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Abstract

We analyze the concrete security and associated key sizes for theoretically sound lattice-based
encryption schemes based on the “learning with errors” (LWE) problem. Our main contributions are (1) a
new, detailed model and experimental analysis of how basis-reduction and post-reduction attacks perform
on the specific family of random lattices arising from the use of LWE, and (2) concrete parameters and
security estimates for an LWE-based cryptosystem that is more compact and efficient than the more
well-known schemes from the literature. For security levels exceeding that of a 128-bit symmetric cipher,
our new key sizes are at least 10 times smaller than prior recommendations.

Keywords: lattice-based cryptography, basis reduction, learning with errors

1 Introduction

Recent years have seen significant progress in theoretically sound lattice-based cryptography, resulting in
solutions to many tasks of wide applicability. In the realm of encryption alone, for example, we now have
public-key cryptosystems [AD97, Reg03, Reg05] with chosen-ciphertext security [PW08, Pei09], identity-
based encryption [GPV08, CHKP10, ABB10], and a fully homomorphic cryptosystem [Gen09]. Much of
this progress has been greatly aided by the use of simple and flexible average-case problems — namely,
the short integer solution (SIS) introduced by Ajtai [Ajt96] and the learning with errors (LWE) problem
of Regev [Reg05] — that are provably as hard as certain lattice problems in the worst case, and appear to
require time exponential in the main security parameter to solve.

For practical parameters, however, the concrete hardness of the SIS and LWE problems against algorithmic
attacks is still far from a settled issue. This makes it difficult to assess the actual security and efficiency of
cryptographic schemes that are based on these problems. The purpose of this paper is to shed further light on
this issue, by considering new variants of known schemes and attacks, and analyzing their consequences in
terms of key sizes and estimated security.
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1.1 Our Contributions

We analyze the concrete security and efficiency of modern lattice-based cryptographic schemes, with a focus
on LWE and public-key encryption. To start, we describe an LWE-based cryptosystem that has substantially
smaller keys and ciphertexts than the more well-known systems in the literature (namely, the original system
of Regev [Reg05] and its more efficient variants [PVW08, GPV08]). The present scheme incorporates several
techniques and perspectives from recent works; in particular, it is an instance of an abstract system described
by Micciancio [Mic10] that generalizes all the schemes of [Reg05, PVW08, GPV08], and the proof of
security (under the LWE assumption) combines a variety of techniques from [Ale03, MR09, LPS10, Pei10].
To our knowledge, however, the current literature lacks a full description and analysis of the system, despite
it now being an important target of study.

The main contribution of this work is a new way of using known algorithmic attack tools, such as lattice
basis reduction and bounded-distance decoding with preprocessing, to analyze the concrete security of recent
lattice-based cryptosystems. Our attacks are directed specifically at the LWE problem, and take advantage of
some of its structural properties in ways that do not seem possible against other lattice problems, such as
the unique shortest vector problem, that have been used for public-key encryption [AD97, Reg03, AD07].
Therefore, we believe that our analysis gives a more precise and accurate picture of LWE’s concrete hardness
than estimates derived from more generic lattice attacks. We then apply our methodology to propose new
concrete parameters and estimated security levels for the LWE-based cryptosystem mentioned above. Despite
our improved attacks, the resulting key sizes are still smaller than prior recommendations by a factor of
more than 10, for security levels exceeding that of a 128-bit symmetric cipher. Specifically, we obtain public
key sizes of about 430 kilobits (for encrypting a 128-bit payload), or about 200 kilobits for per-user keys
assuming a source of common trusted randomness.

Clearly, the above key sizes are still too large for many applications, but this is a consequence of the Ω(n2)
cost inherent to the use “standard” LWE. Fortunately, by using the compact “ring-based” variant of LWE and
cryptosystem from [LPR10] (which is related to the heuristic NTRU scheme [HPS98] and the theoretically
sound line of works initiated in [Mic02]), we can immediately shrink the key sizes further by a factor of
about 100 or more. The resulting key sizes of 4-5 kilobits are competitive with modern recommendations for
RSA, and the cryptosystem itself is many times faster on modern hardware.

Our methodology. Here we briefly summarize our approach, which involves a dedicated study of basis
reduction for a certain family of random lattices, and some additional post-reduction attack strategies that to
our knowledge have not been considered in prior analyses. (For a discussion of our approach in relation to
prior work, see Section 1.2.)

Lattice-based cryptosystems in the line of works started by Ajtai [Ajt96] involve a family of so-called
q-ary lattices, which are m-dimensional integer lattices of determinant qn that contain qZm as a sublattice,
for some modulus q ≥ 2 and parameter n ≤ m. (For reasons relating to the worst-case hardness reductions,
n is usually taken as the main hardness parameter.) We perform a detailed study of how basis reduction
performs, in terms of its running time and the global quality of its output basis, on random lattices from this
family as a function of the main parameters n, q, and m. Our experiments and analysis provide reliable and
theoretically well-behaved predictions about the basis quality that may be obtained using various amounts of
computational effort.

Complementing our predictions for lattice basis reduction, we then explore post-reduction attacks on the
LWE problem itself, and give precise trade-offs between time and success probability in terms of a given
basis quality. This involves a simple, but to our knowledge unexplored in this context, extension of Babai’s
“nearest-plane” decoding algorithm [Bab85] that allows us to trade basis quality against extra time. (The
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extension is related to Klein’s (de)randomized algorithm [Kle00] for bounded-distant decoding, but is simpler
and optimally exploits the known Gaussian distribution of the offset vector.) The quality/time tradeoff can
dramatically affect the optimal balance of effort between basis reduction and post-reduction decoding, and the
quality of basis required to solve an LWE instance. Combining these two main pieces, we then give security
estimates that reflect both time and overall success probability, and calculate practical parameters for various
levels of concrete security.

We note that our analysis is quite modular and allows for, e.g., substituting other basis reduction algorithms
and analyses (with runtime and/or quality predictions) into the post-reduction attack.

1.2 Related Work

Several papers contain studies of the concrete hardness of lattice problems. Here we mention the ones
most closely related to our work, which are aimed toward calculating secure parameters for lattice-based
cryptosystems.

