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2 Enrio Thomae, Christopher Wolf1 IntrodutionThis artile deals with Multivariate Quadrati systems of equations over (small)�nite �elds. Solving these systems is di�ult as they are NP-omplete and alsohard on average.In this artile, we will onentrate on the so-alled �eXtended Linearization� teh-nique. In a nutshell, XL produes algebrai dependent, but linearly independentequations by multiplying the initial set of equations with all possible ombina-tions of monomials up to a ertain degree D. Next, the new system is viewed asa linear system of equations, i.e. treated as a matrix. When this matrix has asu�iently high rank, XL sueeds. While this method will work in all pratialases for a high enough degree D, it is thought to be rather ine�ient. In parti-ular, Gröbner basis methods suh as F4 and F5 have been desribed in the samefashion. Still, algebrai methods gave rise to a number of attaks, in partiularon stream iphers and blok iphers e.g. [Cou02, CP02, AK03, ACG+06℄. Forthe �rst, �algebrai immunity� has beome an aepted design riterion [FM07℄,while for the latter, it is still unlear if algebrai attaks on real-world iphers areatually more e�ient than previously known methods. However, the method-ology has also been applied in the area of hash funtions [SKPI07℄, and odingbased rypto systems [FOPT10℄. Moreover, as any ryptographi system an beexpressed as a system of Multivariate Quadrati equations over a �nite �eld,any major progress in this area ould endanger at least some areas of ryptogra-phy. Hene, studying the average di�ulty of Multivariate Quadrati systemsof equations is important for the seurity of ryptographi systems. We wantto note that the AES seems to be partiularly vulnerable to algebrai attaks,although no spei� attak is known so far [MR02℄. Still, a lari�ation of the at-tak omplexity of onrete algorithms is bene�ial for ryptography as a whole.In partiular, a slight variation alled MutantXL exploits the ideas of XL to thefullest and is hene far more e�ient than earlier versions. In this artile, weprovide a theoretial framework to analyse XL and its derivates, also inlud-ing MutantXL. The theoretial results are baked up with empirial studies. Inpartiular, we were able to derive the entral formulae both analytially andempirially.1.1 Related WorkXL was initially proposed under the name �relinearization� at Crypto 1999, andthen renamed �eXtended Linearization� one year later [KS99, CKPS00℄. Themain observation was that overdetermined systems of equations, i.e. systemswith more equations than variables ould be solved surprisingly easy using thelinearization tehnique. The underdetermined ase (more variables than equa-tions) was takled in [CGMT02℄. In all ases, systems of equations are interpretedas matrix-vetor equations and the aim is to �nd a matrix with as many (lin-early independent) rows as olumns. To this aim, the initial set of equations isexpanded by generating algebraially trivial, but nevertheless valid and linearly



Unravel XL and its variants 3independent equations. The �nal step onsists of treating all monomials as inde-pendent variables and then solving a purely linear system of equations. Soon itwas pointed out that the method was already known and performed for a smallnumber of variables by geometers [Moh00℄. Using it with muh larger systemsgreatly helped to develop its understanding. Unfortunately the initial papers didnot provide a deep analysis of the method and many laims showed to be overlyambiguous. At least sine Courtois and Pieprzyk laimed to have broken AES[CP02℄ using an XL derivate alled XSL and were disproved by Cid and Leurent[CL05℄ only a few years later, the ommunity of ryptographers beame inreas-ingly reserved against this method. But thanks to Moh [Moh00℄, Diem [Die04℄,Yang and Chen [YC04a℄ and others, XL and variants are understood quit welltoday.A seond line of researh are Gröbner bases. They use a more symboli ap-proah and eliminate monomials from the set of equations. To this aim, pairs ofequations are formed and (hopefully) monomials eliminated. However, in mostases the omputation is in vain as no useful elimination ours. Sine the al-gorithm F4 [Fau99℄, there is a strong onnetion with linear algebra, too: Inontrast to deal with pairs of equations, F4 selets whole sets and tries to min-imise the amount of useless omputations by treating them in matrix-fashion.Its suessor F5 uses some even leverer book-keeping to bring down the num-ber of useless omputations even further [Fau02b℄. It is onsidered the fastestalgorithm to ompute Gröbner bases. And in fat, F5 and its variants have animpressive trak reord in bringing down ryptographi systems and hallenges[Fau02a, Fau03a, Fau03b, FJ03, FA03, BFP09, FOPT10℄.A natural question to ask is whether XL or Gröbner are the preferred hoie forryptographi problems. Until now, the situation was quite lear: At Asiarypt2004 it was shown that XL atually is a sub-ase of Gröbner algorithms andthat we hene an expet that Gröbner algorithms are always faster than XL[AFI+04, Die04℄.A possible testbed for this question is the �Unbalaned Oil and Vinegar sheme�:In 1997 Patarin designed a new signature sheme alled �Oil and Vinegar�[Pat97℄, based on Multivariate Quadrati equations. After Kipnis and Shamirbroke the balaned ase in [KS98℄ the �Unbalaned Oil and Vinegar� signa-ture sheme, short UOV, was proposed [KPG99℄. Even if most of the proposedshemes of the lass of multivariate ryptosystems, like MIA, HFE, SFlash arebroken in most of their variants, UOV is still believed to be seure. We ansay that UOV is one of the most popular multivariate ryptosystem. Evennewer shemes like Rainbow or enhaned TTS use the idea of UOV as trap-door [DS05, YC05℄. A study of the seurity of UOV was published by Braeken,Wolf and Preneel in 2005 [BWP05℄. The best known attak against UOV un-til now uses Gröbner bases and is desribed in [BFP09℄. In a nutshell, theyuse ordinary Gröbner basis omputation, but guess some variables beforehand.Therefore, they either introdue ontraditions in the system of equations, orthey solve a system in less variables.



4 Enrio Thomae, Christopher Wolf1.2 Organisation and AhievementThe ontributions of this paper are manifold. First, we start by revisiting thewell known tehnique of relinearization, introdued by Kipnis and Shamir atCrypto 1999 [KS99℄ and show in an easy way, that it is a subase of XL. Thiswas already hinted by Courtois et al. in [CKPS00℄, but not as lear and formalas one would deem neessary.Seond, we improve the onstant ǫ in the ratio m ≥ ǫn2 for the number ofvariables n and the number of equations m from the initial value of ǫ = 1
10 [KS99℄to 1

12 for the orresponding XL of degree 2, therefore showing that far more pairs
(n, m) are solvable with only moderate workload than previously suggested. Inpartiular, this result is obtained using analyti methods, not empirial ones.Still, we have veri�ed the theory empirially and found both in syn.Third, we larify the relationship between XL with homogeneous and inhomoge-neous input. While the di�erene is subtle in most ases it beomes importantfor analysing MutantXL. We do so both by analytial and empirial methods.Fourth, we show that ertain sets of parameters for UOV get in reah for animproved version of MutantXL. These parameter sets were previously out ofreah, in partiular for algorithms using Gröbner bases tehniques suh as F5.Fifth, this raises the question if the ryptographi ommunity was right in on-demning XL for all possible appliation domains. While empirial evidene sug-gested already previously that this might be the ase, we give a lear and theo-retially sound analysis why this might be the ase.This paper starts with introduing some notation and the UOV system (se-tion 1). After this, relinearization and XL are introdued and analysed in se-tion 2. Based on this, we deepen our analysis of XL, using both theoretial andempirial methods (setion 3). Variants of XL are introdued in setion 4 andused to ryptanalyse UOV. Conlusions are given in setion 5. Further resultson the omplexity of F5, XL, and MutantXL an be found in the appendix.1.3 NotationSolving non-linear systems of m equations and n unknowns is a di�ult problemin general. Restriting to the seemingly easy ase of degree 2 equations is stilldi�ult. Atually this problem is also known as MQ-problem whih is provento be NP-hard [GJ79℄.Let P : F

n
q → F

m
q be an MQ system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0... (1)
p(m)(x1, . . . , xn) = 0,



Unravel XL and its variants 5with
p(k)(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑

1≤i≤n

β
(k)
i xi + α(k). (2)We all equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-neous ase onsists only of quadrati terms and is thus de�ned by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)We need the lassi�ation into homogeneous and inhomogeneous later on, be-ause results are di�erent and it is not always easy to see that they are equalafter transforming an inhomogeneous system in a homogeneous one.Let π(k) be the oe�ient vetor of p(k)(x1, . . . , xn) in lexiographi order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ(k)

nn , β
(k)
1 , . . . , β(k)

n , α(k)).Let Π be the orresponding oe�ient matrix
Π :=




π(1)...
π(m)


 .Note that the problem of solving non-linear equations beomes easier if m ex-eeds n. In a sense, eah equation enodes information about the solution vetor

(x1, . . . , xn) ∈ F
n. Obviously, having more information will guide the equationsolver to �nd this solution�as long as the equation is independent from thepreviously known ones. The naive algorithm is to solve (1) by linearization, i.e.to substitute every monomial in p(k) by a new variable and to solve the obtainedlinear system of equations Π with Gaussian elimination. This will lead to theorret solution if we have m ≥ n(n+1)

2 + n linearly independent equations, i.e.if the number of linearly independent equations is equal to the number of mono-mials. With the tehnique of relinearization, introdued in [KS99℄, we an solve
P (asymptotially) if we have m ≥ 0.09175 · n2 linearly independent equations.Lowering the trivial fator of 1

2 to roughly 1
10 was a big leap. We are able tofurther improve this to a fator of 1

12 in the inhomogeneous ase of XL (Degree2), f. Setion 3.2.1.4 Unbalaned Oil and VinegarThe publi key in UOV is a vetor P ∈ MQ(Fn, Fm) of multivariate quadratipolynomials de�ned in (2)
P :=




p(1)(x1, . . . , xn)...
p(m)(x1, . . . , xn)


 .



