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Abstract. In this work, the most well-known cryptographic hash function designs with provable security re-
ductions to an underlying primitive are approached from a practical point of view. Starting from the early
constructions, we consider several blockcipher and permutation based compression and hash function designs
and compare their performance on one of the latest architectures supporting the AES instruction set. As far as
we are aware, this is the first work to compare and implement various multi-block length hash function construc-
tions in software. We instantiate the primitives of these constructions with AES-128, AES-256 and its larger
state variant RIJNDAEL-256, exploiting the performance gain provided by the new AES instruction set. As a
result, we obtain a wide range benchmark of the most well known compression function designs on a soon to be
mainstream architecture. We conclude that most algorithms we consider outperform the current cryptographic
hash standard SHA-256 plus two out of the four AES-inspired second-round SHA-3 candidates.

1 Introduction

This paper is about understanding the performance of the currently available blockcipher and permutation
based compression functions, with provable security properties, on architectures supporting the AES
instruction set. Our goal is to illustrate what really makes the compression function designs efficient, for
some targeted level of security, and to draw conclusions for obtaining better schemes.

For years, most of the well known cryptographic hash function designs have been revolving around
a similar design principle [63,52,24]: the Merkle-Damgård paradigm, although modified later under dif-
ferent names to thwart some attacks and increase the performance [48,11,8]. In this cascaded mode of
operation, the main focus is to construct a secure1 and an efficient compression function to deliver these
properties to the overall hash function. The compression functions, on the other hand, are built using a
primitive which is, or can be regarded as, either a blockcipher or a permutation (e.g. a fixed-key blockci-
pher). A well-studied class of compression functions are the single-block length ones that are based on a
blockcipher operating on n-bit blocks with k-bit keys2 and hence, produce a compression function from
n+ k bits to n bits. The so-called Preneel, Govaerts and Vandewalle [62] compression functions are the
most well-known examples in this category (for k = n).

Single-block length hash and compression functions face one major drawback: in order to meet to-
day’s one basic security requirement (namely collision resistance), one needs a primitive operating on
more than 160 bits [25], thus, ruling out most existing blockciphers, including the current US standard
AES [53] operating on 128-bit blocks only. In order to remedy this issue, double-block length compres-
sion functions and more generally multi-block length compression functions were introduced. The latter
have tn-bit output (for t ≥ 2) while being based on a primitive with only n-bit blocks. Thus, one can
hope that, for instance, finding collisions requires more than 2n time (primitive evaluations) using only
smaller primitives.

This output expansion is achieved by calling the primitive multiple times and then combining the
resulting primitive outputs. In the literature, there has been significant efforts to design and analyze the
multi-block length compression functions. Nevertheless, in general, most of the papers in this field are
aimed at evaluating the security of the these constructions. The efficiency, on the other hand, is only taken

1 This assumption can be violated as it is possible to build a secure hash function from a weak compression function [17].
2 In the sequel, we call the permutation based compression functions single-block length as well that output the same digest-

size as the block-length of the permutation. See Section 3 for more on this.



into account retrospectively; actual performance benchmarks, on hard- or software devices, is normally
left as a future work3.

In this work we bring together the mainly theoretical world of compression function designs with
the practical demand of fast implementations. Instantiating the blockcipher based primitives with AES-
128, AES-256 or RIJNDAEL-256, and their fixed key versions to build permutations, we obtain hash
functions with a fixed 256 digest size with provable security properties4 (either for collision resistance
or for preimage resistance) assuming these underlying primitives are secure. Our choice for the AES
and RIJNDAEL-256 [22,53] is two-fold. For security reasons we rely on the AES, this well-studied, and
currently world wide deployed blockcipher, has survived many years of cryptanalysis and a practical
break of this cipher would have a significant impact on the cryptographic landscape5. Secondly, our
choice to use the AES as our primitive is from a performance perspective. Although already fast in hard-
and software, the AES can be made even more efficient by using the recent AES instruction set (AES-NI)
extensions [30,31].

To the best of our knowledge, this is the first work to give an overview of software implementations
of the most studied and influential blockcipher and permutation based compression functions. We sum-
marize our results in Table 2 together with the known security results gathered from the literature. This
table shows that, when assuming the underlying primitives behave ideally, fast and provably secure hash
functions are already available. Moreover, we compare the obtained results with the performance of the
four AES-inspired second-round SHA-3 candidates which benefit from the AES-NI as well. Surprisingly,
most of the designs outperform two of these candidates; see Section 5 for a discussion of our results.

The rest of this paper is organized as follows. In Section 2, we overview the basic tools required
in the paper. Section 3 introduces our target algorithms together with the related literature in the field.
In Section 4, we present our benchmark results together with implementation details. We discuss the
outcomes of our results and conclude the paper in Section 5. The pictorial illustrations of the target
algorithms are given in Appendix A.

2 Preliminaries

2.1 The AES and the AES Instruction Set

The AES is a fixed block-length version of the RIJNDAEL blockcipher [22,53] that was standardized
by the US National Institute of Standards and Technology (NIST) after a public competition similar to
the one currently ongoing for the SHA-3 [55]. The AES operates on an internal state of 128 bits while
supporting 128-, 192-, and 256-bit keys (each version with different key scheduling units). The state
of AES is organized in a 4 × 4 array of 16 bytes, which is transformed by a round function Nr times.
The number of rounds is Nr = 10 for the 128-bit key, Nr = 12 for the 192-bit key, and Nr = 14
for the 256-bit key variants. In order to encrypt, the internal state is initialized, then the first 128-bits
of the key are xored into the state, after which the state is modified Nr − 1 times according to the
round function, followed by the slightly different final round. The round function consists of four steps:
SubBytes, ShiftRows, MixColumns and AddRoundKey (except for the final round which omits
the MixColumns step) each of which operating on the 128-bit state (for the exact details see the AES
specification in [22,53]). We note that the larger state variant of AES, RIJNDAEL-256, operates almost in
the same way except for the ShiftRows operation, a state size of 256 bits, a 256-bit key and Nr = 14
rounds.