Gama and Nguyen [GN08] performed a comprehensive study of the behavior of basis reduction for
various families of lattices. Their analysis is primarily focused on the best obtainable solutions to the
Hermite-, Unique-, and Approximate-Shortest Vector Problems. While these are very important problems
to study in general, they are typically not the most natural ways of expressing cryptographic problems on
q-ary lattices, which ask to find (or decode) lattice vectors within some fixed absolute distance bounds. Aside
from the Goldstein-Mayer distribution for very large moduli (which are not typically used in cryptographic
constructions), their work also did not attempt to document the behavior of basis reduction on q-ary lattices.
More importantly, it did not investigate the use of a reduced basis to solve bounded-distance decoding
problems (of which LWE is a special case), where additional algorithmic ideas and trade-offs are possible.

The survey by Micciancio and Regev [MR09] proposed parameters for various lattice-based schemes
from the contemporary literature. Their parameters were derived using Gama and Nguyen’s general estimates
for the best obtainable Hermite factor, and as such do not include concrete security estimates (e.g., of
symmetric bit security), nor do they incorporate specific information about q-ary lattices or post-reduction
decoding. Their parameters apply to a less efficient LWE-based encryption scheme that has larger keys than
the one studied here.

Rückert and Schneider [RS10] recently gave concrete estimates of ‘bit security’ for many recent lattice-
based schemes, incorporating concrete running time and output quality predictions on q-ary lattices. Their
attacks are primarily focused on the Hermite Shortest Vector Problem, which also immediately yields a
distinguishing attack (with non-negligible advantage) on the LWE problem — but not necessarily the most
effective one. Specifically, the post-reduction phase of our attack is able to use somewhat longer vectors, and
(when successful) actually recovers the secret randomness (and hence the encrypted message) with certainty.
Finally, the best attacks described in [MR09, RS10] may not always apply to our cryptosystem, because its
parameters can be set so that relatively few LWE samples are published, and thus the attack is forced to use a
suboptimal lattice dimension.

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. The base-2 logarithm is denoted lg. We use
bold lower-case letters (e.g., x) to denote vectors over the real R. We use bold upper-case letters (e.g., B)
for ordered sets of vectors, and identify the set with the matrix having the vectors as its columns. We let
‖B‖ := maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.
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For an (ordered) set of linearly independent vectors B = {b1, . . . ,bk} ⊂ Rn, its Gram-Schmidt
orthogonalization B̃ is defined iteratively as b̃1 = b1, and b̃i is the component of bi orthogonal to
span(b1, . . . ,bi−1) for i = 2, . . . , k. In matrix notation, it corresponds to the (unique) decomposition
B = QR, where the columns of Q ∈ Rn×k are orthonormal (i.e., QtQ = I) and R ∈ Rk×k is right-
triangular with positive diagonal entries; the Gram-Schmidt vectors are then b̃i = qi · ri,i. For a set of
linearly independent vectors B = {b1, . . . ,bk}, its fundamental parallelepiped is

P1/2(B) := B · [−1
2 ,

1
2)k =

{∑
i∈[k]

ci · bi : ci ∈ [−1
2 ,

1
2)

}
.

A lattice Λ in Rm is a discrete additive subgroup. In this work we are concerned only with q-ary integer
lattices, which are contained in Zm and contain qZm, i.e., qZm ⊆ Λ ⊆ Zm. Such a lattice is generated by a
(non-unique) basis B = {b1, . . . ,bm} ⊂ Zm of linearly independent integer vectors, as

Λ = L(B) := B · Zm =

{∑
i∈[m]

zi · bi : zi ∈ Z
}
.

The determinant det(Λ) of such a lattice is its index as a subgroup of Zm, i.e., det(Λ) = |Zm : Λ|. Equiva-
lently, it is |det(B)| for any basis B of Λ.

2.1 Discrete Gaussians

For a lattice Λ and a positive real s > 0, the discrete Gaussian distribution DΛ,s over Λ with parameter s
is the probability distribution having support Λ that assigns a probability proportional to exp(−π‖x‖2/s2)
to each x ∈ Λ. For Λ = Zn, it is easy to see (by orthonormality of its standard basis) that the discrete
Gaussian DZn,s is simply the product distribution of n independent copies of DZ,s. There are efficient
algorithms for sampling from a distribution within negligible statistical distance of DZ,s, given any s > 0.
(See, e.g., [GPV08]: for arbitrary s there is a rejection sampling algorithm, and for small s one can compute
a close approximation to the cumulative distribution function.).

We will need two tail bounds on discrete Gaussians.

Lemma 2.1 ([Ban93, Lemma 1.5]). Let c ≥ 1 and C = c · exp(1−c2
2 ) < 1. Then for any real s > 0 and any

integer n ≥ 1, we have
Pr
[
‖DZn,s‖ ≥ c · 1√

2π
· s
√
n
]
≤ Cn.

Lemma 2.2 ([Ban95, Lemma 2.4]). For any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr [|〈x, DZn,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).

2.2 Learning with Errors

The learning with errors (LWE) problem was introduced by Regev [Reg05] as a generalization of the well-
known ‘learning parity with noise’ problem, to larger moduli. The problem is parameterized by a dimension
n ≥ 1 and an integer modulus q ≥ 2, as well as an error distribution χ over Z (or its induced distribution
over Zq). In this work we will be concerned only with discrete Gaussian error distributions χ = DZ,s over
the integers, where α := s/q ∈ (0, 1) is often called the (relative) error rate.
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For an s ∈ Znq , the LWE distribution As,χ over Znq × Zq is sampled by choosing a uniformly random
a ∈ Znq and error term e ← χ, and outputting the pair (a, t = 〈a, s〉 + e mod q) ∈ Znq × Zq. The search
version of the LWE problem is, given any desired number of independent samples (ai, ti)← As,χ, to find s.
The decision version of LWE is to distinguish, with non-negligible advantage, between any desired number of
independent samples (ai, ti)← As,χ (for a uniformly random s ∈ Znq ), and the same number of independent
samples drawn from the uniform distribution over Znq × Zq. It is often convenient to write these problems
in matrix form as follows: collecting the vectors ai ∈ Znq as the columns of a matrix A ∈ Zn×mq and the
(implicit) error terms ei ∈ Z and values ti ∈ Zq as the entries of vectors e ∈ Zm, t ∈ Zmq respectively, we
are given the input

A, t = Ats + e mod q

and are asked to find s, or to distinguish the input from a uniformly random (A, t). The LWE problem may
also be viewed as an average-case ‘bounded-distance decoding’ problem on a certain family of lattices: for
A ∈ Zn×mq , define the lattice

Λ(At) = {z ∈ Zm : ∃ s ∈ Znq such that z = Ats mod q}.

