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Abstract. Systems of non-linear multivariate equations are at the heart
of many cryptographic algorithms, in particular in the public key setting.
This paper investigates some algorithms to solve such systems. Usually,
computing the Gröbner basis of the corresponding ideal is the best choice
in this context. The best known and also most e�cient algorithms for
this task are F4 and F5. Another strategy to solve such systems is called
eXtended Linearization (XL) from Eurocrypt 2000. For two reasons this
is not as popular as Gröbner bases. First it is believed that its running
time is worse than F4 and second it is not as well understood as Gröbner
bases. This contribution challenges both.
First we revisit recent results of the analysis of XL by Moh, Diem, Yang
et al. and connect them into one framework. Thereby we close some gaps
in understanding XL. Second we use this knowledge to give a theoretical
analysis of one of the most promising XL derivates, called MutantXL.
Adapting our results on the Multivariate Quadratic (MQ) signature
scheme Unbalanced Oil and Vinegar (UOV) shows that MutantXL can
actually lead to more e�cient attacks than methods based on Gröbner
bases. We con�rm in a theoretical way what Buchmann et al. observed
on the connection between F4 and MutantXL on theMQ-system Hidden
Field Equations (HFE), i.e. in some cases MutantXL is faster than F4,
respectively F5.

Keywords: Multivariate Cryptography, Algebraic Cryptanalysis, eX-
tended Linearization, XL, MutantXL, Unbalanced Oil and Vinegar Sig-
nature Scheme
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1 Introduction

This article deals withMultivariate Quadratic systems of equations over (small)
�nite �elds. Solving these equations is di�cult as they are NP-complete and also
hard on average.
In this article, we will concentrate on the so-called `eXtended Linearization' tech-
nique. In a nutshell, XL produces algebraic dependent, but linearly independent
equations by multiplying the initial set of equations with all possible combina-
tions of monomials up to a certain degree D. Next, the new system is viewed as
a linear system of equations, i.e. treated as a matrix. When this matrix has a
su�ciently high rank, XL succeeds. While this method will work in all practical
cases for a high enough degree D, it is thought to be rather ine�cient. In partic-
ular, Gröbner basis methods such as F4 and F5 have been described in the same
fashion. Still, algebraic methods gave rise to a number of attacks, in particular
on stream ciphers and block ciphers e.g. [Cou02, CP02, AK03, ACG+06]. For
the �rst, `algebraic immunity' has become an accepted design criterion [FM07],
while for the latter, it is still unclear if algebraic attacks on real-world ciphers are
actually more e�cient than previously known methods. However, the method-
ology has also been applied in the area of hash functions [SKPI07], and coding
based crypto systems [FOPT10]. Moreover, as any cryptographic system can be
expressed as a system of Multivariate Quadratic equations over a �nite �eld,
any major progress in this area could endanger at least some areas of cryptogra-
phy. Hence, studying the average di�culty of Multivariate Quadratic systems
of equations is important for the security of cryptographic systems. We want
to note that the AES seems to be particularly vulnerable to algebraic attacks,
although no speci�c attack is known so far [MR02]. Still, a clari�cation of the at-
tack complexity of concrete algorithms is bene�cial for cryptography as a whole.
In particular, a slight variation called MutantXL exploits the ideas of XL to the
fullest and is hence far more e�cient than earlier versions. In this article, we
provide a theoretical framework to analyse XL and its derivates, also includ-
ing MutantXL. The theoretical results are backed up with empirical studies. In
particular, we were able to derive the central formulae both analytically and
empirically.

1.1 Related Work

XL was initially proposed under the name `relinearization' at Crypto 1999, and
then renamed `eXtended Linearization' one year later [KS99, CKPS00]. The
main observation was that overdetermined systems of equations, i.e. systems
with more equations than variables could be solved surprisingly easy using the
linearization technique. The underdetermined case (more variables than equa-
tions) was tackled in [CGMT02]. In all cases, systems of equations are interpreted
as matrix-vector equations and the aim is to �nd a matrix with as many (lin-
early independent) rows as columns. To this aim, the initial set of equations is
expanded by generating algebraically trivial, but nevertheless valid and linearly
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independent equations. The �nal step consists of treating all monomials as inde-
pendent variables and then solving a purely linear system of equations. Soon it
was pointed out that the method was already known and performed for a small
number of variables by geometers [Moh00]. Using it with much larger systems
greatly helped to develop its understanding. Unfortunately the initial papers did
not provide a deep analysis of the method and many claims showed to be overly
ambiguous. At least since Courtois and Pieprzyk claimed to have broken AES
[CP02] using an XL derivate called XSL and were disproved by Cid and Leurent
[CL05] only a few years later, the community of cryptographers became increas-
ingly reserved against this method. But thanks to Moh [Moh00], Diem [Die04],
Yang and Chen [YC04a] and others, XL and variants are understood quit well
today.

A second line of research are Gröbner bases. They use a more symbolic ap-
proach and eliminate monomials from the set of equations. To this aim, pairs of
equations are formed and (hopefully) monomials eliminated. However, in most
cases the computation is in vain as no useful elimination occurs. Since the al-
gorithm F4 [Fau99], there is a strong connection with linear algebra, too: In
contrast to deal with pairs of equations, F4 selects whole sets and tries to min-
imise the amount of useless computations by treating them in matrix-fashion.
Its successor F5 uses some even cleverer book-keeping to bring down the num-
ber of useless computations even further [Fau02b]. It is considered the fastest
algorithm to compute Gröbner bases. And in fact, F5 and its variants have an
impressive track record in bringing down cryptographic systems and challenges
[Fau02a, Fau03a, Fau03b, FJ03, FA03, BFP09, FOPT10].

A natural question to ask is whether XL or Gröbner are the preferred choice for
cryptographic problems. Until now, the situation was quite clear: At Asiacrypt
2004 it was shown that XL actually is a sub-case of Gröbner algorithms and
that we hence can expect that Gröbner algorithms are always faster than XL
[AFI+04, Die04].

A possible testbed for this question is the `Unbalanced Oil and Vinegar scheme':
In 1997 Patarin designed a new signature scheme called `Oil and Vinegar' [Pat97],
based onMultivariate Quadratic equations. After Kipnis and Shamir broke the
balanced case in [KS98] the `Unbalanced Oil and Vinegar' signature scheme,
short UOV, was proposed [KPG99]. Even if most of the proposed schemes of
the class of multivariate cryptosystems, like MIA, HFE, SFlash are broken in
most of their variants, UOV is still believed to be secure. We can say that UOV
is one of the most popular multivariate cryptosystem. Even newer schemes like
Rainbow or enhanced TTS use the idea of UOV as trapdoor [DS05, YC05]. A
study of the security of UOV was published by Braeken, Wolf and Preneel in
2005 [BWP05]. The best known attack against UOV until now uses Gröbner
bases and is described in [BFP09]. In a nutshell, they use ordinary Gröbner
basis computation, but guess some variables beforehand. Therefore, they either
introduce contradictions in the system of equations, or they solve a system in
less variables.
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1.2 Organisation and Achievement

The contributions of this paper are manifold. First, we start by revisiting the
well known technique of relinearization, introduced by Kipnis and Shamir at
Crypto 1999 [KS99] and show in an easy way, that it is a subcase of XL. This
was already hinted by Courtois et al. in [CKPS00], but not as clear and formal
as one would deem necessary.
Second, we improve the constant ε in the ratio m ≥ εn2 for the number of
variables n and the number of equationsm from the initial value of ε = 1

10 [KS99]
to 1

12 for the corresponding XL of degree 2, therefore showing that far more pairs
(n,m) are solvable with only moderate workload than previously suggested. In
particular, this result is obtained using analytic methods, not empirical ones.
Still, we have veri�ed the theory empirically and found both in sync.
Third, we clarify the relationship between XL with homogeneous and inhomoge-
neous input. While the di�erence is subtle in most cases it becomes important
for analysing MutantXL. We do so both by analytical and empirical methods.
Fourth, we show that certain sets of parameters for UOV get in reach for an
improved version of MutantXL. These parameter sets were previously out of
reach, in particular for algorithms using Gröbner bases techniques such as F5.
Fifth, this raises the question if the cryptographic community was right in con-
demning XL for all possible application domains. While empirical evidence sug-
gested already previously that this might be the case, we give a clear and theo-
retically sound analysis why this might be the case.
This paper starts with introducing some notation and the UOV system (sec-
tion 1). After this, relinearization and XL are introduced and analysed in sec-
tion 2. Based on this, we deepen our analysis of XL, using both theoretical and
empirical methods (section 3). Variants of XL are introduced in section 4 and
used to cryptanalyse UOV. Conclusions are given in section 5. Further results
on the complexity of F5, XL, and MutantXL can be found in the appendix.