3 The only exception is the work of Bogdanov et al. [18] where a few multi-block length compression functions are bench-
marked in hardware.

4 Note that two of the SHA-3 candidates we consider, i.e. LANE and LUFFA, do not have security proofs, neither for collision
resistance nor for preimage resistance; yet we include those in our benchmark to illustrate their performance capabilities.

5 Note, however, that the latest attacks on AES-256 [13,14] show that the AES-256 does not behave ideally; yet these attacks
can not be exploited, for now, to break the conventional security properties like collision or preimage resistance for the hash
function.
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Nine years after becoming the symmetric encryption standard the only theoretical attack on the full
AES is applicable in the related key scenario to the 192-bit [13] and 256-bit key versions [13,14]. So
far no theoretical attacks on all rounds of the AES-128 are known. More cryptanalysis success has been
achieved by using the characteristics from the actual implementation of the AES. An instance of such
software side channel attacks are cache attacks [57,4], the techniques from [57] allow one to obtain the
AES key in only 65 milliseconds (see [76] for a survey covering extensions and variants of such types of
attacks on the AES).

Designing fast implementations, which overcome the various software side channel attacks, has been
an active research area in the recent years. Recent examples are bitsliced [9] implementations for Intel
core i7 architectures [38] and implementations [34,6] which target a variety of common CPU architec-
tures. In the latter an overview of the state-of-the-art fast AES implementations is given. The fastest AES
implementations targeting microcontrollers are described in [56].

In the last decade a general trend in computer architecture design is to enhance the speed of software
implementations by offloading the computational work to special units which operate on larger data
types, improving overall throughput, by using the single instruction, multiple data (SIMD) paradigm. In
1999, Intel introduced the streaming SIMD extensions (SSE), a SIMD instruction set extension to the x86
architecture. One of the latest additions to these extensions is the AES instruction set [30,31] available
in the 2010 Intel Core processor family based on the 32nm Intel micro-architecture named Westmere.
This instruction set will also be supported by AMD in their next-generation CPU “Bulldozer”. Note
that different people have suggested extensions to current instruction sets to improve the performance
of the AES in practice [74,73,7,75]. The AES-NI does not only increase the performance of the AES
(as well as any version of RIJNDAEL) but also runs in data-independent time and by avoiding the use of
any table lookups the aforementioned cache attacks are avoided. This instruction set consists of six new
instructions. At the same time, a new instruction for performing carry-less multiplication is released in
the CLMUL instruction set extension. The following description of these instructions are from [30,31,32]:

• AESENC performs a single round of encryption. The instruction combines the four steps of the AES
algorithm ShiftRows, SubBytes, MixColumns and AddRoundKey into a single instruction.
• AESENCLAST performs the last round of encryption. Combines the ShiftRows, SubBytes and
AddRoundKey steps into one instruction.
• AESDEC performs a single round of decryption.
• AESDECLAST performs the last round of decryption.
• AESKEYGENASSIST is used for generating the round keys used for encryption.
• AESIMC is used for converting the encryption round keys to a form usable for decryption using the

Equivalent Inverse Cipher.
• PCLMULQDQ performs carry-less multiplication of two 64-bit operands to an 128-bit output.

Performance results of implementations in the C-programming language or assembly can be found
in [31,32]. A study of arranging the AES instructions in an optimal order to decrease instruction de-
pendencies is performed in [49].

2.2 Security Considerations

There exist multiple security notions for a cryptographic hash function to satisfy; we only consider the
collision- and preimage-resistance and the relevant adversarial models. A preimage-finding adversary is
an algorithm with access to one or more oracles and whose goal is to find a preimage of some specified
compression/hash function output 6. Similarly, a collision-finding adversary is an algorithm whose goal
is to find collisions in some specified compression or hash function.

6 Note that there exist several definitions of preimage resistance [65] and the known results in the literature vary depending on
the definition. We state, in Section 4, the known results under the name preimage resistance without differentiating between
the different definitions.
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Table 1. The number of AES-like operations per b bytes for all AES-inspired candidates. (R): One AES
encryption round, SB: Substitution operation, MCX: Mix-Column operation over X bytes (i.e., X=4 is
the one used in AES). The performance in cycles per byte, with and without using the AES instruction set,
on an Intel Core i5 650 (3.20GHz), using icc 11.1, is displayed in the second part of the table together
with the speedup factor obtained when using the AES instruction set. The implementations are taken
from eBASH, the implementation name is given in parentheses.

Hash function b (R) SB MC4 MC8 MC16
xor with without

speed-up
(byte) using the AES-NI

ECHO-SP 224
256 - 512 - - 448

5.37 (aes) 23.57 (core2) 4.39
ECHO-DP 192 6.22 (aes) 25.50 (core2) 4.10
FUGUE 4 - 32 - - 2 60 15.99 (SSE4.1) 18.02 (SSSE3) 1.13
GRØSTL 64 - 1280 - 160 - 1472 13.63 (aes-ni) 20.31 (asm) 1.49
SHAVITE-3 64 52 - - - - 1280 5.32 (aes-instruct) 18.54 (lower-mem) 3.48

To get a better picture, we consider adversaries in two scenarios: the information- and the complexity-
theoretic. For the former, the only resource of interest is the number of queries made to their oracles,
the so called query complexity, where the adversaries are considered computationally unbounded. For
the latter, on the other hand, we consider the actual runtime of the adversarial algorithm (with respect
to a reasonable computational model). By convention, we assume that for optimally secure construc-
tions the only valid attacks are the generic attacks which require Θ(2s/2) and Θ(2s) queries/time to
find collisions and preimages for a hash/compression function of s-bit digest respectively. From an
information-theoretic point of view, the compression functions we consider are not always optimal. Yet,
in the complexity-theoretic setting, almost all of them are considered to be optimally secure in the sense
that there exist no known algorithm to find collisions and preimages faster than the generic methods.