Then the t component of the LWE input may be seen as a perturbed lattice point in Λ(At), to be decoded.

Hardness of LWE. We recall several facts from the literature about the provable hardness of LWE. The
first is that for error distribution χ = DZ,α·q where α · q ≥ 2

√
n, the search version of LWE is at least as

hard as quantumly approximating certain worst-case problems on n-dimensional lattices to within Õ(n/α)
factors [Reg05].1 Moreover, for similar parameters and large enough q, search-LWE is at least as hard as
classically approximating the decision shortest vector problem and variants [Pei09]. For moduli q that are
sufficiently ‘smooth’ (i.e., products of small enough primes), the decision form of LWE is at least as hard as
the search form [Reg05, Pei09].

A particularly important fact for our purposes is that decision-LWE becomes no easier to solve even if the
secret s is chosen from the error distribution χ, rather than uniformly at random [MR09, ACPS09]. This may
be seen as follows: given access to As,χ, we can draw many samples to obtain

At =

[
At

1

At
2

]
, t =

[
t1

t2

]
=

[
At

1

At
2

]
s +

[
e1

e2

]
= Ats + e mod q,

where A2 is uniform, e is drawn from χ, and A1 ∈ Zn×nq is square and invertible. (This follows by forming
A1 by greedily drawing samples that can form an invertible matrix, and disposing of any others until A1 is
complete.) We can then transform A and t into

Āt := −At
2 ·A−t1 mod q, t̄ := Ātt1 + t2 = Āte1 + e2 mod q,

where Ā is uniform; therefore, we have effectively replaced s with the error vector e1. On the other hand,
note that when A, t are uniformly random, then so are Ā, t̄.

In terms of lattices, the above may be interpreted as follows: using the bijection s 7→ At
1s from Znq to

itself, we can see that the lattice Λ(At) defined above has as a basis the matrix

H =

[
I

qI −Āt

]
.

1It is important to note that the original hardness result of [Reg05] is for a continuous Gaussian error distribution, which when
rounded naively to the nearest integer does not produce a true discrete Gaussian. Fortunately, a suitable randomized rounding method
does so [Pei10].
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(This basis H is a canonical representation of Λ(At) known as the Hermite normal form. We have ordered
the basis vectors so that the Gram-Schmidt vectors of H are integer multiples of the standard basis vectors,
where the first several have length q, and the remainder have length 1.) Because Ats mod q ∈ Λ(At), we
have t = Ats + e = e mod H, which is

e−He1 =

[
0

e2 + Āte1

]
=

[
0
t̄

]
mod q.

In conclusion, t̄ = Āte1 + e2 is the unique canonical representative of e modulo the lattice Λ(At).
Finally, assuming hardness of decision-LWE, a standard hybrid argument over the columns of E (see,

e.g., [PW08]) shows that (Ā, ĀtE1 +E2) is indistinguishable from uniform, where the entries of E =
[
E1
E2

]
are chosen independently from χ.

3 LWE-Based Encryption

Here we describe an LWE-based cryptosystem that is more space-efficient than the ones commonly known in
the literature. It is an instance of an abstract system described by Micciancio [Mic10] that generalizes all
the schemes of [Reg05, PVW08, GPV08], though a full description and analysis of the generalized system
has not appeared in the literature. The security proof combines a number of techniques and perspectives
from recent works [MR09, LPS10, Pei10] for the purpose of improved efficiency and a tight analysis. For
completeness, we also briefly describe an efficient ring-based analogue of the system, which is described in
full generality in the full version of [LPR10].

Despite being a generalization of prior LWE-based cryptosystems, the present scheme can actually be
instantiated to have keys and ciphertexts that are smaller by a factor of about lg q, with little or no apparent
loss in concrete security. This is due to a different style of security proof, which is very similar to the
proofs for the coding-based cryptosystem of Alekhnovich [Ale03] and the subset sum-based cryptosystem
of Lyubashevsky, Palacio, and Segev [LPS10]. In brief, the proof uses the LWE assumption twice (first on
the public key, and then again on the ciphertext) to show that the adversary’s view in a passive attack is
indistinguishable from uniformly random. By contrast, the proofs for prior LWE-based schemes involve a
statistical argument on either the public key or ciphertext, but this requires larger keys. We point out that
statistical arguments still appear necessary for many advanced applications of LWE, such as identity-based
encryption [GPV08] and others that use a ‘trapdoor basis,’ and we do not know whether comparably small
keys and ciphertexts can be obtained for these schemes.

3.1 Cryptosystem

The cryptosystem involves a few parameters: an integer modulus q ≥ 2 and integer dimensions n1, n2 ≥ 1,
which relate to the underlying LWE problems; Gaussian parameters sk and se for key generation and
encryption, respectively; and a message alphabet Σ (for example, Σ = {0, 1}) and message length ` ≥ 1.

We also require a simple error-tolerant encoder and decoder, given by functions encode : Σ→ Zq and
decode : Zq → Σ, such that for some large enough threshold t ≥ 1, decode(encode(m) + e mod q) = m
for any integer e ∈ [−t, t). For example, if Σ = {0, 1}, then we can define encode(m) := m · b q2c, and
decode(m̄) := 0 if m̄ ∈

[
−b q4c, b

q
4c
)
⊂ Zq, and 1 otherwise. This method has error tolerance t = b q4c. We

also extend encode and decode to vectors, component-wise.
To get the smallest public keys, our system makes use of a uniformly random public matrix Ā ∈ Zn1×n2

q

that is generated by a trusted source, and is used by all parties in the system. If there is no trusted source,
then Ā may be chosen by the user herself as part of key generation, and included in the public key.
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• Gen(Ā, 1`): choose R1 ← Dn1×`
Z,sk and R2 ← Dn2×`

Z,sk , and let P = R1 − Ā ·R2 ∈ Zn1×`
q . The public

key is P (and Ā, if needed), and the secret key is R2.

In matrix form, the relationship between the public and secret keys is:

[
Ā P

]
·
[
R2

I

]
= R1 mod q. (3.1)

• Enc(Ā,P,m ∈ Σ`): choose e = (e1, e2, e3) ∈ Zn1 ×Zn2 ×Z` with each entry drawn independently
from DZ,se . Let m̄ = encode(m) ∈ Z`q, and compute the ciphertext

ct =
[
ct1 ct2

]
=
[
et1 et2 et3 + m̄t

]
·

Ā P
I

I

 ∈ Z1×(n2+`)
q . (3.2)

(Note that the first ciphertext component ct1 can be precomputed before P and m are known.)