6 Enrio Thomae, Christopher WolfDenote the number of oil variables by o ∈ N, the number of vinegar variablesby v ∈ N and set n := o + v. Let V := {1, . . . , v} and O := {v + 1, . . . , n}denote the sets of indies of vinegar and oil variables. The private key F :=
(f (1)(u), . . . , f (m)(u)) is de�ned by

f (k)(u) :=
∑

i∈V,j∈O

γ
(k)
ij uiuj +

∑

i,j∈V,i≤j

γ
(k)
ij uiuj +

∑

i∈V ∪O

β
(k)
ij ui + α(k). (4)It is important for �nding a preimage that the variables in f (k) are not ompletelymixed, i.e. oil variables are only multiplied by vinegar variables and never byoil variables. This onstrution leads to an easy way to invert f (k). If we assignarbitrary values to the vinegar variables and if we set m = o we obtain a systemof o linear equations in o variables. It is very likely that this provides a solution. Ifnot we try again. In the publi key P , the entral map F is hidden by omposingit with a linear map S : F

n
q → F

n
q , i.e. P := F ◦ S.
F

n
q F

m
q

F
n
q

P

S
FTypial values for UOV are �eld-size q = 256, number of variables n = 78, andnumber of equations m = 26 [BFP09℄. We will use these to ompare MutantXLwith F5 in setion 4.2 Relinearization vs XL2.1 RelinearizationIn [KS99℄ Kipnis and Shamir used relinearization to ryptanalyse HFE. The ideais very lear and simple. Given a random MQ-system P we �rst linearise, i.e.introdue new variables yk := xixj . For simpliity of the analysis we assume P tobe homogeneous. That means the number of unknowns xixj is (n+1

2

)
= n(n+1)

2 .Notie that this is no restrition for asymptoti analysis and that we an expressany non-homogeneous system in form of a homogeneous system by introduingone more variable. For random systems it is very likely that all of the m equationsare linearly independent, f. Setion 3.1. This underdetermined system of linearequations is solved by Gaussian elimination, see �gure 1 for illustration. As wean see, we obtain an exponential number q
n(n+1)

2 −m of parasiti solutions in
ym+1, . . . , yn(n+1)

2

.After linearization both y1 := x1x1 and y2 := x1x2 are two independent linearvariables. But from an algebrai point of view this is not true as y1 as well as
y2 depend on x1. Relinearization exploits this struture to eliminate parasiti
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∗

0

0

Π

x1x1 x1x2 . . .
n(n+1)

2
−m remaining unknowns

z }| {

y1 y2 . . . ym ym+1 . . .Fig. 1. Coe�ient Matrix Π of P after Gaussian eliminationsolutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)
2

impliitly via newequations. The following equations are trivially true and linearly independent forsome ya = xixj :
xixjxkxl = xixkxjxl = xixlxjxk (5)

⇔ yi1yi2 = yi3yi4 = yi5yi6Kipnis and Shamir required i < j < k < l in the above equation. There are (n4)possibilities for xixjxkxl and thus we get 2
(
n
4

) linear independent equations by(5). If this is larger than the number of unknowns in the remaining y's we aredone and an solve the system, i.e. for
2

(
n

4

)
≥

(n(n+1)
2 − m + 1

2

)
.For m in the same magnitude as n this is not the ase in general. For m = εn2and only onsidering the n4 part, we get the following asymptoti equation

0 ≤ −ε2 + ε −
1

12and hene ε ≥ 0.09175.Note, for inhomogeneous equations the overall analysis is the same but with abigger number of unknowns. By
2

(
n

4

)
≥

(n(n+1)
2 + n − m + 1

2

)
,we obtain the same asymptoti result. But later in the exat analysis we willneed to distinguish between these two ases, as relinearization in the homoge-neous ase will be exatly the same as XL of degree 2.The idea of XL (of degree 2) is simpler but not as easy to analyse. We multiplythe oe�ient matrix Π shown in �gure 1 by every quadrati monomial xixj



8 Enrio Thomae, Christopher Wolfwith i ≤ j and i, j ∈ {1, . . . , n}. This way we obtain m
(
n+1

2

) equations in (n+3
4

)monomials of degree 4. For m = εn2 the number of equations is asymptotiallylarger than the number of monomials for ε ≥ 1
12 . The ruial question is if allprodued equations are linearly independent. This question was not paid muhattention by Courtois et al. in [CKPS00℄. We will look at this in setion 3. Firstlet us de�ne the XL algorithm in a rigorous way.2.2 The XL algorithmNote that eah Multivariate Quadrati equation an be rewritten into a Multi-variate Quadrati polynomial p(k) and the (impliit) equation p(k) = 0. Hene,we will only onentrate on polynomials in the remainder of this text.De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneousquadrati polynomials p as de�ned in (2) and Phom := {p(k)| 1 ≤ k ≤ m} the setof homogeneous quadrati polynomials p de�ned in (3). We de�ne the set of allmonomials of degree D byMonD := {

D∏

j=1

xij
| 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.Multiplying Pinh by all monomials of degree D is desribed by the setBlowinhD := {ab | a ∈ MonD and b ∈ Pinh}.The set BlowhomD is de�ned analogous. The following set de�nes what we use asXL algorithm of degree D.XLinhD :=

D⋃

i=1

Blowinhi ∪ Pinh.Some authors also speak of XL of degree D meaning XLinhD−2. In this ase Dmeans the highest degree of all polynomials used for multipliation and notthe degree of the extension. In our opinion, the latter is more general. Notiethat de�ning XLhomD analogous would not make any sense, beause BlowhomD onlyprodues monomials of degree D + 2 and thus there is no need to use the sets oflower degrees.De�nition 2 (XL algorithm). First we generate XLinhD and hek if the num-ber of linearly independent equations I is equal to the number of produed mono-mials T subtrated by D + 2. In this ase we linearise the system and solve it byGaussian elimination. Notie, if T − I ≤ D + 2 we an hoose the order of themonomials suh that we obtain a univariate equation after linearization, whihan be solved, e.g. by Berlekamp's algorithm. If T −I > D+2 we set D := D+1and try again.



Unravel XL and its variants 92.3 Complexity ConsiderationsWe disuss omplexity onsiderations for algorithms of the XL-type. With minormodi�ations, they also apply to modern Gröbner basis algorithms. In bothases, we deal with a large matrix Π ∈ F
M×N over a ground �eld F and M rowsand N olumns. Usually, F is very small (8 or 16 bit), so we an exlude it fromour analysis. The number of olumns N depends on the number of unknowns andis roughly (n+D+1

D+2

) in the homogeneous ase and (n+D+2
D+2

) in the inhomogeneousase. It may vary a bit depending on the version of XL hosen. The numberof rows M must be at least as big as the number of olumns N . Otherwise,our linear system does not permit a unique solution. The overall omplexity istherefore determined by (a) building the matrix Π and (b) �nding a solution forthe underlying system. We start with the �rst step: Here, we start with a densepolynomial p ∈ P and multiply it with a single monomial a ∈ MonD. The overallworkload is therefore
|MonD|

(
n + 2

2

)multipliations and memory aess for building the matrix Π . Note that eahrow in Π has (n+D+2
D+2

) but only (n+2
2

) non-zero elements. It is therefore extremelysparse. This an be exploited as we do not need to store M ·N but only M
(
n+2

2

)elements.Seondly, we onsider solving the linear equation depending on the oe�ientmatrix Π . In a nutshell, we an upper-bound this by O(Mω) for 2 ≤ ω ≤ 3 ingeneral and ω = 2 + ǫ for sparse equations. As we saw above, this is the asefor XL. If we an avoid linear dependent equations in the intermediate steps,we have M = N and an therefore bring down omplexity. We see that theomplexity of (a) learly outperforms (b). Therefore, it is enough to onsider
M2 in the sequel.2.4 Relinearization as subase of XLMoh analysed relinearization for i ≤ j ≤ k ≤ l [Moh00℄. Asymptotially heobtains the same result as Kipnis and Shamir. To ompare relinearization withXL we also need the smaller terms and therefore we use the exat analysis byMoh. For i ≤ j ≤ k ≤ l we get

2

(
n

4

)
+

n(n − 1)(n − 2)

2
+

n(n − 1)

2
= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)equations by relinearization, instead of 2
(
n
4

) in the ase i < j < k < l. Figure 2illustrate the given situation. To allow to distinguish ases we assume m to beof the form γ−1∑
i=0

(n − i) = γn + γ−γ2

2 for γ = εn and thus m = (ε − ε2

2 )n2 + ε
2n.Through this ym+1 = xγ+1xγ+1 holds and due to the graded lexiographialorder for all indies of not spei�ed monomials xixj in the ∗ blok, see �gure 2,
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∗

