
Solving Systems of Multivariate Quadrati
Equations over Finite Fieldsor: From Relinearization to MutantXLEnri
o Thomae, Christopher WolfHorst Görtz Institute for IT-se
urityFa
ulty of Mathemati
sRuhr-University of Bo
hum, 44780 Bo
hum, Germany{enri
o.thomae,
hristopher.wolf}�ruhr-uni-bo
hum.de,
hris�Christopher-Wolf.deAbstra
t. In this arti
le we investigate algorithms for solving non-linearmultivariate equations over �nite �elds and the relation between them.For non binary �elds usually 
omputing the Gröbner basis of the 
or-responding ideal is the best 
hoi
e in this 
ontext. One 
lass of algo-rithms is based on Bu
hberger's algorithm. Today's best algorithms likeF4 and F5 belong to this 
lass. Another strategy to solve su
h systemsis 
alled eXtended Linearization (XL) from Euro
rypt 2000. In the pastboth strategies were treated as di�erent ideas and there was a heateddis
ussion whi
h of them to prefer. Sin
e Ars et al. proved in 2004 thatXL is a redundant version of F4, the latter seemed to be the winner.But that was not the end of the line as pie
e for pie
e the idea emergedthat both 
lasses are only di�erent views on the same problem. We eventhink that they are just di�erent time-memory optimizations. One in-di
ation to that 
an be found in the PhD of Albre
ht, who introdu
edMatrixF5, a F5 version of XL. A se
ond indi
ation 
an be found in thePhD of Mohamed, who introdu
ed a memory-friendly version of XL usingWiedemanns algorithm. We want to give further eviden
e by providinga theoreti
al analysis of MutantXL. We show that MutantXL solves atthe same degree of regularity as its 
ompetitors F4 and F5 for most in-stan
es. Thereby we also 
on�rm re
ent results of Albre
ht, who showedthat MutantXL is a redundant version of F4, i.e. it never solves belowthe degree of regularity of F4. We show that MutantXL has, 
omparedto WiedemannXL, to pay its gain in e�
ien
y with memory.To enhan
e the understanding of the whole XL-family of algorithms wegive a full overview from Relinearization over XL to MutantXL and pro-vide some additional theoreti
al insights.



2 Enri
o Thomae, Christopher Wolf1 Introdu
tionSolving systems of Multivariate Quadrati
 (MQ) equations is hard in general.More pre
isely, the asso
iated MQ-problem is known to be NP-
omplete [25℄.The se
urity of many 
ryptosystems relies dire
tly or indire
tly on this problem,what makes solving systems of MQ equations an established tool in 
ryptanal-ysis.Todays best known algorithms to solve su
h systems are based on a breakthroughresult due to Bruno Bu
hberger [7℄ in 1965. He used so-
alled S-polynomials to
ompute the Gröbner Bases of the ideal spanned by the MQ-system. This algo-rithm 
an be seen as a generalization of the well known Gaussian Elimination forlinear systems. In 1999 Jean-Charles Faugère proposed a more e�
ient variantof Bu
hberger's algorithm by using the Ma
aulay matrix as well as sparse matrixalgebra and 
alled it F4-algorithm [17℄. In 2002 he also got rid of the redu
tionsto zero and published the F5-algorithm [19℄. In pra
ti
e F5 and its variants havean impressive tra
k re
ord in bringing down 
ryptographi
 systems and 
hal-lenges [18, 20, 21, 23, 22, 6, 24℄. On the theoreti
al site a 
omplexity analysisof both algorithms was unknown until Bardet et al. 
ame up with a solutionin 2005 [5℄. Before then it was hard to theoreti
ally analyze the 
omplexity ofatta
ks using F4 or F5. This might be the reason why Kipnis and Shamir de-veloped a simpler but slower algorithm 
alled Relinearization to analyze their
ryptanalysis of the HFE publi
 key 
ryptosystem in 1999 [26℄. One year laterCourtois et al. 
ame up with a similar but s
alable algorithm named eXtendedLinearization or XL for short [12℄. As the idea is very simple, it turned out thatLazard proposed a very similar algorithm already de
ades before [27℄. Unfortu-nately the latter provided only a bad upper bound on the 
omplexity and Moh[29℄ pointed out that the 
omplexity analysis of XL was �awed and way moredi�
ult as for Relinearization. So, at this time both XL and F5 su�ered froma missing 
omplexity analysis. Nevertheless Courtois and Pieprzyk 
laimed tohave broken AES [14℄ using a variant of XL, 
alled XSL, in 2002. At least sin
ethey were disproved by Cid and Leurent [9℄ only two years later, the 
ommunityof 
ryptographers be
ame in
reasingly reserved against this method, even if the
omplexity analysis is understood quit well today. This is mainly due to Moh[29℄, Diem [15℄ and Yang and Chen [35℄.During the last years XL and F5 were treated as two di�erent algorithms andthere was a heated dis
ussion whi
h of them is the better 
hoi
e for 
ryptographi
problems. For example Ars et al. [3℄ showed 2004 that XL is a redundant versionof F4, i.e. it produ
es more equations than ne
essary. In 2011 Albre
ht et al.[2℄ even showed that MutantXL, one of the most promising variants of XL, is aredundant version of F4. On the one hand these results suggest that F4/F5 isalways faster than the XL-family. On the other hand Mohamed et al. introdu
eda variant of XL using Wiedemann's algorithm [32, 31℄ and thus 
onsuming lessmemory than F4.This immediately suggests one of the questions we want to dis
uss in this arti
le:Might it be possible that both XL and F5 are just di�erent views of the sameproblem? One attempt in this dire
tion is due to Albre
ht [1℄ who started with