• Dec(ct = [ct1, c
t
2],R2): output decode(ct1 ·R2 + ct2)t ∈ Σ`.

Using Equation (3.2) followed by Equation (3.1), we are applying decode to

[
ct1 ct2

]
·
[
R2

I

]
= (et +

[
0 0 m̄t

]
) ·

R1

R2

I

 = et ·R + m̄t,

where R =
[R1
R2
I

]
. Therefore, decryption will be correct as long as each |〈e, rj〉| < t, the error

threshold of decode. (We give a formal analysis in Section 3.2 below.)

For another perspective on this scheme as an (approximate) key-agreement mechanism, let ` = 1 for
simplicity. By the discussion in Section 2.2, we can interpret key generation as reducing a Gaussian error
vector r modulo a lattice defined by Ā, and publishing the result Ār2 − r1 mod q. Likewise, we can view
encryption as reducing a Gaussian error vector e modulo the dual of the same lattice, and publishing the
result et1Ā + et2 mod q. Using their respective private error vectors and the other party’s public message, the
sender and receiver can both (approximately) compute et1Ār2 ∈ Zq, whereas a passive adversary cannot. A
formal proof of security appears below in Section 3.3.

Ring-based analogue. We briefly describe a very similar scheme that is based on the decision ring-LWE
problem [LPR10]. For messages of length any ` ≤ n = n1 = n2, and using the same values of n and q as
above, the public and secret keys are up to an n factor smaller than in the above system, namely n lg q or
2n lg q bits at most, depending on the availability of a common trusted string. (The ciphertext size is the
same, namely 2n lg q bits.)

Let R = Z[x]/f(x) be a polynomial ring for some monic polynomial f(x) that is irreducible over Z;
common choices include cyclotomic polynomials such as f(x) = xn + 1 for n a power of 2. (See [LPR10]
for efficiency and security properties of this and other cyclotomic polynomials, including degrees n that are
not powers of 2.) Let q ∈ Z be a sufficiently large integer modulus for which f(x) splits into linear (or very
low-degree) factors modulo q, and let Rq = R/q = Zq[x]/f(x). Let χk, χe be error distributions over R that
are concentrated on ‘small’ elements of R; see [LPR10] for what error distributions enable rigorous security
proofs.
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Let Σ be a message alphabet. The message encoder and decoder are functions encode : Σn → Rq and
decode : Rq → Σn, such that decode(encode(m) + e mod q) = m for any ‘small enough’ e ∈ R, e.g., one
whose coefficients as a polynomial in Z[x]/f(x) are all in [−t, t) for some integer threshold t ≥ 1.

As above, the system uses a uniformly random a ∈ Rq that can be generated by a trusted source, or
chosen by the user.

• Gen(a): choose r1, r2 ← χk, and let p = r1 − a · r2 ∈ Rq. The public key is p (and a, if needed), and
the secret key is r2.

• Enc(a, p,m ∈ Σn): choose e1, e2, e3 ← χe. Let m̄ = encode(m) ∈ Rq, and compute the ciphertext
[c1 = a · e1 + e2, c2 = p · e1 + e3 + m̄] ∈ R2

q .

• Dec(c = [c1, c2], r2): output decode(c1 · r2 + c2) ∈ Σn. By a straightforward calculation, decryption
will be correct as long as e1 · r1 + e2 · r2 + e3 is within the error threshold of decode; this holds with
high probability when χk, χe are sufficiently concentrated.

The proof of security, under the decision ring-LWE assumption for noise distributions χk and χe, is
essentially identical to the proof of Theorem 3.2.

3.2 Parameters for Correctness

Here we give an upper bound on the Gaussian parameters sk, se in terms of the desired per-symbol error
probability δ. For reasonably small values of δ, correctness for the entire message can effectively be
guaranteed by way of a simple error-correcting code.

One small subtlety is that if a portion of the random vector e used for encryption happens to be ‘too
long,’ then the probability of decryption error for every symbol can be unacceptably large. We address this
by giving a bound on e, in Equation (3.4) below, which is violated with probability at most 2−κ for some
statistical parameter κ (say, κ = 40 for concreteness). We then calculate the error probabilities assuming
that the bound holds; the overall decryption error probability is then no more than 2−κ larger. One can also
modify the Enc algorithm to reject and resample any e that violates Equation (3.4); the adversary’s advantage
can increase by at most 2−κ.

Lemma 3.1 (Correctness). In the cryptosystem from Section 3.1, the error probability per symbol (over the
choice of secret key) is bounded from above by any desired δ > 0, as long as

sk · se ≤
√

2π

c
· t√

(n1 + n2) · ln(2/δ)
. (3.3)

Here c ≥ 1 is a value that depends (essentially) only on n1 + n2; representative values are given in Figure 1.

Proof. As shown above in the specification of the decryption algorithm, the jth symbol of the message
decrypts correctly if |〈e, rj〉| < b q4c. Recall that the entries of e ∈ Zn1+n2+` are independent and have

distribution DZ,se , and rj ∈ Zn1+n2+` is the jth column of R =
[R1
R2
I

]
, where the entries of R1 and R2 are

drawn independently from DZ,sk .
To bound the error probability, let ē ∈ Zn1+n2 consist of the first n1+n2 entries of e. Then by Lemma 2.1,

there is a c ≥ 1 such that

‖ē‖ ≤ c · 1√
2π
· se
√
n1 + n2 (3.4)
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(n1 + n2) c ≥ (sk · se)/t ≤

192 1.41 0.09879
256 1.35 0.08936
288 1.33 0.08552
320 1.31 0.08236
384 1.28 0.07695
448 1.26 0.07237
512 1.25 0.06824

Figure 1: Bounds on parameters for Lemma 3.1 using a per-symbol error probability of δ = 0.01, where c is
determined so that the probability of choosing a ‘bad’ encryption vector e is at most 2−40.

except with very small probability (concrete values of c are given in Figure 1). For any fixed ē satisfying
the above bound, observe that each 〈e, rj〉 is independent and distributed essentially as 〈ē, Dn1+n2

Z,sk 〉.2 By
Lemma 2.2, for any T ≥ 0 we have

Pr
[∣∣∣〈ē, Dn1+n2

Z,sk 〉
∣∣∣ ≥ T · sk‖ē‖] < 2 exp(−π · T 2).