In the literature, the known results contain both models. For instance, most of the security bounds are
given in the information-theoretic setting where the query complexity lower bound is the main source of
interest. Similarly, the known attacks state an upper bound both for the query and time complexity. In the
sequel, we stick to this convention and whenever we state a lower and an upper bound we mean that there
exist a security bound and an attack, respectively, matching the stated bounds (see Table 2). This conven-
tion holds both for the security of the compression function and the related mode of operation. Note that
for the security of the mode of operation, we assume that the Merkle-Damgård iteration is taking place
for most of the compression function designs and the respective security preservations [52,24,65] hold.
For the designs with different mode of operations, we simply assume that the original mode is taking
place and the corresponding security reductions follow [8,11].

2.3 SHA-3 competition

Due to the recent developments in the cryptanalysis of well-known hash functions MD5 [78] and SHA-
1 [77,10], a public competition is announced by the NIST [55] to develop a new cryptographic hash
algorithm intended to replace the current standard SHA-2 [54]. The new hash algorithm will be called
SHA-3 and subject to a Federal Information Processing Standard (FIPS) as done for the AES. The com-
petition officially started in late 2008 with several submissions from all over the world. As a result, 64
proposals were received, of which 51 met the minimum submission requirements and became the first
round candidates. In summer 2009, the number of candidates for the second round was further cut down
to a more manageable size of 14 by eliminating the ones having major security or performance flaws. In
this work, we consider the second round SHA-3 candidates which benefit from the AES instruction set;
this has been studied in [3]. From the initial 51 candidates 10 have components which are substantially
RIJNDAEL-based and 8 out of these 10 can potentially benefit from the AES instruction [3]. The current
list of semi-finalists still contains 4 AES-inspired candidates: ECHO [2], FUGUE [33], GRØSTL [29] and
SHAVITE-3 [12].
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Table 1 shows what components of the AES these SHA-3 candidates are using. We use the notation
for the MixColumn operations over X bytes as in [19], see this paper for details on the costs when
implementing MCX on platforms without the AES instruction set. The second part of Table 1 states the
performance, expressed in cycles per byte, of implementation with and without the use of the AES-NI.
These implementations are taken from the eBASH [5] benchmarking suite. While FUGUE and GRØSTL

obtain a moderate speedup by using the AES-NI, a factor between 1.0 and 1.5, the performance of ECHO
and SHAVITE-3 is increased by a factor of at least three.

3 Target Algorithms

In this section, we go over the designs that we consider in our framework and state the related literature.
Throughout, we consider the compression functions rather than the full blown hash functions to evaluate
the performance of the target algorithms. By doing so, we assume that for long messages the performance
of the compression function is the dominating factor in evaluating the efficiency of the hash function,
regardless of which mode of operation is used. By convention, we focus on the compression functions
that might possibly benefit from the AES instruction set. Hence, we consider only the constructions
which are either blockcipher or permutation based such that the flavors of AES or RIJNDAEL-256 (see
Table 2 how the target algorithms are instantiated) can be used as underlying primitive (with or without
fixed-key).

We would like to remark that the security of the constructions we consider goes through for any
idealized blockcipher or permutation. Analogously, in the sequel, we separate our analysis into two,
depending if the compression function is blockcipher or permutation based. Note that some of the com-
pression function designs we consider here are based on the SHA-3 candidates. For those, we consider
their compression function instantiated by one of the primitives stated above, rather than the original sub-
mitted versions. Finally, we remark that some of the compression functions support more than 256-bit
output; we assume that for those compression functions either Merkle-Damgård paradigm or a similar
mode of operation is taking place with an output transformation to reduce the output to 256-bit.

3.1 Blockcipher Based Constructions

Historically, the most popular way of constructing a compression function is to use a blockcipher as the
underlying component (the idea of which dates back to Rabin [63]). The main motivation for using this
approach is the fact that a blockcipher, operating on n bits with an k-bit key, E : {0, 1}k × {0, 1}n →
{0, 1}n is already a compressing primitive. So, although tricky, it would be convenient to transfer the trust
in the blockcipher to the corresponding compression or even hash function. Moreover, as was a common
practice in the early days of modern cryptography, when the hardware platforms were the main targets,
it is more practical to use a single blockcipher which implements both an encryption and a hashing
primitive. For this purpose, several methods were proposed using the Data Encryption Standard as an
underlying primitive [52,42,24] which is nowadays replaced by the AES. The wisdom of blockcipher
based hashing is still valid; we go over the most well known techniques proposed in the literature and see
the practical consequences of the AES instruction set on these designs. For the algorithms investigated
here, we instantiate the underlying blockcipher with either AES-128 or RIJNDAEL-256 when a single-
length key blockcipher (where k = n) is used (for n = 128 and n = 256 respectively). For the double-
length key (for k = 2n) scenario we assume that AES-256 is the main component (with n = 128).

DM. The Davies-Meyer (DM) [51] is a single-block length compression function design which is the
most popular way of using a blockcipher as an underlying main component to create a secure hash
function (see Fig. 1). Most of the cryptographic hash functions, including MD5 [64] (for n = 128,
k = 512) and SHA-256 [54] (for n = 256, k = 512), follow the DM design philosophy. The first
extensive security analysis of DM was performed by Preneel, Govaerts and Vandewalle [62] whose
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main approach was to attack a class of single-block length hash/compression functions (including DM
for n = k) which turned out to successfully resist their efforts. The first security proof for DM, on
the other hand, was given by Black, Rogaway and Shrimpton [16] (whose technique is later simplified
by Stam [71] and jointly published in [17]) where they showed that the DM indeed enjoys optimal
preimage and collision resistance. We remark that 12 similar compression functions were also proved
to be optimally collision and preimage resistant; we refrain ourselves from re-implementing all of these
variants and focus only on one famous representative. We expect them to have similar performance as
DM. Note that due to the security level we are aiming, the only relevant primitive for DM among our
choices is RIJNDAEL-256.

