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Abstract. The SC2000 block cipher has a 128-bit block size and a user
key of 128, 192 or 256 bits, which employs a total of 6.5 rounds if a 128-
bit user key is used. It is a CRYPTREC recommended e-government ci-
pher. In this paper we describe two 4.75-round differential characteristics
with probability 2−126 of SC2000 and seventy-six 4.75-round differential
characteristics with probability 2−127. Finally, we present a differential
cryptanalysis attack on a 5-round reduced version of SC2000 when used
with a 128-bit key; the attack requires 2125.68 chosen plaintexts and has
a time complexity of 2125.75 5-round SC2000 encryptions. It suggests for
the first time that the safety margin of SC2000 with a 128-bit key de-
creases below one and a half rounds.

Key words: Cryptology, Block cipher, SC2000, Differential cryptanal-
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1 Introduction

SC2000 [2] is a 128-bit block cipher with a user key of 128, 192 or 256 bits,
which employs a total of 6.5 rounds for a 128-bit user key, and a total of 7.5
rounds for a 192 or 256-bit key. It was designed to “have high performance on
a wide range of platforms from the low-end processors used in smart cards and
mobile phones to the high-end ones that will be available in the near future by
suitably implementing it in each platform, and also to have high security” [3].
In 2002, SC2000 became a CRYPTREC recommended e-government cipher [4],
after a thorough analysis of its security and performance. In the field of block
cipher cryptanalysis, an exhaustive key search (i.e. brute force search) attack
is usually assumed to be the best generic attack, and a cryptanalytic attack is
commonly regarded as effective if it is faster (i.e. it has lower time complexity)
than exhaustive key search. Below we consider the version of SC2000 that uses
128 key bits.

? This work as well as the author was supported by the French ANR project SAPHIR
II. A preliminary version of this work was presented at Inscrypt 2009 [1]. In this
enhanced version, we address how to recover the user key from a few subkey bits of
SC2000, give more non-trivial 4.75-round differential characteristics, and present a
more efficient attack.
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Table 1. Cryptanalytic results on SC2000

Attack Type Rounds Data T ime Source

Boomerang attack 3.5 267 ACPC 2116.74 Encryptions† [7]

Rectangle attack 3.5 284.6 CP 2116.74 Encryptions† [7]

Linear attack 4.5 2104.3 KP 2121.33 Encryptions† [12]

Differential attack 4.5 2111 CP 2118.33 Encryptions† [6]

4.5 2104 CP 2121.33 Encryptions† [12]

5 2125.68 CP 2125.75 Encryptions This paper

†: The complexity is for obtaining the user key by using Property 1 in
Section 3 of this paper.

The security of SC2000 against differential cryptanalysis [5] was first anal-
ysed by the SC2000 designers. In 2001, Raddum and Knudsen [6] presented a
differential attack on 4.5-round SC2000, which is based on two 3.5-round differ-
ential characteristics with probabilities 2−106 and 2−107, respectively. In 2002,
by exploiting a few short differentials with large probabilities, Biham et al. [7]
presented boomerang [8, 9] and rectangle [10] attacks on 3.5-round SC2000, fol-
lowing the work described in [11]. In the same year, Yanami et al. [12] described a
2-round iterative differential characteristic with probability 2−58, and obtained a
3.5-round differential characteristic with probability 2−101 by concatenating the
2-round differential twice and then removing the first half round; finally they pre-
sented a differential attack on 4.5-round SC2000 with a time complexity smaller
than that of the attack of Raddum and Knudsen. Yanami et al. also presented
linear [13] attacks on 4.5-round SC2000. The attacks on 4.5-round SC2000 are
the best previously published cryptanalytic results on SC2000 in terms of the
numbers of attacked rounds.

We note that these published cryptanalytic attacks on SC2000 retrieved only
a few subkey bits of SC2000, and they did not address how to recover the user
key. As SC2000 uses a very complicated key schedule algorithm, it seems tough
to recover the user key from a few subkey bits. However, in this paper we find
that there is an efficient way to do so in certain circumstances; more importantly,
we describe two 4.75-round differential characteristics with probability 2−126 and
seventy-six 4.75-round differential characteristics with probability 2−127, build-
ing on the two-round iterative differential characteristic with probability 2−58 of
Yanami et al. Finally, using some of these 4.75-round differential characteristics
we present a differential cryptanalysis attack on 5-round SC2000, faster than
an exhaustive key search. The attack is the first published attack on 5-round
SC2000. Table 1 sumarises both the previous and our new cryptanalytic results
on SC2000, where ACPC, CP and KP respectively refer to the required num-
bers of adaptive chosen plaintexts and ciphertexts, chosen plaintexts, and known
plaintexts.

The remainder of this paper is organised as follows. In the next section, we
give the notation, and describe the SC2000 block cipher and differential crypt-
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analysis. In Section 3, we discuss how to recover the user key from a few subkey
bits of SC2000. In Section 4, we give the 4.75-round differential characteristics.
In Section 5, we present our differential attack on 5-round SC2000. Section 6
concludes the paper.

2 Preliminaries

In this section we give the notation used throughout this paper, and then briefly
describe the SC2000 block cipher and differential cryptanalysis.