Letting T = t/(sk‖ē‖), where t is the error tolerance of our message encoding, and using the bound on ‖ē‖
from above, we get the bound on sk · se from the lemma statement.

3.3 Security Proof

Theorem 3.2. The cryptosystem from Section 3.1 is CPA-secure, assuming the hardness of decision-LWE
with modulus q for: (1) dimension n1 and error distribution DZ,se , and (2) dimension n2 and error DZ,sk .

Proof. It suffices to show that the entire view of the adversary in an IND-CPA attack is computationally
indistinguishable from uniformly random, for any encrypted message m ∈ Σ`. The view consists of (Ā,P, c),
where Ā ∈ Zn1×n2

q is uniformly random, P ← Gen(Ā, 1`), and ct ← Enc(Ā,P,m). First, (Ā,P) is

computationally indistinguishable from uniformly random (Ā,P∗) ∈ Zn1×(n2+`)
q under assumption (2) in

the lemma statement, because P = (Āt)t · (−R2) + R1, and Āt is uniform while the entries of both −R2

and R1 are drawn from DZ,sk . So the adversary’s view is indistinguishable from (A, c) where A = (Ā,P∗)
is uniformly random and c ← Enc(A,m). Now (A, c) is also computationally indistinguishable from
uniformly random (A, c∗) under assumption (1) in the lemma statement, because c = (Ate1 + [ e2e3 ]) + [ 0

m ],
and A is uniform while the entries of e1, e2, and e3 are drawn from DZ,se .

It should be noted that for some settings of the parameters, one of the two assumptions in Theorem 3.2
may be true information-theoretically for the number of LWE samples exposed by the system in an attack.
For instance, if n2 ≥ n1 lg q and sk ≥ ω(

√
log n1), then the public key (Ā,P) is within a negligible (in

n1) statistical distance of uniformly random (by a suitable version of the leftover hash lemma), whereas the
corresponding ciphertexts are statistically far from uniform. These properties are important in, for example,
the ‘dual’ cryptosystem and identity-based encryption scheme of [GPV08]. Conversely, the applications

2We ignore the one additional term drawn from DZ,se , which is compensated for by some slack in our final choice of parameters.
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found in [PVW08, BHY09, ACPS09] have public keys that are far from uniform, but require that encryption
under a ‘malformed’ (uniformly random) public key produces a ciphertext that is statistically independent of
the encrypted message. These properties are achieved when n1 ≥ n2 lg q and se ≥ ω(

√
log n2), again by the

leftover hash lemma.

4 Lattice Decoding Attacks

The most promising practical attacks on the cryptosystem from Section 3, and more generally on LWE itself,
use lattice-basis reduction followed by a decoding phase using the reduced basis.3 In this section we analyze
the performance of decoding as it relates to the quality of a given reduced basis. Then in Section 5 we analyze
the effort required to obtain bases of a desired quality.

As described in Section 2.2, an LWE instance (A, t = Ate1 + e2) may be seen as a bounded-distance
decoding problem on a lattice Λ = L(H) having basis

H =

[
I

qI −At

]
,

where e = [ e1e2 ] = [ 0t ] mod H. (Recall that we have ordered the columns of H so that its first several
Gram-Schmidt vectors have length q, and the remainder have length 1.) Solving the LWE instance means
finding e, or equivalently, decoding t to the lattice point v ∈ L(H) such that [ 0t ] = v + e.

Note that it is not necessary to use the full dimensionality of the above basis; one can always truncate
some of the last rows and the corresponding columns of qI. This corresponds to (temporarily) ignoring the
bottom rows of At and e2; once e1 is found, e2 = t−Ate1 can then be computed directly. Note also that as
shown in the proof of Theorem 3.2, the semantic security of the cryptosystem from Section 3 can only be
violated by successfully attacking the LWE instances implicit in the public key or the ciphertext.

Attacking LWE. The standard method for solving a bounded-distance decoding problem on lattices is
the recursive NearestPlane algorithm of Babai [Bab85]. The input to the algorithm is some lattice basis
B = {b1, . . . ,bk} ⊂ Rm (which for best results should be as reduced as possible) and a target point t ∈ Rm,
and the output is a lattice point v ∈ L(B) that is ‘relatively close’ to t. The precise guarantee is that for any
t ∈ span(B), NearestPlane(B, t) returns the unique v ∈ L(B) such that t ∈ v + P1/2(B̃).

A basic attack on search-LWE using the nearest-plane algorithm proceeds as follows. Given (A, t =
Ate1 + e2), first find a reduced basis B ∈ Zm×m for Λ(At), starting from the non-reduced basis H defined
above. Then run NearestPlane(B, t) in an attempt to find the error vector e. This succeeds if and only if e
happens to lie in P1/2(B̃).

The main drawback of this approach is that the last several Gram-Schmidt vectors of B are typically
very short, having length very close to 1 (whereas the first few Gram-Schmidt vectors are quite long, having
length about q). In such a case, the parallelepiped P1/2(B̃) is very ‘long and skinny,’ and so the Gaussian
error vector e is very unlikely to land in it, causing NearestPlane to fail.

We address this issue by describing a generalized algorithm that admits a time/success tradeoff. It works
just as NearestPlane does, except that it can recurse on more than one plane per iteration. In essence, the
multiple recursion has the effect of making the parallelepiped P1/2(B̃) wider in the direction of b̃i by a
factor of exactly di, the number of different multiples of bi that the algorithm considers. To best ‘capture’ the

3There are other attacks on LWE [BKW03, Wag02] that may perform asymptotically better, but not in practice. Also, they
generally require more LWE samples than our cryptosystem exposes, and an exponentially large amount of space.
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probability mass of the Gaussian error distribution, one should choose the multiples di so as to maximize
mini(di · ‖b̃i‖).4

The input to our NearestPlanes algorithm is a lattice basis B = {b1, . . . ,bk} ⊂ Rm, a vector d =
(d1, . . . , dk) ∈ (Z+)k of positive integers, and a target point t ∈ Rm. It outputs a set of

∏
i∈[k] di distinct

lattice vectors in L(B), as follows:

1. If k = 0, return 0. Else, let v be the projection of t onto span(B).

2. Let c1, . . . , cdk ∈ Z be the dk distinct integers closest to 〈b̃k,v〉/〈b̃k, b̃k〉.

3. Return
⋃
i∈[dk](ci · bk + NearestPlanes({b1, . . . ,bk−1}, (d1, . . . , dk−1),v − ci · bk).

The following lemma is an immediate extension of the analysis from [Bab85].