From Relinearization to MutantXL 3the polynomial view of F5 and ended with the matrix view of XL by introdu
ingMatrix-F5. Essentially this algorithm applies the F5 
riteria to XL and providesa Gröbner basis as output. Unfortunately Matrix-F5 is neither faster nor needsless memory than F5.1.1 Organization and A
hievementThis arti
le gives an overview of the XL-family with a strong link to Gröbnerbasis algorithms and the most promising variant of XL, namely MutantXL oralso 
alled XL2. Our work 
an be seen in line with the overview of XL-likealgorithms of Yang and Chen [35℄, the summary of XL-algorithms with fo
us onapplying Wiedemanns algorithm in the PhD of Mohamed [31℄ and the F5 viewon XL in the PhD of Albre
ht [1℄.First we shortly re
ap the well known te
hnique of Relinearization in se
tion 3.1.Se
ond we proof that this is a spe
ial 
ase of the XL algorithm in se
tion 3.3.Third we shortly introdu
e most of the variants of XL, with a spe
ial fo
us onMutantXL in se
tion 3.4. Se
tion 4 deals with the question how random systemsof MQequations look like. Se
tion 5 will repeat the 
omplexity analysis of XL.In se
tion 6 we give a 
omplexity analysis of MutantXL and observe that most ofthe time it solves at the same degree as F4 and F5, what somehow 
on�rms theresults of Albre
ht et al. [2℄. Se
tion 7 investigates the memory 
onsumption ofF4/F5, MutantXL and WiedemannXL and thus gives rise to the assumption thatthey are di�erent time-memory optimizations of the same 
lass of algorithms.2 NotationHere we introdu
e the notation we use throughout the arti
le. As mentionedabove, solving non-linear systems of m equations and n unknowns is a di�
ultproblem in general. Restri
ting to the seemingly easy 
ase of degree 2 equa-tions is equally di�
ult, as there is a polynomial time redu
tion. A
tually theasso
iated problem to de
ide if some system is solvable or not, also known as
MQ-problem, is proven to be NP-
omplete [25℄.Let P : Fn

q → F
m
q be an MQ-system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0... (1)
p(m)(x1, . . . , xn) = 0,with

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑

1≤i≤n

β
(k)
i xi + α(k). (2)



4 Enri
o Thomae, Christopher WolfWe 
all equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-neous 
ase 
onsists only of quadrati
 terms and is thus de�ned by
p(k)(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)We need the 
lassi�
ation into homogeneous and inhomogeneous polynomialslater on, be
ause it is not always easy to see that formulas for both 
ases areequal after transforming an inhomogeneous system in a homogeneous one.Let π(k) be the 
oe�
ient ve
tor of p(k)(x1, . . . , xn) in lexi
ographi
 order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ(k)

nn , β
(k)
1 , . . . , β(k)

n , α(k)),then Π denote the 
oe�
ient matrix of P
Π :=




π(1)...
π(m)


 .Denote by IΠ the number of linearly independent equations of Π . More for-mal IΠ is the dimension of the ve
tor spa
e generated by {π(k)|1 ≤ k ≤ m}.Sometimes we just write I instead of IΠ . The number of di�erent monomialso

urring in P is denoted by T .Note that the problem of solving non-linear equations be
omes easier ifm ex
eeds

n or vi
e versa. Even if not proven yet, experien
e suggest that m = n is thehardest instan
e. The naive algorithm is to solve (1) by linearization, i.e. tosubstitute every monomial in p(k) by a new variable and to solve the obtainedlinear system of equations Π via Gaussian Elimination. This leads to a 
orre
tsolution if we have m = n(n+1)
2 + n linearly independent equations, i.e. if thenumber of linearly independent equations I is equal to the number of monomials