0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .Fig. 2. Coe�ient Matrix Π of P after Gaussian eliminationit holds i, j > γ. This allows us to analyse xixjxkxl in the two ases i ≤ γ and
i > γ.We want to show that multiplying by speial monomials is exat the same asrelinearization. Due to the hoie of m we an distinguish two ases.Case 1, i ≤ γ. For i ≤ γ relinearization behaves exatly as XL.

xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixj︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . , m} (6)Equations (6) used by relinearization an be produed in XL by multiplying therow of yi1 by xkxl.Case 1.1, i < j < k < l. There are γ∑
i=1

(
n−i
3

) possibilities for xixjxkxl, as well asfor xixkxjxl and xixlxjxk for i < j < k < l. So we produe 3
γ∑

i=1

(
n−i
3

) equationswith XL by multiplying yi by xkxl. But we also produe γ∑
i=1

(
n−i
3

) new mono-mials ontaining variables xi with i ≤ γ and so the number of remaining newequations is 2 ·
γ∑

i=1

(
n−i
3

).Case 1.2, (j = 1 and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In thease of two equal and two di�erent indies we have the following 3 possibilitiesof monomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produes 3 equa-tions xixixkxl = xixkxixl = xixlxixk. Notie that the last equality is not usedby relinearization, beause it is trivial. So we ignore them too. Sine xixixkxlintrodue a new monomial, only xixkxixl gives us a new equation. So we have
3 ·

γ∑
i=1

(
n−i
2

) new equations in total.Case 1.3, i = j and k = l and i 6= k. In this ase relinearization uses xixixkxk =
xixkxixk. The left monomial produes new monomials in XL and the right mono-
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i=1

(n − i) new equations. To sum up all ases, we produed
2 ·

γ∑

i=1

(
n − i

3

)
+ 3 ·

γ∑

i=1

(
n − i

2

)
+

γ∑

i=1

(n − i)new equations by adapting relinearization to XL. Notie that we produed moreequations than this, but used them to eliminate the newly introdued monomialsof degree 4 with variables xi and i ≤ γ. So the number of unknowns in XL isonly the number of degree 4 monomials ontaining variables xi with i > γ, i.e.(
n−γ+3

4

).Case 2, i > γ. For i > γ relinearization uses the equations
xixjxkxl = xixkxjxl = xixlxjxk.This equations annot be produed by XL, beause they are trivially true. Thedi�erene between both methods is that relinearization produe more variablesafter the seond linearization step and XL does not. So we do not need theseequations for XL beause they are only needed in relinearization to eliminatevariables we do not have in XL.The following equations sum up the number of unknowns and equations in bothmethods. The left terms are the number of unknowns and the right terms arethe number of equations.Relinearization:

(
(

n+1
2

)
− m)(

(
n+1

2

)
− m + 1)

2
≤ 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

↑ ↑

∆1 ∆2

↓ ↓XL: (
n − γ + 3

4

)
≤ 2 ·

γ∑

i=1

(
n − i

3

)
+ 3 ·

γ∑

i=1

(
n − i

2

)
+

γ∑

i=1

(n − i)To show that both are equal, we have to show that the di�erene ∆1 between theleft terms is equal to the di�erene ∆2 of the right terms. We us m = γn+ γ−γ2

2
(∗) and the following equality for k ∈ N>0

(
n

k

)
−

(
n − γ

k

)
=

γ∑

i=1

(
n − i

k − 1

)
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∆1 =

(
(
n+1

2

)
− m)(

(
n+1

2

)
− m + 1)

2
−

(
n − γ + 3

4

)

(∗)
= 2

(
n − γ

4

)
+ 3

(
n − γ

3

)
+

(
n − γ

2

)

= 2

((
n − γ

4

)
−

(
n

4

)
+

(
n

4

))

+3

((
n − γ

3

)
−

(
n

3

)
+

(
n

3

))

+

(
n − γ

2

)
−

(
n

2

)
+

(
n

2

)

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

−2 ·

γ∑

i=1

(
n − i

3

)
− 3 ·

γ∑

i=1

(
n − i

2

)
−

γ∑

i=1

(n − i)

= ∆2 �To onlude, if we use the XL method and multiply not by all quadrati mono-mials, but by speial ones we do the same as relinearization does, and thusrelinearization is a subase of XL. Now we want to show that it is equal in thehomogeneous ase of degree two.Relinearization is equal to Blowhom
2In setion 3.1 we will show that the number of linearly independent equationsprodued by Blowhom2 is m

(
n+1

2

)
−
(
m
2

). Using this we an analyse if XL outper-forms relinearization or not. In the homogeneous ase the following must holdfor Blowhom2 to obtain a solution.
m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
≥ −D − 2 (7)The following must hold for relinearization to obtain a solution.

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 − m + 1

2

)
≥ −D − 2 (8)Beause of following equality, inequations (7) and (8) are equal.

m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)

=
n4

24
+

n3

4
−

n2m

2
+

11n2

24
−

nm

2
+

n

4
+

m2

2
−

m

2

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 − m + 1

2

)



Unravel XL and its variants 13In the inhomogeneous ase, Blowinh2 is slightly better than relinearization. Asdepited in setion 3.3 table 5 we get a fator of 1
12 instead of 0.09175 in theasymptoti analysis. We an also derive this from the inequations above. If wehomogenise the inhomogeneous system we have to substitute n by (n + 1) ininequation (7). Relinearization does not depend on the question whether equa-tions are homogeneous or not, i.e. inequation (8) stays the same and thus bothare not longer equal.3 Analysis of XL3.1 The number of linearly independent equationsThe ruial point by using XL is to determine the number of linearly indepen-dent equations produed by BlowD or XLinhD . This is needed to alulate D andtherefore implies the omplexity of the whole algorithm. For random equationsystems we will revisit the formulas derived theoretially by Moh [Moh00℄, Yangand Chen [YC04a℄ or by experiments for D between 0 and 5 over F2 by Courtoisand Patarin [CP03℄. For a ground �eld Fq and D +2 < q, the formulas are inde-pendent of the ground �eld. If D+2 ≥ q we have to take the �eld equations xq−xinto aount and things get messy�at least from a theoretial perspetive. Forexample if q = 2 the number of monomials of degree D dereases from (

n+D−1
D

)to (n
D

) and besides of the trivial dependeny fg = gf there is an additionaldependeny due to f2 = f for f, g quadrati polynomials. We assume D + 2 < qin the whole paper. A sole exeption of this is setion 3.4, were we take a peekat the ase D + 2 ≥ q, partiularly the important ase of F2. Our experimentswere performed independently of previously known results. In addition, we alsoonsidered the homogeneous ase.3.2 Experimental setup and onnetion between homogeneous andinhomogeneous aseAs you an see in table 1 and 2 the formulas of BlowhomD and BlowinhD are slightlydi�erent. These equations were obtained experimentally by a total of several10,000 experiments and later veri�ed theoretially. All experiments were per-formed on a Intel Xeon X33502.66GHz (Quadore) with 8 GB of RAM usingonly one ore and the software system Magma V2.16-1 [MAG℄. Parameters wererunning for various tuples (n, m, D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50,
1 ≤ D ≤ 8. First, all data-points were �tted with an automated polynomial �tter(multivariate equations in two or three variables). In a seond, semi-automatedstep, these polynomials were expressed in form of binomials.Hene we showed experimentally that we obtain

m + mn + m

(
n + 1

2

)
−

(
m

2

)



14 Enrio Thomae, Christopher WolfTable 1. Number of linearly independent equations produed by BlowhomD , experimen-tally derived.
D Number of linearly independent equations0 m1 mn2 m

`
n+1

2

´
−

`
m

2

´3 m
`

n+2

3

´
−

`
m

2

´
n4 m

`
n+3

4

´
−

`
m

2

´`
n+1

2

´
+

`
m

3

´5 m
`

n+4

5

´
−

`
m

2

´`
n+2

3

´
+

`
m

3

´
n

Table 2. Number of linearly independent equations produed by BlowinhD , experimen-tally derived.
D Number of linearly independent equations0 m1 mn2 m

`
n+1

2

´3 m
`

n+2

3

´
−

`
m−1

3

´4 m
`

n+3

4

´
−

`
m−1

3

´
n +

`
m−1

4

´5 m
`

n+4

5

´
−

`
m−1

3

´`
n+1

2

´
+

`
m−1

4

´
n −

`
m−1

5

´
+

`
m−1

4

´6 m
`

n+5

6

´
−

`
m−1

3

´`
n+2

3

´
+

`
m−1

4

´`
n+1

2

´
−

`
m−1

5

´
n +

`
m−1

4

´
n +

`
m−1

6

´
−

`
m−1

5

´

Table 3. Number of linearly independent equations produed by XLinhD , experimentallyderived.
D Number of linearly independent equations0 m1 m + mn2 m + mn + m

`
n+1

2

´
−

`
m

2

´3 m
`

n+3

3

´
−

`
m

2

´
(n + 1)4 m

`
n+4

4

´
−

`
m

2

´`
n+2

2

´
+

`
m

3

´5 m
`

n+5

5

´
−

`
m

2

´`
n+3

3

´
+

`
m

3

´
(n + 1)



