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t. Systems of non-linear multivariate equations are at the heartof many 
ryptographi
 algorithms, in parti
ular in the publi
 key setting.This paper investigates some algorithms to solve su
h systems. Usually,
omputing the Gröbner basis of the 
orresponding ideal is the best 
hoi
ein this 
ontext. The best known and also most e�
ient algorithms forthis task are F4 and F5. Another strategy to solve su
h systems is 
alledeXtended Linearization (XL) from Euro
rypt 2000. For two reasons thisis not as popular as Gröbner bases. First it is believed that its runningtime is worse than F4 and se
ond it is not as well understood as Gröbnerbases. This 
ontribution 
hallenges both.First we revisit re
ent results of the analysis of XL by Moh, Diem, Yanget al. and 
onne
t them into one framework. Thereby we 
lose some gapsin understanding XL. Se
ond we use this knowledge to give a theoreti
alanalysis of one of the most promising XL derivates, 
alled MutantXL.Adapting our results on the Multivariate Quadrati
 (MQ) signatures
heme Unbalan
ed Oil and Vinegar (UOV) shows that MutantXL 
ana
tually lead to more e�
ient atta
ks than methods based on Gröbnerbases. We 
on�rm in a theoreti
al way what Bu
hmann et al. observedon the 
onne
tion between F4 and MutantXL on theMQ-system HiddenField Equations (HFE), i.e. in some 
ases MutantXL is faster than F4,respe
tively F5.Key words: Multivariate Cryptography, Algebrai
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ed Oil and Vinegar Sig-nature S
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2 Enri
o Thomae, Christopher Wolf1 Introdu
tionThis arti
le deals with Multivariate Quadrati
 systems of equations over (small)�nite �elds. Solving these systems is di�
ult as they are NP-
omplete and alsohard on average.In this arti
le, we will 
on
entrate on the so-
alled �eXtended Linearization� te
h-nique. In a nutshell, XL produ
es algebrai
 dependent, but linearly independentequations by multiplying the initial set of equations with all possible 
ombina-tions of monomials up to a 
ertain degree D. Next, the new system is viewed asa linear system of equations, i.e. treated as a matrix. When this matrix has asu�
iently high rank, XL su

eeds. While this method will work in all pra
ti
al
ases for a high enough degree D, it is thought to be rather ine�
ient. In parti
-ular, Gröbner basis methods su
h as F4 and F5 have been des
ribed in the samefashion. Still, algebrai
 methods gave rise to a number of atta
ks, in parti
ularon stream 
iphers and blo
k 
iphers e.g. [Cou02, CP02, AK03, ACG+06℄. Forthe �rst, �algebrai
 immunity� has be
ome an a

epted design 
riterion [FM07℄,while for the latter, it is still un
lear if algebrai
 atta
ks on real-world 
iphers area
tually more e�
ient than previously known methods. However, the method-ology has also been applied in the area of hash fun
tions [SKPI07℄, and 
odingbased 
rypto systems [FOPT10℄. Moreover, as any 
ryptographi
 system 
an beexpressed as a system of Multivariate Quadrati
 equations over a �nite �eld,any major progress in this area 
ould endanger at least some areas of 
ryptogra-phy. Hen
e, studying the average di�
ulty of Multivariate Quadrati
 systemsof equations is important for the se
urity of 
ryptographi
 systems. We wantto note that the AES seems to be parti
ularly vulnerable to algebrai
 atta
ks,although no spe
i�
 atta
k is known so far [MR02℄. Still, a 
lari�
ation of the at-ta
k 
omplexity of 
on
rete algorithms is bene�
ial for 
ryptography as a whole.In parti
ular, a slight variation 
alled MutantXL exploits the ideas of XL to thefullest and is hen
e far more e�
ient than earlier versions. In this arti
le, weprovide a theoreti
al framework to analyse XL and its derivates, also in
lud-ing MutantXL. The theoreti
al results are ba
ked up with empiri
al studies. Inparti
ular, we were able to derive the 
entral formulae both analyti
ally andempiri
ally.1.1 Related WorkXL was initially proposed under the name �relinearization� at Crypto 1999, andthen renamed �eXtended Linearization� one year later [KS99, CKPS00℄. Themain observation was that overdetermined systems of equations, i.e. systemswith more equations than variables 
ould be solved surprisingly easy using thelinearization te
hnique. The underdetermined 
ase (more variables than equa-tions) was ta
kled in [CGMT02℄. In all 
ases, systems of equations are interpretedas matrix-ve
tor equations and the aim is to �nd a matrix with as many (lin-early independent) rows as 
olumns. To this aim, the initial set of equations isexpanded by generating algebrai
ally trivial, but nevertheless valid and linearly



Unravel XL and its variants 3independent equations. The �nal step 
onsists of treating all monomials as inde-pendent variables and then solving a purely linear system of equations. Soon itwas pointed out that the method was already known and performed for a smallnumber of variables by geometers [Moh00℄. Using it with mu
h larger systemsgreatly helped to develop its understanding. Unfortunately the initial papers didnot provide a deep analysis of the method and many 
laims showed to be overlyambiguous. At least sin
e Courtois and Pieprzyk 
laimed to have broken AES[CP02℄ using an XL derivate 
alled XSL and were disproved by Cid and Leurent[CL05℄ only a few years later, the 
ommunity of 
ryptographers be
ame in
reas-ingly reserved against this method. But thanks to Moh [Moh00℄, Diem [Die04℄,Yang and Chen [YC04a℄ and others, XL and variants are understood quit welltoday.A se
ond line of resear
h are Gröbner bases. They use a more symboli
 ap-proa
h and eliminate monomials from the set of equations. To this aim, pairs ofequations are formed and (hopefully) monomials eliminated. However, in most
ases the 
omputation is in vain as no useful elimination o

urs. Sin
e the al-gorithm F4 [Fau99℄, there is a strong 
onne
tion with linear algebra, too: In
ontrast to deal with pairs of equations, F4 sele
ts whole sets and tries to min-imise the amount of useless 
omputations by treating them in matrix-fashion.Its su

essor F5 uses some even 
leverer book-keeping to bring down the num-ber of useless 
omputations even further [Fau02b℄. It is 
onsidered the fastestalgorithm to 
ompute Gröbner bases. And in fa
t, F5 and its variants have animpressive tra
k re
ord in bringing down 
ryptographi
 systems and 
hallenges[Fau02a, Fau03a, Fau03b, FJ03, FA03, BFP09, FOPT10℄.A natural question to ask is whether XL or Gröbner are the preferred 
hoi
e for
ryptographi
 problems. Until now, the situation was quite 
lear: At Asia
rypt2004 it was shown that XL a
tually is a sub-
ase of Gröbner algorithms andthat we hen
e 
an expe
t that Gröbner algorithms are always faster than XL[AFI+04, Die04℄.A possible testbed for this question is the �Unbalan
ed Oil and Vinegar s
heme�:In 1997 Patarin designed a new signature s
heme 
alled �Oil and Vinegar�[Pat97℄, based on Multivariate Quadrati
 equations. After Kipnis and Shamirbroke the balan
ed 
ase in [KS98℄ the �Unbalan
ed Oil and Vinegar� signa-ture s
heme, short UOV, was proposed [KPG99℄. Even if most of the proposeds
hemes of the 
lass of multivariate 
ryptosystems, like MIA, HFE, SFlash arebroken in most of their variants, UOV is still believed to be se
ure. We 
ansay that UOV is one of the most popular multivariate 
ryptosystem. Evennewer s
hemes like Rainbow or enhan
ed TTS use the idea of UOV as trap-door [DS05, YC05℄. A study of the se
urity of UOV was published by Braeken,Wolf and Preneel in 2005 [BWP05℄. The best known atta
k against UOV un-til now uses Gröbner bases and is des
ribed in [BFP09℄. In a nutshell, theyuse ordinary Gröbner basis 
omputation, but guess some variables beforehand.Therefore, they either introdu
e 
ontradi
tions in the system of equations, orthey solve a system in less variables.
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o Thomae, Christopher Wolf1.2 Organisation and A
hievementThe 
ontributions of this paper are manifold. First, we start by revisiting thewell known te
hnique of relinearization, introdu
ed by Kipnis and Shamir atCrypto 1999 [KS99℄ and show in an easy way, that it is a sub
ase of XL. Thiswas already hinted by Courtois et al. in [CKPS00℄, but not as 
lear and formalas one would deem ne
essary.Se
ond, we improve the 
onstant ǫ in the ratio m ≥ ǫn2 for the number ofvariables n and the number of equations m from the initial value of ǫ = 1
10 [KS99℄to 1