2.1 Notation

In all descriptions we assume that the bits of a n-bit value are numbered from 0 to
n−1 from left to right, the most significant bit is the 0-th bit, a number without
a prefix expresses a decimal number, and a number with prefix 0x expresses a
hexadecimal number. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) operation
∧ bitwise logical AND operation
� addition modulo 232

� subtraction modulo 232

� multiplication modulo 232

≪ left rotation of a bit string
bxc the largest integer that is less than or equal to x
◦ functional composition. When composing functions X and Y, X ◦Y deno-

tes the function obtained by first applying X and then applying Y
./ exchange of the left and right halves of a bit string
X bitwise logical complement of a bit string X

2.2 The SC2000 Block Cipher

SC2000 takes as input a 128-bit plaintext. For simplicity, we describe the plain-
text P as four 32-bit words (d, c, b, a). The following three elementary functions
I, B and R are used to define the SC2000 round function; as shown in Fig. 1
the round function of SC2000 is made up of two I functions, one B function and
two R functions.

– The I function: the bitwise logical XOR (⊕) operation of the 128-bit input
with a 128-bit round subkey of four 32-bit words.

– The B function: a non-linear substitution, which applies the same 4 × 4 S-
box S4 32 times in parallel to the input. For a 128-bit input (d′, c′, b′, a′),
the output (d′′, c′′, b′′, a′′) is obtained in the following way: (d′′k , c

′′
k , b

′′
k , a

′′
k) =

S4(d
′
k, c

′
k, b

′
k, a

′
k), where Xk is the k-th bit of the word X (0 ≤ k ≤ 31).
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Fig. 1. The round function of SC2000

– The R function: a substitution-permutation Feistel structure, which consists
of three subfunctions S, M and L. Each of the right two 32-bit words of
the input to the R function is divided into 6 groups containing 6, 5, 5, 5,
5 and 6 bits, respectively. These six groups are then passed sequentially
through the S function, consisting of two 6 × 6 S-boxes S6 and four 5 × 5
S-boxes S5, and the linear M function that consists of thirty-two 32-bit
words (M [0], · · · ,M [31]). Given an input a, the output of the M function
is defined as a0 × M [0] ⊕ · · · ⊕ a31 × M [31]. The outputs of the two M
functions are then input to the L function. For a 64-bit input (a∗, b∗) the
output of the L function is defined as ((a∗ ∧mask)⊕ b∗, (b∗ ∧mask)⊕ a∗),
where mask is a constant (and mask is the complement of mask). Two
masks 0x55555555 and 0x33333333 are used in SC2000, in the even and odd
rounds, respectively. Finally, the output of the L function is XORed with the
left two 32-bit words of the input to the R function, respectively. We denote
the L and R functions with mask 0x55555555 as L5 and R5, respectively, and
the L and R functions with mask 0x33333333 as L3 and R3, respectively.
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SC2000 (with a 128-bit key) uses a total of fourteen 128-bit subkeys Ki
l ,

(0 ≤ i ≤ 6, l = 0, 1), all derived from a user key of four 32-bit words long
(uk[0], uk[1], uk[2], uk[3]). The key schedule is as follows; the intermediate-key
generation function and the extended-key generation function are shown picto-
rially in Fig. 2.

S ◦ M S ◦ M

⊕

S ◦ M

ika[i]

i + 1M(S(4i))

uk[0] uk[1]

S ◦ M S ◦ M

⊕

S ◦ M

ikb[i]

i + 1M(S(4i + 1))

uk[2] uk[3]

S ◦ M S ◦ M

⊕

S ◦ M

ikc[i]

i + 1M(S(4i + 2))

uk[0] uk[1]

S ◦ M S ◦ M

⊕

S ◦ M

ikd[i]

i + 1M(S(4i + 3))

uk[2] uk[3]

⊕

ek[j]

X[x] Y [y] Z[z] W [w]

<<< 1 <<< 1

zl zr
<<< 1

xl ylxr yr

xl ylxr yr

va

vd

Fig. 2. Intermediate-key and extended-key generation functions

1. Generate 12 intermediate keys ika[i], ikb[i], ikc[i], ikd[i] by the intermediate-
key generation function, (i = 0, 1, 2):

ika[i] = M(S((M(S(uk[0]))�M(S(4× i)))⊕ (M(S(uk[1]))� (i+ 1)))),

ikb[i] = M(S((M(S(uk[2]))�M(S(4× i+ 1)))⊕ (M(S(uk[3]))� (i+ 1)))),

ikc[i] = M(S((M(S(uk[0]))�M(S(4× i+ 2)))⊕ (M(S(uk[1]))� (i+ 1)))),

ikd[i] = M(S((M(S(uk[2]))�M(S(4× i+ 3)))⊕ (M(S(uk[3]))� (i+ 1)))).

2. Generate 56 extended keys ek[j] by the extended-key generation function,
(j = 0, 1, · · · , 55):
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– s = j mod 9;
– t = (j + b j

36c) mod 12;
– X = Order[0][t], Y = Order[1][t], Z = Order[2][t],W = Order[3][t];
– x = Index[0][s], y = Index[1][s], z = Index[2][s], w = Index[3][s];
– ek[j] = ((X[x] ≪ 1)� Y [y])⊕ (((Z[z] ≪ 1)�W [w]) ≪ 1),

where X,Y, Z,W, x, y, z, w are variables,

Order[4][12] =


ika ikb ikc ikd ika ikb ikc ikd ika ikb ikc ikd
ikb ika ikd ikc ikc ikd ika ikb ikd ikc ikb ika
ikc ikd ika ikb ikd ikc ikb ika ikb ika ikd ikc
ikd ikc ikb ika ikb ika ikd ikc ikc ikd ika ikb

 ,

and

Index[4][9] =


0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1

 .