T . Otherwise we obtain an exponential number of parasiti
 solutions. With thete
hnique of Relinearization, introdu
ed in [26℄, we 
an solve P (asymptoti
ally)if we have m ≥ 0.09175 · n2 linearly independent equations. Lowering the trivialfa
tor of 1
2 to roughly 1

10 was a big leap and su�
ient to 
ryptanalyze HFE.3 From Relinearization to MutantXL3.1 RelinearizationThe idea of Relinearization is very 
lear and simple. Given a random MQ-system P we �rst linearize, i.e. introdu
e new variables yk := xixj . For thesimpli
ity of the analysis we assume P to be homogeneous. That means thenumber of unknowns xixj is (n+1
2

)
= n(n+1)

2 . Noti
e that this is no restri
tion aswe 
an express any non-homogeneous system in form of a homogeneous systemby introdu
ing one more variable. For random systems it is very likely that all



From Relinearization to MutantXL 5of the m equations are linearly independent, 
f. se
tion 4. This underdeterminedsystem of linear equations is now solved by Gaussian Elimination, see �gure 1for illustration. As we 
an see there, we obtain q
n(n+1)

2 −m parasiti
 solutions in
ym+1, . . . , yn(n+1)

2

, i.e. a number exponential in n.
∗

0

0

Π

x1x1 x1x2 . . .
n(n+1)

2
−m remaining unknowns

︷ ︸︸ ︷

y1 y2 . . . ym ym+1 . . .Fig. 1. Coe�
ient Matrix Π of P after Gaussian eliminationAfter linearization both y1 := x1x1 and y2 := x1x2 are two independent lin-ear variables. But from an algebrai
 point of view this is not true as both y1and y2 depend on x1. Relinearization exploits this stru
ture to eliminate par-asiti
 solutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)
2

impli
itlyvia new equations. The following equations are trivially true and also linearlyindependent for some ya = xixj :
xixjxkxl = xixkxjxl = xixlxjxk (4)

⇔ yi1yi2 = yi3yi4 = yi5yi6Kipnis and Shamir required i < j < k < l in the above equation. There are (n4)possible 
hoi
es for xixjxkxl and thus we get 2(n4) linearly independent equationsby (4). If this is larger than the number of unknowns in the remaining variables
y's we are done and 
an solve the system, i.e. for

2

(
n

4

)
≥

(n(n+1)
2 −m+ 1

2

)
.For m in the same magnitude as n this is not the 
ase in general. For m = εn2and only 
onsidering the n4 part, we get the following asymptoti
 equation

0 ≤ −ε2 + ε−
1

12and hen
e ε ≥ 0.09175.Note that for inhomogeneous equations the overall analysis is the same but witha bigger number of unknowns. By
2

(
n

4

)
≥

(n(n+1)
2 + n−m+ 1

2

)
,



6 Enri
o Thomae, Christopher Wolfwe obtain the same asymptoti
 result. But later in the exa
t analysis we willneed to distinguish between these two 
ases, as Relinearization in the homoge-neous 
ase is exa
tly the same as XL of degree 2.3.2 The XL algorithmThe idea of XL [12℄ is simpler but not as easy to analyze. Basi
ally we multiplyevery equation of P by every monomial of a 
ertain degree D. Obviously thispreserves the original solution. At some pointD is large enough to obtain roughlyas many linearly independent equations as monomials and thus we 
an solve thesystem by linearization. We 
all this D solving degree and the 
orrespondingdegree D + 2 of the polynomials saturation degree. The 
ru
ial question is, howmany of the produ
ed equations are linearly independent. We will look at thisin se
tion 5. First let us de�ne the XL algorithm in a rigorous way.De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneousquadrati
 polynomials p(k) as de�ned in (2) and P hom := {p(k)| 1 ≤ k ≤ m} theset of homogeneous quadrati
 polynomials p(k) as de�ned in (3). We de�ne theset of all monomials of degree D ∈ N0 byMonD(n) := {
D∏

j=1

xij | 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.Multiplying Pinh by all monomials of degree D yields the setBlowinhD (n) := {ab | a ∈ MonD(n) and b ∈ Pinh}.The set BlowhomD (n) is de�ned analogously. The following set des
ribes what is
ommonly used as XL algorithm of degree D.XLinhD (n) :=
D⋃