12 for the 
orresponding XL of degree 2, therefore showing that far more pairs
(n, m) are solvable with only moderate workload than previously suggested. Inparti
ular, this result is obtained using analyti
 methods, not empiri
al ones.Still, we have veri�ed the theory empiri
ally and found both in syn
.Third, we 
larify the relationship between XL with homogeneous and inhomoge-neous input. While the di�eren
e is subtle in most 
ases it be
omes importantfor analysing MutantXL. We do so both by analyti
al and empiri
al methods.Fourth, we show that 
ertain sets of parameters for UOV get in rea
h for animproved version of MutantXL. These parameter sets were previously out ofrea
h, in parti
ular for algorithms using Gröbner bases te
hniques su
h as F5.Fifth, this raises the question if the 
ryptographi
 
ommunity was right in 
on-demning XL for all possible appli
ation domains. While empiri
al eviden
e sug-gested already previously that this might be the 
ase, we give a 
lear and theo-reti
ally sound analysis why this might be the 
ase.This paper starts with introdu
ing some notation and the UOV system (se
-tion 1). After this, relinearization and XL are introdu
ed and analysed in se
-tion 2. Based on this, we deepen our analysis of XL, using both theoreti
al andempiri
al methods (se
tion 3). Variants of XL are introdu
ed in se
tion 4 andused to 
ryptanalyse UOV. Con
lusions are given in se
tion 5. Further resultson the 
omplexity of F5, XL, and MutantXL 
an be found in the appendix.1.3 NotationSolving non-linear systems of m equations and n unknowns is a di�
ult problemin general. Restri
ting to the seemingly easy 
ase of degree 2 equations is stilldi�
ult. A
tually this problem is also known as MQ-problem whi
h is provento be NP-hard [GJ79℄.Let P : F

n
q → F

m
q be an MQ system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0... (1)
p(m)(x1, . . . , xn) = 0,
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p(k)(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑

1≤i≤n

β
(k)
i xi + α(k). (2)We 
all equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-neous 
ase 
onsists only of quadrati
 terms and is thus de�ned by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)We need the 
lassi�
ation into homogeneous and inhomogeneous later on, be-
ause results are di�erent and it is not always easy to see that they are equalafter transforming an inhomogeneous system in a homogeneous one.Let π(k) be the 
oe�
ient ve
tor of p(k)(x1, . . . , xn) in lexi
ographi
 order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ(k)

nn , β
(k)
1 , . . . , β(k)

n , α(k)).Let Π be the 
orresponding 
oe�
ient matrix
Π :=




π(1)...
π(m)


 .Note that the problem of solving non-linear equations be
omes easier if m ex-
eeds n. In a sense, ea
h equation en
odes information about the solution ve
tor

(x1, . . . , xn) ∈ F
n. Obviously, having more information will guide the equationsolver to �nd this solution�as long as the equation is independent from thepreviously known ones. The naive algorithm is to solve (1) by linearization, i.e.to substitute every monomial in p(k) by a new variable and to solve the obtainedlinear system of equations Π with Gaussian elimination. This will lead to the
orre
t solution if we have m ≥ n(n+1)

2 + n linearly independent equations, i.e.if the number of linearly independent equations is equal to the number of mono-mials. With the te
hnique of relinearization, introdu
ed in [KS99℄, we 
an solve
P (asymptoti
ally) if we have m ≥ 0.09175 · n2 linearly independent equations.Lowering the trivial fa
tor of 1

2 to roughly 1
10 was a big leap. We are able tofurther improve this to a fa
tor of 1

12 in the inhomogeneous 
ase of XL (Degree2), 
f. Se
tion 3.2.1.4 Unbalan
ed Oil and VinegarThe publi
 key in UOV is a ve
tor P ∈ MQ(Fn, Fm) of multivariate quadrati
polynomials de�ned in (2)
P :=




p(1)(x1, . . . , xn)...
p(m)(x1, . . . , xn)


 .



6 Enri
o Thomae, Christopher WolfDenote the number of oil variables by o ∈ N, the number of vinegar variablesby v ∈ N and set n := o + v. Let V := {1, . . . , v} and O := {v + 1, . . . , n}denote the sets of indi
es of vinegar and oil variables. The private key F :=
(f (1)(u), . . . , f (m)(u)) is de�ned by

f (k)(u) :=
∑

i∈V,j∈O

γ
(k)
ij uiuj +

∑

i,j∈V,i≤j

γ
(k)
ij uiuj +

∑

i∈V ∪O

β
(k)
ij ui + α(k). (4)It is important for �nding a preimage that the variables in f (k) are not 
ompletelymixed, i.e. oil variables are only multiplied by vinegar variables and never byoil variables. This 
onstru
tion leads to an easy way to invert f (k). If we assignarbitrary values to the vinegar variables and if we set m = o we obtain a systemof o linear equations in o variables. It is very likely that this provides a solution. Ifnot we try again. In the publi
 key P , the 
entral map F is hidden by 
omposingit with a linear map S : F

n
q → F

n
q , i.e. P := F ◦ S.
F

n
q F

m
q

F
n
q

P

S
FTypi
al values for UOV are �eld-size q = 256, number of variables n = 78, andnumber of equations m = 26 [BFP09℄. We will use these to 
ompare MutantXLwith F5 in se
tion 4.2 Relinearization vs XL2.1 RelinearizationIn [KS99℄ Kipnis and Shamir used relinearization to 
ryptanalyse HFE. The ideais very 
lear and simple. Given a random MQ-system P we �rst linearise, i.e.introdu
e new variables yk := xixj . For simpli
ity of the analysis we assume P tobe homogeneous. That means the number of unknowns xixj is (n+1

2

)
= n(n+1)

2 .Noti
e that this is no restri
tion for asymptoti
 analysis and that we 
an expressany non-homogeneous system in form of a homogeneous system by introdu
ingone more variable. For random systems it is very likely that all of the m equationsare linearly independent, 
f. Se
tion 3.1. This underdetermined system of linearequations is solved by Gaussian elimination, see �gure 1 for illustration. As we
an see, we obtain an exponential number q
n(n+1)

2 −m of parasiti
 solutions in
ym+1, . . . , yn(n+1)

2

.After linearization both y1 := x1x1 and y2 := x1x2 are two independent linearvariables. But from an algebrai
 point of view this is not true as y1 as well as
y2 depend on x1. Relinearization exploits this stru
ture to eliminate parasiti
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∗

0

0

Π

x1x1 x1x2 . . .
n(n+1)

2
−m remaining unknowns

z }| {

y1 y2 . . . ym ym+1 . . .Fig. 1. Coe�
ient Matrix Π of P after Gaussian eliminationsolutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)
2

impli
itly via newequations. The following equations are trivially true and linearly independent forsome ya = xixj :
xixjxkxl = xixkxjxl = xixlxjxk (5)

⇔ yi1yi2 = yi3yi4 = yi5yi6Kipnis and Shamir required i < j < k < l in the above equation. There are (n4)possibilities for xixjxkxl and thus we get 2
(
n
4

) linear independent equations by(5). If this is larger than the number of unknowns in the remaining y's we aredone and 
an solve the system, i.e. for
2

(
n

4

)
≥

(n(n+1)
2 − m + 1

2

)
.For m in the same magnitude as n this is not the 
ase in general. For m = εn2and only 
onsidering the n4 part, we get the following asymptoti
 equation

0 ≤ −ε2 + ε −
1

12and hen
e ε ≥ 0.09175.Note, for inhomogeneous equations the overall analysis is the same but with abigger number of unknowns. By
2

(
n

4

)
≥

(n(n+1)
2 + n − m + 1

2

)
,we obtain the same asymptoti
 result. But later in the exa
t analysis we willneed to distinguish between these two 
ases, as relinearization in the homoge-neous 
ase will be exa
tly the same as XL of degree 2.The idea of XL (of degree 2) is simpler but not as easy to analyse. We multiplythe 
oe�
ient matrix Π shown in �gure 1 by every quadrati
 monomial xixj
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o Thomae, Christopher Wolfwith i ≤ j and i, j ∈ {1, . . . , n}. This way we obtain m
(
n+1

