
L1 - A Programming Language for
Mixed-Protocol Secure Computation

Axel Schröpfer1, Florian Kerschbaum1, and Günter Müller2

1 SAP Research
{axel.schroepfer,florian.kerschbaum}@sap.com,

2 Universität Freiburg
guenter.mueller@iig.uni-freiburg.de,

Abstract. Secure Computation (SC) enables secure distributed com-
putation of arbitrary functions of private inputs. It has many useful
applications, e.g. benchmarking or auctions. Several general protocols
for SC have been proposed and recently been implemented in a number
of compilers and frameworks. These compilers or frameworks implement
one general SC protocol and then require the programmer to implement
the function he wants the protocol to compute. Performance remains a
challenge for this approach and it has been realized early on that special
protocols for important problems can deliver superior performance. In
this paper we propose a new programming language (L1) which enables
efficient implementation of special protocols potentially mixing several
general SC protocols. We show with two case studies – one for computa-
tion of the median and one for weighted average – that special protocols
and mixed-protocol implementations in our programming language L1
can lead to superior performance.

1 Introduction

Secure Computation (SC) allows a set of n players Pi to jointly compute an
arbitrary function f() of their private inputs xi (i.e. Pi has xi): f(x1, . . . , xn).
The computation is privacy-preserving, i.e. it reveals nothing to a player except
what can be inferred by his private input and the output of the function. It has
many useful applications, e.g. benchmarking [1, 2] and auctions [3].

Even if there are adversarial players, the guarantees for correctness and pri-
vacy can be proven to hold in well stated models. These models consider the
type of adversary, active (malicious) or passive (semi-honest), and his comput-
ing power, bounded or unbounded. A passive adversary follows the protocol as
prescribed but tries to learn additional information, while an active adversary
may arbitrarily deviate from the protocol.

We distinguish two-party and multi-party (more than two) SC. The first
general protocol for two-party SC was presented in [4]. It also defined the ap-
proach underlying all general SC protocols. First, the function to be computed
is translated into a circuit. Second, each gate of the circuit is implemented using

2 L1 - A Programming Language for Mixed-Protocol Secure Computation

a secure protocol. Two types of gates – multiplication (logical and) and ad-
dition (exclusive-or) – suffice to compute any function. This approach reduces
constructing a general SC protocol to two protocols implementing these two
types of gates. For multi-party SC in the cryptographic model (computation-
ally bounded adversary) with binary circuits this has been solved in [5]. For
multi-party SC in the information-theoretic model (unbounded adversary) with
arithmetic circuits this has been solved in [6]. Both protocols need to be run
interactively, i.e. the number of rounds corresponds to the multiplicative depth
of the circuit. Multi-party SC in the cryptographic model has been improved to
a constant number of rounds in [7].

Another useful tool for SC is homomorphic encryption (HE), e.g. [8–10]. In
HE one operation on the ciphertext maps to another operation on the plaintexts.
Recently [9] it was shown that this can be performed for logical not-and gates
which also suffice to compute any function. Threshold HE (for only addition)
can be used to implement multi-party SC in the cryptographic model [11]. Also
two-party SC can be implemented using HE by adapting the protocol from [12].

In a seminal paper – FairPlay [13] – Malkhi et al. build on the general ap-
proach for SC by building a compiler that translates the function specified in
a programming language into a circuit. This circuit is then executed using a
general SC protocol. In [13] the general protocol was [4]. Later others followed:
[14] for [15], [16] for [6], and [17] for [7].

A critical aspect of SC remains performance. Even optimized protocols re-
port a slowdown of several tens of thousand compared to non-privacy-preserving
implementation [2]. It has been realized early on that special protocols for im-
portant problems can provide better performance [18]. Yet these protocols are
not supported in existing SC compilers and frameworks.

This paper contributes

– a programming language (L1) which can implement special SC protocols. It
currently supports general SC protocols [4, 6, 11] and HE [8, 10], but it is
also easily extensible to other protocols and encryption schemes.

– a compiler that translates L1 into Java code.
– a benchmarking framework built into the language and compiler that sup-

ports measuring SC protocols.
– two case studies: one for computation of the median which supports that

special SC protocols can be faster than general SC protocols and one for
weighted average which supports that mixing general SC protocols can be
faster than a single general SC protocol.

The remainder of the paper is structured as follows: Section 2 reviews related
work, in particular other compilers and frameworks for SC. Section 3 describes
the L1 language, compiler and benchmarking framework. We present the case
studies in Section 4 and our conclusions in Section 5.