1.3 Notation

Solving non-linear systems of m equations and n unknowns is a di�cult problem
in general. Restricting to the seemingly easy case of degree 2 equations is still
di�cult. Actually this problem is also known as MQ-problem which is proven
to be NP-hard [GJ79].

Let P : Fnq → Fmq be anMQ system of the form

p(1)(x1, . . . , xn) = 0
p(2)(x1, . . . , xn) = 0

... (1)

p(m)(x1, . . . , xn) = 0,
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with
p(k)(x1, . . . , xn) :=

∑
1≤i≤j≤n

γ
(k)
ij xixj +

∑
1≤i≤n

β
(k)
i xi + α(k). (2)

We call equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-
neous case consists only of quadratic terms and is thus de�ned by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)

We need the classi�cation into homogeneous and inhomogeneous later on, be-
cause results are di�erent and it is not always easy to see that they are equal
after transforming an inhomogeneous system in a homogeneous one.
Let π(k) be the coe�cient vector of p(k)(x1, . . . , xn) in lexicographic order, i.e.

π(k) = (γ(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ

(k)
nn , β

(k)
1 , . . . , β(k)

n , α(k)).

Let Π be the corresponding coe�cient matrix

Π :=

π(1)

...
π(m)

 .

Note that the problem of solving non-linear equations becomes easier if m ex-
ceeds n. In a sense, each equation encodes information about the solution vector
(x1, . . . , xn) ∈ Fn. Obviously, having more information will guide the equation
solver to �nd this solution�as long as the equation is independent from the
previously known ones. The naive algorithm is to solve (1) by linearization, i.e.
to substitute every monomial in p(k) by a new variable and to solve the obtained
linear system of equations Π with Gaussian elimination. This will lead to the
correct solution if we have m ≥ n(n+1)

2 + n linearly independent equations, i.e.
if the number of linearly independent equations is equal to the number of mono-
mials. With the technique of relinearization, introduced in [KS99], we can solve
P (asymptotically) if we have m ≥ 0.09175 · n2 linearly independent equations.
Lowering the trivial factor of 1

2 to roughly 1
10 was a big leap. We are able to

further improve this to a factor of 1
12 in the inhomogeneous case of XL (Degree

2), cf. Section 3.1.

1.4 Unbalanced Oil and Vinegar

The public key in UOV is a vector P ∈ MQ(Fn,Fm) of multivariate quadratic
polynomials de�ned in (2)

P :=

 p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

 .
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Denote the number of oil variables by o ∈ N, the number of vinegar variables
by v ∈ N and set n := o + v. Let V := {1, . . . , v} and O := {v + 1, . . . , n}
denote the sets of indices of vinegar and oil variables. The private key F :=
(f (1)(u), . . . , f (m)(u)) is de�ned by

f (k)(u) :=
∑

i∈V,j∈O
γ

(k)
ij uiuj +

∑
i,j∈V,i≤j

γ
(k)
ij uiuj +

∑
i∈V ∪O

β
(k)
ij ui + α(k). (4)

It is important for �nding a preimage that the variables in f (k) are not completely
mixed, i.e. oil variables are only multiplied by vinegar variables and never by
oil variables. This construction leads to an easy way to invert f (k). If we assign
arbitrary values to the vinegar variables and if we set m = o we obtain a system
of o linear equations in o variables. It is very likely that this provides a solution. If
not we try again. In the public key P, the central map F is hidden by composing
it with a linear map S : Fnq → Fnq , i.e. P := F ◦ S.

Fnq Fmq

Fnq

P

S
F

Typical values for UOV are �eld-size q = 256, number of variables n = 78, and
number of equations m = 26 [BFP09]. We will use these to compare MutantXL
with F5 in section 4.

2 Relinearization vs XL

2.1 Relinearization

In [KS99] Kipnis and Shamir used relinearization to cryptanalyse HFE. The idea
is very clear and simple. Given a random MQ-system P we �rst linearise, i.e.
introduce new variables yk := xixj . For simplicity of the analysis we assume P to
be homogeneous. That means the number of unknowns xixj is

(
n+1

2

)
= n(n+1)

2 .
Notice that this is no restriction for asymptotic analysis and that we can express
any non-homogeneous system in form of a homogeneous system by introducing
one more variable. For random systems it is very likely that all of them equations
are linearly independent, cf. Section 3.1. This underdetermined system of linear
equations is solved by Gaussian elimination, see �gure 1 for illustration. As we
can see, we obtain an exponential number q

n(n+1)
2 −m of parasitic solutions in

ym+1, . . . , yn(n+1)
2

.
After linearization both y1 := x1x1 and y2 := x1x2 are two independent linear
variables. But from an algebraic point of view this is not true as y1 as well as
y2 depend on x1. Relinearization exploits this structure to eliminate parasitic
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∗
0

0

Π

x1x1 x1x2 . . .
n(n+1)

2 −m remaining unknownsz }| {

y1 y2 . . . ym ym+1 . . .

Fig. 1. Coe�cient Matrix Π of P after Gaussian elimination

solutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)
2

implicitly via new
equations. The following equations are trivially true and linearly independent for
some ya = xixj :

xixjxkxl = xixkxjxl = xixlxjxk (5)

⇔ yi1yi2 = yi3yi4 = yi5yi6

Kipnis and Shamir required i < j < k < l in the above equation. There are
(
n
4

)
possibilities for xixjxkxl and thus we get 2

(
n
4

)
linear independent equations by

(5). If this is larger than the number of unknowns in the remaining y's we are
done and can solve the system, i.e. for

2
(
n

4

)
≥
(n(n+1)

2 −m+ 1
2

)
.

For m in the same magnitude as n this is not the case in general. For m = εn2

and only considering the n4 part, we get the following asymptotic equation

0 ≤ −ε2 + ε− 1
12

and hence ε ≥ 0.09175.

Note, for inhomogeneous equations the overall analysis is the same but with a
bigger number of unknowns. By

2
(
n

4

)
≥
(n(n+1)

2 + n−m+ 1
2

)
,

we obtain the same asymptotic result. But later in the exact analysis we will
need to distinguish between these two cases, as relinearization in the homoge-
neous case will be exactly the same as XL of degree 2.

The idea of XL (of degree 2) is simpler but not as easy to analyse. We multiply
the coe�cient matrix Π shown in �gure 1 by every quadratic monomial xixj
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with i ≤ j and i, j ∈ {1, . . . , n}. This way we obtain m
(
n+1

2

)
equations in

(
n+3

4

)
monomials of degree 4. For m = εn2 the number of equations is asymptotically
larger than the number of monomials for ε ≥ 1

12 . The crucial question is if all
produced equations are linearly independent. This question was not paid much
attention by Courtois et al. in [CKPS00]. We will look at this in section 3. First
let us de�ne the XL algorithm in a rigorous way.