2

) equations in (n+3
4

)monomials of degree 4. For m = εn2 the number of equations is asymptoti
allylarger than the number of monomials for ε ≥ 1
12 . The 
ru
ial question is if allprodu
ed equations are linearly independent. This question was not paid mu
hattention by Courtois et al. in [CKPS00℄. We will look at this in se
tion 3. Firstlet us de�ne the XL algorithm in a rigorous way.2.2 The XL algorithmNote that ea
h Multivariate Quadrati
 equation 
an be rewritten into a Multi-variate Quadrati
 polynomial p(k) and the (impli
it) equation p(k) = 0. Hen
e,we will only 
on
entrate on polynomials in the remainder of this text.De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneousquadrati
 polynomials p as de�ned in (2) and Phom := {p(k)| 1 ≤ k ≤ m} the setof homogeneous quadrati
 polynomials p de�ned in (3). We de�ne the set of allmonomials of degree D byMonD := {

D∏

j=1

xij
| 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.Multiplying Pinh by all monomials of degree D is des
ribed by the setBlowinhD := {ab | a ∈ MonD and b ∈ Pinh}.The set BlowhomD is de�ned analogous. The following set de�nes what we use asXL algorithm of degree D.XLinhD :=

D⋃

i=1

Blowinhi ∪ Pinh.Some authors also speak of XL of degree D meaning XLinhD−2. In this 
ase Dmeans the highest degree of all polynomials used for multipli
ation and notthe degree of the extension. In our opinion, the latter is more general. Noti
ethat de�ning XLhomD analogous would not make any sense, be
ause BlowhomD onlyprodu
es monomials of degree D + 2 and thus there is no need to use the sets oflower degrees.De�nition 2 (XL algorithm). First we generate XLinhD and 
he
k if the num-ber of linearly independent equations I is equal to the number of produ
ed mono-mials T subtra
ted by D + 2. In this 
ase we linearise the system and solve it byGaussian elimination. Noti
e, if T − I ≤ D + 2 we 
an 
hoose the order of themonomials su
h that we obtain a univariate equation after linearization, whi
h
an be solved, e.g. by Berlekamp's algorithm. If T −I > D+2 we set D := D+1and try again.



Unravel XL and its variants 92.3 Complexity ConsiderationsWe dis
uss 
omplexity 
onsiderations for algorithms of the XL-type. With minormodi�
ations, they also apply to modern Gröbner basis algorithms. In both
ases, we deal with a large matrix Π ∈ F
M×N over a ground �eld F and M rowsand N 
olumns. Usually, F is very small (8 or 16 bit), so we 
an ex
lude it fromour analysis. The number of 
olumns N depends on the number of unknowns andis roughly (n+D+1

D+2

) in the homogeneous 
ase and (n+D+2
D+2

) in the inhomogeneous
ase. It may vary a bit depending on the version of XL 
hosen. The numberof rows M must be at least as big as the number of 
olumns N . Otherwise,our linear system does not permit a unique solution. The overall 
omplexity istherefore determined by (a) building the matrix Π and (b) �nding a solution forthe underlying system. We start with the �rst step: Here, we start with a densepolynomial p ∈ P and multiply it with a single monomial a ∈ MonD. The overallworkload is therefore
|MonD|

(
n + 2

2

)multipli
ations and memory a

ess for building the matrix Π . Note that ea
hrow in Π has (n+D+2
D+2

) but only (n+2
2

) non-zero elements. It is therefore extremelysparse. This 
an be exploited as we do not need to store M ·N but only M
(
n+2

2

)elements.Se
ondly, we 
onsider solving the linear equation depending on the 
oe�
ientmatrix Π . In a nutshell, we 
an upper-bound this by O(Mω) for 2 ≤ ω ≤ 3 ingeneral and ω = 2 + ǫ for sparse equations. As we saw above, this is the 
asefor XL. If we 
an avoid linear dependent equations in the intermediate steps,we have M = N and 
an therefore bring down 
omplexity. We see that the
omplexity of (a) 
learly outperforms (b). Therefore, it is enough to 
onsider
M2 in the sequel.2.4 Relinearization as sub
ase of XLMoh analysed relinearization for i ≤ j ≤ k ≤ l [Moh00℄. Asymptoti
ally heobtains the same result as Kipnis and Shamir. To 
ompare relinearization withXL we also need the smaller terms and therefore we use the exa
t analysis byMoh. For i ≤ j ≤ k ≤ l we get

2

(
n

4

)
+

n(n − 1)(n − 2)

2
+

n(n − 1)

2
= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)equations by relinearization, instead of 2
(
n
4

) in the 
ase i < j < k < l. Figure 2illustrate the given situation. To allow to distinguish 
ases we assume m to beof the form γ−1∑
i=0

(n − i) = γn + γ−γ2

2 for γ = εn and thus m = (ε − ε2

2 )n2 + ε
2n.Through this ym+1 = xγ+1xγ+1 holds and due to the graded lexi
ographi
alorder for all indi
es of not spe
i�ed monomials xixj in the ∗ blo
k, see �gure 2,
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0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .Fig. 2. Coe�
ient Matrix Π of P after Gaussian eliminationit holds i, j > γ. This allows us to analyse xixjxkxl in the two 
ases i ≤ γ and
i > γ.We want to show that multiplying by spe
ial monomials is exa
t the same asrelinearization. Due to the 
hoi
e of m we 
an distinguish two 
ases.Case 1, i ≤ γ. For i ≤ γ relinearization behaves exa
tly as XL.

xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixj︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . , m} (6)Equations (6) used by relinearization 
an be produ
ed in XL by multiplying therow of yi1 by xkxl.Case 1.1, i < j < k < l. There are γ∑
i=1

(
n−i
3

) possibilities for xixjxkxl, as well asfor xixkxjxl and xixlxjxk for i < j < k < l. So we produ
e 3
γ∑

i=1

(
n−i
3

) equationswith XL by multiplying yi by xkxl. But we also produ
e γ∑
i=1

(
n−i
3

) new mono-mials 
ontaining variables xi with i ≤ γ and so the number of remaining newequations is 2 ·
γ∑

i=1

(
n−i
3

).Case 1.2, (j = 1 and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In the
ase of two equal and two di�erent indi
es we have the following 3 possibilitiesof monomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produ
es 3 equa-tions xixixkxl = xixkxixl = xixlxixk. Noti
e that the last equality is not usedby relinearization, be
ause it is trivial. So we ignore them too. Sin
e xixixkxlintrodu
e a new monomial, only xixkxixl gives us a new equation. So we have
3 ·

γ∑
i=1

(
n−i
2

) new equations in total.Case 1.3, i = j and k = l and i 6= k. In this 
ase relinearization uses xixixkxk =
xixkxixk. The left monomial produ
es new monomials in XL and the right mono-
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es γ∑
i=1

(n − i) new equations. To sum up all 
ases, we produ
ed
2 ·

γ∑

i=1

(
n − i

3

)
+ 3 ·

γ∑

i=1

(
n − i

2

)
+

γ∑

i=1

(n − i)new equations by adapting relinearization to XL. Noti
e that we produ
ed moreequations than this, but used them to eliminate the newly introdu
ed monomialsof degree 4 with variables xi and i ≤ γ. So the number of unknowns in XL isonly the number of degree 4 monomials 
ontaining variables xi with i > γ, i.e.(
n−γ+3

4

).Case 2, i > γ. For i > γ relinearization uses the equations
xixjxkxl = xixkxjxl = xixlxjxk.This equations 
annot be produ
ed by XL, be
ause they are trivially true. Thedi�eren
e between both methods is that relinearization produ
e more variablesafter the se
ond linearization step and XL does not. So we do not need theseequations for XL be
ause they are only needed in relinearization to eliminatevariables we do not have in XL.The following equations sum up the number of unknowns and equations in bothmethods. The left terms are the number of unknowns and the right terms arethe number of equations.Relinearization:

(
(

n+1
2

)
− m)(

(
n+1

2

)
− m + 1)

2
≤ 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

↑ ↑

∆1 ∆2

↓ ↓XL: (
n − γ + 3

4

)
≤ 2 ·

γ∑

i=1

(
n − i

3

)
+ 3 ·

γ∑

i=1

(
n − i

2

)
+

γ∑

i=1

(n − i)To show that both are equal, we have to show that the di�eren
e ∆1 between theleft terms is equal to the di�eren
e ∆2 of the right terms. We us m = γn+ γ−γ2

2
(∗) and the following equality for k ∈ N>0

(
n

k

)
−

(
n − γ

k

)
=

γ∑

i=1

(
n − i

k − 1

)
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o Thomae, Christopher WolfWe get
∆1 =