i=0

Blowinhi (n).If n is 
lear out of the 
ontext, we just write MonD, BlowinhD or XLinhD .Noti
e that XLinhD (n) and BlowhomD (n+1) are equivalent sets of polynomials andthus we 
an restri
t our analysis to the homogeneous 
ase (see se
tion 5 for aproof). Furthermore we des
ribe the XL algorithm for MQ-systems only. Firstthis is the most important 
ase for 
ryptanalysis and se
ond substituting theterm D + 2 by D + deg(P ) easily generalizes the algorithm.De�nition 2 (XL algorithm). First we generate XLinhD and 
he
k if the num-ber of linearly independent equations I is equal to the number of produ
ed mono-mials T subtra
ted by D+2. In this 
ase we linearize the system and solve it byGaussian elimination. Noti
e, if T − I ≤ D + 2 we 
an 
hoose the order of themonomials su
h that we obtain at least one univariate equation after Gaussianelimination, whi
h 
an be solved, e.g. by Berlekamp's algorithm. If T−I > D+2we set D := D + 1 and try again.



From Relinearization to MutantXL 7Another way of looking at this algorithm is to �rst homogenize P and thenjust produ
e BlowhomD (n + 1). Noti
e that the 
orresponding 
oe�
ient matrixof BlowhomD (n+ 1) is also known as Ma
aulay matrix. We speak of XL of degree
D+2, referring to the highest total degree of all polynomials and not the solvingdegree. This degree D + 2 is 
alled the saturation degree of XL.3.3 Relinearization as spe
ial 
ase of XLThe 
laim of Relinearization being a spe
ial 
ase of XL was already made inthe paper that introdu
ed XL [12℄. Due to many te
hni
al details the proof wasomitted and referred to the extended version of the paper, what is to the bestof our knowledge not publi
ly available. But as we use Moh's detailed analysisof Relinearization, i.e. i ≤ j ≤ k ≤ l [29℄, to 
ompare Relinearization with XL,we think our proof di�ers from what Courtois et al. had in their mind.For i ≤ j ≤ k ≤ l we get

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)equations by Relinearization, instead of 2(n4) in the 
ase i < j < k < l. Toallow to distinguish di�erent 
ases in the proof we assume m to be of the form
γ−1∑
i=0

(n − i) = γn + γ−γ2

2 for γ = εn and thus m = (ε − ε2

2 )n
2 + ε

2n. Throughthis ym+1 = xγ+1xγ+1 holds and due to the graded lexi
ographi
al order forall indi
es of not spe
i�ed monomials xixj in the ∗ blo
k, see �gure 2, it holds
i, j > γ. This allows us to analyse xixjxkxl in the two 
ases i ≤ γ and i > γ.

∗

0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .Fig. 2. Coe�
ient Matrix Π of P after Gaussian eliminationWe want to show that multiplying by spe
ial monomials is exa
tly the same asRelinearization. Due to the 
hoi
e of m we 
an distinguish two 
ases.



8 Enri
o Thomae, Christopher WolfCase 1, i ≤ γ. For i ≤ γ Relinearization behaves exa
tly as XL, as we will shownow. Remember Relinearization uses
xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixl︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . ,m}. (5)As XL do not make use of additional variables yi, equations (5) are trivially trueand thus of no use for solving the original system. But instead we 
an produ
eall monomials of (5) by multiplying the row 
ontaining yi1 , yi2 and yi3 in �gure2 with xkxl, xjxl and xjxk. This way we obtain 3 equations whi
h are obviouslylinearly independent. To 
al
ulate the gain of this, i.e. the di�eren
e betweenthe number of linearly independent equations and monomials, we have to dis-tinguish 3 more 
ases.Case 1.1, i < j < k < l. There are γ∑
i=1

(
n−i
3

) possibilities for xixjxkxl, as well asfor xixkxjxl and xixlxjxk for i < j < k < l. So we produ
e 3 γ∑
i=1

(
n−i
3

) equationswith XL by multiplying yi by xkxl. But we also produ
e γ∑
i=1

(
n−i
3

) new mono-mials 
ontaining variables xi with i ≤ γ and so the number of remaining newequations is 2 · γ∑
i=1

(
n−i
3

).Case 1.2, (j = i and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In the
ase of two equal and two di�erent indi
es we have the following 3 possibilities ofmonomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produ
es 2 equationsdue to xixixkxl = xixkxixl = xixlxixk. Noti
e that the last equality is not usedby Relinearization, be
ause it is trivial. So we ignore them too. Sin
e xixixkxlintrodu
e one new monomial 
ontaining variables xi with i ≤ γ, only xixkxixlgives us a new equation. So we have 3 ·
γ∑

i=1

(
n−i
2

) new equations in total.Case 1.3, i = j and k = l and i 6= k. In this 
ase Relinearization uses xixixkxk =
xixkxixk. The left monomial produ
es one new monomial 
ontaining variables
xi with i ≤ γ for every equation in XL and thus only the right monomial pro-du
es γ∑

i=1

(n− i) new equations.