2.2 The XL algorithm

Note that eachMultivariate Quadratic equation can be rewritten into aMulti-
variate Quadratic polynomial p(k) and the (implicit) equation p(k) = 0. Hence,
we will only concentrate on polynomials in the remainder of this text.

De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneous
quadratic polynomials p as de�ned in (2) and Phom := {p(k)| 1 ≤ k ≤ m} the set
of homogeneous quadratic polynomials p de�ned in (3). We de�ne the set of all
monomials of degree D by

MonD := {
D∏
j=1

xij | 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.

Multiplying Pinh by all monomials of degree D is described by the set

Blow
inh
D := {ab | a ∈ MonD and b ∈ Pinh}.

The set BlowhomD is de�ned analogous. The following set de�nes what we use as
XL algorithm of degree D.

XL
inh
D :=

D⋃
i=1

Blow
inh
i ∪ Pinh.

Some authors also speak of XL of degree D meaning XLinhD−2. In this case D
means the highest degree of all polynomials used for multiplication and not
the degree of the extension. In our opinion, the latter is more general. Notice
that de�ning XLhomD analogous would not make any sense, because BlowhomD only
produces monomials of degree D+ 2 and thus there is no need to use the sets of
lower degrees.

De�nition 2 (XL algorithm). First we generate XLinhD and check if the num-
ber of linearly independent equations I is equal to the number of produced mono-
mials T subtracted by D+ 2. In this case we linearise the system and solve it by
Gaussian elimination. Notice, if T − I ≤ D + 2 we can choose the order of the
monomials such that we obtain a univariate equation after linearization, which
can be solved, e.g. by Berlekamp's algorithm. If T −I > D+2 we set D := D+1
and try again.
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2.3 Complexity Considerations

We discuss complexity considerations for algorithms of the XL-type. With minor
modi�cations, they also apply to modern Gröbner basis algorithms. In both
cases, we deal with a large matrix Π ∈ FM×N over a ground �eld F and M rows
and N columns. Usually, F is very small (8 or 16 bit), so we can exclude it from
our analysis. The number of columns N depends on the number of unknowns and
is roughly

(
n+D+2
D+2

)
. It may vary a bit depending on the version of XL chosen.

The number of rows M must be at least as big as the number of columns N .
Otherwise, our linear system does not permit a unique solution. The overall
complexity is therefore determined by 1.) building the matrix Π and 2.) �nding
a solution for the underlying system. We start with the �rst step: Here, we start
with a dense polynomial p ∈ P and multiply it with a single monomial a ∈ MonD.
The overall workload is therefore

|MonD|
(
n+ 2

2

)
multiplications and memory access for building the matrix Π. Note that each
row inΠ has

(
n+D+2
D+2

)
but only

(
n+2

2

)
non-zero elements. It is therefore extremely

sparse. This can be exploited as we do not need to storeM ·N but onlyM
(
n+2

2

)
elements.
Secondly, we consider solving the linear equation depending on the coe�cient
matrix Π. In a nutshell, we can upper-bound this by O(Mω) for 2 ≤ ω ≤ 3 in
general and ω = 2 + ε for sparse equations. As we saw above, this is the case
for XL. If we can avoid linear dependent equations in the intermediate steps,
we have M = N and can therefore bring down complexity. We see that the
complexity of (2) clearly outperforms (1). Therefore, it is enough to consider
M2 in the sequel.

2.4 Relinearization as subcase of XL

Moh analysed relinearization for i ≤ j ≤ k ≤ l [Moh00]. Asymptotically he
obtains the same result as Kipnis and Shamir. To compare relinearization with
XL we also need the smaller terms and therefore we use the exact analysis by
Moh. For i ≤ j ≤ k ≤ l we get

2
(
n

4

)
+
n(n− 1)(n− 2)

2
+
n(n− 1)

2
= 2
(
n

4

)
+ 3
(
n

3

)
+
(
n

2

)
equations by relinearization, instead of 2

(
n
4

)
in the case i < j < k < l. Figure 2

illustrate the given situation. To allow to distinguish cases we assume m to be

of the form
γ−1∑
i=0

(n− i) = γn+ γ−γ2

2 for γ = εn and thus m = (ε− ε2

2 )n2 + ε
2n.

Through this ym+1 = xγ+1xγ+1 holds and due to the graded lexicographical
order for all indices of not speci�ed monomials xixj in the ∗ block, see �gure 2,
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∗
0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .

Fig. 2. Coe�cient Matrix Π of P after Gaussian elimination

it holds i, j > γ. This allows us to analyse xixjxkxl in the two cases i ≤ γ and
i > γ.

We want to show that multiplying by special monomials is exact the same as
relinearization. Due to the choice of m we can distinguish two cases.

Case 1, i ≤ γ. For i ≤ γ relinearization behaves exactly as XL.

xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixj︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . ,m} (6)

Equations (6) used by relinearization can be produced in XL by multiplying the
row of yi1 by xkxl.

Case 1.1, i < j < k < l. There are
γ∑
i=1

(
n−i
3

)
possibilities for xixjxkxl, as well as

for xixkxjxl and xixlxjxk for i < j < k < l. So we produce 3
γ∑
i=1

(
n−i
3

)
equations

with XL by multiplying yi by xkxl. But we also produce
γ∑
i=1

(
n−i
3

)
new mono-

mials containing variables xi with i ≤ γ and so the number of remaining new

equations is 2 ·
γ∑
i=1

(
n−i
3

)
.

Case 1.2, (j = 1 and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In the
case of two equal and two di�erent indices we have the following 3 possibilities
of monomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produces 3 equa-
tions xixixkxl = xixkxixl = xixlxixk. Notice that the last equality is not used
by relinearization, because it is trivial. So we ignore them too. Since xixixkxl
introduce a new monomial, only xixkxixl gives us a new equation. So we have

3 ·
γ∑
i=1

(
n−i
2

)
new equations in total.

Case 1.3, i = j and k = l and i 6= k. In this case relinearization uses xixixkxk =
xixkxixk. The left monomial produces new monomials in XL and the right mono-
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mial produces
γ∑
i=1

(n− i) new equations. To sum up all cases, we produced

2 ·
γ∑
i=1

(
n− i

3

)
+ 3 ·

γ∑
i=1

(
n− i

2

)
+

γ∑
i=1

(n− i)

new equations by adapting relinearization to XL. Notice that we produced more
equations than this, but used them to eliminate the newly introduced monomials
of degree 4 with variables xi and i ≤ γ. So the number of unknowns in XL is
only the number of degree 4 monomials containing variables xi with i > γ, i.e.(
n−γ+3

4

)
.

Case 2, i > γ. For i > γ relinearization uses the equations

xixjxkxl = xixkxjxl = xixlxjxk.

This equations cannot be produced by XL, because they are trivially true. The
di�erence between both methods is that relinearization produce more variables
after the second linearization step and XL does not. So we do not need these
equations for XL because they are only needed in relinearization to eliminate
variables we do not have in XL.
The following equations sum up the number of unknowns and equations in both
methods. The left terms are the number of unknowns and the right terms are
the number of equations.