(
(
n+1

2

)
− m)(

(
n+1

2

)
− m + 1)

2
−

(
n − γ + 3

4

)

(∗)
= 2

(
n − γ

4

)
+ 3

(
n − γ

3

)
+

(
n − γ

2

)

= 2

((
n − γ

4

)
−

(
n

4

)
+

(
n

4

))

+3

((
n − γ

3

)
−

(
n

3

)
+

(
n

3

))

+

(
n − γ

2

)
−

(
n

2

)
+

(
n

2

)

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

−2 ·

γ∑

i=1

(
n − i

3

)
− 3 ·

γ∑

i=1

(
n − i

2

)
−

γ∑

i=1

(n − i)

= ∆2 �To 
on
lude, if we use the XL method and multiply not by all quadrati
 mono-mials, but by spe
ial ones we do the same as relinearization does, and thusrelinearization is a sub
ase of XL. Now we want to show that it is equal in thehomogeneous 
ase of degree two.Relinearization is equal to Blowhom
2In se
tion 3.1 we will show that the number of linearly independent equationsprodu
ed by Blowhom2 is m

(
n+1

2

)
−
(
m
2

). Using this we 
an analyse if XL outper-forms relinearization or not. In the homogeneous 
ase the following must holdfor Blowhom2 to obtain a solution.
m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
≥ −D − 2 (7)The following must hold for relinearization to obtain a solution.

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 − m + 1

2

)
≥ −D − 2 (8)Be
ause of following equality, inequations (7) and (8) are equal.

m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)

=
n4

24
+

n3

4
−

n2m

2
+

11n2

24
−

nm

2
+

n

4
+

m2

2
−

m

2

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 − m + 1

2

)



Unravel XL and its variants 13In the inhomogeneous 
ase, Blowinh2 is slightly better than relinearization. Asdepi
ted in se
tion 3.3 table 5 we get a fa
tor of 1
12 instead of 0.09175 in theasymptoti
 analysis. We 
an also derive this from the inequations above. If wehomogenise the inhomogeneous system we have to substitute n by (n + 1) ininequation (7). Relinearization does not depend on the question whether equa-tions are homogeneous or not, i.e. inequation (8) stays the same and thus bothare not longer equal.3 Analysis of XL3.1 The number of linearly independent equationsThe 
ru
ial point by using XL is to determine the number of linearly indepen-dent equations produ
ed by BlowD or XLinhD . This is needed to 
al
ulate D andtherefore implies the 
omplexity of the whole algorithm. For random equationsystems we will revisit the formulas derived theoreti
ally by Moh [Moh00℄, Yangand Chen [YC04a℄ or by experiments for D between 0 and 5 over F2 by Courtoisand Patarin [CP03℄. For a ground �eld Fq and D +2 < q, the formulas are inde-pendent of the ground �eld. If D+2 ≥ q we have to take the �eld equations xq−xinto a

ount and things get messy�at least from a theoreti
al perspe
tive. Forexample if q = 2 the number of monomials of degree D de
reases from (

n+D−1
D

)to (n
D

) and besides of the trivial dependen
y fg = gf there is an additionaldependen
y due to f2 = f for f, g quadrati
 polynomials. We assume D + 2 < qin the whole paper. A sole ex
eption of this is se
tion 3.4, were we take a peekat the 
ase D + 2 ≥ q, parti
ularly the important 
ase of F2. Our experimentswere performed independently of previously known results. In addition, we also
onsidered the homogeneous 
ase.3.2 Experimental setup and 
onne
tion between homogeneous andinhomogeneous 
aseAs you 
an see in table 1 and 2 the formulas of BlowhomD and BlowinhD are slightlydi�erent. These equations were obtained experimentally by a total of several10,000 experiments and later veri�ed theoreti
ally. All experiments were per-formed on a Intel Xeon X33502.66GHz (Quad
ore) with 8 GB of RAM usingonly one 
ore and the software system Magma V2.16-1 [MAG℄. Parameters wererunning for various tuples (n, m, D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50,
1 ≤ D ≤ 8. First, all data-points were �tted with an automated polynomial �tter(multivariate equations in two or three variables). In a se
ond, semi-automatedstep, these polynomials were expressed in form of binomials.Hen
e we showed experimentally that we obtain

m + mn + m

(
n + 1

2

)
−

(
m

2

)
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o Thomae, Christopher WolfTable 1. Number of linearly independent equations produ
ed by BlowhomD , experimen-tally derived.
D Number of linearly independent equations0 m1 mn2 m

`
n+1

2

´
−

`
m

2

´3 m
`

n+2

3

´
−

`
m

2

´
n4 m

`
n+3

4

´
−

`
m

2

´`
n+1

2

´
+

`
m

3

´5 m
`

n+4

5

´
−

`
m

2

´`
n+2

3

´
+

`
m

3

´
n

Table 2. Number of linearly independent equations produ
ed by BlowinhD , experimen-tally derived.
D Number of linearly independent equations0 m1 mn2 m

`
n+1

2

´3 m
`

n+2

3

´
−

`
m−1

3

´4 m
`

n+3

4

´
−

`
m−1

3

´
n +

`
m−1

4

´5 m
`

n+4

5

´
−

`
m−1

3

´`
n+1

2

´
+

`
m−1

4

´
n −

`
m−1

5

´
+

`
m−1

4

´6 m
`

n+5

6

´
−

`
m−1

3

´`
n+2

3

´
+

`
m−1

4

´`
n+1

2

´
−

`
m−1

5

´
n +

`
m−1

4

´
n +

`
m−1

6

´
−

`
m−1

5

´

Table 3. Number of linearly independent equations produ
ed by XLinhD , experimentallyderived.
D Number of linearly independent equations0 m1 m + mn2 m + mn + m

`
n+1

2

´
−

`
m

2

´3 m
`

n+3

3

´
−

`
m

2

´
(n + 1)4 m

`
n+4

4

´
−

`
m

2

´`
n+2

2

´
+

`
m

3

´5 m
`

n+5

5

´
−

`
m

2

´`
n+3

3

´
+

`
m

3

´
(n + 1)



Unravel XL and its variants 15linearly independent equations for XLinh2 , i.e if we join the Blowinhi for i =
0 . . . 2 there are new linear dependen
ies. And thus we get the same result byhomogenising an inhomogeneous system and using Blowhom2 and by using XLinh2itself. Note that we have to substitute n by n + 1 in the formula of Blowhom2 andthat the number of variables is (n+4

4

)
− 1 be
ause we know x4

n+1 by the 
hoi
eof xn+1 = 1 for homogenisation. Thus we get the following.Blowhom2

: m

(
n + 2

2

)
−

(
m

2

)
−

(
n + 4

4

)
+ 1

= m

(
n + 1

2

)
+ m

(
n + 1

1

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 3

3

)
+ 1

= m + mn + m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 2

3

)
−

(
n + 2

2

)
+ 1

= m + mn + m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 2

3

)
−

(
n + 1

2

)
− n

: XLinh2The above is also true for arbitrary D. If you 
hoose m high enough, you maywonder if the number of linearly independent equations for inhomogeneous sys-tems be
omes less than 0. Note that all equations �rst rea
h the maximum num-ber of linear independent equations, i.e. (n+D+1
D+2

)
+
(
n+D
D+1

)
+
(
n+D−1

D

)
− D − 2,the number of unknowns for BlowinhD subtra
ted by D + 2. If the number ofequations is higher than the number we need to solve the system, the formulaedo no longer �t.3.3 Asymptoti
 analysisFor an asymptoti
 analysis we 
hoose m = εn2. We 
annot hope to get m inthe order of n be
ause then P = NP would be
ome very likely. But even if mstays in the order of n2 the fa
tor ε may be small enough for the 
ryptanalysisof small parameters. We see from se
tion 2.1 and table 4, XL of degree 2 isasymptoti
ally the same as relinearization. [p℄Something unexpe
ted happens in table 5. For D = 2 using BlowinhD is asymp-toti
ally better than using XLinhD . But for D > 2 there is no asymptoti
 solutionfor BlowinhD at all!3.4 The binary 
aseThe number of linear independent equations produ
ed by XL over F2 was treatedby Rønjom and Raddum [RR08℄. They 
onsidered inhomogeneous equations, butwe will 
ite their results restri
ted to the homogeneous 
ase in table 6.
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Table 4. Asymptoti
 analysis of BlowhomD and XLinhD .Degree ∗ ≤ 0 ε0 1