From Relinearization to MutantXL 9To sum up 
ases 1.1 - 1.3, we produ
ed
2 ·

γ∑

i=1

(
n− i

3

)
+ 3 ·

γ∑

i=1

(
n− i

2

)
+

γ∑

i=1

(n− i)new linearly independent equations by adapting Relinearization to XL. Noti
ethat we produ
ed more equations than this, but used them to eliminate thenewly introdu
ed monomials of degree 4 with variables xi and i ≤ γ. So thenumber of unknowns in XL is only the number of degree 4 monomials 
ontain-ing variables xi with i > γ, i.e. (n−γ+3
4

).Case 2, i > γ. For i > γ Relinearization uses the equations
xixjxkxl = xixkxjxl = xixlxjxk.These equations 
annot be rebuilt by XL. But the di�eren
e between both meth-ods is that Relinearization introdu
e more variables after the se
ond linearizationstep and XL does not. So we do not need these equations for XL be
ause theyare only needed in Relinearization to eliminate variables we do not have in XL.The following equations sum up the number of unknowns and equations in bothmethods. The terms on the left hand side are the number of unknowns and onthe right hand side the number of equations.Relinearization:

(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
≤ 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

↑ ↑

∆1 ∆2

↓ ↓XL: (
n− γ + 3

4

)
≤ 2 ·

γ∑

i=1

(
n− i

3

)
+ 3 ·

γ∑

i=1

(
n− i

2

)
+

γ∑

i=1

(n− i)To show that both are equal, we have to show that the di�eren
e ∆1 betweenthe terms on the left is equal to the di�eren
e ∆2 of the terms on the right. Weus m = γn+ γ−γ2

2 (∗) and the following equality for k ∈ N>0

(
n

k

)
−

(
n− γ

k

)
=

γ∑

i=1

(
n− i

k − 1

)
.
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∆1 =

(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
−

(
n− γ + 3

4

)

(∗)
= 2

(
n− γ

4

)
+ 3

(
n− γ

3

)
+

(
n− γ

2

)

= 2

((
n− γ

4

)
−

(
n

4

)
+

(
n

4

))

+3

((
n− γ

3

)
−

(
n

3

)
+

(
n

3

))

+

(
n− γ

2

)
−

(
n

2

)
+

(
n

2

)

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

−2 ·

γ∑

i=1

(
n− i

3

)
− 3 ·

γ∑

i=1

(
n− i

2

)
−

γ∑

i=1

(n− i)

= ∆2 �To 
on
lude, if we use XL and multiply not by all quadrati
 monomials, but onlyby spe
ial ones, we do the same as Relinearization and thus Relinearization isa spe
ial 
ase of XL. Now we want to show that it is equal in the homogeneous
ase of degree two.In se
tion 5 we will explain that the number of linearly independent equationsprodu
ed by Blowhom2 is m(n+1
2

)
−
(
m
2

). Using this we 
an analyze if XL outper-forms Relinearization or not. In the homogeneous 
ase the following must holdfor Blowhom2 to obtain a solution.
m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)
≥ −D − 2 (6)The following must hold for Relinearization to obtain a solution.

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 −m+ 1

2

)
≥ −D − 2 (7)Be
ause of the following equality, inequations (6) and (7) are equal.

m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)

=
n4

24
+

n3

4
−

n2m

2
+

11n2

24
−

nm

2
+

n

4
+

m2

2
−

m

2

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 −m+ 1

2

)