Unravel XL and its variants 15linearly independent equations for XLinh2 , i.e if we join the Blowinhi for i =
0 . . . 2 there are new linear dependenies. And thus we get the same result byhomogenising an inhomogeneous system and using Blowhom2 and by using XLinh2itself. Note that we have to substitute n by n + 1 in the formula of Blowhom2 andthat the number of variables is (n+4

4

)
− 1 beause we know x4

n+1 by the hoieof xn+1 = 1 for homogenisation. Thus we get the following.Blowhom2

: m

(
n + 2

2

)
−

(
m

2

)
−

(
n + 4

4

)
+ 1

= m

(
n + 1

2

)
+ m

(
n + 1

1

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 3

3

)
+ 1

= m + mn + m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 2

3

)
−

(
n + 2

2

)
+ 1

= m + mn + m

(
n + 1

2

)
−

(
m

2

)
−

(
n + 3

4

)
−

(
n + 2

3

)
−

(
n + 1

2

)
− n

: XLinh2The above is also true for arbitrary D. If you hoose m high enough, you maywonder if the number of linearly independent equations for inhomogeneous sys-tems beomes less than 0. Note that all equations �rst reah the maximum num-ber of linear independent equations, i.e. (n+D+1
D+2

)
+
(
n+D
D+1

)
+
(
n+D−1

D

)
− D − 2,the number of unknowns for BlowinhD subtrated by D + 2. If the number ofequations is higher than the number we need to solve the system, the formulaedo no longer �t.3.3 Asymptoti analysisFor an asymptoti analysis we hoose m = εn2. We annot hope to get m inthe order of n beause then P = NP would beome very likely. But even if mstays in the order of n2 the fator ε may be small enough for the ryptanalysisof small parameters. We see from setion 2.1 and table 4, XL of degree 2 isasymptotially the same as relinearization. [p℄Something unexpeted happens in table 5. For D = 2 using BlowinhD is asymp-totially better than using XLinhD . But for D > 2 there is no asymptoti solutionfor BlowinhD at all!3.4 The binary aseThe number of linear independent equations produed by XL over F2 was treatedby Rønjom and Raddum [RR08℄. They onsidered inhomogeneous equations, butwe will ite their results restrited to the homogeneous ase in table 6.
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Table 4. Asymptoti analysis of BlowhomD and XLinhD .Degree ∗ ≤ 0 ε0 1

2
− ε 1

21 1

6
− ε 1

62 1

24
− 1

2
ε + 1

2
ε2 0, 091753 1

120
− 1

6
ε + 1

2
ε2 0, 061254 1

720
− 1

24
ε + 1

4
ε2 − 1

6
ε3 0, 04525

Table 5. Asymptoti analysis of BlowinhD .Degree ∗ ≤ 0 ε0 1

2
− ε 1

21 1

6
− ε 1

62 1

24
− 1

2
ε 1

12

Table 6. Number of linearly independent equations produed by BlowhomD over F2.
D Number of linearly independent equations0 m1 mn2 m

`
n

2

´
− (

`
m

2

´
+ m)3 m

`
n

3

´
− (

`
m

2

´
+ m)n4 m

`
n

4

´
− (

`
m

2

´
+ m)

`
n

2

´
+ (

`
m

3

´
+ 2

`
m

2

´
+ m)5 m

`
n

5

´
− (

`
m

2

´
+ m)

`
n

3

´
+ (

`
m

3

´
+ 2

`
m

2

´
+ m)n



Unravel XL and its variants 173.5 Theoretial analysisLemma 1. If Phom ontains random equations then the number of linearly in-dependent equations produed by BlowhomD is upper bounded by
D = 2k : (9)

k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i) − 1

2(k − i)

)

D = 2k + 1 :
k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i)

2(k − i) + 1

)
.This bound holds with very high probability.Before proving this lemma at the end of this setion, we need some intermediateresults.Equations (9) on BlowinhD and XLinhD was given and proven indutively by Moh[Moh00℄. We want to formulate this proof in more detail and give a good intuitionwere the systemati linear dependenies ome from. First we onentrate onBlowhom2 and searh for the (m2 ) linear dependent equations out of all m

(
n+1

2

)produed equations. Let f, g be two Multivariate Quadrati polynomials in nvariables eah. Denote Monf , Mong the set of monomials in f and g, respetively.Assume the existene of some admissible ordering for multivariate polynomials
f, g, e.g. degrev-lex or lex.Lemma 2. Let f, g be a pair of linearly independent, Multivariate Quadratipolynomials. Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be thesets of ross-wise monomial multipliation of f and g, respetively. Then thesetwo sets produe at most |F | + |G| − 1 linearly independent equations.Proof. We denote our two polynomials by f :=

∑σ

i=1 αiai and g :=
∑τ

i=1 βibifor non-zero �eld elements αi, βj ∈ F
∗ and monomials ai, bj for 1 ≤ i ≤ σ and

1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. Theimportant property of the two sets F, G is that eah monomial ab for a ∈ Monfand b ∈ Mong exists twie, namely one in bf ∈ F and one in ag ∈ G. Thefollowing equation shows that adding all equations of F multiplied by oe�ients
βi is equal to adding all equations of G multiplied by oe�ients αi and thusthe set F ∪ G is linear dependent.

τ∑

i=1

βibif =

τ∑

i=1

βibi

σ∑

j=1

αjaj =

σ∑

j=1

αjaj

τ∑

i=1

βibi =

σ∑

j=1

αjajgClearly this onstrution fails if we delete one equation in F ∪ G. ⊓⊔Corollary 1. The set Blowhom2 ontains at most (n+1
2

)
m−

(
m
2

) linearly indepen-dent equations.



18 Enrio Thomae, Christopher WolfProof. By its de�nition, we have at most (n+1
2

)
m elements in Blowhom2 . Thisexplains the �rst part of the sum and also gives an upper bound. Consideringall pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain (m2 ) lineardependenies. ⊓⊔Corollary 2. The set XLinh2 ontains at most (n2)m + nm + m −

(
m
2

) linearlyindependent equations.Proof. This orollary works similar to orollary 1. By its de�nition, we have atmost (n2)m + nm + m elements in XLinh2 . This explains the �rst part of the sumand also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < gand also Lemma 2, we obtain (m2 ) linear dependenies. ⊓⊔Lemma 3. Let f, g be a pair of linearly independent, homogeneous Multivariate
Quadrati polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}ontains at most 2

(
n+k−1

k

)
−
(
n+k−3

k−2

) linearly independent equations.Proof. The �rst part of the sum is a result of the (n+k−1
k

) hoies of the monomial
µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we an now applylemma 2. We have |Monk−2| =

(
n+k−3

k−2

) individual hoies for v. ⊓⊔Extending this lemma from pairs to sets is kind of triky, beause sine D ≥ 4we obtain new linear dependenies between 3 and more equations. Thus we areounting linear dependenies twie if we only onsider pairs f, g. To ount allequations only one, we need a property (equation (10)) whih follows if thesystem of equations is pairwise oprime. First we show that this ours withvery high probability. Then we show that if the system is pairwise oprime theupper bound of lemma 1 is tight.Corollary 3. Two randomly hosen MQ-equations f and g are not oprimewith probability
q + 2(q − 1)(qn+1 − 1)

q(
n+2
2 )

.Proof. Two randomly hosen quadrati polynomials f and g are not oprime i�they share a ommon fator. Per de�nition gcd(f, a) = 1 for all a ∈ Fq and thusthe ommon fator have to be a polynomial of degree one. Let g = ab and f = cdwith a, b, c, d ∈ F[x1, . . . , xn] and deg(a) = deg(b) = deg(c) = deg(d) = 1. Wehoose g arbitrary and ount the number of f with a ommon fator. In ase 1
f = λg with λ ∈ Fq gives q possibilities. In ase 2 we assume w.l.o.g. d 6= λa, λb.Furthermore λ 6= 0 as we ount this in ase 1. We an hoose c = λa or c = λbwith d 6= 0 arbitrary. This give 2(q − 1)(qn+1 − 1) possibilities.The total number of hoies of f is q(

n+2
2 ) and thus the probability of not beingoprime is q+2(q−1)(qn+1−1)

q
(n+2

2 )
. ⊓⊔



Unravel XL and its variants 19The probability of a MQ-system to be pairwise oprime is simply one minus(
m+1

2

) times the probability of lemma 3. Note that the probability of a MQ-system to be pairwise oprime inrease if q, m or n inrease. Already for thesmall parameters q = 4 and m = n = 9 it is greater than 1 − 2−80. We havealso veri�ed this experimentally (f. Setion 3.1). Note for �xed q the probabilityinrease exponentially in n.Denote with Lin(S, k) the linear losure of degree k of a polynomial f or a set
S, respetively, asLin(f, k) := {a + b : a, b ∈ {ϕµf : ϕ ∈ F, µ ∈ Monk}}Lin(S, k) := {a + b : a, b ∈ {ϕµs : ϕ ∈ F, µ ∈ Monk, s ∈ S}} .We an also think of Lin(·, k) as possible rows in the orresponding oe�ientmatrix Π for S or f . Moreover, denote with |Lin(S, k)| the number of its elementsand with #Lin(S, k) the number of linear independent equations in Lin(S, k). Thelatter an also be viewed as the rank of the orresponding oe�ient matrix.Assumption: Let f /∈ Lin(S, 0) be a quadrati polynomial, S := {g1, . . . , gm} aset of m ∈ N linearly independent quadrati polynomials, also to f , and k ≥ 0some extension degree. Then we have