2
− ε 1

21 1

6
− ε 1

62 1

24
− 1

2
ε + 1

2
ε2 0, 091753 1

120
− 1

6
ε + 1

2
ε2 0, 061254 1

720
− 1

24
ε + 1

4
ε2 − 1

6
ε3 0, 04525

Table 5. Asymptoti
 analysis of BlowinhD .Degree ∗ ≤ 0 ε0 1

2
− ε 1

21 1

6
− ε 1

62 1

24
− 1

2
ε 1

12

Table 6. Number of linearly independent equations produ
ed by BlowhomD over F2.
D Number of linearly independent equations0 m1 mn2 m

`
n

2

´
− (

`
m

2

´
+ m)3 m

`
n

3

´
− (

`
m

2

´
+ m)n4 m

`
n

4

´
− (

`
m

2

´
+ m)

`
n

2

´
+ (

`
m

3

´
+ 2

`
m

2

´
+ m)5 m

`
n

5

´
− (

`
m

2

´
+ m)

`
n

3

´
+ (

`
m

3

´
+ 2

`
m

2

´
+ m)n



Unravel XL and its variants 173.5 Theoreti
al analysisLemma 1. If Phom 
ontains random equations then the number of linearly in-dependent equations produ
ed by BlowhomD is upper bounded by
D = 2k : (9)

k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i) − 1

2(k − i)

)

D = 2k + 1 :
k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i)

2(k − i) + 1

)
.This bound holds with very high probability.Before proving this lemma at the end of this se
tion, we need some intermediateresults.Equations (9) on BlowinhD and XLinhD was given and proven indu
tively by Moh[Moh00℄. We want to formulate this proof in more detail and give a good intuitionwere the systemati
 linear dependen
ies 
ome from. First we 
on
entrate onBlowhom2 and sear
h for the (m2 ) linear dependent equations out of all m

(
n+1

2

)produ
ed equations. Let f, g be two Multivariate Quadrati
 polynomials in nvariables ea
h. Denote Monf , Mong the set of monomials in f and g, respe
tively.Assume the existen
e of some admissible ordering for multivariate polynomials
f, g, e.g. degrev-lex or lex.Lemma 2. Let f, g be a pair of linearly independent, Multivariate Quadrati
polynomials. Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be thesets of 
ross-wise monomial multipli
ation of f and g, respe
tively. Then thesetwo sets produ
e at most |F | + |G| − 1 linearly independent equations.Proof. We denote our two polynomials by f :=

∑σ

i=1 αiai and g :=
∑τ

i=1 βibifor non-zero �eld elements αi, βj ∈ F
∗ and monomials ai, bj for 1 ≤ i ≤ σ and

1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. Theimportant property of the two sets F, G is that ea
h monomial ab for a ∈ Monfand b ∈ Mong exists twi
e, namely on
e in bf ∈ F and on
e in ag ∈ G. Thefollowing equation shows that adding all equations of F multiplied by 
oe�
ients
βi is equal to adding all equations of G multiplied by 
oe�
ients αi and thusthe set F ∪ G is linear dependent.

τ∑

i=1

βibif =

τ∑

i=1

βibi

σ∑

j=1

αjaj =

σ∑

j=1

αjaj

τ∑

i=1

βibi =

σ∑

j=1

αjajgClearly this 
onstru
tion fails if we delete one equation in F ∪ G. ⊓⊔Corollary 1. The set Blowhom2 
ontains at most (n+1
2

)
m−

(
m
2

) linearly indepen-dent equations.
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o Thomae, Christopher WolfProof. By its de�nition, we have at most (n+1
2

)
m elements in Blowhom2 . Thisexplains the �rst part of the sum and also gives an upper bound. Consideringall pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain (m2 ) lineardependen
ies. ⊓⊔Corollary 2. The set XLinh2 
ontains at most (n2)m + nm + m −

(
m
2

) linearlyindependent equations.Proof. This 
orollary works similar to 
orollary 1. By its de�nition, we have atmost (n2)m + nm + m elements in XLinh2 . This explains the �rst part of the sumand also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < gand also Lemma 2, we obtain (m2 ) linear dependen
ies. ⊓⊔Lemma 3. Let f, g be a pair of linearly independent, homogeneous Multivariate
Quadrati
 polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}
ontains at most 2

(
n+k−1

k

)
−
(
n+k−3

k−2

) linearly independent equations.Proof. The �rst part of the sum is a result of the (n+k−1
k

) 
hoi
es of the monomial
µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we 
an now applylemma 2. We have |Monk−2| =

(
n+k−3

k−2

) individual 
hoi
es for v. ⊓⊔Extending this lemma from pairs to sets is kind of tri
ky, be
ause sin
e D ≥ 4we obtain new linear dependen
ies between 3 and more equations. Thus we are
ounting linear dependen
ies twi
e if we only 
onsider pairs f, g. To 
ount allequations only on
e, we need a property (equation (10)) whi
h follows if thesystem of equations is pairwise 
oprime. First we show that this o

urs withvery high probability. Then we show that if the system is pairwise 
oprime theupper bound of lemma 1 is tight.Corollary 3. Two randomly 
hosen MQ-equations f and g are not 
oprimewith probability
q + 2(q − 1)(qn+1 − 1)

q(
n+2
2 )

.Proof. Two randomly 
hosen quadrati
 polynomials f and g are not 
oprime i�they share a 
ommon fa
tor. Per de�nition gcd(f, a) = 1 for all a ∈ Fq and thusthe 
ommon fa
tor have to be a polynomial of degree one. Let g = ab and f = cdwith a, b, c, d ∈ F[x1, . . . , xn] and deg(a) = deg(b) = deg(c) = deg(d) = 1. We
hoose g arbitrary and 
ount the number of f with a 
ommon fa
tor. In 
ase 1
f = λg with λ ∈ Fq gives q possibilities. In 
ase 2 we assume w.l.o.g. d 6= λa, λb.Furthermore λ 6= 0 as we 
ount this in 
ase 1. We 
an 
hoose c = λa or c = λbwith d 6= 0 arbitrary. This give 2(q − 1)(qn+1 − 1) possibilities.The total number of 
hoi
es of f is q(

n+2
2 ) and thus the probability of not being
oprime is q+2(q−1)(qn+1−1)

q
(n+2

2 )
. ⊓⊔



Unravel XL and its variants 19The probability of a MQ-system to be pairwise 
oprime is simply one minus(
m+1

2

) times the probability of lemma 3. Note that the probability of a MQ-system to be pairwise 
oprime in
rease if q, m or n in
rease. Already for thesmall parameters q = 4 and m = n = 9 it is greater than 1 − 2−80. We havealso veri�ed this experimentally (
f. Se
tion 3.1). Note for �xed q the probabilityin
rease exponentially in n.Denote with Lin(S, k) the linear 
losure of degree k of a polynomial f or a set
S, respe
tively, asLin(f, k) := {a + b : a, b ∈ {ϕµf : ϕ ∈ F, µ ∈ Monk}}Lin(S, k) := {a + b : a, b ∈ {ϕµs : ϕ ∈ F, µ ∈ Monk, s ∈ S}} .We 
an also think of Lin(·, k) as possible rows in the 
orresponding 
oe�
ientmatrix Π for S or f . Moreover, denote with |Lin(S, k)| the number of its elementsand with #Lin(S, k) the number of linear independent equations in Lin(S, k). Thelatter 
an also be viewed as the rank of the 
orresponding 
oe�
ient matrix.Assumption: Let f /∈ Lin(S, 0) be a quadrati
 polynomial, S := {g1, . . . , gm} aset of m ∈ N linearly independent quadrati
 polynomials, also to f , and k ≥ 0some extension degree. Then we have

#(Lin(S, k) ∩ Lin(f, k)) = #Lin(S, k − 2) (10)with very high probability. For the spe
ial 
ase m = 1 
ondition (10) means thatboth polynomials are 
o-prime.Before �nishing the proof of lemma 1, we want to give some intuition behind theoverall idea: in a nutshell, we will make use of the in
lusion/ex
lusion prin
iplefor di�erent dimensions k. The reason is that for some dimension k′ we will
ount the same linear independent equation twi
e�whi
h we have to 
orre
tat this level. For dimension k′ + 2, there is an over
orre
tion, whi
h has to be
orre
ted again and so on. Hen
e, we end up with a sum in (−1)r and a 
ountof the number of equations we have to 
orre
t. Re
all that we wanted to 
ountthe number of linearly independent equations of BlowhomD and hen
e deal with apolynomial system Phom.Proof (lemma 1). First we reformulate the formula of lemma 1. The number oflinearly independent equations #Lin(P hom, k) there is given by
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)
. (11)We proof this by indu
tion via m. The 
ase m = 1 is trivial.Let us assume equation (11) holds for m. We have to show that it also holds for

m + 1.We have Phom
m+1 := P hom

m ∪ {pm+1} and write
#Lin(P hom

m+1, D) = #Lin(P hom
m , D) + #Lin(pm+1, D)

− #(Lin(P hom
m , D) ∩ Lin(pm+1, D)).



