack. This is because it is
much more difficult to nullify b230 than to nullify b194 or b197 (for example). In addition, we set
v82 to the constant value of 1 so that v89 can function as a dynamic variable that nullifies b197.
Since the big cube is of dimension 37 and we have 24 dynamic variables, the data and memory
complexity is 237+24 = 261. The number of expressions that need to be guessed seems to be 84.
However, after removing many linearly dependent expressions, this number can be reduced to
59. Thus, the total complexity of the cube summations is about 37 × 237+59 < 2101, implying
that we have to use the partial simulation phase. Out of the 59 expressions that need to be
guessed, 29 contain only a single key bit on which we concentrate for generic key recovery.



During the partial simulation phase, we summed on all subcubes of dimension at least 35
of the big cube, calculating the percentage of 1 values separately for all the subcubes of each
dimension (35, 36, or 37). We performed the partial simulation phase on dozens of random keys.
For about 60% of the keys, the subcube sums for the correct guess contained only 0 values for
the subcube of sizes 36 and 37, and less than 200 ’1’ values among the 666 subcubes of size 35.
Assuming that incorrect guesses behave randomly, we expect the correct guess to be among the
first guesses in the sorted guess list. The complexity of the unoptimized version of the attack
(that ignores the non-linear expressions) is dominated by the exhaustive search for the remaining
128 − 29 = 99 key bits per guess. Overall the complexity for about 60% of the keys is about
2100 cipher evaluations, and can almost surely be optimized further. For another 30% of the
keys we tested, the non-randomness in the subcube sums was not as significant as in the first
60%, but still significant enough for the attack to be much faster than exhaustive search. For
the remaining 10% of the keys, the non-randomness observed was not significant enough and the
attack failed. However, we are certain that most of these problematic keys can still be broken
by selecting different parameters for the attack.

4.8 Details of the Third Attack

In order to attack the full version of Grain-128 with 256 initialization rounds, we have to nullify
b257−21 = b236. However, the ANF of b236 is too complicated to zero using our techniques, and
we had to make assumptions on 10 secret key bits in order nullify it. As a result, we could verify
the correctness of our attack on the full version of Grain-128 only for a subset of about 2−10 of
the possible keys in which 10 key bits are set to zero. Our current attack can thus be viewed as
an attack on an unusually large subset of weak keys, but it is reasonable to assume that it can
be extended to most keys with further improvements.

The parameters of the attack are specified in Table 5 in Appendix B. Since the big cube is of
dimension 46 and we have 13 dynamic variables, the data and memory complexity is 246+13 = 259.
After removing many linearly dependent expressions, the number of guessed expression is 61.
Thus, the total complexity of the cube summations is about 46× 246+61 < 2113 bit operations.
Out of the 61 expressions that need to be guessed, 30 contain only a single key bit. Moreover, we
can fix the values of 35 more variables such that 30 out of the remaining 61−30 = 31 expression
become linear. In order to recover the key efficiently, we use an extension of the generic key
recovery method: Let the key be n, and denote the dimension of the big cube by d. Assume that
given the values of c variables we can plug them into l (linear or non-linear) expressions such
that they become linear, and perform Gaussian Elimination which makes it possible to express
l variables as linear combinations of the remaining (unspecified) n− l − c variables.

1. Consider the guesses from the lowest score to the highest: For each guess, iterate the n − l
variables using Gray Coding such that the c variables function as most significant bits (i.e
their value changes every 2n−l−c iterations of the remaining n− l − c variables).

2. For each value of the c variables, perform Gaussian Elimination and express l variables as
linear combinations of the remaining n− l − c variables.

3. For each value of the remaining n−l−c variables, compute the values of the l linear variables,
execute the cipher with this derived key and compare the result to the given data. If there
is equality, return the full key.

In our case, we have n = 118 (after fixing 10 key bits), c = 35, and l = 60. We call the second
sub-step in which we perform Gaussian Elimination a big iteration and the third sub-step in
which we do not change any value among the c = 35 variables, a small iteration. Note that big
iterations are performed only every 2n−l−c = 223 small iterations. It is clear that computing the



linear equations and performing Gaussian Elimination with a small number of variables in a big
iteration takes negligible time compared to executing the cipher 223 times in small iterations.
Hence the complexity of the exhaustive search per guess is dominated by the small iterations
and is about 2n−l = 258 cipher evaluations (as in the original generic key recovery method) . In
order to complete the analysis of the attack, we need to describe the score calculation method
and the estimate the index g of the correct guess.