A. Schröpfer et al. 3

2 Related Work

2.1 FairPlay

FairPlay [13] was the first compiler implementing SC. It implements Yao’s two-
party SC [4]. It provides a simple programming language for specifying the func-
tion to be computed. There are some restrictions on this function, such as no
variable number of iterations in loops and no recursion. The language provides
arrays and variable indexing into arrays which is reported as one of the most
complex functions [4]. The compiler translates this language into a circuit which
is then executed in Yao’s protocol.

The language (SFDL) introduces some of the basic concepts for languages
for SMC, such as input and output definition for variables.

2.2 FairPlayMP

FairPlayMP extends FairPlay to the multi-party setting. It is based on the pro-
tocol of [7] which is also an extension of [4] to the multi-party setting. Some code,
e.g. in the compiler of the language to the circuit can therefore be shared. The
interpretation of the circuit has to completely change, of course. FairPlayMP
includes a novel preprocessing phase in order to reduce the communication over-
head.

It also implements a popular concept in multi-party SC. Not all parties need
to participate equally in the computation. Instead one can separate input, com-
putation and output nodes. As long as there are sufficiently many computation
nodes (usually at least three) the computation remains secure, but communica-
tion cost has been significantly reduced.

Its programming language includes some necessary extension for multi-party
problems and some additional operators.

2.3 Virtual Ideal Functionality Framework

VIFF [14] is the basis for the first commercial application of SC [3]. It implements
multi-party SC in the information-theoretic model [15]. It does not yet provide
a high-level programming language for the functionality. Instead it extends the
Python language to use operators on the basic data types. It implements the
basic protocols for [15] as objects.

A high-level language (SMCL) for VIFF has been specified in [19]. It extends
FairPlay’s language by some features such as loops with public number of iter-
ations and allows security analysis similar to information flow analysis. For this
purpose it tags all variables in a lattice as either secret, private or public.

2.4 Sharemind

Sharemind [16] is a framework built for experimenting with privacy-preserving
data mining. It implements the SC protocol from [6]. It has been optimized for

4 L1 - A Programming Language for Mixed-Protocol Secure Computation

speed of simple operations, such as vector products. It therefore offers vectorized
operations.

It is currently being extended with a programming language (SecreC) for
specifying the function to be computed.

3 L1 Language

The L1 language was designed to program special SC protocols potentially mix-
ing techniques from multiple general SC protocols. We expect this mix to enable
significantly more efficient SC protocols as shown in our case studies in Section 4.

We have built a compiler that translates a SC protocol encoded in L1 into a
set of Java programs – one for each player in the protocol. The players can then
compile and execute the Java program in order to run the protocol programmed
in L1.

3.1 Syntax

We chose our grammar similar to the familiar languages of Java and C. The
L1 language contains the following constructs: variables of different data types
in different composites (scalar, 1-dimensional and 2-dimensional array), expres-
sions, control flow (if, while, for, sequential and parallel execution, player-specific
code), functions (user-defined and built-in) and modules.

Listing 1.1 shows a sample of L1 source code demonstrating all constructs
of the language. Variable types have straight-forward definitions. Variables of
type bool can have values true or false, string variables can contain strings.
Variables of type int32 can be 32-bit signed integer values while those of type
int can contain arbitrarily long integer values (e.g. SC shares). Finally, prvk
and pubk variables carry public and private keys. As in almost all other im-
perative programming languages, expressions in L1 consist of operands which
may be connected through operators. Operands can be function calls, variables
or constants. The basic control flow constructs in L1 are quite standard for an
imperative programming language and closely adhere to Java. L1 provides the
basic constructs if -else, for and while in combination with basic blocks. Another
well-known feature which is contained in L1 is code modularization, i.e., code
can be separated in multiple files which then are included.

3.2 Parallel Execution

Besides the Java semantics of sequential statements and basic blocks L1 offers
parallel execution of basic blocks. As mentioned before SC protocols can be very
computational intensive [2] challenging the performance of a single CPU. In
some cases [3, 20] it is already known that SC protocols can be quite efficiently
parallelized capitalizing on the trend to multi-core CPUs. Since most large-scale
SC problems have not yet been tackled due to performance concerns and CPU
speed does not seem to continue to increase exponentially, we expect that future
implementations will need to heavily exploit parallelism.