MDC-2. The MDC-2 [20] is one of the classical examples of double-block length hash functions which
is also specified in the ANSI X9.31 and ISO/IEC 10118-2 standards [37,28] (see Fig. 2). Although in
its first proposal it was presented to be used with DES; hence with different parameters, we consider
here a slightly different version where one can use two blockciphers with n-bit block and n-bit key (e.g.
with AES-128). In spite of its early appearance in the literature, the first security proof for MDC-2 was
recently given by Steinberger [72] where it was shown that any collision finding adversary (to the iterated
hash function7) asking 23n/5−ε (for any ε > 0) queries to the underlying blockciphers has a negligible
chance of completing a collision. This lower bound then was complemented by the attacks of Knudsen
et al. [39] by showing collision and preimage attacks requiring time complexities ofO(2n/n) andO(2n)
respectively. To the best of our knowledge, reducing the gap between the query complexity lower bound
and the time complexity upper bound is still an open problem.

ABREAST-DM. After the design of MDC-2, there had been various double-block length compres-
sion/hash function designs in the early 90’s that aimed to solve the problem of outputting larger digest
sizes while using a primitive with a smaller block size. Unfortunately, most of the proposed construc-
tions were shown to suffer from weak security properties. Nevertheless, there are some early designs
like ABREAST-DM [42] and its sister design TANDEM-DM [42] offering almost optimal collision resis-
tance [26,43,46] where a double-length key blockcipher is the main primitive (AES-256 in our case). In
this work, we only consider ABREAST-DM (see Fig. 3) for our benchmark and we expect that TANDEM-
DM has a slightly worse performance compared to ABREAST-DM due to its iterative structure.

KNUDSEN-PRENEEL. The goal for almost all constructions in the 90’s has been optimal collision-
resistance: a target output size is fixed and the compression function is designed to be collision resistant
up to the birthday bound for that digest size. Contrary to this, Knudsen and Preneel [40] adopted a dif-
ferent approach by a priori fixing a particular security target and letting the output size vary in order to
guarantee a security level without imposing optimal security. To this end, they proposed several construc-
tions using the generator matrices of various linear error correcting codes. Although it was shown [58,60]
that the compression functions do not deliver the security level8 they were designed for, still there ex-
ist some constructions satisfying a desirable level of security (when used in wide-pipe mode along with
Merkle-Damgård iteration). We consider one of their proposals that is based on a [4, 2, 3] linear code over
F23 to show its performance capabilities with AES-NI9. The security of Knudsen-Preneel hash functions
in the Merkle-Damgård iteration is still an open problem.

HIROSE-DBL. The multi-block length compression functions MDC-2, ABREAST-DM and KNUDSEN-
PRENEEL suffer from a performance drawback that, although run in parallel, the underlying blockciphers
require separate key scheduling routines. In order to solve this performance issue, Hirose [35] presented

7 The compression function of MDC-2 was already known to be weak, i.e. collisions and preimages can be found with
O(2n/2) and O(2n) queries respectively for 2n-bit output.

8 In [58,60], the underlying primitives are modeled as independent random functions whereas in this work we instantiate them
with blockciphers (with input separation, like in HIROSE-DBL) running in DM mode.

9 We note however that the compression function was not defined explicitly in [40]; we derive the generator matrix based on
the works [40,58].
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a blockcipher based double-block length compression function (see Fig. 4) that requires one shared
key scheduling algorithm for two blockcipher calls. Moreover, he was also able to prove that his design
enjoys almost optimal collision resistance (recently, it has been proved that the construction has preimage
resistance Ω(21.5n) [41]). By the time of its proposal, it was the first blockcipher based compression
function design enjoying both provable security and higher performance characteristics (compared to
earlier design in the same category like ABREAST-DM). We note that a similar compression function
without feed-forward is shown to be almost as collision resistant as HIROSE-DBL [59]. Although we
expect a higher efficiency in terms of hardware cost (i.e. area) for the construction without feed-forward,
we believe it achieves almost the same speed as HIROSE-DBL in software.

PEYRIN ET AL.-DBL. All the multi-block length compression function designs considered so far follow
a very similar design approach: there exist linear pre- and post-processing functions that operate on
the blocks of data, interacting with the underlying primitives. The pre-processing function takes the
input to the compression function, parses it as blocks and determines (block-wise linearly) the input
of the underlying primitives. Similarly, the post-processing function takes the outputs of the underlying
primitives, together with the input to the compression function in case there is a feed-forward, and outputs
the digest (that is again based on a linear transformation). Based on this general model, Peyrin et al. [61]
studied under a very general attack-based approach (like done by Preneel, Govaerts and Vandewalle for
the single length compression functions [62]) that determines the necessary conditions to have a secure
compression function (where they used smaller ideal compression functions as underlying primitives
which are again replaced by blockciphers in DM mode in our framework). They conclude that one needs
at least five calls to the blockciphers in order to thwart some generic attacks and they proposed some
constructions satisfying their criteria. For our purposes, we consider two of their proposals (see Fig. 6)
to investigate the performance. Note that in a later work Peyrin and Seurin [68] followed a more proof
centric approach and derived some security lower and upper bounds for their proposals10. Improving the
bounds given in [68] and showing the security in the MD-iteration are still open problems.

MJH. Recently, a faster alternative double-block length compression function to MDC-2 (see Fig. 7)
was proposed by Lee and Stam [45] inspired by the compression function of JH [79], one of the second
round SHA-3 candidates. As in the case of MDC-2, the compression function itself does not provide a
security beyond a single-length compression function can offer; yet Lee and Stam showed that it enjoys
a collision resistance bound of 22n/3−logn in the MD-iteration; whereas preimages can be found with 2n

queries and in as much time. It is worth noting that the security of the construction is claimed to still hold
once the message block to the compression function is doubled (this is what we call the MJH-DOUBLE).
This leads to a significantly more efficient scheme, although the cost of key set-up increases.