3. Ki
l = (ek[8i+ 4l], ek[8i+ 4l + 1], ek[8i+ 4l + 2], ek[8i+ 4l + 3]).

The full 6.5-round encryption procedure of SC2000 can be described as: IK0
0
◦

B ◦ IK0
1
◦R5 ./ R5 ◦ IK1

0
◦B ◦ IK1

1
◦R3 ./ R3 ◦ IK2

0
◦B ◦ IK2

1
◦R5 ./ R5 ◦ IK3

0
◦B ◦

IK3
1
◦R3 ./ R3 ◦ IK4

0
◦B ◦ IK4

1
◦R5 ./ R5 ◦ IK5

0
◦B ◦ IK5

1
◦R3 ./ R3 ◦ IK6

0
◦B ◦ IK6

1
.

Note that we refer to the first round as Round 0.
We write Ki

l for the subkey used in the l-th I function of Round i, and write
Ki

l,j for the j-th bit of Ki
l , where 0 ≤ i ≤ 6, l = 0, 1, 0 ≤ j ≤ 127. We number

the 32 S4 S-boxes in a B function from 0 to 31 from left to right.

2.3 Differential Cryptanalysis

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [14]; it
was the first cryptanalytic method more effective than an exhaustive key search
to be proposed for the full DES [15] block cipher [5]. A similar method was used
a little earlier by Murphy [16] to analyse the FEAL block cipher [17].

Differential cryptanalysis takes advantage of how a specific difference in a
pair of inputs of a cipher can affect a difference in the pair of outputs of the
cipher, where the pair of outputs are obtained by encrypting the pair of inputs
using the same key. The notion of difference can be defined in several ways;
the most widely discussed is with respect to the XOR operation. The difference
between the inputs is called the input difference, and the difference between
the outputs of a function is called the output difference. The combination of the
input difference and the output difference is called a differential. The probability
of a differential is defined as follows.

Definition 1. Suppose E is an n-bit block cipher and K ∈ {0, 1}k is a key for
E. If x and y are n-bit blocks, then the probability of the differential (x, y) for
E, written ∆x → ∆y, is defined to be

PrEk
(∆x → ∆y) = Pr

P∈{0,1}n
(Ek(P )⊕Ek(P ⊕ x) = y).



7

The following result follows trivially from Definition 1:

Proposition 1. If E is an n-bit block cipher, and K ∈ {0, 1}k is a key for E,
and x and y are n-bit blocks, then

PrEk
(∆x → ∆y) =

|{P |Ek(P )⊕ Ek(P ⊕ x) = y, P ∈ {0, 1}n}|
2n

.

For a random function, the expected probability of a differential for any pair
(x, y) is 2−n. Therefore, if PrEk

(∆x → ∆y) is larger than 2−n, we can use the
differential to distinguish Ek from a random function, given a sufficient number
of chosen plaintext pairs.

Proposition 1 gives the accurate probability values of a differential from a
theoretical point of view. However, it is usually hard to apply it to a block
cipher with a large block size in reality, for example, n = 64 or 128 which
is currently being widely used, and even harder when the differential operates
on many rounds of the cipher. In practice, a multi-round differential is usually
obtained by concatenating a few one-round differentials, and the probability of
the multi-round differential is regarded as the product of the probabilities of the
one-round differentials under the following Assumption 1.

Assumption 1 The round keys are independent and uniformly distributed.

Assumption 1 connotes that the involved rounds are treated as independent.
Usually, the round keys are actually dependent, being generated from a global
user key under the key schedule algorithm of the cipher. As mentioned in [18],
this is “most often not exactly the case, but as often it is a good approximation”.

In 2008, Selçuk [20] formulated the success probability of a differential crypt-
analysis attack, as follows.

Theorem 1 (from [20]). For a differential attack on m key bits that uses
a differential with probability p and N plaintext-ciphertext pairs and ranks the
correct m-bit key value among the top r out of the 2m possible key values, if pr is
the average probability that a given key value is suggested by a randomly chosen
pair with the input difference, then under the assumption that the counters for
the 2m possible key values are independent and are identically distributed for all
wrong key values, the success probability of the attack, denoted by PS, is.

PS = Φ(

√
µ× SN − Φ−1(1− 2−v)√

SN + 1
),

where µ = p×N , SN = p
pr
, v = m− logr2, and Φ(·) is the cumulative distribution

function of the standard normal distribution.