A. Schröpfer et al. 5

1 // modu l e s

2 include ”key . l 1 ” ;
3
4 // s e l f d e f i n e d f u n c t i o n s

5 i n t newHash (i n t va lue) {
6 i n t hash ;
7 . . .
8 re turn hash ;
9 }

10
11 // v a r i a b l e s

12 i n t hash ;
13
14 // a s s i g n m e n t w i t h e x p r e s s i o n

15 i n t s a l t = rand (1000)+1;
16
17 // p l a y e r d e p e n d e n t s t a t e m e n t

18 1: {
19 // f u n c t i o n c a l l

20 startBenchmark (” hash ”) ;
21 hash = newHash (s a l t) ;
22 stopBenchmark(” hash ”) ;
23
24 // m e s s a g e s e n d i n g (non− b l o c k i n g)

25 send (2 , hash , ” hash va lue f rom”+id ()) ;
26 }
27
28 // m e s s a g e r e c e i v i n g (b l o c k i n g)

29 2 : readInt (” hash va lue f rom 1 ”) ;
30
31 i f (hash%2 == 0)
32 output (” odd hash : ”+hash) ;
33
34 // f o r − l o o p

35 f o r (in t32 i =0; i <200; i=i +1) <
36 // p a r a l l e l e x e c u t i o n

37 . . .
38 >
39
40 // w h i l e − l o o p

41 whi le (cond i t i on) {
42 . . .
43 }

Listing 1.1: L1 sample

L1 offers a unique feature for the definition of parallel code sections. Basic blocks
to be execute as a new thread are specified by angle brackets as delimiters
(instead of curly brackets). The compiler inserts the necessary instructions into
the Java code in order to spawn and execute a new thread containing this basic
block. Afterwards, the execution continues and any adjacent parallel basic blocks
are spawned and run in parallel threads. L1 will also synchronize those threads
before returning to sequential processing.

All parallel threads register with a barrier before executing the L1 basic
block. A barrier is a synchronization mechanism that blocks execution until all

6 L1 - A Programming Language for Mixed-Protocol Secure Computation

registered threads have finished. The compiler uses the Java standard library
class for barriers. After spawning parallel threads the L1 compiler inserts a call
to the barrier to wait until all threads have finished before executing the next
sequential statement.

Listing 1.2 shows an example for thread synchronization in L1. Line 1 con-
tains an initial sequential statement that outputs “S1”. The body of the for
loop is a parallel basic block which will spawn and run two parallel threads. One
outputs “P1” and one “P2”. The last statement is a sequential one again and
outputs “S2”. The barrier mechanism of L1 synchronizes the threads, such that
the last statement will always be executed last, i.e. the first and last output of
the program will always be “S1” and “S2”, respectively. The only two possible
traces of the program are: S1, P1, P2, S2 and S1, P2, P1, S2.

We show the code generated by the L1 compiler in Listing 1.3. First, a new
barrier (class RegistrationBarrier) is created. Second, an instance of class
ParallelStep is created in a for loop wrapping the parallel basic block. The
barrier receives a call to method registerThread passing the instance of the
parallel basic block. The barrier increments its counter and then returns to
the ParallelStep instance calling its method registeredAtBarrier signaling
successful completion of the registration. In this method a new thread for the
parallel basic block is created and started which, after the basic block finished,
calls the method reachedBarrier of the barrier decreasing its counter. The main

Fig. 1: Sequence Diagram for Parallel Execution

thread of the sequential program first calls method closeRegistration and then
waits at the barrier using method waitForAllThreads. This method returns
when the counter of the barrier is decrement to zero and the sequential program
may continue. Figure 1 shows the sequence diagram for this interaction.

A. Schröpfer et al. 7

1 output (”S1 ”) ;
2 for (int32 i =1; i <=2; i=i +1)
3 <
4 output (”P”+i) ;
5 >
6 output (”S2 ”) ;

Listing 1.2: L1 Parallel Execution

1 public void s tep () {
2 Bui l t InFunct ions . output (”S1”) ;
3 Reg i s t r a t i o nBa r r i e r b a r r i e r =
4 new Reg i s t r a t i onBa r r i e r () ;
5 for (i = 0 ; i < 2 ; i=i +1) {
6 b a r r i e r . r eg i s t e rThread (
7 new Para l l e l S t ep (this , s tepThis) {
8 public I n t eg e r sum ;
9 public I n t eg e r j ;

10 public I n t eg e r i ;
11
12 public void i n i t () {
13 sum = DefaultValue . newInteger () ;
14 j = DefaultValue . newInteger () ;
15
16 // c opy i n s t e a d o f r e f e r e n c e