20 Enri
o Thomae, Christopher WolfThe last term simpli�es to #Lin(Phom
m , D − 2) using equation 10. Using theindu
tion hypothesis we obtain the following formula for #Lin(Phom

m+1, D).
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)

+

(
n + D − 1

D

)

−
∑

0≤2i≤D−2

(−1)i

(
m

i + 1

)(
n + D − 2i − 3

n − 1

)

=
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)

+
∑

0≤2i≤D

(−1)i

(
m

i

)(
n + D − 2i − 1

n − 1

) (12)Exploiting (m
l

)
=
(
m−1

l

)
+
(
m−1
l−1

) yields
(12) =

∑

0≤2i≤D

(−1)i

(
m + 1

i + 1

)(
n + D − 2i − 1

n − 1

)Sin
e we have ε > 0, lemma 1 gives an upper bound of the number of linearlyindependent equations. But as we saw in 
orr. 3, the value ε is very small inpra
ti
e, so this bound is tight for all pra
ti
al 
ases. ⊓⊔Lemma 1 only handles the homogeneous 
ase. The proof for the inhomogeneous
ase is analogous. A
tually there is a strong 
onne
tion between the homogeneousand inhomogeneous 
ase, be
ause we rea
h the same results, if we homogenisenon-homogeneous system, as we saw in se
tion 3.2.3.6 XL of high degrees DCourtois et al. 
laimed in [CKPS00℄ that every MQ-system 
ould be solved byXL in sub-exponential time, if we 
hose D high enough. Well, this is not true inthe inhomogeneous 
ase m = n, as shown by Yang in [YC04b℄. More pre
isely,there is a upper bound on D o� whi
h the number of new equations equalsthe number of new monomials. Remember XL needs the di�eren
e between thenumber of monomials T and the number of linearly independent equations I tobe less or equal to D + 2. So after rea
hing the upper bound of D, XL 
an onlysolve the problem, if we in
rease D up to this di�eren
e. It is obvious that thisis not e�
ient any more. We want to show this fa
t for the homogeneous 
ase.The inhomogeneous 
ase is analogous.



Unravel XL and its variants 21First let us 
onsider the 
ase D = 2k. The number of linearly independentequations subtra
ted by the number of monomials is given by
k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i) − 1

n − 1

)
−

(
n + 2k + 1

n − 1

)

= −
2k+2∑

i=0

(−1)i

(
m − n

i

)(
m

2k − i + 2

)
. (13)In the spe
ial 
ase m = n inhomogeneous, e.g. m + 1 = n homogenised, (13)does not further in
rease if we 
hoose 2k + 2 bigger than m, i.e. D > m − 2,and thus k = m−2

2 is an upper bound. We get the following.
m∑

i=0

(−1)i

(
−1

i

)(
m

m − i

)

=

m∑

i=0

(
m

i

)

= 2m.We used (−1
i

)
= (−1)i

(
1+i−1

i

)
= (−1)i. So the number of linearly independentequations subtra
ted by the number of monomials is T − I = 2m. XL su

eed, ifwe raise D + 2 up to 2m, be
ause I −T ≥ −D− 2 must hold. But for m = n +1inhomogeneous equations, this be
ome mu
h better and D gets polynomial in

m. For D = m − 2 we always obtain a solution sin
e
m∑

i=0

(−1)i

(
m

i

)
= 0.Let m = n+a and a ∈ N>1. The upper bound for D to solve the system is givenby D = 2m−n−1 = n+2a−1. The term (a

i

) be
omes 0 for i = a+1, . . . , n+2a+1and the term (
n+a

n+2a+1−i

) for i = 0, . . . , a. Thus it hold
−

n+2a+1∑

i=0

(−1)i

(
a

i

)(
n + a

n + 2a + 1 − i

)
= 0.4 Variants of XLInspired by Gröbner bases and some other observations there is a whole familyof XL-like algorithms, whi
h try to use some additional ideas to speed up theoriginal XL algorithm. We revisit the most important ones and give some reasonsif and under whi
h 
ir
umstan
es they are useful. Some examples are FXL, XFL,XLF, XL', XL2 and XSL [CKPS00, BFP09, YC04a, Cou04, CP03℄.
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o Thomae, Christopher WolfFXLFXL, or �xing extended linearization, was suggested in the original paper ofCourtois et al. [CKPS00℄ and is nothing else than XL with guessing some vari-ables beforehand. That this is quit a good idea is already shown for the Gröbnerbase algorithm in [BFP09℄. That it is also a good idea for XL shows equation(13) in se
tion 3.6. We saw that the 
ase m = n is exponential in D, but alreadythe 
ase m = n + 1 is polynomial, so it helps to guess at least one variable. Theoptimal number of guessed variables is dis
overed by Yang and Chen in [YC04a℄se
tion 5.2.XFLXFL is a variant of FXL. We 
hoose f variables, but do not guess them right inthe beginning. We 
hoose the order of the monomials in a way that all monomials
ontaining any of the f variables are eliminated last. Now we linearise the systemand apply Gaussian elimination. Be
ause the system was underdeterminend, weobtain no unique solution. To do so, we guess one of the f variables and applyGaussian elimination again. Why is this stepwise guessing better than FXL insome 
ase? First we have to do the most work, i.e. the �rst Gaussian elimination,only on
e. In FXL we have to do this after every wrong guessing. But noti
e,that there the number of monomials is smaller, so we 
arefully have to 
al
ulatethe right tradeo� between the two variants. Se
ond XFL may use dependen
iesamong the f variables and thus su

eed.XLFXLF just take the �eld equations (xq − x) = 0 in Fq into a

ount and was �rstmentioned in [Cou04℄. XLF makes sense in the inhomogeneous 
ase, if D getlarger than (q − 2). In this 
ase the analysis be
omes slightly di�erent, be
ausethe number of produ
ed monomials de
rease, i.e. monomials xD
i redu
e to xiwhi
h already exists. This means we need less linearly independent equations tosu

eed. Note that XLF is one of a handful variants whi
h improve the inhomo-geneous 
ase, but not the homogeneous one. In the homogeneous 
ase we onlyhave monomials of degree D + 2. If we redu
e them we get monomials of lowerdegree, but they did not exist before and thus the number of unknowns stay thesame. Even if the formulas of the number of linearly independent equations inse
tion 3.1 showed that the inhomogeneous and homogeneous 
ase are equal us-ing homogenisation, this is not true any longer if we want to use some algebrai
dependen
ies. By homogenisation we grout the stru
ture of the inhomogeneousequations we want to use by methods like XLF or MutantXL.XL'Introdu
ed by Courtois and Patarin in [CP03℄ this variant solve the equationsystem by XL until there are only (r+D+2

D+2

) equations in r variables left. Thisremaining equation system is solved by brute for
e or other algorithms like Gröb-ner bases.
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ti
al purposes, FXL is better than XL'.Proof. We 
all FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smallerthan (T − I)XL'. With se
tion 3.6 and D = 2k we 
an write
(T − I)FXL =

(
n − r + D + 1

D + 2

)
−

k∑

i=0

(−1)i

(
m

i + 1

)(
n − r + D − 2i − 1

n − r − 1

)

=

2k+2∑

i=0

(−1)i

(
m − n + r

i

)(
m

2k − i + 2

)and
(T − I)XL' =

(
n + D + 1

D + 2

)
−

k∑

i=0

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)
−

(
r + 2k + 2

2k + 2

)

=
2k+2∑

i=0

(−1)i

(
m − n

i

)(
m

2k − i + 2

)
−

(
r + 2k + 2

2k + 2

)
+ 1.If we would plot formula (T −I)XL'− (T −I)FXL we would see that this is greaterthan zero, i.e. FXL is better than XL', for r less than some bound depending on

k. For in
reasing k the bound on r de
rease. It seems very hard to 
al
ulate thisbound in an analyti
al way. But for real world parameter k < 10 and r ≪ n weare below this bound. W.l.o.g. we 
an assume m = n, otherwise we substitute
r. See table 7 for the upper bound on r depending on m and k. With F5 we
an solve MQ-systems up to m = 20 in 266 operations, so we stopped the tableat m = 30 for pra
ti
al purpose. Even k > 6 is of no pra
ti
al interest be
ausethe workload without 
onsidering guessing would be larger than (n+2k+2