From Relinearization to MutantXL 11In the inhomogeneous 
ase, Blowinh2 is slightly better than Relinearization. Wegain a fa
tor of 1
12 instead of 0.09175 in the asymptoti
 analysis. We 
an alsoderive this from the inequations above. If we homogenize the inhomogeneoussystem, we have to substitute n by (n + 1) in inequation (6). Relinearizationdoes not depend on whether equations are homogeneous or not, i.e. inequation(7) remains the same and thus both are not longer equal.3.4 Variants of XLInspired by Gröbner bases and some other observations there is a whole familyof XL-like algorithms, whi
h try to use some additional ideas to speed up theoriginal XL algorithm. We revisit the most important ones, namely FXL, XFL,XLF, XL', XSL, MutantXL/XL2 and WXL. [6, 11, 12, 13, 16, 30, 35℄ and givesome reasons if and under whi
h 
ir
umstan
es they are useful. See the PhDthesis of Mohamed [31℄ for a more extensive list of XL variants.FXLFXL, or �xing extended linearization, was suggested in the original paper ofCourtois et al. [12℄ and is XL with guessing some variables beforehand. Thisis quit a good idea also for the Gröbner base algorithm F4 [6℄. An empiri
al
on�rmation for XL was given in [36℄. They showed thatD is exponential, namely

2m, in the 
ase m = n and already polynomial in the 
ase m = n+1. So it helpsto guess at least one variable. The optimal number of guessed variables is givenby Yang and Chen [35, se
tion 5.2℄.XFLXFL is a variant of FXL. We 
hoose f variables, but do not guess them in thebeginning. We 
hoose the order of the monomials in a way that all monomials
ontaining any of the f variables are eliminated last. Now we linearize the systemand apply Gaussian elimination. Be
ause the system was underdetermined, weobtain no unique solution. To do so, we guess one of the f variables and applyGaussian elimination again. Why is this stepwise guessing better than FXL insome 
ase? First we have to do the most work, i.e. the �rst Gaussian elimination,only on
e. In FXL we have to do this after every wrong guessing. But noti
e,that there the number of monomials is smaller, so we 
arefully have to 
al
ulatethe right tradeo� between the two variants. Se
ond XFL may use dependen
iesamong the f variables and thus su

eed.XLFXLF just takes the �eld equations (xq − x) = 0 in Fq into a

ount and was�rst mentioned in [11℄. XLF makes sense in the inhomogeneous 
ase, if D getslarger than (q − 2). In this 
ase the analysis be
omes slightly di�erent, be
ausethe number of produ
ed monomials de
rease, i.e. monomials xD+2
i redu
e to thealready existing xi. This means we need less linearly independent equations tosu

eed.



12 Enri
o Thomae, Christopher WolfXL'Introdu
ed by Courtois and Patarin in [13℄ this variant solves the equation sys-tem by XL until there are only (r+D+2
D+2

) equations in r variables left. This re-maining system of equations is solved by brute for
e or other algorithms likeGröbner bases.Claim. For pra
ti
al purposes, FXL is better than XL'.Proof. We 
all FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smallerthan (T − I)XL'. With se
tion 5 and D = 2k we 
an write
(T − I)FXL =

(
n− r +D + 1

D + 2

)
−

k∑

i=0

(−1)i
(

m

i+ 1

)(
n− r +D − 2i− 1

n− r − 1

)

=
2k+2∑

i=0

(−1)i
(
m− n+ r

i

)(
m

2k − i+ 2

)and
(T − I)XL' = (n+D + 1

D + 2

)
−

k∑

i=0

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
−

(
r + 2k + 2

2k + 2

)

=

2k+2∑

i=0

(−1)i
(
m− n

i

)(
m

2k − i+ 2

)
−

(
r + 2k + 2

2k + 2

)
+ 1.If we plotted formula (T − I)XL' − (T − I)FXL we would see that this is greaterthan zero, i.e. FXL is better than XL', for r less than some bound depending on

k. For in
reasing k the bound on r de
rease. It seems very hard to 
al
ulate thisbound in an analyti
al way. But for real world parameter k < 10 and r ≪ n weare below this bound. W.l.o.g. we 
an assume m = n, otherwise we substitute
r. See table 1 for the upper bound on r depending on m and k. With F5 we
an solve MQ-systems up to m = 20 in 266 operations, so we stopped the tableat m = 30 for pra
ti
al purpose. Even k > 6 is of no pra
ti
al interest be
ausethe workload without 
onsidering guessing would be larger than (n+2k+2

2k+2

)ω for
2 ≤ ω ≤ 3. Note that the 
ases marked gray are always solvable by XLinh2k

m\k 1 2 3 4 5 65 1 0 0 0 0 010 6 3 1 0 0 015 11 8 6 5 1 120 15 13 12 10 8 625 20 18 17 15 12 1030 25 23 22 19 17 15Table 1. Upper bound on r su
h that FXL ≥ XL'.