QPB-DBL. The double-block length compression functions considered so far make use of r > 1 calls
to an underlying blockcipher and outputs 2n bit digest where n is the blocksize of the underlying block-
cipher. Another interesting scenario is to construct a 2n bit digest while making a single call to the
blockcipher. To this end, Stam [70] provided the first construction of this type in the public random
function model using a quadratic-polynomial based (hence the name QPB-DBL) design. What he sug-
gested was to use a linear preprocessing function together with a nonlinear post-processing function that
uses a quadratic polynomial to evaluate the digest. This construction was then generalized by Lee and
Steinberger [47] to the ideal cipher model where the random function used by Stam was replaced by a
double-length key blockcipher running in DM mode (see Fig. 8). In the QPB-DBL compression func-
tion, the main overhead is the costly finite field multiplications which we try to minimize by using the
features of the new CLMUL instruction set. The security of QPB-DBL is extensively analyzed in [47].

10 Note that as in the KNUDSEN-PRENEEL case all the security results are given under the assumption that the underlying
primitives are random functions, here we instantiate these primitives with blockciphers running in DM mode, although this
case was not studied throughly.
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3.2 Constructions Based on Non-Compressing Primitives

The compression functions considered so far are all based on blockciphers which require both the key
set-up and the data processing costs. Constructing compression functions from permutations, which can
be regarded as fixed-keyed blockciphers, has some definite advantages. Firstly, blockciphers tend to
have significant key scheduling costs (as pointed out in Section 4). Secondly, the recent related-key
attacks [13,14] reveal that although secure in the standard model, even the AES is vulnerable against
related-key attacks which are of definite interest in the hashing context. Finally, a fixed-key design leads
to a more compact primitive π : {0, 1}n → {0, 1}n comparing to the map E : {0, 1}k × {0, 1}n →
{0, 1}n that avoids expensive implementations. In recent years, there has been substantial efforts to de-
sign permutation based compression functions; we focus our attention on the ones that can be instantiated
with one of our primitives11.

We remark that in the blockcipher based compression functions, it is intuitively clear that the com-
pression is indeed taking place, due to a blockcipher’s already being a compressing primitive. In the
permutation based setting, however, one would need a compressing primitive inside a compression func-
tion. This can be done in several ways; (i) a compressing pre- or post-processing function can be used
and/or (ii) compression might take place somewhere in between the pre- or post-processing. The targets
we consider in this work do benefit from either approach, sometimes even both.

ROGAWAY-STEINBERGER’S LP. In [15], Black, Cochran and Shrimpton showed an impossibility re-
sult for efficient (that is single-block length and single call to a primitive) permutation based compression
functions. The investigation of the security once the non-compressing primitives are called several times
is left as an open problem. As a follow-up work, Rogaway and Steinberger [66,67] studied this problem
in a general setting and obtained several positive results (see Fig. 10 for the construction they consider for
three calls to the permutations). They concluded that in order to have at least 2n/2 level of collision and
preimage resistance, one needs at least three and five calls to the primitives for the single-block length
and double-block length compression functions respectively. They also proposed several compression
function designs obeying their constraints and left it as an open problem to investigate the practical con-
sequences of LP designs. In this work, we consider two of their suggestions: LP231 and LP362 (for
n = 256 and n = 128 respectively). Both of the constructions enjoy a collision resistance bound beyond
2n/2 and have varying preimage resistance (that is between 2n/2 and 2n).

The ROGAWAY-STEINBERGER’S LP construction is a {0, 1}mn → {0, 1}rn compression function
making k calls to the (either different or identical) permutations πi for i ∈ {1, . . . , k} (hence the no-
tation LPmkr throughout). We denote (xi, yi) the input-output pair corresponding to the permutation
πi. The main ingredient of ROGAWAY-STEINBERGER’S LP design is the use of a (k + r) × (k + m)
matrix A (satisfying an independence criterion [66,67]) over F2n with entries ai,j for 1 ≤ i ≤ k+ r and
1 ≤ j ≤ k + m. This matrix is used to determine the block-wise interaction between the the inputs to
the compression function (V,M), (xi, yi) pairs and the output Z of the compression function in the fol-
lowing way: for the row vector ai, the inputs to the underlying permutations are determined by the inner
product xi = ai · (V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yi−1) whereas the output Z (which is treated as a
concatenation of r n-bit blocks Zi) is computed by Zi = ak+i ·(V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yk).
For LP231, we use the following matrix A′ to define the compression function (which is the one sug-

11 Note that the compression functions suggested in the sponge framework are also considered to be in the permutation-based
setting; yet we mainly refrain ourselves from considering those since they mainly require larger states which can not be
instantiated with our primitives.
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gested in [67]). For LP362 we use the matrix A′′ given in [44]. These matrices are defined as

A′ =


1 2 0 0 0
2 2 1 0 0
2 1 0 1 0
1 0 1 1 2

 and A′′ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1
1 2 4 1 2 4 0 1 0


.

The entries of A′ (A′′) represent the elements of F2256 (F2128) defined by the irreducible polynomial
x256 +x10 +x5 +x2 +1 (x128 +x7 +x2 +x+1) over F2. That is, 0x1 ≡ 1, 0x2 ≡ x etc. Note that the
compression function suggested by Shrimpton and Stam [69] (SS) falls also in this general framework
although the matrix

Ã =


1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 0 1 0 1


(over F2256) does not satisfy the independence criterion imposed by Rogaway and Steinberger. We remark
here that the compression function of Shrimpton and Stam also enjoys almost optimal collision resistance
(yet suboptimal preimage resistance). In our benchmark, we include all the three proposed schemes in
this category. The security of LP-schemes has been extensively studied in [72,66,44].