3 How to Recover the User Key from a Few Subkey Bits
of SC2000

In this section we discuss how to recover the user key when a few subkey bits of
SC2000 are given.
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In general, a successful differential attack can reveal a few subkey bits of the
attacked cipher, and a step after that is to deduce the user key from the subkey
bits obtained. This can be easily done by exhaustive search when the cipher
has such a key schedule that its constituent operations are invertible, e.g., the
DES [15] and AES [21] block ciphers, but nevertheless it is tough for SC2000
— We cannot invert the operations for computing a round subkey to get the
corresponding user key. None of the previously published works has addressed
this problem, and Raddum and Knudsen mentioned in [6]: “The strong key
schedule in SC2000 prevents us from actually breaking 4.5 rounds by searching
exhaustively for the remaining 96 bits in the first or last round key”.

We assume that the time complexity of a SC2000 encryption/decryption is
evaluated by the numbers of B and S operations, and the time complexity of
a computation of the key schedule is evaluated by the number of S operations.
An optimised computation of the key schedule involves a minimum of 16 S op-
erations, and a one-round SC2000 encryption/decryption involves 1 B operation
and 4 S operations. Thus, a computation of the key schedule is not negligible
compared with an encryption/decryption, and from the designers’ performance
evaluation in [2] we know that it takes more time than a full-round encryp-
tion/decryption.

It looks like that every subkey bit of SC2000 depends on the entire 128 bits of
the user key. The seemingly only solution is to try each of the 2128 possible values
for the user key, and we check whether it can generate the obtained subkey bits
by the key schedule of SC2000; if so, then we further test it with trial encryptions
using one or more known plaintext-ciphertext pairs, and if it passes this test then
the trial value is very likely to be the correct key value. This solution requires a
negligible memory complexity and has a time complexity of 2128 computations
of the key schedule. An alternative solution is to precompute and maintain a
table of the concerned subkey bits for all the 2128 possible values of the user key,
and given the obtained subkey bits, we can find out the possible key values by
looking up in the table; the correct key value can be further identified with a
trial encryption. This solution requires a 2128 128-bit memory, which is also very
costly. However, we find that there exists a better way in certain circumstances,
and our result is given as follows.

Property 1 For a q-round SC2000 with 128 key bits (1 ≤ q ≤ 6.5), if an
extended key ek[·] whose intermediate-key inputs X[·], Y [·] belong to the set
{ika[·], ikc[·]} or {ikb[·], ikd[·]} and h other subkey bits are known (h ≥ 0), then
the correct value for (uk[0], uk[1], uk[2], uk[3]) can be obtained with an expected
time complexity of approximately (5×296+4×b296−hc) S operations and b296−hc
q-round SC2000 encryptions (provided that a known plaintext-ciphertext pair is
available).

Proof. Without loss of generality, we assume that ek[51] and h bits of ek[50] are
given, here 0 ≤ h ≤ 32. Observe that the intermediate-key inputs for ek[51] are
X[0] = ika[0], Y [2] = ikc[2], Z[0] = ikd[0],W [2] = ikb[2], and thus X[0], Y [2] ∈
{ika[·], ikc[·]}. Let us consider the following algorithm for obtaining the correct
value for (uk[0], uk[1], uk[2], uk[3]).
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1. Define six 32-bit constants c0, c1, · · · , c5, six unknown 32-bit constants xl, xr,
yl, yr, zl, zr and two 32-bit variables va, vd, (see Fig. 2).

c0 = M(S(0)), c1 = M(S(10)), c2 = M(S(3)),

c3 = M(S(9)), c4 = M(S(2)), c5 = M(S(11)),

xl = M(S(uk[0])), xr = M(S(uk[1])),

yl = M(S(uk[2])), yr = M(S(uk[3])),

zr = (ika[0] ≪ 1)� ikc[2], zl = (ikd[0] ≪ 1)� ikb[2].

2. Guess a value for zl, then compute zr = (zl ⊕ ek[51]) ≪ 1, and perform the
following two sub-steps in parallel.
(a) Guess a value for ika[0], compute va = S−1(M−1(ika[0])), and do as

follows.
i. Guess a value for xl, and compute xr = (xl � c0)⊕ va.
ii. Check whether (xl, xr) meets the following condition (1):

(ika[0] ≪ 1)�M(S((xl � c1)⊕ (xr � 3))) = zl. (1)

If not, repeat Step 2(a)-(i) with another guess for xl, (repeat the
above step if all the possible guesses are tested in a step).

(b) Guess a value for ikd[0], compute vd = S−1(M−1(ikd[0])), and do as
follows.
i. Guess a value for yl, and compute yr = (yl � c2)⊕ vd.
ii. Check whether (yl, yr) meets the following condition (2):

M(S((yl � c3)⊕ (yr � 3)))� zr = (ikd[0] ≪ 1). (2)

If not, repeat Step 2(b)-(i) with another guess for yl, (repeat the
above step if all the possible guesses are tested in a step).

3. For each value (xl, xr) passing Step 2(a)-(ii) and each value (yl, yr) passing
Step 2(b)-(ii), check whether the resulting value for (xl, xr, yl, yr) can pro-
duce a match with the given h bits of ek[50]. If so, execute Step 4 with the
value for (xl, xr, yl, yr); otherwise, repeat Step 2 with another guess.

4. For the value (xl, xr, yl, yr) passing Step 3, compute

uk[0] = S−1(M−1(xl)), uk[1] = S−1(M−1(xr)),

uk[2] = S−1(M−1(yl)), uk[3] = S−1(M−1(yr)),

and then test (uk[0], uk[1], uk[2], uk[3]) with a trial encryption using a known
plaintext-ciphertex pairt. If it yields the correct correspondence, output it
as the correct value, and terminate the algorithm; otherwise, discard it and
repeat Step 2(b)-(i) with another guess for yl.