During the partial simulation phase, we summed on all subcubes of dimension at least 44
of the big cube, calculating the percentage of 1 values separately for all the subcubes of each
dimension. We performed simulations for 5 random keys (note that each simulation requires 246

cipher executions, which stretched our computational resources): For 3 out of the 5 keys, we
observed a significant bias towards 0 (which is expected to occur with probability less than 2−20

for a random cipher) in the subcubes of dimension 45 and 46. This implies that g ≈ 261×2−20 =
241 and the total complexity of step 4 is about 241× 2118−60 = 299 cipher evaluations. Assuming
that each cipher evaluation requires about 210 bit operations, the total complexity of the attack
remains dominated by step 3, and is about 2113 bit operations. This is better than exhaustive
search by a factor of about 215 even when we take into account the fact that our set of weak keys
contains only 2−10 of the 2128 possible keys. For another key, the bias towards 0 in the subcubes
of dimension 45 and 46 was not as strong and we also need to use the bias towards 0 in the
subcubes of dimension 45. For this key, we were able to improve exhaustive search by a factor of
about 210. For the fifth key, we also observed a bias towards 0, but it was not strong enough for
a significant improvement compared to exhaustive search. As in the previous attack, we stress
that it should be possible to choose parameters such that the attack will be significantly better
than exhaustive search for almost all keys in the weak key set.

4.9 Discussion

Any attack which can break a fraction of 2−10 of the keys is sufficiently significant, but in
addition we believe that our third attack can be improved to work on a larger set of weak
keys of Grain-128. This can be done by making fewer assumptions on the key and optimizing
the process of nullification of b236. However, we do not believe that nullifying b236 will suffice
to attack most keys of Grain-128. For such an attack, the most reasonable approach would be
to choose a larger big cube to sum over, while nullifying fewer state bits at earlier stages of
the cipher initialization process. The question whether a key recovery attack on most keys of
Grain-128 can be feasibly simulated to yield an experimentally verified attack remains open.

5 Generalizing the Attack

In the previous section, we described in detail the dynamic cube attack on Grain-12. However,
most of our techniques can naturally extend to other cryptosytems. In this section, we describe
the attack in a more generic setting, emphasizing some important observations.

Step 1 As specified in the attack on Grain-128, choosing appropriate state bits to nullify and
actually nullifying them is a complex process. In the case of Grain-128, specific non-linear terms
in the cipher’s output stand out as being of higher degree and enable us to decompose the
output function to a source and target polynomials relatively easily. It is also possible to find
good decompositions experimentally: We can tweak the cipher by removing terms in the output
function. We then select various cubes and observe whether the tweaked cipher is more vulnerable
to cube testers than the original cipher. If the tweaked cipher is indeed more vulnerable, then
the removed terms are good candidates to nullify of simplify.



As in the case of Grain-128, there are several complications that may arise during the exe-
cution of this step and hence it needs to be executed carefully and repeatedly through a process
of trial and error. One complication is that zeroing a certain group of state bits may be impos-
sible due to their complex interdependencies. On the other hand, there may be several options
to select dynamic variables and to zero a group of state bits. Some of these options may give
better results than others. Another complication is that using numerous dynamic variables may
overdeplete the public variables that we can use for the cube summations.

Step 2 The choice of a big cube, can have a major impact on the complexity of the attack.
Unfortunately, as specified in the attack on Grain-128, in order to find a cube that gives good
results we usually have to execute the attack and calculate the results for many cubes. After
the big cube is chosen, the secret expressions that need to be guessed are calculated according
to the simple generic process that is used for Grain-128.

Step 3 The only part of this step that is not automated is the score calculation technique for
each guess from the subcube sums. We can use the simple method of assigning the guess its
percentage of 1 values, or more complicated algorithms that give certain subcubes more weight
in the score calculation (e.g. the sum of high dimensional subcubes can get more weight than
the sum of lower dimensional ones, which tend to be less biased towards 0).

Step 4 Techniques for recovering information about the key differ according to the attack. It
is always best to adapt the technique in order to optimize the attack as in the first attack on
Grain-128. In this attack, we determined the values of some carefully chosen key expression
from the guess with the best score. It is possible to generalize this technique by determining the
value of a key expression (or several key expressions) according to a majority vote taken over
several guesses with the highest score. We can also try to run the attack with different sets of
parameters, but with some common guessed expressions. The values for those common guessed
expressions can then be deduced using more data from several guess score lists.

When the simulation phase (steps 3 and 4) is not feasible we must use the partial simulation
phase. The generic key recovery method and its extension in the third attack on Grain-128 can
be used in case many of the guessed key expressions are linear, or can be made linear by fixing
the values of some key bits.