Lemma 4.1. For t ∈ span(B), NearestPlanes(B,d, t) returns the set of all v ∈ L(B) such that t ∈
v + P1/2(B̃ ·D), where D = diag(d). The running time is essentially

∏
i∈[k] di times as large as that of

NearestPlane(B, t).

Note that the columns of B̃ · D (from the lemma statement) are the orthogonal vectors di · b̃i, so
P1/2(B̃ ·D) is a rectangular parallelepiped with axis lengths di · ‖b̃i‖.

Success probability of NearestPlanes. When t = v + e for some v ∈ L(B) and a continuous Gaussian
e← Ds for s > 0, the probability that v is in the output set of NearestPlanes(B,d, t) is

Pr
[
e ∈ P1/2(B̃ · diag(d))

]
=

m∏
i=1

Pr
[
|〈e, b̃i〉| < di · 〈b̃i, b̃i〉/2

]
=

m∏
i=1

erf

(
di · ‖b̃i‖

√
π

2s

)
, (4.1)

which follows by the independence of the values 〈e, b̃i〉, due to the orthogonality of the Gram-Schmidt
vectors b̃i. When e is drawn from a sufficiently wide discrete Gaussian over the integer lattice (in practice, a
parameter of 6 or more suffices), the above is an extremely close approximation to the true probability.

5 Basis Reduction and Experiments

In this section we present results from lattice basis reduction experiments on more than 5,000 LWE lattice
bases with various parameters. Our goal is to accurately predict the practical runtime of the lattice decoding
attack described in Section 4 for a given set of LWE parameters n, q, m, and Gaussian error parameter s.

We found that the best practical lattice reduction algorithm to obtain large Gram-Schmidt vectors is
the BKZ algorithm as implemented by Shoup in the NTL library [Sho], so this is the one we used in our
experiments; we have derived a formula predicting its runtime for a given set of parameters. The BKZ
algorithm is parameterized by a blocksize k between 2 and the dimension of the lattice to be reduced. With
large blocksizes (say, 30 or more), BKZ requires enormous runtime, but the resulting Gram-Schmidt vectors
are of much higher quality.

4There is another algorithm by Klein [Kle00], that, like ours, recurses on one or more planes, and not necessarily the ones
nearest to the target. Klein’s algorithm is concerned with the general bounded-distance decoding problem, and selects the planes
probabilistically (though it can also be derandomized). Our algorithm is tailored specifically to LWE, where we know the distribution
of the error vector from the lattice to the target. This allows our algorithm to recurse on exactly those planes that maximize the
probability of success (over the choice of the error vector).
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There has been some recent progress in the development of alternative algorithms that find short lattice
vectors, which can be used as subroutines to (or entire replacements of) BKZ reduction. For example, Gama,
Nguyen, and Regev proposed a new method called “Extreme Enum” [GNR10], which is much faster than its
predecessor, the Schnorr-Euchner enumeration [SE94]. There are also single-exponential time algorithms
for the Shortest Vector Problem [AKS01, MV10b, MV10a], which can run faster in practice than Schnorr-
Euchner enumeration in certain dimensions; however, these algorithms also require exponential space. We
were not able to evaluate the performance and effectiveness of all these approaches, leaving this for future
work. (For a practical comparison of enumeration algorithms, see the open SVP-challenge website.5)

The BKZ implementation we use employs Schnorr-Euchner enumeration and, since the BKZ framework
uses the enumeration subroutine as a black-box, we presume that new algorithms combining Extreme Enum
and other approaches with the BKZ framework will soon be available for evaluation. In Section 5.4, we
estimate the runtime required to run BKZ on q-ary lattices. The rest of our analysis is independent of this
estimate, and can easily be applied with runtime estimates for BKZ variants or other approaches.

For our analysis, we start by introducing a slight modification to the well-known Geometric Series
Assumption (GSA) heuristic, which was introduced by Schnorr [Sch03]. Using the new heuristic and our
experimental data, we are then able to accurately predict the lengths of all Gram-Schmidt vectors after BKZ
reduction has been performed with a given blocksize. Finally, we use these predictions to estimate runtimes
and success probabilities for a full attack on LWE.

5.1 The (Bounded) Geometric Series Assumption

The Geometric Series Assumption (GSA) states that after some minimal amount of lattice basis reduction,
say using LLL, the logarithmic lengths of the Gram-Schmidt vectors follow an affine linear function. In other
words, there are constants α, β ∈ R such that lg(‖b̃i‖) = α · i+ β.

During our experiments, we observed that for certain bases this heuristic is true only after a very large
amount of reduction work, which depends on the dimension and determinant of the input basis. This
was because in large dimensions m, a very large blocksize was required before all m − n of the initial
length-q orthogonal basis vectors were nontrivially incorporated into the reduced basis. (We also observed
complementary behavior when m was very close to n, and several length-1 GSO vectors were left unaltered
by the reduction.) However, there is a slightly more general heuristic, which appears to hold true for reduced
bases of q-ary lattices, and allows for further insights. We call this the Bounded GSA assumption. The
condition is that there are constants α, β, γ ∈ R such that

lg(‖b̃i‖) =

{ γ if α · i+ β > γ,
0 if α · i+ β < 0,
α · i+ β otherwise.

Note that in the relevant case of q-ary lattices Λ of some given determinant, all the constants are determined
by fixing the slope α, because γ = lg(q) and β is determined by the constraint

∑m
i=1 lg ‖b̃i‖ = lg(det(Λ)).

During our experiments, we found that the lengths predicted by the Bounded GSA model are very close
to the actual GSO lengths in all cases. We also found that the slope α, which can be observed after BKZ
reduction, depends almost entirely on the blocksize k and not on other parameters n, q, and m (see Figure 2).

Another observation regarding Bounded GSA is that one can predict the slope (and thus all GSO lengths)
for a given blocksize, using the Gaussian heuristic to predict the length of the shortest non-zero vector in a

5http://www.latticechallenge.org/svp-challenge/

12

http://www.latticechallenge.org/svp-challenge/


 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

Figure 2: Logarithmic GSO lengths of three LWE instances after BKZ-20 reduction, which conform to
the Bounded GSA assumption. In all cases, the observed slope is α ≈ −0.038, but other parameters vary.
Parameters are n = 32, q = 257,m = 64 (left); n = 64, q = 257,m = 128 (center); n = 32, q =
2053,m = 192 (right).

lattice. This allows us to conservatively predict GSO slopes for huge blocksizes, for which we do not have
the resources to run actual experiments.