Relinearization:

(
(
n+1

2

)
−m)(

(
n+1

2

)
−m+ 1)

2
≤ 2
(
n

4

)
+ 3
(
n

3

)
+
(
n

2

)
↑ ↑
∆1 ∆2

↓ ↓
XL: (

n− γ + 3
4

)
≤ 2 ·

γ∑
i=1

(
n− i

3

)
+ 3 ·

γ∑
i=1

(
n− i

2

)
+

γ∑
i=1

(n− i)

To show that both are equal, we have to show that the di�erence ∆1 between the
left terms is equal to the di�erence ∆2 of the right terms. We us m = γn+ γ−γ2

2
(∗) and the following equality for k ∈ N>0

(
n

k

)
−
(
n− γ
k

)
=

γ∑
i=1

(
n− i
k − 1

)
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We get

∆1 =
(
(
n+1

2

)
−m)(

(
n+1

2

)
−m+ 1)

2
−
(
n− γ + 3

4

)
(∗)
= 2

(
n− γ

4

)
+ 3
(
n− γ

3

)
+
(
n− γ

2

)
= 2

((
n− γ

4

)
−
(
n

4

)
+
(
n

4

))
+3
((

n− γ
3

)
−
(
n

3

)
+
(
n

3

))
+
(
n− γ

2

)
−
(
n

2

)
+
(
n

2

)
= 2

(
n

4

)
+ 3
(
n

3

)
+
(
n

2

)
−2 ·

γ∑
i=1

(
n− i

3

)
− 3 ·

γ∑
i=1

(
n− i

2

)
−

γ∑
i=1

(n− i)

= ∆2 �

To conclude, if we use the XL method and multiply not by all quadratic mono-
mials, but by special ones we do the same as relinearization does, and thus
relinearization is a subcase of XL. Now we want to show that it is equal in the
homogeneous case of degree two.

Relinearization is equal to Blowhom2

In section 3.1 we will show that the number of linearly independent equations
produced by Blowhom2 is m

(
n+1

2

)
−
(
m
2

)
. Using this we can analyse if XL outper-

forms relinearization or not. In the homogeneous case the following must hold
for Blowhom2 to obtain a solution.

m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
≥ −D − 2 (7)

The following must hold for relinearization to obtain a solution.

2
(
n

4

)
+ 3
(
n

3

)
+
(
n

2

)
−
( (n+1)n

2 −m+ 1
2

)
≥ −D − 2 (8)

Because of following equality, inequations (7) and (8) are equal.

m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
=
n4

24
+
n3

4
− n2m

2
+

11n2

24
− nm

2
+
n

4
+
m2

2
− m

2

= 2
(
n

4

)
+ 3
(
n

3

)
+
(
n

2

)
−
( (n+1)n

2 −m+ 1
2

)
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In the inhomogeneous case, Blowinh2 is slightly better than relinearization. As
depicted in section 3.2 table 5 we get a factor of 1

12 instead of 0.09175 in the
asymptotic analysis. We can also derive this from the inequations above. If we
homogenise the inhomogeneous system we have to substitute n by (n + 1) in
inequation (7). Relinearization does not depend on the question whether equa-
tions are homogeneous or not, i.e. inequation (8) stays the same and thus both
are not longer equal.

3 Analysis of XL

3.1 The number of linearly independent equations

The crucial point by using XL is to determine the number of linearly indepen-
dent equations produced by BlowD or XLinhD . This is needed to calculate D and
therefore implies the complexity of the whole algorithm. For random equation
systems we will revisit the formulas derived theoretically by Moh [Moh00], Yang
and Chen [YC04a] or by experiments for D between 0 and 5 over F2 by Courtois
and Patarin [CP03]. Notice that the formulas are independent of the ground �eld
Fq. The �eld has only impact on the number of unknowns if we can reduce them
by the �eld equations xq − x. This is only the case for D ≥ q. Our experiments
were performed independently of previously known results. In addition, we also
considered the homogeneous case.

Table 1. Number of linearly independent equations produced by BlowhomD , experimen-
tally derived.

D Number of linearly independent equations

0 m

1 mn

2 m
`
n+1

2

´
−
`
m
2

´
3 m

`
n+2

3

´
−
`
m
2

´
n

4 m
`
n+3

4

´
−
`
m
2

´`
n+1

2

´
+
`
m
3

´
5 m

`
n+4

5

´
−
`
m
2

´`
n+2

3

´
+
`
m
3

´
n

Experimental setup and connection between homogeneous and inho-
mogeneous case
As you can see in table 1 and 2 the formulas of BlowhomD and BlowinhD are slightly
di�erent. These equations were obtained experimentally by a total of several
10,000 experiments and later veri�ed theoretically. All experiments were per-
formed on a Intel Xeon X33502.66GHz (Quadcore) with 8 GB of RAM using
only one core and the software system Magma V2.16-1 [MAG]. Parameters were
running for various tuples (n,m,D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50,
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Table 2. Number of linearly independent equations produced by BlowinhD , experimen-
tally derived.

D Number of linearly independent equations

0 m

1 mn

2 m
`
n+1

2

´
3 m

`
n+2

3

´
−
`
m−1

3

´
4 m

`
n+3

4

´
−
`
m−1

3

´
n+

`
m−1

4

´
5 m

`
n+4

5

´
−
`
m−1

3

´`
n+1

2

´
+
`
m−1

4

´
n−

`
m−1

5

´
+
`
m−1

4

´
6 m

`
n+5

6

´
−
`
m−1

3

´`
n+2

3

´
+
`
m−1

4

´`
n+1

2

´
−
`
m−1

5

´
n+

`
m−1

4

´
n+

`
m−1

6

´
−
`
m−1

5

´

Table 3. Number of linearly independent equations produced by XLinhD , experimentally
derived.

D Number of linearly independent equations

0 m

1 m+mn

2 m+mn+m
`
n+1

2

´
−
`
m
2

´
3 m

`
n+3

3

´
−
`
m
2

´
(n+ 1)

4 m
`
n+4

4

´
−
`
m
2

´`
n+2

2

´
+
`
m
3

´
5 m

`
n+5

5

´
−
`
m
2

´`
n+3

3

´
+
`
m
3

´
(n+ 1)

1 ≤ D ≤ 8. First, all data-points were �tted with an automated polynomial �tter
(multivariate equations in two or three variables). In a second, semi-automated
step, these polynomials were expressed in form of binomials.

Hence we showed experimentally that we obtain

m+mn+m

(
n+ 1

2

)
−
(
m

2

)

linearly independent equations for XLinh2 , i.e if we join the Blowinhi for i =
0 . . . 2 there are new linear dependencies. And thus we get the same result by
homogenising an inhomogeneous system and using Blowhom2 and by using XLinh2

itself. Note that we have to substitute n by n+ 1 in the formula of Blowhom2 and
that the number of variables is

(
n+4

4

)
− 1 because we know x4

n+1 by the choice
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of xn+1 = 1 for homogenisation. Thus we get the following.

Blowhom2

: m
(
n+ 2

2

)
−
(
m

2

)
−
(
n+ 4

4

)
+ 1

= m

(
n+ 1

2

)
+m

(
n+ 1

1

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 3

3

)
+ 1

= m+mn+m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 2

3

)
−
(
n+ 2

2

)
+ 1

= m+mn+m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 2

3

)
−
(
n+ 1

2

)
− n

: XLinh2

The above is also true for arbitrary D. If you choose m high enough, you may
wonder if the number of linearly independent equations for inhomogeneous sys-
tems becomes less than 0. Note that all equations �rst reach the maximum num-
ber of linear independent equations, i.e.

(
n+D+1
D+2

)
+
(
n+D
D+1

)
+
(
n+D−1

D

)
−D − 2,

the number of unknowns for BlowinhD subtracted by D + 2. If the number of
equations is higher than the number we need to solve the system, the formulae
do no longer �t.