LANE?. The LANE [36] is a permutation based hash function design (see Fig. 11) submitted to the
SHA-3 competition by Indesteege and Preneel. Although some weaknesses have been exploited [50]
for the proposed version (that led to the elimination from the selection process) its generic compression
function is worth reconsidering due to its capabilities for high parallelism and suitability for the AES
instruction set. Indeed, LANE-256, the submitted version using AES-based permutations, was recently
shown to be one of the fastest AES-based SHA-3 candidates when using the AES instruction set [3]. For
our purposes, we consider its 256-bit digest version which is instantiated by fixed-key RIJNDAEL-256
and denoted by LANE?. The security of the LANE? is known to be sub-optimal: a yield-based adversary
can be shown to find collisions and preimages with O(2n/6) and O(2n/3) queries respectively for n-bit
digest. Yet, there is still no known algorithm to find collisions and preimages with time complexity less
than the generic attacks.

LUFFA?. LUFFA [21] is a second round SHA-3 candidate designed by De Cannière and Watanabe. We
consider the LUFFA compression function as another permutation based function that might possibly
benefit from AES-instruction set once its underlying permutations are modified accordingly (see Fig. 9).
To this end, we instantiate the three underlying permutations of LUFFA with fixed-key RIJNDAEL-256
and denote this version by LUFFA?. The security analysis of LUFFA borrows characteristics from the
sponge framework [8,1] assuming that the underlying permutations are ideal. We note that the compres-
sion function of LUFFA is not ideal and the hash function is secure only in the iteration. Moreover, the
compression function of LUFFA? outputs 768 bits and one requires an output transformation to reduce
the digest to 256-bit.

4 Implementation Considerations and Benchmark Results

The constructions from Section 3 have been implemented and measured on an Intel Core i5 650 (3.20GHz)
using C intrinsics to implement the various SS(S)E{2,3,4} and AES instructions. The measurements have
been carried out analogously to [31]; i.e. with the help of the time stamp counter which is read using the
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RDTSC instruction. The presented performance results are an average over many millions data-dependent
calls to the compression function measured.

Table 2 presents the performance numbers, expressed in cycles per byte, and the security levels for
the considered constructions, the relevant SHA-3 candidates and SHA-256. Security claims are given
in accordance with the conventions introduced in Section 2 and the results from Section 3. Briefly,
lower bounds correspond to the proven query complexity lower bounds and query/time complexity upper
bounds correspond to the existing attacks matching these bounds. Although we took care to schedule the
instructions in our C-implementation, the presented performance numbers can certainly be optimized
when carefully implementing them directly in assembly. In order to reproduce our results we plan to
make all our source code publicly available.

The SHA-256 results have been obtained with the implementation from the crypto++ library [23].
As far as we are aware, this implementation results in the best performance for this platform. The per-
formance numbers for the second round SHA-3 candidates are obtained with the submitted codes to
eBACS [5] run on our target platform. We note that we include the compression functions of LUFFA?

and LANE? to our benchmark instantiated by fixed-key RIJNDAEL-256. The original version of LUFFA

has almost identical performance (10.49 cycles per byte) using the fastest implementation submitted to
eBASH (SSSE3-PS-2). The original version of LANE, on the other hand, performs significantly faster
(4.3 cycles per byte) due to the relatively light permutations in the submitted version.

Throughput Considerations. Many of the constructions described in Section 3 require to compute more
than one call to a blockcipher operating on n bits (for n ∈ {128, 256}). If these two or more blockciphers
can run independent from each other, while possibly sharing the key expansion, a performance gain can
be expected in a software implementation (similar holds for the permutation-based setting). The AES
round instructions are pipelined and can be dispatched theoretically every 1-2 CPU clock cycles when
there is no dependency between such subsequent calls and provided that all data is available [30]. The
latency of these instructions is 5 cycles [27]. Hence, running multiple independent blockciphers reduces
data dependencies between the subsequent AES round function calls and increases the overall through-
put. The same reasoning holds when implementing a single RIJNDAEL-256 component. This variant of
the AES works on an internal state of 256 bits which is implemented using two data-independent calls to
AESENC increasing the overall throughput.

Polynomial Multiplication. In some of the compression function designs we consider, one of the cru-
cial components is the polynomial multiplication over a finite field, in particular over F2128 and F2256 .
Multiplication in F2128 is implemented using the code examples as described in [32] in the setting of
implementing the Galois counter mode. This is realized by using the new instruction PCLMULQDQ to
implement the multiplication; this instruction calculates the carry-less product of the two 64-bit input
to an 128-bit output. Note that this instruction has a latency of 12 cycles and can be dispatched every
8 cycles [27]. Hence, compared to other SSE instructions, some of which can be dispatched in pairs
of three every clock cycle, this instruction might not always be the optimal choice from a performance
perspective.

An example where the usage of the PCLMULQDQ instruction might not lead to a speedup is in the
case of polynomial multiplication by x, represented as the hexadecimal number 0x2. Essentially the
result can be obtained by shifting the input one position to the left (the multiplication by x) and perform
a conditional XOR with the reduction polynomial depending on the bit shifted out. Unfortunately, the
SSE instruction set has no bit shift operation shifting the full 128-bit vector. Shifting the two 64-bit, four
32-bit or eight 16-bit in SIMD fashion is possible but the bits shifted out locally are lost. We outline
a novel approach (with the SSE instruction in parentheses) to obtain the desired result in the setting of
F2128 where we exploit the fact that the second largest exponent of the reduction polynomial is < 32.
Given an input A we

1. swap the two 64 bit halves of A to t (PSHUFD),

10
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2. set all bits except number 63 and 127 of t to zero (PAND),
3. create a mask m (either all ones or zeros in each 64-bit half) depending if bits 63 and 127 of t are set

(PCMPEQD),
4. use m to extract the correct 64-bit parts of a precomputed constant [1, R] in t (PAND),
5. shift both 64-bit parts of A left by one bit and store this is s (PSLLQ),
6. perform the actual reduction plus restoring the local carry bit by combining s and t (PXOR).