The algorithm requires a negligible memory. For each guess of (zl, ika[0])
in Step 2(a), it is expected that there is only 1 = 232 × 2−32 value for (xl, xr)
meeting condition (1); and for each guess of (zl, ikd[0]) in Step 2(b), it is expected
that there is only 1 = 232×2−32 value for (yl, yr) meeting condition (2). Thus, it
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is expected that there are 232 × 232 × 232 = 296 possible values for (xl, xr, yl, yr)
in Step 3. On average, 296 × 2−h = 296−h possible values for (xl, xr, yl, yr) will
pass Step 3. Step 2(a) has a computational complexity of approximately 232 ×
232 × 232 = 296 S operations, and so is Step 2(b). Step 3 has a computational
complexity of approximately 232 × 232 × 232 × 4 = 298 S operations. Step 4 has
a computational complexity of approximately 296−h×4 = 298−h S−1 operations
and 296−h trial encryptions. Since Steps 2(a) and 2(b) are executed in parallel,
the algorithm has a total time complexity of approximately 296 +298 +298−h =
(5 + 22−h)× 296 S operations and 296−h q-round SC2000 encryptions.

The result follows trivially when we observe that if h > 96 there is no need
to do a trial encryption in Step 4. �

Note that Property 1 is mainly due to the observation that the left two
intermediate-key inputs for ek[·] are dependent on a different set of 64 user-key
bits from the right two intermediate-key inputs.

We now apply Property 1 to some previously published cryptanalytic results
on SC2000:

– Biham et al.’s boomerang and rectangle attacks on 3.5-round SC2000 [7]
retrieved 10 bits for each of the eight extended keys ek[0], ek[1], ek[2], ek[3],
ek[28], ek[29], ek[30], ek[31]. After a simple analysis, we know that each of
ek[28], ek[29], ek[30], ek[31] meets the condition that the intermediate-key
inputs X[·], Y [·] belong to the set {ika[·], ikc[·]} or {ikb[·], ikd[·]}. Thus, we
have 222 possible values for each of the four extended keys and h = 70 in this
attack, and it is expected to take approximately 5×296×222× 1

4×
1
3 ≈ 2116.74

3.5-round SC2000 encryptions to obtain the user key from the 80 subkey bits.
– Raddum and Knudsen’s differential attack on 4.5-round SC2000 [6] retrieved

8 bits for each of the eight extended keys ek[0], ek[1], ek[2], ek[3], ek[36], ek[37],
ek[38], ek[39], a total of 64 subkey bits. Among the eight extended keys, only
ek[39] meets the condition that the intermediate-key inputs X[·], Y [·] belong
to the set {ika[·], ikc[·]} or {ikb[·], ikd[·]}. Thus, there are 224 possible values
for ek[39] and h = 56 in this attack, so it is expected to take approximately
5× 296 × 224 × 1

4 × 1
4 ≈ 2118.33 4.5-round SC2000 encryptions to obtain the

user key from the 64 subkey bits.
– Yanami et al.’s differential attack on 4.5-round SC2000 [12] retrieved 5

bits for each of the eight extended keys ek[0], ek[1], ek[2], ek[3], ek[36], ek[37],
ek[38], ek[39], and their linear attacks on 4.5-round SC2000 retrieved 5 bits
for each of the eight extended keys ek[0], ek[1], ek[2], ek[3], ek[36], ek[37], ek[38],
ek[39] or for each of the four extended keys ek[36], ek[37], ek[38], ek[39]. Sim-
ilarly, we learn that it is expected to take approximately 5×296×227× 1

4×
1
4 ≈

2121.33 4.5-round SC2000 encryptions to obtain the user key from the 40 or
20 subkey bits (where h = 35 or 15).

4 4.75-Round Differential Characteristics of SC2000

In this section we describe the 4.75-round differential characteristics.
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(0x01124400, 0x00020000, 0, 0x01124400)

(0x01124400, 0, 0, 0x01124400)

(0, 0x01124400, 0, 0)

(0x01120000, 0x01124400, 0x01124400, 0)

2−10

1

2−16

2−16

2−16

2−16

1

1

1

1

2−15

2−11

2−11

2−15

Fig. 3. A 4.75-round differential characteristic with probability 2−126

4.1 2-Round Iterative Differential Characteristic of Yanami et al.