3.2 Asymptotic analysis

For an asymptotic analysis we choose m = εn2. We cannot hope to get m in
the order of n because then P = NP would become very likely. But even if m
stays in the order of n2 the factor ε may be small enough for the cryptanalysis
of small parameters. We see from section 2.1 and table 4, XL of degree 2 is
asymptotically the same as relinearization.

Table 4. Asymptotic analysis of BlowhomD and XLinhD .

Degree ∗ ≤ 0 ε

0 1
2
− ε 1

2

1 1
6
− ε 1

6

2 1
24
− 1

2
ε+ 1

2
ε2 0, 09175

3 1
120
− 1

6
ε+ 1

2
ε2 0, 06125

4 1
720
− 1

24
ε+ 1

4
ε2 − 1

6
ε3 0, 04525

Something unexpected happens in table 5. For D = 2 using BlowinhD is asymp-
totically better than using XLinhD . But for D > 2 there is no asymptotic solution
for BlowinhD at all!
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Table 5. Asymptotic analysis of BlowinhD .

Degree ∗ ≤ 0 ε

0 1
2
− ε 1

2

1 1
6
− ε 1

6

2 1
24
− 1

2
ε 1

12

3.3 XL of high degrees D

Courtois et al. claimed in [CKPS00] that everyMQ-system could be solved by
XL in sub-exponential time, if we chose D high enough. Well, this is not true in
the inhomogeneous case m = n, as shown by Yang in [YC04b]. More precisely,
there is a upper bound on D o� which the number of new equations equals
the number of new monomials. Remember XL needs the di�erence between the
number of monomials T and the number of linearly independent equations I to
be less or equal to D + 2. So after reaching the upper bound of D, XL can only
solve the problem, if we increase D up to this di�erence. It is obvious that this
is not e�cient any more. We want to show this fact for the homogeneous case.
The inhomogeneous case is analogous.
First let us consider the case D = 2k. The number of linearly independent
equations subtracted by the number of monomials is given by

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)− 1

n− 1

)
−
(
n+ 2k + 1
n− 1

)

= −
2k+2∑
i=0

(−1)i
(
m− n
i

)(
m

2k − i+ 2

)
. (9)

In the special case m = n inhomogeneous, e.g. m + 1 = n homogenised, (9)
does not further increase if we choose 2k + 2 bigger than m, i.e. D > m − 2,
and thus k = m−2

2 is an upper bound. We get the following.

m∑
i=0

(−1)i
(
−1
i

)(
m

m− i

)

=
m∑
i=0

(
m

i

)
= 2m.

We used
(−1
i

)
= (−1)i

(
1+i−1
i

)
= (−1)i. So the number of linearly independent

equations subtracted by the number of monomials is T − I = 2m. XL succeed, if
we raise D+ 2 up to 2m, because I −T ≥ −D− 2 must hold. But for m = n+ 1
inhomogeneous equations, this become much better and D gets polynomial in
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m. For D = m− 2 we always obtain a solution since

m∑
i=0

(−1)i
(
m

i

)
= 0.

Let m = n+a and a ∈ N>1. The upper bound for D to solve the system is given
byD = 2m−n−1 = n+2a−1. The term

(
a
i

)
becomes 0 for i = a+1, . . . , n+2a+1

and the term
(

n+a
n+2a+1−i

)
for i = 0, . . . , a. Thus it hold

−
n+2a+1∑
i=0

(−1)i
(
a

i

)(
n+ a

n+ 2a+ 1− i

)
= 0.

3.4 Theoretical analysis

Lemma 1. If Phom contains random equations then the number of linearly in-
dependent equations produced by Blow

hom
D is upper bounded by

D = 2k : (10)
k∑
i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)− 1

2(k − i)

)
D = 2k + 1 :

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)
2(k − i) + 1

)
.

This bound holds with very high probability.

Before proving this lemma at the end of this section, we need some intermediate
results.
Equations (10) on BlowinhD and XLinhD was given and proven inductively by Moh
[Moh00]. We want to formulate this proof in more detail and give a good intuition
were the systematic linear dependencies come from. First we concentrate on
Blowhom2 and search for the

(
m
2

)
linear dependent equations out of all m

(
n+1

2

)
produced equations. Let f, g be two Multivariate Quadratic polynomials in n
variables each. Denote Monf , Mong the set of monomials in f and g, respectively.
Assume the existence of some admissible ordering for multivariate polynomials
f, g, e.g. degrev-lex or lex.

Lemma 2. Let f, g be a pair of linearly independent, Multivariate Quadratic
polynomials. Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be the
sets of cross-wise monomial multiplication of f and g, respectively. Then these
two sets produce at most |F |+ |G| − 1 linearly independent equations.

Proof. We denote our two polynomials by f :=
∑σ
i=1 αiai and g :=

∑τ
i=1 βibi

for non-zero �eld elements αi, βj ∈ F∗ and monomials ai, bj for 1 ≤ i ≤ σ and
1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. The
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important property of the two sets F,G is that each monomial ab for a ∈ Monf
and b ∈ Mong exists twice, namely once in bf ∈ F and once in ag ∈ G. The
following equation shows that adding all equations of F multiplied by coe�cients
βi is equal to adding all equations of G multiplied by coe�cients αi and thus
the set F ∪G is linear dependent.

τ∑
i=1

βibif =
τ∑
i=1

βibi

σ∑
i=1

αiai =
σ∑
i=1

αiai

τ∑
i=1

βibi =
σ∑
i=1

αiaig

Clearly this construction fails if we delete one equation in F ∪G. ut

Corollary 1. The set Blowhom2 contains at most
(
n+1

2

)
m−

(
m
2

)
linearly indepen-

dent equations.

Proof. By its de�nition, we have at most
(
n+1

2

)
m elements in Blowhom2 . This

explains the �rst part of the sum and also gives an upper bound. Considering
all pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain

(
m
2

)
linear

dependencies. ut

Corollary 2. The set XLinh2 contains at most
(
n
2

)
m + nm + m −

(
m
2

)
linearly

independent equations.

Proof. This corollary works similar to corollary 1. By its de�nition, we have at
most

(
n
2

)
m+ nm+m elements in XLinh2 . This explains the �rst part of the sum

and also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < g
and also Lemma 2, we obtain

(
m
2

)
linear dependencies. ut

Lemma 3. Let f, g be a pair of linearly independent, homogeneousMultivariate
Quadratic polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}
contains at most 2

(
n+k−1

k

)
−
(
n+k−3
k−2

)
linearly independent equations.

Proof. The �rst part of the sum is a result of the
(
n+k−1

k

)
choices of the monomial

µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈
Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we can now apply
lemma 2. We have |Monk−2| =

(
n+k−3
k−2

)
individual choices for v. ut

Extending this lemma from pairs to sets is kind of tricky, because since D ≥ 4
we obtain new linear dependencies between 3 and more equations. Thus we are
counting linear dependencies twice if we only consider pairs f, g. To count all
equations only once, we need a property (equation (11)) which follows if the
system of equations is pairwise coprime. First we show that this occurs with
very high probability. Then we show that if the system is pairwise coprime the
upper bound of lemma 1 is tight.