From Relinearization to MutantXL 13without guessing. In any other 
ase the bound on r is high enough to guess asmany variables as we need to solve the equation system with FXL. So we 
laimthat FXL is always better than XL' for pra
ti
al purpose.XSLCourtois and Pieprzyk [14℄ published this method at Asia
rypt 2002 and 
laimedto have broken AES using it. This was disproved in 2005 by Leurent and Cid[9℄. The idea of XSL is to use the spe
ial stru
ture of the equation system.If some equations are sparse you might introdu
e more new monomials thanequations by multiplying them by all monomials of a spe
ial degree. So in some
ase it might be better to multiply some equations only by some monomials.It still is an open question how to do this. The idea of XSL is 
onne
ted toCoppersmiths latti
e based method to solve modular equations. Like in XL youmultiply the equation by so 
alled shift polynomials. Choosing the 
orre
t shiftset is a di�
ult problem. In the 
ase of two unknowns, we 
an plot the Newtonpolytope and get an intuition. But in multivariate 
ryptography you deal witha lot more unknowns. So it even is an open problem to �nd the 
orre
t shift setfor some given equation.MutantXLOne of the most e�
ient variants of XL is 
alled MutantXL [16, 30℄ respe
tivelyXL2 [35℄. It is 
laimed to be as fast as F4 in some 
ases. This 
laim was derivedfrom experiments on HFE [8℄.Let I be the number of linearly independent equations produ
ed by XLinhD and
T =

(
n+D+2
D+2

) the number of monomials of degree ≤ D+2. If (T − I) > (D+2)it is highly unlikely that XL �nds a univariate polynomial and thus solves thesystem. As outlined above, XL will 
ontinue with D := D + 1. MutantXL isa step in between. Instead of doing a full extension from D to D + 1 it usesequations that would be produ
ed by XLinhD+k with k > 0 as long as they do notintrodu
e new monomials. To this aim we use polynomials of degree < D+2 thatare produ
ed in the Gaussian elimination step of XLinhD . These polynomials are
alled mutants. For example multiplying these polynomials by all monomials ofMon1 leads to new equations without generating new monomials. However, thisstrategy is only useful for inhomogeneous equations. In the homogeneous 
aseall monomials have same degree and thus mutants simply never o

ur.De�nition 3. Let f =
m∑
i=1

gjih
(i) with h(i) ∈ P inh and gji some polynomial ofdegree ≤ D be a representation of f . This representation is not unique. The set Jdenotes all representations (j1, . . . , jm) of f . The level (lev) of this representation

j ∈ J is de�ned by
lev

(
m∑

i=1

gjih
(i)

)
:= max{deg (gjih(i)

)
| 1 ≤ i ≤ m

}
.



14 Enri
o Thomae, Christopher WolfThe level (Lev) of f is de�ned by the minimum level of all its representations.
Lev (f) := min{lev( m∑

i=1

gjih
(i)

)
| j ∈ J}We 
all g a mutant if deg(f) < Lev(f).We will give a detailed 
omplexity analysis of MutantXL in se
tion 6.WXL, PWXL and WMXLIn his PhD thesis [31℄ Mohamed used Wiedemann's algorithm instead of Gaus-sian Elimination to de
rease the amount of memory needed for XL and 
alledthis algorithmWXL. He showed experimentally that his variant always 
onsumesless memory than F4. As Wiedemanns algorithm allows easy parallelization healso introdu
ed a parallel version 
alled PWXL. The 
laim that this version isfaster than F4 is not 
ompletely fair as they used several pro
essors in parallelbut 
ompared to F4 running on only one pro
essor. In 
ryptanalysis it is very
ommon to guess some variables before solving a system of equations. Due tothis guessing you 
an also easily run F4 in parallel. Combining Wiedemannsalgorithm with MutantXL is 
alled WMXL.4 The generi
 
ase of random systemsTo analyze the 
omplexity of XL in se
tion 5 we need to 
ount the dimensionof the ve
tor spa
e spanned by {ap(k) | 1 ≤ k ≤ m and a ∈ MonD} or to put itsimpler, the number of linearly independent equations I generated by BlowhomD .Obviously if two rows of Π are linearly dependent, all their multiples are, too.Moreover, even if two polynomials share a 
ommon fa
tor, we get a nontrivialdependen
y in XLinh1 (see se
tion 5 for details). Thus it seems infeasible to deriveone formula 
overing all MQ-systems. Instead we 
on
entrate our analysis onthe generi
 
ase of random MQ-systems. The question to deal with in thisse
tion is: Whi
h properties does a random MQ-system typi
ally have? A �rstattempt is due to Ma
aulay [28℄, who de�ned regular sequen
es as early as 1916.De�nition 4 (regular sequen
e). A sequen
e of m polynomials (p1, . . . , pm)is regular if for all i = 1, . . . ,m, pi is not a zero-divisor in the quotient ring