#(Lin(S, k) ∩ Lin(f, k)) = #Lin(S, k − 2) (10)with very high probability. For the speial ase m = 1 ondition (10) means thatboth polynomials are o-prime.Before �nishing the proof of lemma 1, we want to give some intuition behind theoverall idea: in a nutshell, we will make use of the inlusion/exlusion priniplefor di�erent dimensions k. The reason is that for some dimension k′ we willount the same linear independent equation twie�whih we have to orretat this level. For dimension k′ + 2, there is an overorretion, whih has to beorreted again and so on. Hene, we end up with a sum in (−1)r and a ountof the number of equations we have to orret. Reall that we wanted to ountthe number of linearly independent equations of BlowhomD and hene deal with apolynomial system Phom.Proof (lemma 1). First we reformulate the formula of lemma 1. The number oflinearly independent equations #Lin(P hom, k) there is given by
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)
. (11)We proof this by indution via m. The ase m = 1 is trivial.Let us assume equation (11) holds for m. We have to show that it also holds for

m + 1.We have Phom
m+1 := P hom

m ∪ {pm+1} and write
#Lin(P hom

m+1, D) = #Lin(P hom
m , D) + #Lin(pm+1, D)

− #(Lin(P hom
m , D) ∩ Lin(pm+1, D)).



20 Enrio Thomae, Christopher WolfThe last term simpli�es to #Lin(Phom
m , D − 2) using equation 10. Using theindution hypothesis we obtain the following formula for #Lin(Phom

m+1, D).
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)

+

(
n + D − 1

D

)

−
∑

0≤2i≤D−2

(−1)i

(
m

i + 1

)(
n + D − 2i − 3

n − 1

)

=
∑

0≤2i≤D

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)

+
∑

0≤2i≤D

(−1)i

(
m

i

)(
n + D − 2i − 1

n − 1

) (12)Exploiting (m
l

)
=
(
m−1

l

)
+
(
m−1
l−1

) yields
(12) =

∑

0≤2i≤D

(−1)i

(
m + 1

i + 1

)(
n + D − 2i − 1

n − 1

)Sine we have ε > 0, lemma 1 gives an upper bound of the number of linearlyindependent equations. But as we saw in orr. 3, the value ε is very small inpratie, so this bound is tight for all pratial ases. ⊓⊔Lemma 1 only handles the homogeneous ase. The proof for the inhomogeneousase is analogous. Atually there is a strong onnetion between the homogeneousand inhomogeneous ase, beause we reah the same results, if we homogenisenon-homogeneous system, as we saw in setion 3.2.3.6 XL of high degrees DCourtois et al. laimed in [CKPS00℄ that every MQ-system ould be solved byXL in sub-exponential time, if we hose D high enough. Well, this is not true inthe inhomogeneous ase m = n, as shown by Yang in [YC04b℄. More preisely,there is a upper bound on D o� whih the number of new equations equalsthe number of new monomials. Remember XL needs the di�erene between thenumber of monomials T and the number of linearly independent equations I tobe less or equal to D + 2. So after reahing the upper bound of D, XL an onlysolve the problem, if we inrease D up to this di�erene. It is obvious that thisis not e�ient any more. We want to show this fat for the homogeneous ase.The inhomogeneous ase is analogous.



Unravel XL and its variants 21First let us onsider the ase D = 2k. The number of linearly independentequations subtrated by the number of monomials is given by
k∑

i=0

(−1)i

(
m

i + 1

)(
n + 2(k − i) − 1

n − 1

)
−

(
n + 2k + 1

n − 1

)

= −
2k+2∑

i=0

(−1)i

(
m − n

i

)(
m

2k − i + 2

)
. (13)In the speial ase m = n inhomogeneous, e.g. m + 1 = n homogenised, (13)does not further inrease if we hoose 2k + 2 bigger than m, i.e. D > m − 2,and thus k = m−2

2 is an upper bound. We get the following.
m∑

i=0

(−1)i

(
−1

i

)(
m

m − i

)

=

m∑

i=0

(
m

i

)

= 2m.We used (−1
i

)
= (−1)i

(
1+i−1

i

)
= (−1)i. So the number of linearly independentequations subtrated by the number of monomials is T − I = 2m. XL sueed, ifwe raise D + 2 up to 2m, beause I −T ≥ −D− 2 must hold. But for m = n +1inhomogeneous equations, this beome muh better and D gets polynomial in

m. For D = m − 2 we always obtain a solution sine
m∑

i=0

(−1)i

(
m

i

)
= 0.Let m = n+a and a ∈ N>1. The upper bound for D to solve the system is givenby D = 2m−n−1 = n+2a−1. The term (a

i

) beomes 0 for i = a+1, . . . , n+2a+1and the term (
n+a

n+2a+1−i

) for i = 0, . . . , a. Thus it hold
−

n+2a+1∑

i=0

(−1)i

(
a

i

)(
n + a

n + 2a + 1 − i

)
= 0.4 Variants of XLInspired by Gröbner bases and some other observations there is a whole familyof XL-like algorithms, whih try to use some additional ideas to speed up theoriginal XL algorithm. We revisit the most important ones and give some reasonsif and under whih irumstanes they are useful. Some examples are FXL, XFL,XLF, XL', XL2 and XSL [CKPS00, BFP09, YC04a, Cou04, CP03℄.



22 Enrio Thomae, Christopher WolfFXLFXL, or �xing extended linearization, was suggested in the original paper ofCourtois et al. [CKPS00℄ and is nothing else than XL with guessing some vari-ables beforehand. That this is quit a good idea is already shown for the Gröbnerbase algorithm in [BFP09℄. That it is also a good idea for XL shows equation(13) in setion 3.6. We saw that the ase m = n is exponential in D, but alreadythe ase m = n + 1 is polynomial, so it helps to guess at least one variable. Theoptimal number of guessed variables is disovered by Yang and Chen in [YC04a℄setion 5.2.XFLXFL is a variant of FXL. We hoose f variables, but do not guess them right inthe beginning. We hoose the order of the monomials in a way that all monomialsontaining any of the f variables are eliminated last. Now we linearise the systemand apply Gaussian elimination. Beause the system was underdeterminend, weobtain no unique solution. To do so, we guess one of the f variables and applyGaussian elimination again. Why is this stepwise guessing better than FXL insome ase? First we have to do the most work, i.e. the �rst Gaussian elimination,only one. In FXL we have to do this after every wrong guessing. But notie,that there the number of monomials is smaller, so we arefully have to alulatethe right tradeo� between the two variants. Seond XFL may use dependeniesamong the f variables and thus sueed.XLFXLF just take the �eld equations (xq − x) = 0 in Fq into aount and was �rstmentioned in [Cou04℄. XLF makes sense in the inhomogeneous ase, if D getlarger than (q − 2). In this ase the analysis beomes slightly di�erent, beausethe number of produed monomials derease, i.e. monomials xD
i redue to xiwhih already exists. This means we need less linearly independent equations tosueed. Note that XLF is one of a handful variants whih improve the inhomo-geneous ase, but not the homogeneous one. In the homogeneous ase we onlyhave monomials of degree D + 2. If we redue them we get monomials of lowerdegree, but they did not exist before and thus the number of unknowns stay thesame. Even if the formulas of the number of linearly independent equations insetion 3.1 showed that the inhomogeneous and homogeneous ase are equal us-ing homogenisation, this is not true any longer if we want to use some algebraidependenies. By homogenisation we grout the struture of the inhomogeneousequations we want to use by methods like XLF or MutantXL.XL'Introdued by Courtois and Patarin in [CP03℄ this variant solve the equationsystem by XL until there are only (r+D+2

D+2

) equations in r variables left. Thisremaining equation system is solved by brute fore or other algorithms like Gröb-ner bases.



Unravel XL and its variants 23Lemma 4. For pratial purposes, FXL is better than XL'.Proof. We all FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smallerthan (T − I)XL'. With setion 3.6 and D = 2k we an write
(T − I)FXL =

(
n − r + D + 1

D + 2

)
−

k∑

i=0

(−1)i

(
m

i + 1

)(
n − r + D − 2i − 1

n − r − 1

)

=

2k+2∑

i=0

(−1)i

(
m − n + r

i

)(
m

2k − i + 2

)and
(T − I)XL' =

(
n + D + 1

D + 2

)
−

k∑

i=0

(−1)i

(
m

i + 1

)(
n + D − 2i − 1

n − 1

)
−

(
r + 2k + 2

2k + 2

)

=
2k+2∑

i=0

(−1)i

(
m − n

i

)(
m

2k − i + 2

)
−

(
r + 2k + 2

2k + 2

)
+ 1.If we would plot formula (T −I)XL'− (T −I)FXL we would see that this is greaterthan zero, i.e. FXL is better than XL', for r less than some bound depending on

k. For inreasing k the bound on r derease. It seems very hard to alulate thisbound in an analytial way. But for real world parameter k < 10 and r ≪ n weare below this bound. W.l.o.g. we an assume m = n, otherwise we substitute
r. See table 7 for the upper bound on r depending on m and k. With F5 wean solve MQ-systems up to m = 20 in 266 operations, so we stopped the tableat m = 30 for pratial purpose. Even k > 6 is of no pratial interest beausethe workload without onsidering guessing would be larger than (n+2k+2

2k+2

)ω for
2 ≤ ω ≤ 3. Note that the ases marked gray are always solvable by XLinh2k without

m\k 1 2 3 4 5 65 1 0 0 0 0 010 6 3 1 0 0 015 11 8 6 5 1 120 15 13 12 10 8 625 20 18 17 15 12 1030 25 23 22 19 17 15Table 7. Upper bound on r.guessing. In all the other ases the bound on r is high enough to guess as manyvariables as we need to solve the equation system with FXL. So we laim thatFXL is always better than XL' for pratial purpose.