5.2 GSO Slopes and Projected Lattices

Assuming that the Bounded GSA as described in Section 5.1 holds, we want to predict the slope (and thus
all GSO lengths) achieved by a BKZ reduction for a given blocksize k. For this we will use the Gaussian
heuristic to predict the length of the shortest non-zero vector in a lattice. This will allow us to conservatively
predict GSO slopes for huge blocksizes, for which we do not have the resources to run actual experiments.

Let Λ be a lattice with a basis B that has been BKZ-reduced using blocksize k. Let η(i) = lg(‖b̃i‖) be
the function describing the logarithmic GSO lengths. We assume that the blocksize is large enough so that
there is a k-dimensional projected lattice Λ̄ with respect to B for which the ratio of area above and below η is
the same as the ratio for the whole basis, i.e.,

lg(det(qΛ∗))

lg(det(Λ))
=

lg(det(qΛ̄∗))

lg(det(Λ̄))
=

n

m− n
.

Experimentally, these projected lattices always exist and are entirely in the sloped part of the GSO plot for
blocksizes ≥ 30, where we will use the predicted values.

First, note that we have lg(det(Λ̄))+lg(det(qΛ̄∗)) = k lg(q), so in fact lg(det(Λ̄)) = lg(det(Λ))·(k/m).
In other words, considering the function η̄(i) = lg(‖˜̄bi‖), the values of η for the basis block corresponding
to Λ̄, we know that η̄((k + 1)/2) = lg(det(Λ̄))/k = m−n

m · lg(q).
We also know that η̄ lies entirely in the sloped part, so η̄(i) = α(i− (k + 1)/2) + m−n

m · lg(q), for some
slope α that we want to find. Now, since Λ̄ is a k-dimensional projected lattice of a BKZ-reduced basis with
blocksize k, we know it is in fact HKZ-reduced. So, it is reasonable to assume that the Gaussian heuristic
holds for Λ̄. This states that

η̄(1) = lg(λ1(Λ̄))

= lg(det(Λ̄))/k − lg(π)/2 + lg(Γ(1 + k/2))/k.

Solving for α, we find α = lg(π)/(k − 1) − 2 lg(Γ(1 + k/2))/(k(k − 1)). See Figure 3 for a plot of
blocksizes and their corresponding values of α.
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Figure 3: Slopes for the Bounded GSA for different blocksizes. For small blocksizes k ≤ 30, the shown data
is experimentally verified; for larger blocksizes the slopes are predicted using the Gaussian heuristic.

5.3 GSO Slopes and Hermite Factors

Many analyses of lattice reduction algorithms (e.g., [GN08]) consider the resulting Hermite factor of the
reduced basis. A basis B for an m-dimensional lattice Λ has Hermite factor δm if ‖b1‖ = δm det(Λ)1/m.
Assuming the Bounded GSA, we can connect the GSO lengths to the Hermite factor as follows. For a basis
B, let η(i) = lg(‖b̃i‖) be the function describing the corresponding logarithmic GSO lengths. For q-ary
lattices under Bounded GSA, we have

η(i) = α

(
i− m+ 1

2

)
+
m− n
m

lg(q).

Now, assuming that the basis has Hermite factor δm, we know η(1) = lg(‖b1‖) and can solve for the
corresponding slope α. We find the relation

α = −2m lg(δ)

m− 1
≈ −2 lg(δ). (5.1)

So, instead of using the slopes we found in our experiments, and predicted with the Gaussian heuristic for
larger block sizes, one can alternatively use the predicted Hermite factor for a given blocksize (or another
basis reduction technique entirely) and derive the associated slope using Equation (5.1).

5.4 Extrapolating BKZ Runtimes

Predicting the GSO lengths will allow us to calculate success probabilities for the post-reduction run of
NearestPlanes, but in order to complete our analysis, we also need to predict the runtime of a BKZ reduction
for a given blocksize k and LWE parameters n, q, and m. The main parameters determining the runtime
are the dimension m and the blocksize k. Like Gama and Nguyen [GN08], we observed that the logarithm
of the runtime grows linearly in the lattice dimension m and quadratically in k for k ≥ 10. We also found
that the log runtime grew linearly in two other quantities: the LWE dimension n, and the logarithm of the
corresponding lattice determinant d := lg(det(Λ)) = (m− n) lg(q).

The model that best fit our experimental data is as follows. Let C = [c1, c2, c3] ∈ R4×3 be a matrix of
constant factors to be determined later, and consider a model for the logarithm tBKZ = lg(TBKZ) of the BKZ
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Figure 4: Logarithmic runtime of BKZ for blocksizes k ≥ 10 on various LWE instances. Every plot shows
data points for q = 257, 509, 1021, 2053 and the runtime predicted by our model function T . The main
parameters are n = 32 (left); n = 48 (center); n = 64 (right). The secondary parameter is m = 2n (top);
m = 2n+ 128 (bottom). Note that the lower right plot is missing several data points, because (as predicted)
the corresponding reductions take too long to perform.

runtime as

tBKZ(k, n, q,m) = (m,n, d, 1) · c1 · (k + (m,n, d, 1) · c2)2 + (m,n, d, 1) · c3. (5.2)

We used least-square fitting to find constants C such that our above model for tBKZ best fits the average
logarithmic runtime for the reduction of 5 random LWE bases with corresponding parameters. See Figures 4
for some examples of our runtime predictions versus the real data in different settings. The values that best fit
our experimental data (under least-squares fit) are

C =


0.067 −0.00030 0.028
−0.12 0.00014 0.012
−0.0013 0.0000018 0.0010

5.5 0.0078 −3.8

 .

Note that our experiments used only single-precision floating point BKZ. Practical attacks on large parameters
would require using at least quadruple precision, which would increase the logarithmic running times by
some additive constant term.

5.5 Concrete Security Estimates

We consider the following model for a concrete attack against the LWE-based cryptosystem from Section 3.
The attack is divided into two phases: a computationally heavy “preprocessing” phase in which we apply
basis reduction to a public key, and an “online” phase that invests a proportionally smaller amount of effort
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against each of a potentially large number of ciphertexts. For best results, the total amount of effort spent
in each phase should be about the same, so the effort in preprocessing will generally be much larger than
the effort against any particular ciphertext. This model is justified by the fact that a public key is frequently
long-lived, and all ciphertexts encrypted under that key are relative to the same lattice. Therefore, an attacker
can gain the greatest probability of breaking at least one ciphertext by investing a one-time effort to reduce
the public key lattice basis as much as possible, thereby amortizing that effort over all of the ciphertexts.