17 i = (In t eg e r) parent . ge tC la s s () . g e tF i e l d (” i ”) . get (
parent) ;

18 }
19
20 public void s tep () {
21 for (j = 1 ; j <= 2 ; j=j +1) {
22 // body

23 sum = sum + 1 ;
24 }
25 Bui l t InFunct ions . output (”P” + i + ” : ” + sum) ;
26 }
27 }) ;
28 }
29 b a r r i e r . c l o s eR e g i s t r a t i o n () ;
30 b a r r i e r . waitForAllThreads () ;
31
32 Bui l t InFunct ions . output (”S2”) ;
33 }

Listing 1.3: L1 sample

3.3 Player-Specific Code

In many SC protocols, particularly in almost all general multi-party SC proto-
cols, all players execute the same code (just on different data). The L1 compiler
therefore produces several instances of the Java code – one for each player.

Some SC protocols, e.g. Yao’s two-party SC [4], deviate from this pattern
and execute different code for different players. Since the player identifier is
accessible within L1, the differentiation could be performed at run-time using

8 L1 - A Programming Language for Mixed-Protocol Secure Computation

an if statement. Instead we chose for performance reasons to differentiate at
compile time and potentially produce different Java code for each player. A
programmer can specify player-specific code sections in the L1 source. A player-
specific code section is a statement or basic block prepended by the identifier of
the player to execute this code followed by colon. Line 18 of Listing 1.1 shows
an example of a player-specific code section.

The interpretation at compile time ensures leaner code at each player that
only needs to execute the statements for this player. Furthermore we feel that it
makes the L1 code easier to read and maintain.

3.4 Built-In Functions

Like procedural languages L1 structures its code into functions, but L1 offers two
types of functions: user-defined and built-in functions. User-defined functions
are specified and compiled as expected from the similarity to the Java language.
As a constraint we currently require the definition of a user-defined function
before its first invocation. Line 5 of Listing 1.1 shows an example of a function
definition. Built-in functions are programmed in Java and not L1, but can be
called from L1 just like any other function. Built-in functions are defined in
a Java class BuiltInFunctions of the compiler. The compiler uses reflection
in order to import the built-in functions. Using built-in functions the compiler
can be extended with new features. Many features of the L1 language have been
implemented as built-in functions. Two which are particularly worth mentioning
are messaging and benchmarking.

Messaging
Messaging allows the transmission of messages between players enabling the
distributed (secure) computation. L1 provides two sub-systems both based on
TCP/IP: synchronous and asynchronous. The built-in functions send and sendSync
send messages to other players (line 25). Their parameters are the identifier of
the receiving player, a name for the message and its value. If the identifier of
the player is 0, the player will broadcast to all other players. The name of the
message is a replacement of its address and used by the recipient to retrieve the
message in case of asynchronous communication.

The asynchronous send function implements non-blocking behavior (i.e., the
next statement in line will be executed immediately). The synchronous sendSync
will block the execution until the message has been acknowledged by all recip-
ients. Synchronous send also supports an optional timeout parameter. Further-
more L1 also supports buffered sends which bundle several send invocations.

The recipient has a built-in receive (read) function for every data type. These
functions require the message name as a parameter (line 29). Message receiving
is always blocking, i.e., the read function will block and wait until the message
with the specified name has been received. An optional timeout can be specified
as a second parameter or else a default timeout is used.

A. Schröpfer et al. 9

Benchmarking
The design goal of L1 is programming faster SC protocols. Measuring the per-
formance improvement therefore enables verifying whether this goal has been
reached. L1 provides a benchmarking sub-system using built-in functions. Sev-
eral benchmarks can be measured in parallel. Each benchmark is started by
calling the built-in function startBenchmark (line 20) and stopped by calling
stopBenchmark (line 22). Its parameter is the name for this benchmark called
a benchmarking section. L1 implicitly takes care of multiple threads by inter-
nally appending the thread identifier to the name. In a benchmarking section
the following quantities are captured: run time (wall clock time), number of
messages sent or received, number of bytes sent or received. These correspond
to computation and communication complexity in theoretic papers on SC.

4 Case Studies

Using two case studies we exemplify the performance benefit of using L1. In
the first case study we compare two SC protocols for median computation, one
entirely implemented using Yao’s protocol [4] in FairPlay [13] and one imple-
mented in L1. Although both implement the same function, the performance
results are quite different. In the second case study we compare two SC pro-
tocols for weighted average computation, again one entirely implemented using
Yao’s protocol and one implemented in L1 also using an adaptation of Goethals
et al.’s protocol [12].