Corollary 3. Two randomly chosen MQ-equations f and g are not coprime
with probability

q + 2(q − 1)(qn+1 − 1)

q(
n+2

2 )
.
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Proof. Two randomly chosen quadratic polynomials f and g are not coprime i�
they share a common factor. Per de�nition gcd(f, a) = 1 for all a ∈ Fq and thus
the common factor have to be a polynomial of degree one. Let g = ab and f = cd
with a, b, c, d ∈ F[x1, . . . , xn] and deg(a) = deg(b) = deg(c) = deg(d) = 1. We
choose g arbitrary and count the number of f with a common factor. In case 1
f = λg with λ ∈ Fq gives q possibilities. In case 2 we assume w.l.o.g. d 6= λa, λb.
Furthermore λ 6= 0 as we count this in case 1. We can choose c = λa or c = λb
with d 6= 0 arbitrary. This give 2(q − 1)(qn+1 − 1) possibilities.
The total number of choices of f is q(

n+2
2 ) and thus the probability of not being

coprime is q+2(q−1)(qn+1−1)

q(
n+2

2 ) . ut

The probability of a MQ-system to be pairwise coprime is simply one minus(
m+1

2

)
times the probability of lemma 3. Note that the probability of a MQ-

system to be pairwise coprime increase if q,m or n increase. Already for the
small parameters q = 4 and m = n = 9 it is greater than 1 − 2−80. We have
also veri�ed this experimentally (cf. Section 3.1). Note for �xed q the probability
increase exponentially in n.
Denote with Lin(S, k) the linear closure of degree k of a polynomial f or a set
S, respectively, as

Lin(f, k) := {a+ b : a, b ∈ {ϕµf : ϕ ∈ F, µ ∈ Monk}}

Lin(S, k) := {a+ b : a, b ∈ {ϕµs : ϕ ∈ F, µ ∈ Monk, s ∈ S}} .

We can also think of Lin(·, k) as possible rows in the corresponding coe�cient
matrixΠ for S or f . Moreover, denote with |Lin(S, k)| the number of its elements
and with #Lin(S, k) the number of linear independent equations in Lin(S, k). The
latter can also be viewed as the rank of the corresponding coe�cient matrix.
Assumption: Let f /∈ Lin(S, 0) be a quadratic polynomial, S := {g1, . . . , gm} a
set of m ∈ N linearly independent quadratic polynomials, also to f , and k ≥ 0
some extension degree. Then we have

#(Lin(S, k) ∩ Lin(f, k)) = #Lin(S, k − 2) (11)

with very high probability. For the special case m = 1 condition (11) means that
both polynomials are co-prime.
Before �nishing the proof of lemma 1, we want to give some intuition behind the
overall idea: in a nutshell, we will make use of the inclusion/exclusion principle
for di�erent dimensions k. The reason is that for some dimension k′ we will
count the same linear independent equation twice�which we have to correct
at this level. For dimension k′ + 2, there is an overcorrection, which has to be
corrected again and so on. Hence, we end up with a sum in (−1)r and a count
of the number of equations we have to correct. Recall that we wanted to count
the number of linearly independent equations of BlowhomD and hence deal with a
polynomial system Phom.



20 Enrico Thomae, Christopher Wolf

Proof (lemma 1). First we reformulate the formula of lemma 1. The number of
linearly independent equations #Lin(Phom, k) there is given by

∑
0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
. (12)

We proof this by induction via m. The case m = 1 is trivial.
Let us assume equation (12) holds for m. We have to show that it also holds for
m+ 1.

We have Phom
m+1 := Phom

m ∪ {pm+1} and write

#Lin(Phom
m+1, D) = #Lin(Phom

m , D) + #Lin(pm+1, D)

− #(Lin(Phom
m , D) ∩ Lin(pm+1, D)).

The last term simpli�es to #Lin(Phom
m , D − 2) using equation 11. Using the

induction hypothesis we obtain the following formula for #Lin(Phom
m+1, D).

∑
0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+
(
n+D − 1

D

)
−

∑
0≤2i≤D−2

(−1)i
(

m

i+ 1

)(
n+D − 2i− 3

n− 1

)

=
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+
∑

0≤2i≤D

(−1)i
(
m

i

)(
n+D − 2i− 1

n− 1

)
(13)

Exploiting
(
m
l

)
=
(
m−1
l

)
+
(
m−1
l−1

)
yields

(13) =
∑

0≤2i≤D

(−1)i
(
m+ 1
i+ 1

)(
n+D − 2i− 1

n− 1

)

Since we have ε > 0, lemma 1 gives an upper bound of the number of linearly
independent equations. But as we saw in corr. 3, the value ε is very small in
practice, so this bound is tight for all practical cases. ut

Lemma 1 only handles the homogeneous case. The proof for the inhomogeneous
case is analogous. Actually there is a strong connection between the homogeneous
and inhomogeneous case, because we reach the same results, if we homogenise
non-homogeneous system, as we saw in section 3.1.
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4 Variants of XL

Inspired by Gröbner bases and some other observations there is a whole family
of XL-like algorithms, which try to use some additional ideas to speed up the
original XL algorithm. We revisit the most important ones and give some reasons
if and under which circumstances they are useful. Some examples are FXL, XFL,
XLF, XL', XL2 and XSL [CKPS00, BFP09, YC04a, Cou04, CP03].

FXL
FXL, or �xing extended linearization, was suggested in the original paper of
Courtois et al. [CKPS00] and is nothing else than XL with guessing some vari-
ables beforehand. That this is quit a good idea is already shown for the Gröbner
base algorithm in [BFP09]. That it is also a good idea for XL shows equation
(9) in section 3.3. We saw that the case m = n is exponential in D, but already
the case m = n+ 1 is polynomial, so it helps to guess at least one variable. The
optimal number of guessed variables is discovered by Yang and Chen in [YC04a]
section 5.2.

XFL
XFL is a variant of FXL. We choose f variables, but do not guess them right in
the beginning. We choose the order of the monomials in a way that all monomials
containing any of the f variables are eliminated last. Now we linearise the system
and apply Gaussian elimination. Because the system was underdeterminend, we
obtain no unique solution. To do so, we guess one of the f variables and apply
Gaussian elimination again. Why is this stepwise guessing better than FXL in
some case? First we have to do the most work, i.e. the �rst Gaussian elimination,
only once. In FXL we have to do this after every wrong guessing. But notice,
that there the number of monomials is smaller, so we carefully have to calculate
the right tradeo� between the two variants. Second XFL may use dependencies
among the f variables and thus succeed.

XLF
XLF just take the �eld equations (xq − x) = 0 in Fq into account and was �rst
mentioned in [Cou04]. XLF makes sense in the inhomogeneous case, if D get
larger than (q − 2). In this case the analysis becomes slightly di�erent, because
the number of produced monomials decrease, i.e. monomials xDi reduce to xi
which already exists. This means we need less linearly independent equations to
succeed. Note that XLF is one of a handful variants which improve the inhomo-
geneous case, but not the homogeneous one. In the homogeneous case we only
have monomials of degree D + 2. If we reduce them we get monomials of lower
degree, but they did not exist before and thus the number of unknowns stay the
same. Even if the formulas of the number of linearly independent equations in
section 3.1 showed that the inhomogeneous and homogeneous case are equal us-
ing homogenization, this is not true any longer if we want to use some algebraic
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dependencies. By homogenization we grout the structure of the inhomogeneous
equations we want to use by methods like XLF or MutantXL.

XL'
Introduced by Courtois and Patarin in [CP03] this variant solve the equation
system by XL until there are only

(
r+D+2
D+2

)
equations in r variables left. This

remaining equation system is solved by brute force or other algorithms like Gröb-
ner bases.

Lemma 4. For practical purposes, FXL is better than XL'.

Proof. We call FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smaller
than (T − I)XL'. With section 3.3 and D = 2k we can write

(T − I)FXL =
(
n− r +D + 1

D + 2

)
−

k∑
i=0

(−1)i
(

m

i+ 1

)(
n− r +D − 2i− 1

n− r − 1

)

=
2k+2∑
i=0

(−1)i
(
m− n+ r

i

)(
m

2k − i+ 2

)
and

(T − I)XL' =
(
n+D + 1
D + 2

)
−

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
−
(
r + 2k + 2

2k + 2

)

=
2k+2∑
i=0

(−1)i
(
m− n
i

)(
m

2k − i+ 2

)
−
(
r + 2k + 2

2k + 2

)
+ 1.