24 Enrio Thomae, Christopher WolfXSLCourtois and Pieprzyk [CP02℄ published this method at Asiarypt 2002 andlaimed to have broken AES. This was disproved in 2005 by Leurent and Cid[CL05℄. The idea of XSL is to use the speial struture of the equation system.If some equations are sparse you might introdue more new monomials by mul-tiplying them by all monomials of a speial degree. So in some ase it might bebetter to multiply some equations only by some monomials. It is in no way learhow to do this. The idea of XSL is onneted to Coppersmiths lattie basedmethod to solve modular equations. Like in XL you multiply the equation by soalled shift polynomials. Choosing the right shift set is a di�ult problem. In thease of two unknowns, we an plot the Newton polytope and get an intuition.But in multivariate ryptography you deal with a lot more unknowns. So it isan important open problem to �nd the right shift set for some given equation.MutantXLOne of the most e�ient derivates of XL is alled MutantXL. It was introduedin 2008 and laims to be as fast as F4 in some ases [DBM+08, MMD+08℄.Let I be the number of linearly independent equations produed by XLinhD and
T =

(
n+D+2

D+2

) the number of degree ≤ D +2 monomials. If T − I > D +2 this isnot solvable by linearization and thus we would ontinue with XLinhD+1 in the orig-inal XL algorithm. MutantXL is a step in between. It uses equations that wouldbe produed by XLinhD+k with k > 0 but without introduing new monomials. Todo so we use only polynomials of degree < D + 2, so alled mutants, that areprodued in the Gaussian elimination step of XLinhD . For example multiplyingthese polynomials by all monomials of Mon1 leads to new equations without gen-erating new monomials. Note that this strategy is useful only for inhomogeneousequations. In the homogeneous ase all monomials are of the same degree andthus mutants never our. Note that this is not true for a homogenised systemof equations. Here the mutants are only hidden by the homogenization variable.So, as long as the initial system is inhomogeneous, it is not a ontradition tospeak of mutants and use formula 9 for homogenized systems.De�nition 3. Let f =
m∑

i=1

gji
h(i) with h(i) ∈ P inh and gji

some polynomial ofdegree ≤ D be a representation of f . This is not unique. The index set J denotesall representations and j ∈ J . The level (lev) of this representation is de�ned by
lev

(
m∑

i=1

gji
h(i)

)
:= max{deg(gij

h(i)
)
| 1 ≤ i ≤ m

}
.The level of g is de�ned by the minimum level of all its representations.

lev (g) := min{lev( m∑

i=1

gji
h(i)

)
|j ∈ J}We all g a mutant if deg(g) < lev(g).



Unravel XL and its variants 25The ruial question as always is how many equations produed by mutants arelinearly independent from the known ones. We give two upper bounds on thisnumber. We showed experimentally that the smaller bound is tight. We will givesome theoretial explanation on that. To onlude we ompare MutantXL to F5and show that indeed in some ase it is faster.Remark: To implement MutantXL orretly, we will introdue the term oftrivial mutants. Using XLinhD all equations produed by Blowinh<D are mutantsby de�nition. But all their multiples of ertain degree are already ontained inXLinhD and thus are not linearly independent. We an redue the omputationalworkload if we only onsider mutants produed by BlowinhD .To avoid hiding the upper bounds behind formalism, we start with the ase
|MonD+2| ≤ IXLinh

D
≤ |MonD+2| + |MonD+1| illustrated in �gure 3.
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Fig. 3. Coe�ient Matrix Π of XLinhD after Gaussian eliminationThe �rst upper bound is the number of equations produed by mutants. In thease k = 1 (see �gure 3) this is n(IXLinh
D

− |MonD+2|) or nm̃ using the notationof �gure 3. Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 show that this trivialbound is way above the orret number of new linear independent equations.The seond upper bound is a result of the fat that all nm̃ equations produedby mutants are impliit equations of XLinhD+1. Exatly IXLinh
D+1

− IXLinh
D

of themare linear independent to the previous ones. But they all ontain monomialsof MonD+3. Equations produed by mutants have maximal degree D + 2 andthus �rst all |MonD+3| monomials have to be redued. Therefor IXLinh
D+1

− IXLinh
D

−

|MonD+3| is an upper bound on the number of linear independent equationsprodued by mutants. Note that this bound was tight in all our experiments for
2 ≤ n ≤ 7 and n ≤ m ≤ 9.



26 Enrio Thomae, Christopher WolfTo generalise the above example let k ∈ N :

k−1∑

j=0

|MonD+2−j | ≤ I ≤
k∑

j=0

|MonD+2−j | . (14)The following two upper bounds hold.Corollary 4. The maximal number of equations produed by Mutants is givenby
k−1∑

i=1

(
n + i − 1

i

)
|MonD+2−i| +

(
n + k − 1

k

)(
IXLinh

D

−
k−1∑

i=0

|MonD+2−i|

)
.Corollary 5. A nontrivial upper bound on the number of linearly independentequations produed by Mutants is given by

k∑

i=1



IXLinh
D+i

− IXLinh
D

−
i∑

j=1

|MonD+2+j |



 .We ome bak to the example in �gure 3 to get an intuition on a lower bound.As shown in lemma 2, we know that new linear dependent equations are pro-dued blok-wise, i.e. if we multiply f and g by all monomials of degree two,all equations are linearly independent besides one, as fg = gf holds. Thus newlinear dependent equations are only produed by proeeding from odd to evendegree D. Otherwise existing dependenies are only multiplied by more mono-mials. Multiplying the mutants with degree one monomials we impliitly useequations of BlowinhD+1. If D was even, no new linear dependenies are produed.So we are able to alulate the omplexity of MutantXL in an analytial way, if
D is even and k is one. We just have to use the minimum of orollary 4 and 5to determine D (see table 17 and 18 for results). Note that this is not true for
k > 1, as we will show in setion B.In �gure 4 and 5 we alulated k for all pratial values n ∈ [1, 30] and m ∈[
n, n(n+1)

2

]. The rows of �gure 4 denote n, the olumns denote m and the olordenote the value of k, whereby blak stands for k = 3 and every shade is a lowervalue. In �gure 5 blak stands for k = 5. For numerial values of k see table 19.Remark 1. As you an see in �gure 5, MutantXL will hardly work in the ase
m ≫ n and m = n. It was shown in setion 3.6 that we need D = 2m tosolve for ase m = n. The reason was that the number of newly generatedlinearly independent equations obtained by inreasing D equals the number ofnew monomials and thus the seond bound on MutantXL will always yield zero.Note: A further improvement of MutantXL alled MXL2 use ideas of XSL andis published in [MMDB08℄.
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28 Enrio Thomae, Christopher WolfA omparison with the fastest known attak on UOV an be found in table 8.We only used k = 1 to alulate the omplexity of MutantXL, as the situationfor k > 1 is not lari�ed (see appendix B).Given are the F5 algorithm, a version were one or two variables are �xed beforeperforming F5 (�HybridF5�), and the results from orollary 5 for this parameterset. We an see that MutantXL math up to F5 in both ases. See more detailedtables in the appendix A.Table 8. Comparison between F5, HybridF5 and MutantXL in terms of workload in�eld operations over GF(q). [log2℄UOV F5 HybridF5 MutantXL
m = 10 41.36 37.75 37
m = 20 82.51 66.73 66

5 ConlusionWhile Relinearization and XL seemed to be a magni�ent tool for ryptanaly-sis in the beginning, their e�etiveness was diminished in subsequent years. Inaddition, existing Gröbner bases algorithms performed better in most ases, soXL ame more and more out of fous.Empirial evidene with (naturally) small values of n already suggested in thease of the MQ-sheme HFE that Gröbner bases might not be as e�ient asMutantXL [MMD+08℄. In this paper, we have shown that this is not a oini-dene for small values of n, but a systemati �nding whih an be put on �rmtheoretial foundations. Hene, we showed that MutantXL an ompete withF5. It seems a matter of the right implementation whih of the two is faster. Inthis ontext it is an important open question how to generate linear independentequations only. Up to now we need to produe all equations and eliminate thelinear dependent ones by Gaussian elimination.Taking a wider perspetive, this result is not that surprising than it seems at�rst glane. Main reason is that XL omputes only one solution for a givenground �eld F. In ontrast, Gröbner bases were designed to ompute all solu-tions, moreover in the algebrai losure of F. Obviously, the latter task is moregeneral and hene omputational more di�ult. Still, using triks like trunatedGröbner bases and �eld equations (xq − x) algorithms based on Gröbner ba-sis omputation were able to level the �eld and outperform XL. An additionalreason might be that deades of researh went into tuning GB-algorithms whilebarely 10 years have passed sine XL and its variations were introdued to theryptographi ommunity. Hene, there might be more room for improving XLaording to the needs of ryptography than in the ase of GB-algorithms. In



Unravel XL and its variants 29addition, in ryptography one solution is su�ient in most ases to solve a ryp-tographi problem rather than a huge set of them. Therefore, it was time todevelop a theoretial framework to thoroughly analyse XL and its derivates, sorunning times and memory requirements an be predited without relying on(possibly) noisy empirial evidene.All in all, it may be a sensible ourse of ation to spend further time to laritythe speed gap between Gröbner bases and (Mutant)XL to avoid further surprisesin other ryptanalyti areas.AknowledgementsWe want to thank Stanislav Bulygin (Cased Darmstadt, Germany) for helpfulomments on an earlier version of this manusript. In addition, Jintai Ding(Southern Chinese University of Tehnology; University of Cininnati, USA)pointed out an additional referene.The authors were funded via an DFG (German Researh Foundation) EmmyNoether grant. Moreover, the work desribed in this paper has been supported inpart by the European Commission through the ICT programme under ontratICT-2007-216676 ECRYPT II.