Each reported runtime measurement is the average of 20 samples. All tests
were performed on two 2GHz Intel CoreDuo T7200 dual CPU machines with
2GB RAM each.

4.1 Median

Imagine two players, Alice and Bob, each with n elements drawn from a finite
domain. They want to compute the median of their joint set of elements, i.e.
the n-th ranked element in their combined, (ascendingly) sorted set, but do not
want to disclose any of their other elements to the other party.

Aggarwal et al. proposed the following protocol for this problem [21]. Alice
and Bob compare the median of their individual sets using a SC protocol for
comparison, i.e. they only learn the result of the comparison, but not each other’s
input values. The party with the lower value selects the upper half of its elements
and the party with the higher value selects the lower half of its elements. They
then repeat the comparison with set half the initial size and continue doing so
until the sets are of size 1.

We implement this algorithm in L1. We also perform comparisons in L1 using
Yao’s protocol, but do not show the code in the paper, since it is quite standard
and import the function via a module. Note that using Yao’s protocol one could
implement the same algorithm, but unfortunately FairPlay does not support

10 L1 - A Programming Language for Mixed-Protocol Secure Computation

(a) Secure Median with 16 bit (b) Secure Median with 32 bit

Elements Aggarwal Fairplay Aggarwal Fairplay
per Player 16 bit 16 bit 32 bit 32 bit

4 730,5 1525,9 1439,9 2838,4
8 931,3 3308,9 1885,3 6001,1
16 1164,9 7043,3 2353,2 13543
32 1395,4 18473,4 2793,9 33950,8
64 1620,4 51760,8 3250,2 96166,9

Table 1: Runtime in [ms] for Secure Median with 16 and 32 bit

the necessary operations, such as division (or shift). We therefore use FairPlay’s
example for median from its distribution.

The key insight of [21] is that the result of the comparison and subsequent
selection of elements can be public (known to both parties), since it can be
inferred from the (public) result of the computation. FairPlay’s problem is that
this insight cannot be implemented in its code while L1 can implement it. The
variable indexing into the array of elements is an O(n) operation in FairPlay
while it is almost free in L1, since it does not require any communication.

We ran the protocols for varying numbers of elements (4, 8, 16, 32 and 64) and
also for varying input bit lengths (16 and 32). Table 1 shows the runtime. Figures
2a and 2b depict the results as graphs. L1 always outperforms FairPlay and L1’s
advantage is increasing with an increasing number of elements. Unfortunately the
results are distorted by FairPlay’s lack of operations, but we believe that even if
the more efficient algorithm would have been implemented in Yao’s protocol L1’s
advantage of public selection of the remaining elements would have prevailed.

4.2 Weighted Average

Suppose Alice has n elements and Bob has m elements drawn from a finite
domain. Let c be the sum of Alice’s elements and d be the sum of Bob’s. Fur-
thermore, Alice and Bob share a weight w, such that Alice has wA, Bob has wB

and w = wA +wB . This also covers less general problems where either only Alice
or only Bob has the weight w. They want to jointly (and securely) compute the

A. Schröpfer et al. 11

Fig. 2: Secure Weighted Average with 16 and 32 bit

Input Size GC+HE GC

16 2446,2 12034,1
32 11009,8 69149,6

Table 2: Runtime in [ms] for Secure Weighted Average with 16 and 32 bit

weighted average f :

f =
(c + d)(wA + wB)

n + m
(1)

We implement this formula in Yao’s protocol [4]. Due to a minor implementation
error in FairPlay we had to resort to our own implementation of [4]. We then
replaced the multiplication in the divisor in Yao’s protocol by a variant of the
protocol from [12]. We briefly review this variant.

Let Alice have a and Bob b they can compute x + y = ab using HE. Alice
sends EA(a) to Bob who computes EA(a)bEA(R) = EA(ab + R) and returns it
to Alice. Alice decrypts and stores the result as x while Bob sets y = −R. When
combining Yao’s protocol with HE care must be taken when choosing the length
of the secret number R. Secret shares, such as in wA + wB have significantly
less bits than the key length of most HE schemes. Therefore R should be chosen
longer according to the technique from [22] and later reduced using a modulo
operation on the plaintexts.