HereR denotes the hexadecimal representation of the reduction polynomial stored in a 64-bit word. Note
that this computation might be speed up, depending on the setting, in the following way. Replace step 1
by a byte shuffle (PSHUFD) which moves bits 63 and 127 to bit position 95 and 31 respectively and set
the other 14 bytes to zero. The resulting vector, viewed as four 32-bit signed integers, contains two 32-bit
words where only the sign bit may be set. Now step 2 and 3 can be replaced by using an arithmetic right
shift of 31 positions (PSRAD) creating the mask by using the fact that this instruction shifts in the sign
bit. Shifting a 256-bit vector is done in a similar fashion, the total required number of instructions in this
case is ten.

Key Expansion Cost. When using the AES-NI, the cost of the AES round function is highly reduced
but the cost of the key-expansion remains significant. In most circumstances in practice, where AES
is used, this is not an issue since the key expansion is typically done once and many block encryp-
tions/decryptions are performed with this same key. For blockcipher based compression functions con-
sidered in this paper, the key expansion needs to be performed for every compression function evalua-
tion. To illustrate the relatively expansive cost of the key expansion we show the performance numbers
obtained by Intel using their assembly implementation [31]. These numbers have been obtained when
running on a Westmere-based processor running at 2.67GHz. The performance numbers, expressed in
cycles per byte, are obtained when running AES in ECB mode and processing a 1KB buffer.

key expansion encryption
AES-128 6.75 1.28
AES-256 8.50 1.76

This shows that the constructions which require multiple calls to the key scheduling routines per com-
pression function invocation pay a significant performance price. In order to avoid such a performance
penalty, constructions might use a single key expansion shared among multiple invocations or use a fixed
key to completely eliminate this cost, e.g. all permutation based compression functions (see Table 2 for
a more elaborate comparison of key scheduling needs for the compression functions we consider).

5 Discussion and Conclusion

We briefly discuss the results provided in Table 2 and conclude the paper. The conclusions of our work
are several fold:

1. Using the current compression function designs it is possible to construct fast cryptographic hash
functions with provable security reductions to an underlying primitive. Indeed, most of the target
algorithms outperform the current cryptographic hash standard SHA-256 on our target platform.
Moreover, many of the considered compression functions are faster compared to the second-round
AES-inspired SHA-3 candidates GRØSTL and FUGUE whereas ECHO and SHAVITE-3 outperform
all the constructions we considered. The latter result shows that ECHO and SHAVITE-3 do benefit
effectively from the AES-NI.

2. Many of the multi-block length blockcipher based compression functions outperform the DM (when
used with a single-key). This shows that on modern architectures, supporting high parallelism, one
can achieve better performance, without loosing too much security, by using smaller blockciphers
that are run concurrently. We expect that the situation is analogous for hardware implementations as
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well. This result further motivates research on the design on multi block-length compression/hash
functions.

3. The cost of key-scheduling might affect the performance of the algorithms considerably12. For in-
stance, consider the performance of ABREAST-DM and HIROSE-DBL (with the same underlying
primitive and almost the same security level), the performance gain is seven percent in HIROSE-
DBL. Note however that there might be a possibility for blockcipher based compression functions
to increase their performance. Namely, one might increase the number of message bits compressed
per compression function evaluation by increasing the key size of the underlying blockcipher without
violating the security proof. Obviously, this can affect the performance significantly assuming that
the key scheduling cost and the number of rounds used in the blockcipher do not increase too much.
The compression functions MJH-DOUBLE and the double-key version of DM fall in this category13

by using AES-256 instead of AES-128. On the other hand, removing the key-schedule altogether,
by moving to the permutation based setting, results in more calls to the underlying primitives in or-
der to guarantee the same security level. Still, one can generally achieve comparable performance,
in particular when the permutations can be run independently. Nevertheless, we believe that using
larger key blockciphers in DM or MJH-DOUBLE would result in a better performance (although the
design of key-scheduling algorithms are not well understood and generally leads to weaker schemes).

4. Among the blockcipher-based compression functions, HIROSE-DBL is the fastest algorithm when
optimal security (in terms of proven lower bound) is desired. For the practical security level (con-
sidering the time complexity upper bound) MJH-DOUBLE and PEYRIN ET AL.(II) outperform the
others including the permutation based compression functions. Here, the former makes use of the fact
that it compresses more message bits by increasing the key size (see the conclusion stated above),
whereas the latter benefits from high parallelism by compressing a high number of message bytes
using multiple independent primitives.

5. In the permutation based setting, the LUFFA? compression function is the fastest. Note that it is one of
the rare compression functions outputting more than 256 bits yet having a considerable speed. When
comparing the performance between the different constructions in the ROGAWAY-STEINBERGER’S

LP framework it is interesting to note that SS outperforms LP231. This is only partially because
the former requires no polynomial multiplication by 0x2. The main speed-up is due to the fact that
the first two fixed-key RIJNDAEL-256 permutations are independent and can be run concurrently
while this is not possible in LP231. The same argument holds in the setting of LP362 which,
despite requiring some polynomial multiplications, allows to run multiple faster (fixed-key AES-
128) permutations in parallel. It is an interesting open problem to find more efficient ROGAWAY-
STEINBERGER’S LP constructions that allows to run many permutations in parallel.

6. As briefly mentioned above, one of the key components to achieve high performance is to increase
the number of message bits compressed per compression function evaluation, even if the number
of (parallel) primitive calls have to be increased to assure a certain security level. Indeed, there are
already some algorithms among our targets that benefit from this idea: LUFFA?, LANE?, PEYRIN

ET AL.(II) and KNUDSEN-PRENEEL perform quite well on our benchmark platform. We believe that
it is worth further studying compression functions of this form with possibly more parallel calls to
the underlying primitives and outputting variable digest sizes in order to achieve better performance
by compressing more bits.