If we would plot formula (T −I)XL'− (T −I)FXL we would see that this is greater
than zero, i.e. FXL is better than XL', for r less than some bound depending on
k. For increasing k the bound on r decrease. It seems very hard to calculate this
bound in an analytical way. But for real world parameter k < 10 and r � n we
are below this bound. W.l.o.g. we can assume m = n, otherwise we substitute
r. See table 6 for the upper bound on r depending on m and k. With F5 we
can solveMQ-systems up to m = 20 in 266 operations, so we stopped the table
at m = 30 for practical purpose. Even k > 6 is of no practical interest because
the workload without considering guessing would be larger than

(
n+2k+2

2k+2

)ω
for

2 ≤ ω ≤ 3. Note that the cases marked gray are always solvable by XLinh2k without
guessing. In all the other cases the bound on r is high enough to guess as many
variables as we need to solve the equation system with FXL. So we claim that
FXL is always better than XL' for practical purpose.

XSL
Courtois and Pieprzyk [CP02] published this method at Asiacrypt 2002 and
claimed to have broken AES. This was disproofed in 2005 by Leurent and Cid
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m\k 1 2 3 4 5 6

5 1 0 0 0 0 0
10 6 3 1 0 0 0
15 11 8 6 5 1 1
20 15 13 12 10 8 6
25 20 18 17 15 12 10
30 25 23 22 19 17 15

Table 6. Upper bound on r.

[CL05]. The idea of XSL is to use the special structure of the equation system.
If some equations are sparse you might introduce more new monomials by mul-
tiplying them by all monomials of a special degree. So in some case it might be
better to multiply some equations only by some monomials. It is in no way clear
how to do this. The idea of XSL is connected to Coppersmiths lattice based
method to solve modular equations. Like in XL you multiply the equation by so
called shift polynomials. Choosing the right shift set is a di�cult problem. In the
case of two unknowns, we can plot the Newton polytope and get an intuition.
But in multivariate cryptography you deal with a lot more unknowns. So it is
an important open problem to �nd the right shift set for some given equation.

MutantXL
One of the most e�cient derivates of XL is called MutantXL. It was introduced
in [MMD+08] and claims to be as fast as F4 in some cases.

Let I be the number of linearly independent equations produced by XLinhD and
T =

(
n+D+2
D+2

)
the number of degree ≤ D+ 2 monomials. If T − I > D+ 2 this is

not solvable by linearization and thus we would continue with XLinhD+1 in the orig-
inal XL algorithm. MutantXL is a step in between. It uses equations that would
be produced by XLinhD+k with k > 0 but without introducing new monomials. To
do so we use only polynomials of degree < D + 2, so called mutants, that are
produced in the Gaussian elimination step of XLinhD . For example multiplying
these polynomials by all monomials of Mon1 leads to new equations without gen-
erating new monomials. Note that this strategy is useful only for inhomogeneous
equations. In the homogeneous case all monomials are of the same degree and
thus mutants never occur. This is another example that we lose information by
homogenising equation systems.

De�nition 3. Let f =
m∑
i=1

gjih
(i) with h(i) ∈ Pinh and gji some polynomial of

degree ≤ D be a representation of f . This is not unique. The index set J denotes
all representations and j ∈ J . The level (lev) of this representation is de�ned by

lev

(
m∑
i=1

gjih
(i)

)
:= max

{
deg
(
gijh

(i)
)
| 1 ≤ i ≤ m

}
.
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The level of g is de�ned by the minimum level of all its representations.

lev (g) := min{lev

(
m∑
i=1

gjih
(i)

)
|j ∈ J}

We call g a mutant if deg(g) > lev(g).

The crucial question as always is how many equations produced by mutants are
linearly independent from the known ones. We give two upper bounds on this
number. We showed experimentally that the smaller bound is tight. We will give
some theoretical explanation on that. To conclude we compare MutantXL to F5

and show that indeed in some case it is faster.

Remark: To implement MutantXL correctly, we will introduce the term of
trivial mutants. Using XLinhD all equations produced by Blowinh<D are mutants
by de�nition. But all their multiples of certain degree are already contained in
XLinhD and thus are not linearly independent. We can reduce the computational
workload if we only consider mutants produced by BlowinhD .

To avoid hiding the upper bounds behind formalism, we start with the case
|MonD+2| ≤ IXLinhD

≤ |MonD+2|+ |MonD+1| illustrated in �gure 3.

∗

∗

0

0

0

0
0

0

MonD+2z }| { MonD+1z }| { . . .

| {z }`
n+D+1
D+1

´z}|
{em

Fig. 3. Coe�cient Matrix Π of XLinhD after Gaussian elimination

The �rst upper bound is the number of equations produced by Mutants. In
the above case k = 1 this is n(I

XL
inh
D
− |MonD+2|) or nm̃ using the notation of

�gure 3. Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 show that this trivial
bound is way above the correct number of new linear independent equations.
The second upper bound is a result of the fact that all nm̃ equations produced
by mutants are implicit equations of XLinhD+1. Exactly I

XL
inh
D+1
− I

XL
inh
D

of them
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are linear independent to the previous ones. But they all contain monomials
of MonD+3. Equations produced by Mutants have maximal degree D + 2 and
thus �rst all |MonD+3| monomials have to be reduced. Therefor I

XL
inh
D+1
− I

XL
inh
D
−

|MonD+3| is an upper bound on the number of linear independent equations
produced by Mutants. Note that this bound was tight in all our experiments.

To gerneralize the above example let k ∈ N :
k−1∑
j=0

|MonD+2−j | ≤ I ≤
k∑
j=0

|MonD+2−j |.

Corollary 4. The maximal number of equations produced by Mutants is given
by

k−1∑
i=1

(
n+ i− 1

i

)
|MonD+2−i|+

(
n+ k − 1

k

)(
I −

k−1∑
i=0

|MonD+2−i|

)
.

Corollary 5. A nontrivial upper bound on the number of linearly independent
equations produced by Mutants is given by

k∑
i=1

I
XL

inh
D+i
− I

XL
inh
D
−

i∑
j=1

|MonD+2+j | .

We come back to the example in �gure 3 to get an intuition on a lower bound, i.e.
to show that corollary 5 is tight. In lemma 2 we saw that new linear dependent
equations are produced block-wise, i.e. if we multiply f and g by all monomials
of degree two, all equations are linearly independent besides one. Multiplying
the mutants with degree one monomials we implicitly use equations of BlowinhD+1.
If D was even, no new linear dependencies are produced.

Remark 1. MutantXL will hardly work in the case m = n. As seen in section 3.3
we need D = 2m to solve for case m = n. The reason was that the number of
newly generated linearly independent equations obtained by increasing D equals
the number of new monomials and thus the second bound on MutantXL will
always yield zero.

Note: A further improvement of MutantXL called MXL2 use ideas of XSL and
is published in [MMDB08].

A comparison with the fastest known attack on UOV can be found in table 7.
Given are the F5 algorithm, a version were one or two variables are �xed before
performing F5 (`HybridF5'), and the results from corollary 5 for this parameter
set. We can see that MutantXL outperforms both variants of F5 for challenges
on UOV. See more detailed tables in the appendix A.

5 Conclusion

While Relinearization and XL seemed to be a magni�cent tool for cryptanaly-
sis in the beginning, their e�ectiveness was diminished in subsequent years. In
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Table 7. Comparison between F5, HybridF5 and MutantXL in terms of workload in
�eld operations over GF(q).