In 2002, Yanami et al. [12] described the results of a search over all the possible
two-round iterative differential characteristics with only one active S function in
every round for any two consecutive rounds I ◦B ◦ I ◦R5 ./ R5 ◦ I ◦B ◦ I ◦R3 ./
R3. Their result is that the best two-round iterative differential characteristic
(i.e. that with the highest probability) is (α, β, β, 0) → (α, β, β, 0) with prob-

ability 2−58: (α, β, β, 0)
I◦B◦I/2−15

−→ (0, β, 0, 0)
R5./R5/2

−16

−→ (β, γ, 0, β)
I◦B◦I/2−11

−→

(β, 0, 0, 0)
R3./R3/2

−16

−→ (α, β, β, 0), where α = 0x01120000, β = 0x01124400 and
γ = 0x00020000.
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4.2 The 4.75-Round Differential Characteristics

As a result, we can obtain a 4-round differential characteristic (α, β, β, 0) →
(α, β, β, 0) with probability 2−116 by concatenating the above two-round iter-
ative differential twice. It is essential to try to exploit an efficient (i.e. with a
relatively high probability) differential operating over more than four rounds in
order to break more rounds of SC2000. However, this 4-round differential cannot
be extended to a differential characteristic operating over more than four rounds
with a probability larger than 2−128, as appending even a half round R3 ./ R3

at the beginning will cost a probability of 2−16 and appending a B function at
the end will cost at least a probability of 2−13.

Nevertheless, observe that from the above two-round iterative differential
characteristic it follows that two-round iterative differential characteristic (β, γ, 0,
β) → (β, γ, 0, β) for any two consecutive rounds I ◦ B ◦ I ◦ R3 ./ R3 ◦ I ◦

B ◦ I ◦ R5 ./ R5 also holds with a probability of 2−58: (β, γ, 0, β)
I◦B◦I/2−11

−→

(β, 0, 0, 0)
R3./R3/2

−16

−→ (α, β, β, 0)
I◦B◦I/2−15

−→ (0, β, 0, 0)
R5./R5/2

−16

−→ (β, γ, 0, β). It
might seem counter-intuitive at first, but there is a major difference between
this and the previous iterative 2-round differential characteristic: we can ap-

pend a 0.75-round differential characteristic (β, γ, 0, β)
I◦B◦I◦R3→ (β, 0, 0, 0) with

a probability of 2−11 at the end of this differential characteristic! Therefore, we
can obtain a 4.75-round differential characteristic (β, γ, 0, β) → (β, 0, 0, 0) with
probability 2−127. Further, by changing the input difference to the difference
(β, 0, 0, β) we can get a 4.75-round differential characteristic with probability
2−126: (β, 0, 0, β) → (β, 0, 0, 0), and this 4.75-round differential characteristic is
depicted in Fig. 3. Additionally, by changing the output difference of the last
B function of the 4.75-round differential characteristic with probability 2−126 to
(θ, φ, 0, 0), where θ = 0x01104400 and φ = 0x00020000, we get another 4.75-
round differential characteristic with probability 2−126: (β, 0, 0, β) → (θ, φ, 0, 0).
When we change the output difference for only one of the four active S-boxes
(7,11,17,21) in the last B function of the two 4.75-round differential character-
istics with probability 2−126 to a value in {0x4, 0xC}, we get a total of six-
teen 4.75-round differential characteristics with probability 2−127. We denote
by Θ the set of the output differences of the two 4.75-round differential char-
acteristics with probability 2−126 and the sixteen 4.75-round differential char-
acteristics with probability 2−127. Note that when we change the input differ-
ence for only one of the five active S4 S-boxes in the first B function of the
two 4.75-round differential characteristics with probability 2−126 to a value in
{0x1, 0x2, 0x6, 0x7, 0xD, 0xF}, we get sixty additional 4.75-round differential
characteristics with probability 2−127. The differential distribution table of the
S4 S-box is given in [12], and the differential distribution table of the S5 S-box
is shown in Table 2 in Appendix A. (The characteristics do not make an active
S6 S-box, so we do not give its differential distribution table.)

In a natural way, we might try to find a better differential characteristic
on greater than four rounds by first exploiting short differentials with similar
structures and then concatenating them, for the above 4.75-round differential
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obtained from the two-round iterative differential is just a special case among
these. Motivated by this idea, we perform a computer search over all the possi-
ble differentials for such one round R ./ R ◦ I ◦ B ◦ I with only one R function
active and the right two 32-bit input differences and one of the left two 32-
bit input differences being zero; moreover, in order to ensure that the resulting
differential is capable of being concatenated with itself, we also require that
the right two 32-bit output words and one of the left two 32-bit output words
have a zero difference. Surprisingly, we find that the differential characteristics

(β, 0, 0, 0)
R3./R3◦I◦B◦I−→ (0, β, 0, 0) and (0, β, 0, 0)

R5./R5◦I◦B◦I−→ (β, 0, 0, 0) in the
above two-round iterative differential are the best (i.e. with the highest prob-
abilities) among those with the same forms, respectively. Our search for other
similar forms gives no better result.

5 Differential Attack on 5-Round SC2000

In this section, we present a differential cryptanalysis attack on the following
5 rounds of SC2000 when used with a 128-bit key: IK1

0
◦ B ◦ IK1

1
◦ R3 ./ R3 ◦

IK2
0
◦ B ◦ IK2

1
◦ R5 ./ R5 ◦ IK3

0
◦ B ◦ IK3

1
◦ R3 ./ R3 ◦ IK4

0
◦ B ◦ IK4

1
◦ R5 ./

R5 ◦ IK5
0
◦B ◦ IK5

1
◦R3 ./ R3 ◦ IK6

0
.1

5.1 Preliminary Results

First observe that the output differences in Θ have a constant zero value in 54
bit positions of the left half and have a zero value in the 64 bit positions of the
right half. Among the remaining 10 bit positions of the left half, there are a total
of 18 possible values, corresponding to the 18 output differences in Θ; we denote
by Γ the set of the 18 possible values. The left half of an output difference in Θ
will become the right half of the output difference after the following R3 ◦ IK6