2k+2

)ω for
2 ≤ ω ≤ 3. Note that the 
ases marked gray are always solvable by XLinh2k without

m\k 1 2 3 4 5 65 1 0 0 0 0 010 6 3 1 0 0 015 11 8 6 5 1 120 15 13 12 10 8 625 20 18 17 15 12 1030 25 23 22 19 17 15Table 7. Upper bound on r.guessing. In all the other 
ases the bound on r is high enough to guess as manyvariables as we need to solve the equation system with FXL. So we 
laim thatFXL is always better than XL' for pra
ti
al purpose.
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o Thomae, Christopher WolfXSLCourtois and Pieprzyk [CP02℄ published this method at Asia
rypt 2002 and
laimed to have broken AES. This was disproved in 2005 by Leurent and Cid[CL05℄. The idea of XSL is to use the spe
ial stru
ture of the equation system.If some equations are sparse you might introdu
e more new monomials by mul-tiplying them by all monomials of a spe
ial degree. So in some 
ase it might bebetter to multiply some equations only by some monomials. It is in no way 
learhow to do this. The idea of XSL is 
onne
ted to Coppersmiths latti
e basedmethod to solve modular equations. Like in XL you multiply the equation by so
alled shift polynomials. Choosing the right shift set is a di�
ult problem. In the
ase of two unknowns, we 
an plot the Newton polytope and get an intuition.But in multivariate 
ryptography you deal with a lot more unknowns. So it isan important open problem to �nd the right shift set for some given equation.MutantXLOne of the most e�
ient derivates of XL is 
alled MutantXL. It was introdu
edin 2008 and 
laims to be as fast as F4 in some 
ases [DBM+08, MMD+08℄.Let I be the number of linearly independent equations produ
ed by XLinhD and
T =

(
n+D+2

D+2

) the number of degree ≤ D +2 monomials. If T − I > D +2 this isnot solvable by linearization and thus we would 
ontinue with XLinhD+1 in the orig-inal XL algorithm. MutantXL is a step in between. It uses equations that wouldbe produ
ed by XLinhD+k with k > 0 but without introdu
ing new monomials. Todo so we use only polynomials of degree < D + 2, so 
alled mutants, that areprodu
ed in the Gaussian elimination step of XLinhD . For example multiplyingthese polynomials by all monomials of Mon1 leads to new equations without gen-erating new monomials. Note that this strategy is useful only for inhomogeneousequations. In the homogeneous 
ase all monomials are of the same degree andthus mutants never o

ur. Note that this is not true for a homogenised systemof equations. Here the mutants are only hidden by the homogenization variable.So, as long as the initial system is inhomogeneous, it is not a 
ontradi
tion tospeak of mutants and use formula 9 for homogenized systems.De�nition 3. Let f =
m∑

i=1

gji
h(i) with h(i) ∈ P inh and gji

some polynomial ofdegree ≤ D be a representation of f . This is not unique. The index set J denotesall representations and j ∈ J . The level (lev) of this representation is de�ned by
lev

(
m∑

i=1

gji
h(i)

)
:= max{deg(gij

h(i)
)
| 1 ≤ i ≤ m

}
.The level of g is de�ned by the minimum level of all its representations.

lev (g) := min{lev( m∑

i=1

gji
h(i)

)
|j ∈ J}We 
all g a mutant if deg(g) < lev(g).
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ru
ial question as always is how many equations produ
ed by mutants arelinearly independent from the known ones. We give two upper bounds on thisnumber. We showed experimentally that the smaller bound is tight. We will givesome theoreti
al explanation on that. To 
on
lude we 
ompare MutantXL to F5and show that indeed in some 
ase it is faster.Remark: To implement MutantXL 
orre
tly, we will introdu
e the term oftrivial mutants. Using XLinhD all equations produ
ed by Blowinh<D are mutantsby de�nition. But all their multiples of 
ertain degree are already 
ontained inXLinhD and thus are not linearly independent. We 
an redu
e the 
omputationalworkload if we only 
onsider mutants produ
ed by BlowinhD .To avoid hiding the upper bounds behind formalism, we start with the 
ase
|MonD+2| ≤ IXLinh

D
≤ |MonD+2| + |MonD+1| illustrated in �gure 3.
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n+D+1

D+1

´

z
}|
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em

Fig. 3. Coe�
ient Matrix Π of XLinhD after Gaussian eliminationThe �rst upper bound is the number of equations produ
ed by mutants. In the
ase k = 1 (see �gure 3) this is n(IXLinh
D

− |MonD+2|) or nm̃ using the notationof �gure 3. Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 show that this trivialbound is way above the 
orre
t number of new linear independent equations.The se
ond upper bound is a result of the fa
t that all nm̃ equations produ
edby mutants are impli
it equations of XLinhD+1. Exa
tly IXLinh
D+1

− IXLinh
D

of themare linear independent to the previous ones. But they all 
ontain monomialsof MonD+3. Equations produ
ed by mutants have maximal degree D + 2 andthus �rst all |MonD+3| monomials have to be redu
ed. Therefor IXLinh
D+1

− IXLinh
D

−

|MonD+3| is an upper bound on the number of linear independent equationsprodu
ed by mutants. Note that this bound was tight in all our experiments for
2 ≤ n ≤ 7 and n ≤ m ≤ 9.
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o Thomae, Christopher WolfTo generalise the above example let k ∈ N :

k−1∑

j=0

|MonD+2−j | ≤ I ≤
k∑

j=0

|MonD+2−j | . (14)The following two upper bounds hold.Corollary 4. The maximal number of equations produ
ed by Mutants is givenby
k−1∑

i=1

(
n + i − 1

i

)
|MonD+2−i| +

(
n + k − 1

k

)(
IXLinh

D

−
k−1∑

i=0

|MonD+2−i|

)
.Corollary 5. A nontrivial upper bound on the number of linearly independentequations produ
ed by Mutants is given by

k∑

i=1



IXLinh
D+i

− IXLinh
D

−
i∑

j=1

|MonD+2+j |



 .We 
ome ba
k to the example in �gure 3 to get an intuition on a lower bound.As shown in lemma 2, we know that new linear dependent equations are pro-du
ed blo
k-wise, i.e. if we multiply f and g by all monomials of degree two,all equations are linearly independent besides one, as fg = gf holds. Thus newlinear dependent equations are only produ
ed by pro
eeding from odd to evendegree D. Otherwise existing dependen
ies are only multiplied by more mono-mials. Multiplying the mutants with degree one monomials we impli
itly useequations of BlowinhD+1. If D was even, no new linear dependen
ies are produ
ed.So we are able to 
al
ulate the 
omplexity of MutantXL in an analyti
al way, if
D is even and k is one. We just have to use the minimum of 
orollary 4 and 5to determine D (see table 17 and 18 for results). Note that this is not true for
k > 1, as we will show in se
tion B.In �gure 4 and 5 we 
al
ulated k for all pra
ti
al values n ∈ [1, 30] and m ∈[
n, n(n+1)

2

]. The rows of �gure 4 denote n, the 
olumns denote m and the 
olordenote the value of k, whereby bla
k stands for k = 3 and every shade is a lowervalue. In �gure 5 bla
k stands for k = 5. For numeri
al values of k see table 19.Remark 1. As you 
an see in �gure 5, MutantXL will hardly work in the 
ase
m ≫ n and m = n. It was shown in se
tion 3.6 that we need D = 2m tosolve for 
ase m = n. The reason was that the number of newly generatedlinearly independent equations obtained by in
reasing D equals the number ofnew monomials and thus the se
ond bound on MutantXL will always yield zero.Note: A further improvement of MutantXL 
alled MXL2 use ideas of XSL andis published in [MMDB08℄.
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o Thomae, Christopher WolfA 
omparison with the fastest known atta
k on UOV 
an be found in table 8.We only used k = 1 to 
al
ulate the 
omplexity of MutantXL, as the situationfor k > 1 is not 
lari�ed (see appendix B).Given are the F5 algorithm, a version were one or two variables are �xed beforeperforming F5 (�HybridF5�), and the results from 
orollary 5 for this parameterset. We 
an see that MutantXL mat
h up to F5 in both 
ases. See more detailedtables in the appendix A.Table 8. Comparison between F5, HybridF5 and MutantXL in terms of workload in�eld operations over GF(q). [log2℄UOV F5 HybridF5 MutantXL
m = 10 41.36 37.75 37
m = 20 82.51 66.73 66