Bibliography[ACG+06℄ Frederik Armkneht, Claude Carlet, Philippe Gaborit, Simon Kün-zli, Willi Meier, and Olivier Ruatta. E�ient omputation of alge-brai immunity for algebrai and fast algebrai attaks. In EURO-CRYPT, volume 4004 of Leture Notes in Computer Siene, pages147�164. Serge Vaudenay, editor, Springer, 2006. ISBN 3-540-34546-9.[ACr04℄ Pil Joong Lee, editor. Advanes in Cryptology � ASIA-CRYPT 2004, volume 3329 of Leture Notes in Computer Siene.Springer, 2004. ISBN 3-540-23975-8.[AFI+04℄ Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawa-zoe, and Makoto Sugita. Comparison between xl and gröbner basisalgorithms. In ACr [ACr04℄, pages 338�353.[AK03℄ Frederik Armkneht and Matthias Krause. Algebrai attaks onombiners with memory. In Cr [Cr03℄, pages 162�175.[BFP09℄ Luk Bettale, Jean-Charles Faugère, and Ludovi Perret. Hybrid ap-proah for solving multivariate systems over �nite �elds. In Journalof Mathematial Cryptology, 3:177�197, 2009.[BWP05℄ An Braeken, Christopher Wolf, and Bart Preneel. A study of theseurity of Unbalaned Oil and Vinegar signature shemes. In TheCryptographer's Trak at RSA Conferene 2005, volume 3376 of Le-ture Notes in Computer Siene. Alfred J. Menezes, editor, Springer,2005. 13 pages, f http://eprint.iar.org/2004/222/.[CGMT02℄ Niolas Courtois, Louis Goubin, Willi Meier, and Jean-DanielTaier. Solving underde�ned systems of multivariate quadrati equa-tions. In Publi Key Cryptography � PKC 2002, volume 2274 ofLeture Notes in Computer Siene, pages 211�227. David Naaheand Pasal Paillier, editors, Springer, 2002.[CKPS00℄ Niolas T. Courtois, Alexander Klimov, Jaques Patarin, and AdiShamir. E�ient algorithms for solving overde�ned systems of mul-tivariate polynomial equations. In Advanes in Cryptology � EU-ROCRYPT 2000, volume 1807 of Leture Notes in Computer Si-ene, pages 392�407. Bart Preneel, editor, Springer, 2000. ExtendedVersion: http://www.minrank.org/xlfull.pdf.[CL05℄ Carlos Cid and Ga�«tan Leurent. An analysis of the xsl algo-rithm. In Proeedings of Asiarypt 2005, LNCS, volume 3788 ofLeture Notes in Computer Siene, pages 333�352. Bimal Roy, ed-itor, Springer-Verlag, 2005. ISBN 3-540-30684-6.[Cou02℄ Niolas Courtois. Higher order orrelation attaks, XL algorithmand ryptanalysis of Toyorypt. In ICISC, volume 2587 of LetureNotes in Computer Siene, pages 182�199. Pil Joong Lee and ChaeHoon Lim, editors, Springer, 2002.



Unravel XL and its variants 31[Cou04℄ Niolas Courtois. Algebrai attaks over GF(2k), appliation toHFE hallenge 2 and S�ash-v2. In Publi Key Cryptography �PKC 2004, volume 2947 of Leture Notes in Computer Siene,pages 201�217. Feng Bao, Robert H. Deng, and Jianying Zhou (ed-itors), Springer, 2004. ISBN 3-540-21018-0.[CP02℄ Niolas T. Courtois and Josef Pieprzyk. Cryptanalysis of blok i-phers with overde�ned systems of equations. In Advanes in Cryp-tology � ASIACRYPT 2002, volume 2501 of Leture Notes in Com-puter Siene, pages 267�287. Yuliang Zheng, editor, Springer, 2002.[CP03℄ Niolas T. Courtois and Jaques Patarin. About the XL algorithmover GF(2). In CT-RSA'03: Proeedings of the 2003 RSA onfer-ene on The ryptographers' trak, pages 141�157, Berlin, Heidel-berg, 2003. Springer-Verlag.[Cr03℄ Dan Boneh, editor. Advanes in Cryptology � CRYPTO 2003, vol-ume 2729 of Leture Notes in Computer Siene. Springer, 2003.ISBN 3-540-40674-3.[DBM+08℄ J. Ding, J. Buhmann, M. S. E. Mohamed, W. S. A. Moahmed, andR.-P. Weinmann. Mutantxl. In Proeedings of the 1st internationalonferene on Symboli Computation and Cryptography (SCC08),April 2008.[Die04℄ Claus Diem. The XL-algorithm and a onjeture from ommutativealgebra. In ACr [ACr04℄. ISBN 3-540-23975-8.[DS05℄ Jintai Ding and Dieter Shmidt. Rainbow, a new multivariable poly-nomial signature sheme. In Conferene on Applied Cryptographyand Network Seurity � ACNS 2005, volume 3531 of Leture Notesin Computer Siene, pages 164�175. Springer, 2005.[FA03℄ Jean-Charles Faugère and Gwénolé Ars. An algebrai ryptanal-ysis of nonlinear �lter generators using Gröbner bases. Rapportde reherhe 4739, February 2003. www.inria.fr/rrrt/rr-4739.html.[Fas07℄ Alex Biryukov, editor. Fast Software Enryption � FSE 2007, vol-ume 4593 of Leture Notes in Computer Siene. Springer, 2007.ISBN 978-3-540-74617-1.[Fau99℄ Jean-Charles Faugère. A new e�ient algorithm for omputingGröbner bases (F4). Journal of Pure anNational Institute of Stan-dards and Tehnologyd Applied Algebra, 139:61�88, June 1999.[Fau02a℄ Jean-Charles Faugère. HFE hallenge 1 broken in 96 hours. An-nounement that appeared in news://si.rypt, 19th of April2002.[Fau02b℄ Jean-Charles Faugère. A new e�ient algorithm for omputingGröbner bases without redution to zero (F5). In International Sym-posium on Symboli and Algebrai Computation � ISSAC 2002,pages 75�83. ACM Press, July 2002.[Fau03a℄ Jean-Charles Faugère. Algebrai ryptanalysis of (HFE) using Gröb-ner bases. Tehnial report, Institut National de Reherhe en In-



32 Enrio Thomae, Christopher Wolfformatique et en Automatique, February 2003. http://www.inria.fr/rrrt/rr-4738.html, 19 pages.[Fau03b℄ Jean-Charles Faugère. Fast Gröbner. Algebrai ryptanalysis ofHFE and �lter generators. In Workshop on Coding and Cryp-tography 2003, pages 175�176. Daniel Augot, Pasal Charpin, andGrigory Kabatianski, editors, l'Eole Supérieure et d'Applition desTransmissions, 2003.[FJ03℄ Jean-Charles Faugère and Antoine Joux. Algebrai ryptanalysis ofHidden Field Equations (HFE) using Gröbner bases. In Cr [Cr03℄,pages 44�60.[FM07℄ Simon Fisher and Willi Meier. Algebrai immunity of S-boxes andaugmented funtions. In Fast Software Enryption � FSE [Fas07℄,pages 366�381. ISBN 978-3-540-74617-1.[FOPT10℄ Jean-Charles Faugère, Ayoub Otmani, Ludovi Perret, and Jean-Pierre Tillih. Algebrai ryptanalysis of MEliee variants withompat keys. In EUROCRYPT, volume 6110 of Leture Notes inComputer Siene, pages 279�298. Henri Gilbert, editor, Springer,2010. ISBN 978-3-642-13189-9.[GJ79℄ Mihael R. Garey and David S. Johnson. Computers and Intratabil-ity � A Guide to the Theory of NP-Completeness. W.H. Freemanand Company, 1979. ISBN 0-7167-1044-7 or 0-7167-1045-5.[KPG99℄ Aviad Kipnis, Jaques Patarin, and Louis Goubin. Unbalaned Oiland Vinegar signature shemes. In Advanes in Cryptology � EU-ROCRYPT 1999, volume 1592 of Leture Notes in Computer Si-ene, pages 206�222. Jaques Stern, editor, Springer, 1999.[KS98℄ Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegarsignature sheme. In Advanes in Cryptology � CRYPTO 1998,volume 1462 of Leture Notes in Computer Siene, pages 257�266.Hugo Krawzyk, editor, Springer, 1998.[KS99℄ Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE publikey ryptosystem. In Advanes in Cryptology � CRYPTO 1999,volume 1666 of Leture Notes in Computer Siene, pages19�30. Mihael Wiener, editor, Springer, 1999. http://www.minrank.org/hfesubreg.ps or http://iteseer.nj.ne.om/kipnis99ryptanalysis.html.[MAG℄ Computational Algebra Group, University of Sydney. The MAGMAComputational Algebra System for Algebra, Number Theory and Ge-ometry. http://magma.maths.usyd.edu.au/magma/.[MMD+08℄ Mohamed Saied Mohamed, Wael Said Mohamed, Jintai Ding,Johannes Buhmann, Stefan Tohaneanu, Ralf-Philipp Weinmann,Daniel Carbaras, and Dieter Shmidt. Mutantxl and mutant gröb-ner basis algorithm. In SCC '08: Proeedings of the 1st InternationalConferene on Symboli Computation and Cryptography, pages 16�22, 2008.[MMDB08℄ Mohamed Saied Mohamed, Wael Said Mohamed, Jintai Ding, andJohannes Buhmann. MXL2: Solving polynomial equations over