6 Conclusions and Open Issues

Dynamic cube attacks provide new key recovery techniques that exploit in a novel way distin-
guishers obtained from cube testers. Our results on Grain-128 demonstrate that dynamic cube
attacks can break schemes which seem to resist all the previously known attacks. Unlike cube
attacks and cube testers, the success of dynamic cube attacks can be convincingly demonstrated
beyond the feasible region by trying sufficiently many random values for the expressions we have
to guess during the attack.

An important future work item that was discussed in section 4.9 is how to break most keys
of Grain-128. In addition, the new techniques should be applied to other schemes. Preliminary
analysis of the stream cipher Trivium [14] suggests that dynamic cube attacks can improve the
best known attack on this cipher, but the improvement factor we got so far is not very significant.

References

1. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In CRYPTO ’90: Proceedings
of the 10th Annual International Cryptology Conference on Advances in Cryptology, pages 2–21, London, UK,
1991. Springer-Verlag.



2. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT ’93: Workshop on the theory
and application of cryptographic techniques on Advances in cryptology, pages 386–397, Secaucus, NJ, USA,
1994. Springer-Verlag New York, Inc.

3. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers and Key Recovery Attacks
On Reduced-Round MD6 and Trivium In In Fast Software Encryption. Springer-Verlag, 2009.

4. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In EUROCRYPT ’09:
Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques.
Springer-Verlag, 2009.

5. Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir. Efficient FPGA Implemen-
tations of High-Dimensional Cube Testers on the Stream Cipher Grain-128 In SHARCS - Special-purpose
Hardware for Attacking Cryptographic Systems. 2009.

6. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher proposal: Grain-128.
In IEEE International Symposium on Information Theory (ISIT 2006), 2006.

7. H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A framework for chosen IV statistical
analysis of stream ciphers. In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT,
volume 4859 of LNCS, pages 268–281. Springer, 2007.

8. Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV statistical analysis for key recovery attacks on
stream ciphers. In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of LNCS, pages 236–245. Springer,
2008.

9. Christophe De Cannière, Özgül Kücük, and Bart Preneel. Analysis of Grain’s initialization algorithm. In
SASC 2008, 2008.

10. Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-key chosen IV attacks on Grain-v1
and Grain-128. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP, volume 5107 of LNCS, pages
321–335. Springer, 2008.

11. X Lai. Higher order derivatives and differential cryptanalysis. In ”Symposium on Communication, Coding
and Cryptography”, in honor of James L. Massey on the occasion of his 60’th birthday, pages 227–233, 1994.

12. Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack. Cryptology ePrint
Archive, Report 2007/413, 2007.

13. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, pages 285-286.
14. Christophe De Cannière and Bart Preneel. Trivium - a stream cipher construction inspired by block cipher

design principles. estream, ecrypt stream cipher. Technical report, of Lecture Notes in Computer Science.
15. Simon Knellwolf and Willi Meier and Maria Naya-Plasencia. Conditional Differential Cryptanalysis of NLFSR-

based Cryptosystems. In ASIACRYPT, 2010.

A Appendix: Zeroing State Bits of Grain-128

To demonstrate the process that we use to zero state bits of Grain-128, consider the problem
of zeroing b194. The ANF representation of b194 is a relatively small polynomial of degree 9
in the 128 secret variables and 96 public variables which contains 9813 terms. It is calculated
by assigning all the key and IV bits a distinct symbolic variable, and calculating the symbolic
value of the feedback to the NFSR after 67 rounds. It may be possible to choose a dynamic
public variable and zero b194 directly. However, since the ANF representation of b194 is difficult
to visualize, this has a few disadvantages: After we choose a cube to sum over, we need to guess
all the secret expressions that are multiplied by terms of cube variables, and the complex ANF
representation of b194 will force us to guess many expressions, which will unnecessarily increase
the complexity of the attack. Moreover, since the ANF representation of b194 is of degree 9,
many of the guessed expressions are expected to be non-linear, while ideally we would like to
collect linear equations in order to be able to solve for the key bits efficiently. The process that
we use to zero b194 is given below.

1. Use the description of Grain-128 to simplify the ANF representation of b194 by writing b194 =
b161(b78s161)+Pr1. In this form, b161 is the source polynomial, b78s161 is the target polynomial,
and Pr1 is some remainder polynomial with a simpler ANF representation compared to b194.

2. The ANF representation of b161 is a simpler polynomial of degree 6 which contains 333
terms. Again, do not zero it directly, but write: b161 = b128(b45s128) + Pr2, with b128 as the
source polynomial with degree 3 and 26 terms. Choose v0 as the dynamic variable and set it
accordingly.