7. Finally, we remark that all the constructions we consider are generic in the sense that they can be in-
stantiated with any secure blockcipher or permutation. Hence, it is well possible that one can achieve
better performance with different blockciphers or permutations. In particular, any AES-inspired yet
more efficient primitive, for instance a round-reduced version or a tweaked version with more se-
cure and efficient key-scheduling, would result in a faster scheme on our target platform. We believe

12 As shown in Section 4, AES has a similar problem; we believe that modifying the AES key scheduling in a secure and
efficient way is a challenging open problem.

13 The compression functions of ECHO and SHAVITE-3 also benefit from this feature.
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that our benchmark provides a valuable toolbox to see the relative performance figures for almost
all blockcipher and permutation based compression functions. So, one can use the results from Ta-
ble 2 to evaluate both security and performance of any construction of this form and derive clear
conclusions once a primitive with certain properties is designed.

Acknowledgements. This work was supported by the Swiss National Science Foundation under grant
numbers 200020-132160, 200021-119776, and 200021-122162. We gratefully acknowledge Çağdaş Çalık,
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A Illustrations of Related Compression Functions
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Fig. 1. The DM compression function, n = k =
256. The underlying blockcipher is RIJNDAEL-256.
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Fig. 2. The MDC-2 compression function, n = 128.
The underlying blockcipher is AES-128.
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Fig. 3. The ABREAST-DM compression
function, n = 128. The underlying block-
cipher is AES-256 and ◦ denotes the bit-
wise complementation.
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Fig. 4. The HIROSE-DBL compression function, n = 128. The
underlying blockcipher is AES-256 and c ∈ {0, 1}n \ {0}n.
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Fig. 5. The KNUDSEN-PRENEEL compression function, n = 128. The underlying blockcipher is
AES-256. For V = V1|| . . . ||V4 ∈ {0, 1}512, M = M1||M2 ∈ {0, 1}256 and different constants
ci ∈ {0, 1}128 \ {0}128, we define:
(x1, k1) = (V1 ⊕ c1, V2||V3), (x2, k2) = (V4 ⊕ c2,M1||M2),
(x3, k3) = (V3 ⊕M1 ⊕ c3, V1 ⊕ V2 ⊕M2||V2 ⊕ V3 ⊕ V4 ⊕M1),
(x4, k4) = (V1 ⊕ V3 ⊕M1 ⊕M2 ⊕ c4, V1 ⊕ V4 ⊕M1 ⊕M2||V2 ⊕ V4 ⊕M2).
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Fig. 6. The PEYRIN ET AL. compression function H : {0, 1}2n+m → {0, 1}2n. The underlying five
blockciphers operate on n bits and they support k-bit keys each. We consider two scenarios (for different
constants ci ∈ {0, 1}128 \ {0}128):
(i) m = k = n = 128 (using AES-128), for V = V1||V2 set
(x1, k1) = (V1 ⊕ c1, V2), (x2, k2) = (V2 ⊕ c2,M), (x3, k3) = (M ⊕ c3, V1 ⊕ V2),
(x4, k4) = (V1 ⊕ c4,M), (x5, k5) = (V1 ⊕ c5, V2).
(ii) m = k = 2n = 256 (using AES-256), for V = V1||V2, M = M1||M2 set
(x1, k1) = (V1 ⊕ c1, V2||M1), (x2, k2) = (V1 ⊕ c2, V2||M2), (x3, k3) = (V1 ⊕ c3,M1||M2),
(x4, k4) = (V1 ⊕ c4, V2||M1), (x5, k5) = (V2 ⊕ c5,M1||M2).
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Fig. 7. The MJH and MJH-DOUBLE compression functions for n = 128. In the former, k = n =
128 whereas in the latter k = 2n = 256. The underlying blockciphers are AES-128 and AES-256
respectively, σ is an involution (e.g., an addition with a non-zero constant) and θ is a multiplication with
a constant in F2128 .
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Fig. 8. The QPB-DBL compression function, n =
128. The underlying blockcipher is AES-256 and
Z2 = V1Z

2
1 + V2Z1 +M .
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Fig. 9. The LUFFA-256 compression function, the
horizontal lines carry 256 bits. The underly-
ing permutations are obtained from the fixed-key
RIJNDAEL-256 with varying keys. The message in-
jection step MI is defined as follows:
Xi = Vi ⊕ (0x02 · (V1 ⊕ V2 ⊕ V3)) ⊕ 0x02i ·M ,
for i ≤ 1 ≤ 3. Note that the hash function outputs
256 bits by performing an output transformation. We
refer to [21] for all details, especially how the mul-
tiplication by 0x02 is defined.
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Fig. 10. The ROGAWAY-STEINBERGER framework of compression functions. The LP231 and SS com-
pression function are illustrated, all lines carry 256 bits. The underlying fixed-key permutations π1, π2, π3

are derived from RIJNDAEL-256. The Fi compute the xi as follows (see Sec. 3 for the specific values
for aj):
x1 = a11 ·M + a12 · V, x3 = a31 ·M + a32 · V + a33 · y1 + a34 · y2,
x2 = a21 ·M + a22 · V + a23 · y1, x4 = a41 ·M + a42 · V + a43 · y1 + a44 · y2 + a45 · y3.
The LP362 compression function works similarly, the lines carry 128 bits and six calls to AES-128 are
made. Finally, two 128 bit value are the output.
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Fig. 11. The LANE-256 compression function with M ∈ {0, 1}512 and V,Z ∈ {0, 1}256. Horizontal
lines carry 256 bits. The underlying permutations are obtained from the fixed-key RIJNDAEL-256 with
varying keys. Here ME denotes the so called message expansion algorithm which is based on a [6, 3, 4]
linear error correcting code over the finite field F4. We refer to [36] for the exact specification of ME.
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