One possible outcome of the preprocessing phase is that one or more of the short secret key vectors (i.e.,
columns of R2) can be exposed by decoding with NearestPlanes. This obviously constitutes a significant
break, because the attacker can then decrypt the corresponding symbols of every ciphertext with essentially
no additional effort. However (and unsurprisingly), our experiments show that the attacker has a greater
likelihood of success if it uses its reduced basis with NearestPlanes to attempt to decode many individual
ciphertexts, investing roughly an equal amount of effort on each of them. The downside (to the attacker)
is that a successful attack will typically only reveal the contents of a few encrypted messages (not of its
choosing), but this still constitutes a break of the scheme’s semantic security.

Precise description of the attack. We now use our experimental data to estimate the concrete security of
the LWE-based cryptosystem. In our instantiation, we set the parameters as n1 = n2 = n and sk = se = s
for some positive integer n and s > 0, so that the two LWE hardness assumptions underlying security (in
Theorem 3.2) are equivalent. We choose q to be just large enough (according to the bounds in Figure 1) to
allow for a Gaussian parameter s ≥ 6, which as we shall see appears to be sufficient for security against
known attacks.6 We will also see that increasing the value of q beyond this threshold appears not to increase
the concrete hardness much at all, because the time required for BKZ reduction and the slope of the resulting
logarithmic GSO lengths are essentially independent of q (all other parameters remaining the same).

Faced with the parameters n, q, and s, the attacker is left to allocate its effort between the preprocessing
phase (BKZ reduction of the public key lattice) and the online phase (NearestPlanes decoding of many
ciphertexts). As mentioned above, it is best to allocate roughly equal time to both phases, so the ratio of
effort allocated to BKZ versus a single call to NearestPlanes should be roughly the number of ciphertexts N
available to the attacker. To be conservative, we use N ≈ 240; in certain applications, it may be reasonable to
assume a smaller value of N , and this will lead to stronger estimated security levels.

For the BKZ reduction phase, the attacker must choose a blocksize k and a sublattice dimension m for
BKZ reduction. To find the optimal choices for our attack model, we enumerated the following process over
all blocksizes 20 ≤ k ≤ n and dimensions n < m ≤ 2n+ `:

1. Using the predicted BKZ runtime TBKZ = 2tBKZ for these parameters (Equation (5.2)), we compute the
total number of recursions that can be performed by NearestPlanes in the budgeted time of TBKZ/N .

2. Using the predicted GSO lengths for the BKZ-reduced basis, we estimate the success probability
of each run of NearestPlanes, and the resulting probability of successfully decrypting any of the N
ciphertexts.

3. We compute the ratio of total running time divided by success probability, treating it as a measure of
“total expected runtime” on our computer.

Finally, we minimize the total expected runtime over all choices of k and m.
6Note that theoretical worst-case reductions [Reg05] for LWE ask that s ≥ 2

√
n, but the constant factors are not tight.
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n q s k m lg(BKZ lg(# lg(Succ lg(Exp Symmetric
Time) Recur) Prob) Runtime) Security

96 2053 7.11 29 246 25.7 0 -10.0 41.1 64 (1992)
128 2053 6.77 28 276 30.1 0 -52.7 83.8 107 (2048)
144 4093 9.35 28 308 34.8 4 -81.5 117.2 140 (2092)
160 4093 9.17 28 326 38.6 8 -122.3 161.9 185 (2150)
192 4093 8.87 28 359 47.0 16 -222.6 270.5 293 (2292)

136 2003 13.01 28 287 31.9 41 -135.0 168.0 191 (2158)
214 16381 7.37 22 642 28.0 38 -210.0 239.0 262 (2251)

Figure 5: Security estimates for our LWE-based cryptosystem, following the attack model described in
Section 5.5, assuming a corpus of up to 240 ciphertexts for a single public key. The LWE parameters are
n = n1 = n2, q, and s = sk = se. The best attack we found (by exhaustive search) uses blocksize k and
LWE sublattices of dimension m. The estimated BKZ runtime and number of recursions for NearestPlanes
decoding are listed, as well as the resulting success probability and expected total runtime. We also list the
corresponding symmetric bit-security levels according to the guidelines of Lenstra and Verheul [LV01]. The
unit of all runtimes is seconds, and all times and probabilities are given by their base-two logarithms. For
comparison, the last two rows give our security estimates for two parameter sets from [MR09].

n q s Per-User Full Key Ctext Msg Security
Key (P) (P & Ā) (c) Expan Level

96 2053 7.11 1.4× 105 2.4× 105 2.5× 103 19.3 64 (1992)
128 2053 6.77 1.8× 105 3.6× 105 2.8× 103 22.0 107 (2048)
144 4093 9.35 2.2× 105 4.7× 105 3.3× 103 25.5 140 (2092)
160 4093 9.17 2.5× 105 5.5× 105 3.5× 103 27.0 185 (2150)
192 4093 8.87 2.9× 105 7.4× 105 3.8× 103 30.0 293 (2292)

136 2003 13.01 2.8× 106 5.8× 106 2.9× 103 22.6 191 (2158)
214 16381 7.37 2.4× 106 6.4× 106 4.8× 103 18.7 262 (2251)

Figure 6: Sizes (in bits) of public keys and ciphertexts for the cryptosystem described in Section 3. In each
case, the message size is ` = 128 bits. The “message expansion” factor is the ratio of ciphertext size to
plaintext size. The symmetric bit-security level is taken from Figure 5.
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Figure 5 contains estimates for total expected runtime for representative parameters n, q, and s. In
addition, it also shows the corresponding symmetric bit-security level b and “secure until (at least) year Y ”
estimates, using the heuristic of Lenstra and Verheul [LV01] to allow for comparison with similar works.
(As a point of comparison, the heuristic treats DES as secure until 1982, and incorporates advances in
computational power due to Moore’s Law and increased budgets over time.) Since our experiments ran on a
single 2.3GHz processor, the symmetric bit security b and year Y are computed as follows:

b = lg(T ) + lg(2300)− lg(60 · 60 · 24 · 365.25)− lg(5 · 105) + 56,

Y = b(b− 56) · 30/23 + 1982c,

where T is the total expected runtime on our computer. We also give a table of keysizes for all suggested
parameters in Figure 6.
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