5 Con
lusionWhile Relinearization and XL seemed to be a magni�
ent tool for 
ryptanaly-sis in the beginning, their e�e
tiveness was diminished in subsequent years. Inaddition, existing Gröbner bases algorithms performed better in most 
ases, soXL 
ame more and more out of fo
us.Empiri
al eviden
e with (naturally) small values of n already suggested in the
ase of the MQ-s
heme HFE that Gröbner bases might not be as e�
ient asMutantXL [MMD+08℄. In this paper, we have shown that this is not a 
oin
i-den
e for small values of n, but a systemati
 �nding whi
h 
an be put on �rmtheoreti
al foundations. Hen
e, we showed that MutantXL 
an 
ompete withF5. It seems a matter of the right implementation whi
h of the two is faster. Inthis 
ontext it is an important open question how to generate linear independentequations only. Up to now we need to produ
e all equations and eliminate thelinear dependent ones by Gaussian elimination.Taking a wider perspe
tive, this result is not that surprising than it seems at�rst glan
e. Main reason is that XL 
omputes only one solution for a givenground �eld F. In 
ontrast, Gröbner bases were designed to 
ompute all solu-tions, moreover in the algebrai
 
losure of F. Obviously, the latter task is moregeneral and hen
e 
omputational more di�
ult. Still, using tri
ks like trun
atedGröbner bases and �eld equations (xq − x) algorithms based on Gröbner ba-sis 
omputation were able to level the �eld and outperform XL. An additionalreason might be that de
ades of resear
h went into tuning GB-algorithms whilebarely 10 years have passed sin
e XL and its variations were introdu
ed to the
ryptographi
 
ommunity. Hen
e, there might be more room for improving XLa

ording to the needs of 
ryptography than in the 
ase of GB-algorithms. In
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ryptography one solution is su�
ient in most 
ases to solve a 
ryp-tographi
 problem rather than a huge set of them. Therefore, it was time todevelop a theoreti
al framework to thoroughly analyse XL and its derivates, sorunning times and memory requirements 
an be predi
ted without relying on(possibly) noisy empiri
al eviden
e.All in all, it may be a sensible 
ourse of a
tion to spend further time to 
laritythe speed gap between Gröbner bases and (Mutant)XL to avoid further surprisesin other 
ryptanalyti
 areas.A
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34 Enri
o Thomae, Christopher WolfA Complexity of F5, XL and MutantXLComplexity of F5We denote m the number of quadrati
 equations, n = m the number of variablesand r the number of guessed variables. Note that we used ω = 2 as Bettale etal. did in [BFP09℄ to 
al
ulate the 
omplexity of their hybrid approa
h. Weobtain the same results as in [BFP09℄ table 4 for m = 20 and guessing one ortwo variables over F28 , see table 11. The values in the tables are rounded Log2
omplexities. The exa
t value for m = 20, r = 1 and F28 is 66,73 respe
tively67,79 for r = 2.
m\r 0 1 2 3 55 6 3 3 2 210 11 6 5 4 315 16 8 7 6 420 21 11 9 8 625 26 13 11 10 830 31 16 14 12 10Table 9. Degree of Regularity dreg

m\r 0 1 2 3 55 20 18 21 23 2510 41 35 36 37 4215 62 48 49 50 5220 83 64 62 63 6425 103 76 74 75 7630 123 92 90 88 89Table 10. Complexity of F5 over F25

m\r 0 1 2 3 55 20 21 27 32 4010 41 38 42 46 5715 62 51 55 59 6720 83 67 68 72 7925 103 79 80 84 9130 123 95 96 96 104Table 11. Complexity of F5 over F28Complexity of XLFirst we assume (n+D+2
D+2

)ω to be the 
omplexity of XL, i.e. we 
on
entrate onthe number of 
olumns N , 
f. se
tion 2.3. The proof of lemma 1 showed thatthe linear dependent equations produ
ed by XL are very systemati
. So in 
ase
D = 2 it is no problem just to generate linear independent equations and thusderive the given 
omplexity. We assume that this is also possible for D > 2.Note that we only 
onsidered XL up to D = 9. Fields marked with `-' indi
atethat this is not enough to solve the 
orresponding systems of equation.
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m\r 0 1 2 3 55 - 5 3 2 210 - 10 6 5 315 - - 8 7 520 - - 11 9 725 - - - 11 930 - - - - 11Table 12. Degree D + 2 of XL.

m\r 0 1 2 3 55 - 19 19 20 2510 - 38 33 34 3715 - - 45 46 4820 - - 60 58 6025 - - - 70 7230 - - - - 83Table 13. Complexity of XL over F25

m\r 0 1 2 3 55 - 22 25 29 4010 - 41 39 43 5215 - - 51 55 6320 - - 66 67 7525 - - - 79 8730 - - - - 98Table 14. Complexity of XL over F28Now we assume (m
(
n+D

D

)
)ω to be the 
omplexity of XL, i.e. we 
on
entrate onthe number of rows M , 
f. se
tion 2.3. This is a bad upper bound for the 
asethat we produ
e all m

(
n+D

D

) equations and eliminate the linear dependent onesby Gaussian elimination. Note that this is always bigger than (n+D+2
D+2

)ω if XLsu

eed.
m\r 0 1 2 3 55 - 20 20 20 2510 - 41 35 35 3915 - - 47 48 4920 - - 63 60 6125 - - - 73 7430 - - - - 86Table 15. Complexity of XL over F25

m\r 0 1 2 3 55 - 23 26 29 4010 - 44 41 44 5415 - - 53 57 6420 - - 69 69 7625 - - - 82 8930 - - - - 101Table 16. Complexity of XL over F28Complexity of MutantXLThe 
omplexity of MutantXL is determined by the Gaussian elimination step onall m
(
n+D

D

) equations produ
ed by XL and the max{0,
(
n+D+2

D+2

)
− I − D − 2

}mutants. Thus the 
omplexity of table 18 is 
al
ulated by
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(

m

(
n − r + D

D

)
+ max{0,

(
n − r + D + 2

D + 2

)
− I − D − 2

})ω

+ (28)r.First we 
ompare the degree of regularity dreg (see table 9), i.e. the smallestdegree su
h that the dimension of the ideal produ
ed by F5 is equal to thenumber of monomials of degree dreg :
(
n+dreg−1

dreg

), to the 
orresponding degree
D + 2 used by MutantXL with k = 1. Note that in pra
ti
e we would use k > 1(see table tab:k2), but as we do not know how many equations produ
ed bymutants will be linearly independent we are restri
ted to k = 1.

m\r 0 1 2 3 55 32 4 3 2 210 - 9 5 4 315 - 14 7 6 420 - 19 10 8 625 - 24 12 10 830 - 29 15 13 10Table 17. Degree D + 2 of MutantXLfor k = 1.
m\r 0 1 2 3 55 41 21 23 29 4010 - 42 37 41 4915 - 62 50 54 6020 - 83 66 66 7325 - 103 78 78 8530 - 123 94 94 97Table 18. Complexity of MutantXLover F28 for k = 1.B Open ProblemIn table 19 we 
al
ulate the exa
t value of k obtained by equation (14). Assumingthat the bound of 
orollary 5 is tight even for k > 1 leads to the degree ofMutantXL given in table 20. Espe
ially for large k the degree of MutantXL wouldbe smaller than the degree of regularity. This is a 
ontradi
tion, as the degreeof regularity is the smallest degree su
h that the number of linear independentequations equals the number of monomials.

m\r 0 1 2 3 55 0 2 0 0 010 0 3 3 2 015 0 3 2 3 120 0 5 3 2 225 0 4 3 3 230 0 5 4 3 2Table 19. k obtained by equation (14).
m\r 0 1 2 3 55 32 4 3 2 210 - 6 5 4 315 - 8 6 6 420 - 11 9 7 625 - 12 10 9 730 - 14 13 11 9Table 20. Degree D + 2 of MutantXLfor k in table 19.
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laim that there is an integer K > 1 su
h that 
orollary 5 is not tight for
k > K. We think that there is a third bound whi
h is not tight for k ≤ Kbut otherwise. A naive starting point is to 
onsider the system of mutants asindependent system of equations and apply equation (9).