[log2]
UOV F5 HybridF5 this work

m = 10 41.36 37.75 37

m = 20 82.51 66.73 63

addition, existing Gröbner bases algorithms performed better in most cases, so
XL came more and more out of focus.
Empirical evidence with (naturally) small values of n already suggested in the
case of the MQ-scheme HFE that Gröbner bases might not be as e�cient as
MutantXL [MMD+08]. In this paper, we have shown that this is not a coinci-
dence for small values of n, but a systematic �nding which can be put on �rm
theoretical foundations. Hence, we showed that MutantXL can compete with
F5. It seems a matter of the right implementation which of the two is faster. In
this context it is an important open question how to generate linear independent
equations only. Up to now we need to produce all equations and eliminate the
linear dependent ones by Gaussian elimination.
Taking a wider perspective, this result is not that surprising than it seems at
�rst glance. Main reason is that XL computes only one solution for a given
ground �eld F. In contrast, Gröbner bases were designed to compute all solu-
tions, moreover in the algebraic closure of F. Obviously, the latter task is more
general and hence computational more di�cult. Still, using tricks like truncated
Gröbner bases and �eld equations (xq − x) algorithms based on Gröbner ba-
sis computation were able to level the �eld and outperform XL. An additional
reason might be that decades of research went into tuning GB-algorithms while
barely 10 years have passed since XL and its variations were introduced to the
cryptographic community. Hence, there might be more room for improving XL
according to the needs of cryptography than in the case of GB-algorithms. In
addition, in cryptography one solution is su�cient in most cases to solve a cryp-
tographic problem rather than a huge set of them. Therefore, it was time to
develop a theoretical framework to thoroughly analyse XL and its derivates, so
running times and memory requirements can be predicted without relying on
(possibly) noisy empirical evidence.
All in all, it may be a sensible course of action to spend further time to clarity
the speed gap between Gröbner bases and (Mutant)XL to avoid further surprises
in other cryptanalytic areas.
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A Complexity of F5, XL and MutantXL

Complexity of F5

We denote m the number of quadratic equations, n = m the number of variables
and r the number of guessed variables. Note that we used ω = 2 as Bettale et
al. did in [BFP09] to calculate the complexity of their hybrid approach. We
obtain the same results as in [BFP09] table 4 for m = 20 and guessing one or
two variables over F28 , see table A. The values in the tables are rounded Log2

complexities. The exact value for m = 20, r = 1 and F28 is 66,73 respectively
67,79 for r = 2.

m\r 0 1 2 3 5

5 6 3 3 2 1
10 11 6 5 4 3
15 16 8 7 6 4
20 21 11 9 8 6
25 26 13 11 10 8
30 31 16 14 12 10

Table 8. Degree of Regularity dreg

m\r 0 1 2 3 5

5 20 14 13 11 5
10 41 31 28 25 22
15 62 44 41 38 32
20 83 60 54 51 44
25 103 72 66 63 56
30 123 88 82 75 69

Table 9. Complexity of F5 over F2

m\r 0 1 2 3 5

5 20 18 21 23 25
10 41 35 36 37 42
15 62 48 49 50 52
20 83 64 62 63 64
25 103 76 74 75 76
30 123 92 90 88 89

Table 10. Complexity of F5 over F25

m\r 0 1 2 3 5

5 20 21 27 32 40
10 41 38 42 46 57
15 62 51 55 59 67
20 83 67 68 72 79
25 103 79 80 84 91
30 123 95 96 96 104

Table 11. Complexity of F5 over F28

Complexity of XL

First we assume
(
n+D+2
D+2

)ω
to be the complexity of XL, i.e. we concentrate on

the number of columns N , cf. section 2.3. The proof of lemma 1 showed that
the linear dependent equations produced by XL are very systematic. So in case
D = 2 it is no problem just to generate linear independent equations and thus
derive the given complexity. We assume that this is also possible for D > 2.
At least a description of how to generate only linear independent equations for
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D = 6 would be su�cient for practical purpose.
Note that we only considered XL up to degree 9. Fields marked with `-' indicate
that this is not enough to solve the corresponding systems of equation.

m\r 0 1 2 3 5
5 - 3 1 0 0
10 - 8 4 3 1
15 - - 6 5 3
20 - - 9 7 5
25 - - - 9 7
30 - - - - 9

Table 12. Degree D of XL.

m\r 0 1 2 3 5

5 - 15 11 8 5
10 - 34 25 22 17
15 - - 37 34 28
20 - - 52 46 40
25 - - - 58 52
30 - - - - 63

Table 13. Complexity of XL over F2

m\r 0 1 2 3 5

5 - 19 19 20 25
10 - 38 33 34 37
15 - - 45 46 48
20 - - 60 58 60
25 - - - 70 72
30 - - - - 83

Table 14. Complexity of XL over F25

m\r 0 1 2 3 5

5 - 22 25 29 40
10 - 41 39 43 52
15 - - 51 55 63
20 - - 66 67 75
25 - - - 79 87
30 - - - - 98

Table 15. Complexity of XL over F28

Now we assume (m
(
n+D
D

)
)ω to be the complexity of XL, i.e. we concentrate on

the number of rows M , cf. section 2.3. This is a bad upper bound for the case
that we produce all m

(
n+D
D

)
equations and eliminate the linear dependent ones

by Gaussian elimination. Note that this is always bigger than
(
n+D+2
D+2

)ω
if XL

succeed.

m\r 0 1 2 3 5

5 - 16 12 8 5
10 - 37 27 23 19
15 - - 39 36 29
20 - - 55 48 41
25 - - - 61 54
30 - - - - 66

Table 16. Complexity of XL over F2

m\r 0 1 2 3 5

5 - 20 20 20 25
10 - 41 35 35 39
15 - - 47 48 49
20 - - 63 60 61
25 - - - 73 74
30 - - - - 86

Table 17. Complexity of XL over F25
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m\r 0 1 2 3 5

5 - 23 26 29 40
10 - 44 41 44 54
15 - - 53 57 64
20 - - 69 69 76
25 - - - 82 89
30 - - - - 101

Table 18. Complexity of XL over F28

Complexity of MutantXL

Note that we take
(
n+D+2
D+2

)ω
and ω = 2 to compute the complexity of Mutan-

tXL. This is a lower bound, because in practice one has to produce all equations
produced by mutants and eliminate the linear dependent ones by Gaussian elim-
ination. For example in the case m = 20, r = 3 and F28 the complexity of 264

would raise up to 266 and thus we are only slightly better than F5. We think in
practice it would be a matter of implementation which algorithm is the better
one.

m\r 0 1 2 3 5
5 - 2 0 0 0
10 - 7 3 2 1
15 - - 5 4 2
20 - - 8 6 4
25 - - - 8 6
30 - - - - 8

Table 19. Degree of MutantXL.

m\r 0 1 2 3 5
5 - 1 1 1 0
10 - 1 1 1 1
15 - - 1 1 1
20 - - 1 1 1
25 - - - 1 1
30 - - - - 1

Table 20. k used by MutantXL

m\r 0 1 2 3 5

5 - 13 9 8 5
10 - 32 23 20 14
15 - - 34 31 25
20 - - 49 43 36
25 - - - 55 48
30 - - - - 60

Table 21. Complexity of MutantXL
over F2.

m\r 0 1 2 3 5

5 - 17 17 20 25
10 - 36 31 32 34
15 - - 42 43 45
20 - - 57 55 56
25 - - - 67 68
30 - - - - 80

Table 22. Complexity of MutantXL
over F25
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m\r 0 1 2 3 5

5 - 20 23 29 40
10 - 39 37 41 49
15 - - 48 52 60
20 - - 63 64 71
25 - - - 76 83
30 - - - - 95

Table 23. Complexity of MutantXL
over F28