0

operation.
On the other hand, having known the 128-bit difference after the IK6

0
function

for a ciphertext pair, we only need to guess the 64 subkey bits (K6
0,64, · · · ,K6

0,127)
of K6

0 to check whether this pair could produce an expected difference just before
the adjacent R3 function. In our case, for a candidate difference whose right half
is equal to the left half of one difference in Θ, we only need to guess at most the
40 subkey bits (K6

0,70, · · · ,K6
0,89,K

6
0,102, · · · ,K6

0,121) corresponding to the eight
S5 S-boxes in the adjacent R3 function to determine whether a ciphertext pair
with a candidate difference could produce one of the output differences of the
eighteen 4.75-round differential characteristics.

5.2 Attack Procedure

By using the sixteen 4.75-round differential characteristics with input difference
(β, 0, 0, β), we can mount a differential attack on the 5-round SC2000. The attack
procedure is as follows.

1 Strictly speaking, this is a little more than 5 rounds.
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1. Initialize 240 counters for the 240 possible values of the 40 subkey bits
(K6

0,70, · · · ,K6
0,89,K

6
0,102, · · · ,K6

0,121) in the IK6
0
function.

2. Choose 2124.68 plaintext pairs with difference (β, 0, 0, β). In a chosen-plaintext
attack scenario, obtain the corresponding ciphertexts for every plaintext pair,
and do as follows.

(a) Check whether the ciphertext pair has a zero difference in the following
54 bit positions of the right half: (0, 1, · · ·, 6, 8,· · ·, 10, 12, 13, 15, 16,
18, · · ·, 20, 22, · · ·, 38, 40, · · ·, 42, 44, 45, 47, 48, 50, · · ·, 52, 54, · · ·, 63).
If so, execute Step 2(b); otherwise, discard it.

(b) Check whether the ciphertext pair has a difference belonging to Γ in the
10 bit positions (7, 11, 14, 17, 21, 39, 43, 46, 49, 53) of the right half. If
so, execute Step 2(c); otherwise, discard it.

(c) For each possible value of the 40 subkey bits, partially decrypt the ci-
phertext pair through the IK6

0
function and the eight S5 S-boxes in the

adjacent R3 operation, compute the 64-bit difference just after the L3

operation in the R3 operation, then XOR it with the left 64-bit differ-
ence of the ciphertext pair, and finally check whether the resultant 64-bit
difference is zero. If so, increase 1 to the counter corresponding to the
possible value for the 40 subkey bits.

3. For the values of (K6
0,70, · · · ,K6

0,89,K
6
0,102, · · · ,K6

0,121) corresponding to the
2r counters with the top 2r numbers, (a specific value of r will be given be-
low), compute possible values for ek[51], and apply the algorithm in Section 3
to find the correct user key.

5.3 Complexity Analysis

The attack requires 2125.68 chosen plaintexts, and requires about 240 bytes of
memory, used for the 240 counters. It is expected that 2124.68 × 2−54 = 270.68

ciphertext pairs pass the condition in Step 2(a), and 270.68 × 18
210 ≈ 264.85 ci-

phertext pairs pass the condition in Step 2(b). The time complexity of Step 2
is dominated by the partial decryptions in Step 2(c), which is approximately
2× 264.85 × 240 × 1

2 × 1
5 ≈ 2102.53 5-round SC2000 encryptions.

Among the values of (K6
0,70, · · · ,K6

0,89,K
6
0,102, · · · ,K6

0,121) corresponding to

the 2r counters with the top 2r numbers, it is expected that there are about 2
r
2

possible values for (K6
0,70, · · · ,K6

0,89) and about 2
r
2 possible values for (K6

0,102, · · · ,
K6

0,121). As mentioned in Section 3, the extended key ek[51] meets the condi-
tion that the intermediate-key inputs X[·], Y [·] belong to the set {ika[·], ikc[·]}.
For each possible value for (K6

0,102, · · · ,K6
0,121), there are 212 possible values

for ek[51], because of 12 unknown bits (K6
0,96, · · · ,K6

0,101,K
6
0,121, · · · ,K6

0,127).

Letting r = 30, we have 2
r
2 = 215 possible values for (K6

0,70, · · · ,K6
0,89) and

2
r
2 = 215 possible values for (K6

0,102, · · · ,K6
0,121). As a result, there is a 5-bit

filtering condition in Step 2(c) of the algorithm in Section 3 (i.e., 215

220 ), and
there are 215 × 212 = 227 possible values for ek[51] in Step 3. So by Prop-
erty 1 we learn that Step 3 has an expected time complexity of approximately
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227 × (5 × 296 + 4 × 296−5) × 1
4 × 1

5 + 227 × 296−5 ≈ 2121.21 5-round SC2000
encryptions.

The signal-to-noise ratio for the attack is 2×2−126+16×2−127

18×2−128 ≈ 21.15. In Step

2(b), there are 2124.68 × (2 × 2−126 + 16 × 2−127) ≈ 16 right ciphertext pairs
for the correct key guess. According to Theorem 1, we have that the success
probability for the attack is about 94.5%, here µ = 16, SN = 21.15,m = 40, v =

40− log2
30

2 = 10.
Therefore, when r = 30, the attack has a total time complexity of approx-

imately 2125.68 + 2121.21 ≈ 2125.75 5-round SC2000 encryptions, with a success
probability of 94.5%.