3. Now, the ANF representation of b161, with v0 set to its dynamic value is a polynomial of
degree 2 which contains 47 terms. b161 can be zeroed by choosing v33 as a dynamic variable.

4. Recalculate the ANF of b194 with v0 and v33 set to their dynamic values. It is now a poly-
nomial of degree 5 which contains 1093 terms. Proceed by writing b194 = b134b150 + Pr3, and
choosing v6 as the dynamic variable to zero b134.

5. Write b194 = b162 + Pr4 = b129(b46s129) + Pr5 and choose v1 as the dynamic variable to zero
b129.

6. Now, the symbolic form of b194 with v0, v33, v6 and v1 all set to their dynamic values, is a
polynomial of degree 3 with 167 terms. Finally we choose v29 as the dynamic variable which
can zero b194.

B Appendix: Parameters for Our Attacks on Grain-128

The parameter sets for the different attacks are given in the tables below. As an example, we
demonstrate the process of assigning values to the dynamic variables in Table 1. The process
for the other tables is similar.

The first index of the ”Dynamic Variables” list in Table 1 is 0 (i.e v0). It is used to nullify
the first state bit in the ”State Bits Nullified” list (b128). The symbolic form of v0 is calculated
as follows:

1. Initialize the state of Grain-128 with all the key bits assigned a distinct symbolic variable
and all the IV bits set to 0, except the IV bits in the ”Cube Indexes” row and v0 which are
assigned a distinct symbolic variable.

2. Clock the state once and obtain the symbolic value of the bit fed back into the NFSR (note
that v0 is a linear variable of the polynomial).

3. Delete the term v0 from the symbolic form of this polynomial and assign v0 the symbolic
sum of the remaining terms, i.e. set v0 = x3x67 +x11x13 +x17x18 +x27x59 +x40x48 +x61x65 +
x68x84 + x0 + x2 + x15 + x26 + x36 + x45 + x56 + x64 + x73 + x89 + x91 + x96.

Next, we determine the symbolic value of v1 (second in the ”Dynamic Variables” list), ac-
cording to the second state bit in the ”State Bits Nullified” list (b129). It is calculated in a similar
way to v0, except that we set v0 to the dynamic value calculated in the previous step and set
v1 to a distinct symbolic variable. Finally we assign v1 the symbolic value that is fed back to
the NFSR after 2 initialization rounds (again, removing the linear term of v1 from the symbolic
form). We iteratively continue assigning v6, v33 and v29 according to the symbolic values fed back
to the NFSR after 7, 34 and 67 clocks respectively, each time setting the previously determined
dynamic variables to their dynamic values.

Table 1. Parameter set No.1 for the attack on Grain-128, given output bit 215.

Cube Indexes {3,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,69,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x127, x122 + 1}



Table 2. Parameter set No.2 for the attack on Grain-128, given output bit 215.

Cube Indexes {5,19,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x69, x23}

Table 3. A Parameter set for the attack on Grain-128, given output bit 218.

Cube Indexes {19,20,28,29,30,31,41,45,53,54,55,63,64,65,66,67,68,69,89,92}
Dynamic Variables {2,3,4,9,1,36,7,32}
State Bits Nullified {b130, b131, b132, b137, s129, b164, b170, b197}

Expressions Retrieved {x98, x49}

Table 4. Parameter set for the attack on Grain-128, given output bit 251.

Cube Indexes {11,12,13,15,17,21,24,26,27,29,32,35,38,40,43,46,49,51,52,
53,55,57,58,63,64,65,66,74,75,77,78,79,81,84, 86,87,95}

Dynamic Variables {8,9,10,14,0,1,39,2,72,3,4,5,80,25,90,92,41,7,36,37,88,23,89,54}
Public Variables Set to 1 {82}

State Bits Nullified {b136, b137, b138, b142, b128, b129, s129, b130, s130, b131, b132, b133,
b148, b153, b158, b160, s162, b163, b164, b165, b174, b186, b197, b230}

Table 5. Parameter set for the attack on a weak key subset of the full Grain-128, given output bit 257.

Cube Indexes {0,3,5,10,11,13,14,15,17,19,21,23,26,31,34,35,37,39,40,43,45,48,49,51,
53,54,55,56,57,59,63,65,66,67,68,71,77,78,79,81,85,91,92,93,94,95}

Dynamic Variables {9,1,12,4,7,6,8,89,2,29,83,25,69}
State Bits Nullified {b137, b129, s133, b132, b135, b134, b136, s168, b169, s150, b176, b192, b236}
Key Bits Set to 0 {x48, x55, x60, x76, x81, x83, x88, x111, x112, x122}