We expect a significant performance improvement by the mixed SC pro-
tocol, simply because using HE one multiplication can be implemented using
one operation (albeit an expensive one) as in an arithmetic circuit while Yao’s
protocol works on binary circuits where integer multiplication must be (cum-
bersomely) emulated using O(n2) operations (gates). This insight of cleverly
combining arithmetic and binary circuits has also been noted in [23]. Table 2
shows the runtimes of both protocols for 16 and 32 bits of input length. Figure 2
shows the same results as a graph. As anticipated the mixed SC protocol clearly
outperforms Yao’s protocol.

12 L1 - A Programming Language for Mixed-Protocol Secure Computation

5 Conclusion

We have presented the L1 language intended to implement mixed-protocol SC.
It supports different general SC protocols, such as using secret shares [6, 15],
homomorphic encryption [11, 12] and garbled circuits [4]. It also supports special
SC protocols designed for important problems.

The intention of mixed SC protocols is to improve performance and we tested
this hypothesis using two case studies. In one case study a special SC protocol
was compared to a general SC protocol and in the other case study a single
SC protocol was compared to a mixed SC protocol. In both cases L1 provides
superior performance.

We used L1 internally for a number of experiments and implementations of
SC. Future work is to continually enhance to it cover different techniques, en-
cryption schemes and protocols. Its built-in benchmarking sub-system allows to
perform experiments efficiently leading to novel insights on the practical perfor-
mance of SC protocols.

5.1 Future Work

We intend to develop on top of L1 another, more high level programming lan-
guage for cryptographic protocols, called L2. L2 will support more abstract prim-
itives like secure data types, with their operations compiled into a mixed protocol
in L1 optimized for performance. We also aim to introduce in L1 support for
automatic security verification of the cryptographic protocol programs.

References

1. Kerschbaum, F.: Practical privacy-preserving benchmarking. In: 23rd IFIP Inter-
national Information Security Conference. (2008)

2. Kerschbaum, F., Dahlmeier, D., Schröpfer, A., Biswas, D.: On the practical impor-
tance of communication complexity for secure multi-party computation protocols.
In: 24th ACM Symposium on Applied Computing. (2009)

3. Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Kroigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: 13th International Conference on
Financial Cryptography and Data Security. (2009)

4. Yao, A.: How to generate and exchange secrets. In: In Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science. (1986) 162–167

5. Goldreich, O., Micali, S., , Wigderson, A.: How to play any mental game. In:
Proceedings of the 19th Symposium on the Theory of Computing. (1987) 218–229

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault tolerant distributed computation. In: Proc. of 20th ACM
Symposium on Theory of Computing (STOC). (1988) 1–10

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory
of computing. (1990) 503–513

A. Schröpfer et al. 13

8. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications
of pailliers probabilistic public-key system. In: Proceedings of International Con-
ference on Theory and Practice of Public-Key Cryptography, Lecture Notes in
Computer Science 1992. (2001) 119–136

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing. (2009)

10. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Proceedings of EUROCRYPT, Lecture Notes in Computer Science
1592. (1999) 223–238

11. Cramer, R., Damgard, I., Nielsen, J.: Multiparty computation from threshold
homomorphic encryption. In: Proceedings of EUROCRYPT, Lecture Notes in
Computer Science 2045. (2001) 280–299

12. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: 7th International Conference
on Information Security and Cryptology. (2004)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computa-
tion system. In: Proceedings of the USENIX security symposium. (2004) 287–302

14. Virtual Ideal Functionality Framework: http://www.viff.sk (2010)
15. Cramer, R., Damgard, I., Maurer, U.: General secure multi-party computation

from any linear secret sharing scheme. In: Eurocrypt. (2000)
16. Sharemind: http://sharemind.cs.ut.ee/wiki/ (2010)
17. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party

computation. In: CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security. (2008) 257–266

18. Goldwasser, S.: Multi-party computations: Past and present. In: 16th ACM Sym-
posium on Principles of Distributed Computing. (1997)

19. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: PLAS ’07: Proceedings of the 2007 workshop
on Programming languages and analysis for security, New York, NY, USA, ACM
(2007) 21–30

20. Deitos, R., Kerschbaum, F.: Improving practical performance on secure and private
collaborative linear programming. In: DEXA Workshops. (2009) 122–126

21. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked
element. In: EUROCRYPT. (2004) 40–55

22. Damgard, I., Thorbek, R.: Efficient conversion of secret-shared values between
different fields (2008)

23. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Modular design of efficient secure
function evaluation protocols. Cryptology ePrint Archive, Report 2010/079 (2010)