Unravel XL and its variants 33GF(2) using an improved Mutant strategy. In PQCrypto '08: Pro-eedings of the 2nd International Workshop on Post-Quantum Cryp-tography, pages 203�215, Berlin, Heidelberg, 2008. Springer-Verlag.[Moh00℄ T. Moh. On the method of "XL" and its ine�ieny to TTM, 2000.[MR02℄ Sean Murphy and Matthew J.B. Robshaw. Essential algebrai stru-ture within the AES. In Advanes in Cryptology � CRYPTO 2002,volume 2442 of Leture Notes in Computer Siene, pages 1�16. MotiYung, editor, Springer, 2002.[Pat97℄ Jaques Patarin. The oil and vinegar signature sheme. Presented atthe Dagstuhl Workshop on Cryptography, September 1997. trans-parenies.[RR08℄ Sondre Rønjom and Håvard Raddum. On the number of linearlyindependent equations generated by xl. In Proeedings of the 5th in-ternational onferene on Sequenes and Their Appliations, SETA'08, pages 239�251, Berlin, Heidelberg, 2008. Springer-Verlag.[SKPI07℄ Makoto Sugita, Mitsuru Kawazoe, Ludovi Perret, and Hideki Imai.Algebrai ryptanalysis of 58-round SHA-1. In Fast Software En-ryption � FSE [Fas07℄, pages 349�365. ISBN 978-3-540-74617-1.[YC04a℄ Bo-Yin Yang and Jiun-Ming Chen. All in the XL family: Theoryand pratie. In ICISC 2004, pages 67�86. Springer, 2004.[YC04b℄ Bo-Yin Yang and Jiun-Ming Chen. Theoretial analysis of XL oversmall �elds. In ACISP 2004, volume 3108 of LNCS, pages 277�288.Springer, 2004.[YC05℄ Bo-Yin Yang and Jiun-Ming Chen. Building seure tame-like mul-tivariate publi-key ryptosystems: The new TTS. In ACISP 2005,volume 3574 of LNCS, pages 518�531. Springer, July 2005.



34 Enrio Thomae, Christopher WolfA Complexity of F5, XL and MutantXLComplexity of F5We denote m the number of quadrati equations, n = m the number of variablesand r the number of guessed variables. Note that we used ω = 2 as Bettale etal. did in [BFP09℄ to alulate the omplexity of their hybrid approah. Weobtain the same results as in [BFP09℄ table 4 for m = 20 and guessing one ortwo variables over F28 , see table 11. The values in the tables are rounded Log2omplexities. The exat value for m = 20, r = 1 and F28 is 66,73 respetively67,79 for r = 2.
m\r 0 1 2 3 55 6 3 3 2 210 11 6 5 4 315 16 8 7 6 420 21 11 9 8 625 26 13 11 10 830 31 16 14 12 10Table 9. Degree of Regularity dreg

m\r 0 1 2 3 55 20 18 21 23 2510 41 35 36 37 4215 62 48 49 50 5220 83 64 62 63 6425 103 76 74 75 7630 123 92 90 88 89Table 10. Complexity of F5 over F25

m\r 0 1 2 3 55 20 21 27 32 4010 41 38 42 46 5715 62 51 55 59 6720 83 67 68 72 7925 103 79 80 84 9130 123 95 96 96 104Table 11. Complexity of F5 over F28Complexity of XLFirst we assume (n+D+2
D+2

)ω to be the omplexity of XL, i.e. we onentrate onthe number of olumns N , f. setion 2.3. The proof of lemma 1 showed thatthe linear dependent equations produed by XL are very systemati. So in ase
D = 2 it is no problem just to generate linear independent equations and thusderive the given omplexity. We assume that this is also possible for D > 2.Note that we only onsidered XL up to D = 9. Fields marked with `-' indiatethat this is not enough to solve the orresponding systems of equation.
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m\r 0 1 2 3 55 - 5 3 2 210 - 10 6 5 315 - - 8 7 520 - - 11 9 725 - - - 11 930 - - - - 11Table 12. Degree D + 2 of XL.

m\r 0 1 2 3 55 - 19 19 20 2510 - 38 33 34 3715 - - 45 46 4820 - - 60 58 6025 - - - 70 7230 - - - - 83Table 13. Complexity of XL over F25

m\r 0 1 2 3 55 - 22 25 29 4010 - 41 39 43 5215 - - 51 55 6320 - - 66 67 7525 - - - 79 8730 - - - - 98Table 14. Complexity of XL over F28Now we assume (m
(
n+D

D

)
)ω to be the omplexity of XL, i.e. we onentrate onthe number of rows M , f. setion 2.3. This is a bad upper bound for the asethat we produe all m

(
n+D

D

) equations and eliminate the linear dependent onesby Gaussian elimination. Note that this is always bigger than (n+D+2
D+2

)ω if XLsueed.
m\r 0 1 2 3 55 - 20 20 20 2510 - 41 35 35 3915 - - 47 48 4920 - - 63 60 6125 - - - 73 7430 - - - - 86Table 15. Complexity of XL over F25

m\r 0 1 2 3 55 - 23 26 29 4010 - 44 41 44 5415 - - 53 57 6420 - - 69 69 7625 - - - 82 8930 - - - - 101Table 16. Complexity of XL over F28Complexity of MutantXLThe omplexity of MutantXL is determined by the Gaussian elimination step onall m
(
n+D

D

) equations produed by XL and the max{0,
(
n+D+2

D+2

)
− I − D − 2

}mutants. Thus the omplexity of table 18 is alulated by
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(

m

(
n − r + D

D

)
+ max{0,

(
n − r + D + 2

D + 2

)
− I − D − 2

})ω

+ (28)r.First we ompare the degree of regularity dreg (see table 9), i.e. the smallestdegree suh that the dimension of the ideal produed by F5 is equal to thenumber of monomials of degree dreg :
(
n+dreg−1

dreg

), to the orresponding degree
D + 2 used by MutantXL with k = 1. Note that in pratie we would use k > 1(see table tab:k2), but as we do not know how many equations produed bymutants will be linearly independent we are restrited to k = 1.

m\r 0 1 2 3 55 32 4 3 2 210 - 9 5 4 315 - 14 7 6 420 - 19 10 8 625 - 24 12 10 830 - 29 15 13 10Table 17. Degree D + 2 of MutantXLfor k = 1.
m\r 0 1 2 3 55 41 21 23 29 4010 - 42 37 41 4915 - 62 50 54 6020 - 83 66 66 7325 - 103 78 78 8530 - 123 94 94 97Table 18. Complexity of MutantXLover F28 for k = 1.B Open ProblemIn table 19 we alulate the exat value of k obtained by equation (14). Assumingthat the bound of orollary 5 is tight even for k > 1 leads to the degree ofMutantXL given in table 20. Espeially for large k the degree of MutantXL wouldbe smaller than the degree of regularity. This is a ontradition, as the degreeof regularity is the smallest degree suh that the number of linear independentequations equals the number of monomials.

m\r 0 1 2 3 55 0 2 0 0 010 0 3 3 2 015 0 3 2 3 120 0 5 3 2 225 0 4 3 3 230 0 5 4 3 2Table 19. k obtained by equation (14).
m\r 0 1 2 3 55 32 4 3 2 210 - 6 5 4 315 - 8 6 6 420 - 11 9 7 625 - 12 10 9 730 - 14 13 11 9Table 20. Degree D + 2 of MutantXLfor k in table 19.



Unravel XL and its variants 37We laim that there is an integer K > 1 suh that orollary 5 is not tight for
k > K. We think that there is a third bound whih is not tight for k ≤ Kbut otherwise. A naive starting point is to onsider the system of mutants asindependent system of equations and apply equation (9).