6 Conclusions

SC2000 is one of the CRYPTREC e-Government Recommended Ciphers, which
has a total of 6.5 rounds if a 128-bit key is used. In this paper we have described a
few 4.75-round differential characteristics with a probability of larger than 2−128.
Finally, we have presented a differential attack on 5-round SC2000 when used
with 128 key bits. The presented attack is theoretical, like most cryptanalytic
attacks on block ciphers; anyway, from a cryptanalytic view it suggests for the
first time that the safety margin of SC2000 with a 128-bit key decreases within
one and a half rounds.
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Table 2. The differential distribution table of the S5 S-box

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 0 0 2 0 0 2 0 0 2 0 2 2 2 0 2 0 2 0 2 0 0 2 2 0 2 2

2 0 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 0 0 2 0 0 0 0 0 2 2 2 0 2 2 2

3 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2 0 0 2 2 2 2 0 2 0 2 2 2 0 2 2 0 0

4 0 0 0 2 2 0 2 2 0 2 0 0 0 2 0 0 2 0 2 0 2 2 2 2 0 0 2 2 2 2 0 0

5 0 0 0 0 0 2 2 2 2 2 0 2 0 2 2 0 0 2 0 0 0 2 0 2 2 0 2 0 0 2 2 2

6 0 0 0 0 0 2 0 2 2 2 2 0 2 0 0 0 0 0 2 2 2 2 2 2 0 2 0 0 2 0 2 2

7 0 0 0 2 2 0 0 2 0 2 2 2 2 0 2 0 2 2 0 2 0 2 0 2 2 2 0 2 0 0 0 0

8 0 2 2 2 2 2 2 0 0 2 2 0 2 0 2 0 0 2 0 0 2 0 2 2 0 0 0 0 0 2 0 2

9 0 2 2 0 0 0 2 0 2 2 2 2 2 0 0 0 2 0 2 0 0 0 0 2 2 0 0 2 2 2 2 0

10 0 2 2 0 0 0 0 0 2 2 0 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 0 2 0

11 0 2 2 2 2 2 0 0 0 2 0 2 0 2 0 0 0 0 2 2 0 0 0 2 2 2 2 0 2 0 0 2

12 0 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 2 2 2 0 0 2 0 0 0 0 2 2 2 0 0 2

13 0 2 2 2 2 0 0 2 2 0 2 2 2 2 0 0 0 0 0 0 2 2 2 0 2 0 2 0 0 0 2 0

14 0 2 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 2 2 2 0 2 0 0 0 2 0 0 2 2 2 0

15 0 2 2 0 0 2 2 2 0 0 0 2 0 0 0 0 2 0 0 2 2 2 2 0 2 2 0 2 0 2 0 2

16 0 2 0 0 2 2 2 0 2 2 2 2 0 2 0 2 0 2 0 2 2 2 0 0 0 0 0 2 2 0 0 0

17 0 2 0 2 0 0 2 0 0 2 2 0 0 2 2 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 2 2

18 0 2 0 2 0 0 0 0 0 2 0 2 2 0 0 2 2 2 0 0 2 2 0 0 0 2 2 0 2 2 2 2

19 0 2 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 0 2 0 0 2 2 0 2 2 2 2 0 2 0 0

20 0 2 0 2 0 2 0 2 2 0 2 2 0 0 0 2 2 2 2 2 0 0 2 2 0 0 2 0 0 2 0 0

21 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 2 2 2 2 2 2

22 0 2 0 0 2 0 2 2 0 0 0 2 2 2 0 2 0 2 2 0 0 0 2 2 0 2 0 2 0 0 2 2

23 0 2 0 2 0 2 2 2 2 0 0 0 2 2 2 2 2 0 0 0 2 0 0 2 2 2 0 0 2 0 0 0

24 0 0 2 2 0 0 0 0 2 0 0 2 2 2 2 2 0 0 0 2 0 2 2 2 0 0 0 2 2 2 0 2

25 0 0 2 0 2 2 0 0 0 0 0 0 2 2 0 2 2 2 2 2 2 2 0 2 2 0 0 0 0 2 2 0

26 0 0 2 0 2 2 2 0 0 0 2 2 0 0 2 2 2 0 0 0 0 2 2 2 0 2 2 0 2 0 2 0

27 0 0 2 2 0 0 2 0 2 0 2 0 0 0 0 2 0 2 2 0 2 2 0 2 2 2 2 2 0 0 0 2

28 0 0 2 0 2 0 2 2 2 2 0 2 2 0 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 0 0 2

29 0 0 2 2 0 2 2 2 0 2 0 0 2 0 0 2 0 2 0 2 0 0 2 0 2 0 2 2 2 0 2 0

30 0 0 2 2 0 2 0 2 0 2 2 2 0 2 2 2 0 0 2 0 2 0 0 0 0 2 0 2 0 2 2 0

31 0 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 2 2 0 0 0 0 2 0 2 2 0 0 2 2 0 2