F[x1, . . . , xn]/(p1, . . . , pi−1). In other words if there exists g su
h that gpi ∈
〈p1, . . . , pi−1〉 then g ∈ 〈p1, . . . , pi−1〉 also holds.A

ording to this de�nition regular sequen
es 
an be viewed as sequen
es with-out any spe
ial internal stru
ture, i.e. the only relations holding are the trivialones. More pre
isely gpi ∈ 〈p1, . . . , pi−1〉means that there is a linear 
ombinationof multiples of p1, . . . , pi−1 that equals gpi and thus gpi is linearly dependentto the equations produ
ed by p1, . . . , pi−1. For regular sequen
es this implies
g ∈ 〈p1, . . . , pi−1〉 whi
h means that pig ∈ 〈p1, . . . , pi−1〉 is trivially true andthus there only exist the trivial dependen
y gpi = pig.



From Relinearization to MutantXL 15De�nition 4, i.e. gpi ∈ 〈p1, . . . , pi−1〉 ⇔ g ∈ 〈p1, . . . , pi−1〉 
an also be written as
gpi =

i−1∑

j=1

hjpj ⇔ g =

i−1∑

j=1

ljpj (8)
⇔ gpi =

i−1∑

j=1

ljpjpi,for some polynomials hj and lj .If we denote the linear 
losure of degree k of a polynomial f or a set P , respe
-tively, as Lin(f, k) := span ({µf : µ ∈ Monk})Lin(P, k) := span ({µp : µ ∈ Monk, p ∈ P}) ,and de�ne with #Lin(P, k) the dimension of Lin(P, k) or to put it simpler thenumber of linearly independent equations, then 
ondition (8) 
an, due to Moh[29, se
tion 4℄, be equivalently formulated as follows.
#(Lin({p1, . . . , pi−1}, k) ∩ Lin(pi, k)) = #Lin({p1, . . . , pi−1}, k − 2) (9)We will need this equation to proof lemma 1 later on.Bardet et al. mentioned in their 
omplexity analysis of Gröbner basis 
ompu-tations [4, 5℄ that regular systems only exists if the number of equations m isless or equal the number of variables n. Thus they introdu
ed the de�nition ofsemi-regular systems to 
over the overdetermined 
ase m > n. Therefore they�rst needed the notion of the degree of regularity, whi
h is the smallest degree

d su
h that the dimension of the ve
tor spa
e spanned by all polynomials of anideal I = 〈p1, . . . , pm〉 with degree d equals the number of monomials of degree
d. Or to put it simpler, the number of linearly independent equations I equalsthe number of monomials T .De�nition 5 (degree of regularity). The degree of regularity of a homoge-neous ideal I = 〈p1, . . . , pm〉 is de�ned by

dreg := min{d ≥ 0 : dim ({p ∈ I | deg(p) = d}) =

(
n+ d− 1

d

)}
.De�nition 6 (semi-regular sequen
e). A homogeneous sequen
e of m poly-nomials (p1, . . . , pm) is semi-regular if for all i = 1, . . . ,m and g su
h that

gpi ∈ 〈p1, . . . , pn〉 and deg(gpi) < dreg then g ∈ 〈p1, . . . , pi−1〉 also holds.Unfortunately it is not proven yet that semi-regular sequen
es are generi
 andthus all the proofs are built on this assumption. Diem [15℄ redu
ed this as-sumption to the more 
ommon MinRank 
onje
ture or also known as Fröbergs
onje
ture.



16 Enri
o Thomae, Christopher WolfTo give some intuition on the behavior of random MQ-systems, we will now
al
ulate the probability for su
h a system with m = n = 2 to be regular. In thatspe
ial 
ase de�nition 4 is equivalent to the 
ondition of both polynomials being
o-prime. Let f = h1h2 and g = h1h3 be two quadrati
 polynomials sharinga 
ommon fa
tor h1, then obviously h3f = h2g is a nontrivial dependen
y.Conversely if h1g = h2f and h1 /∈ 〈f〉 then obviously gcd(f, g) 6= 1. The following
orollary gives the probability of two random quadrati
 polynomials f, g beingnot 
o-prime.Corollary 1. Two randomly 
hosen MQ-polynomials f, g ∈ Fq[x1, x2] are not
o-prime with probability
(q − 1)2 + (q3 − q)3

(q6 − q3)2
≈ O(q−3).Proof. Two randomly 
hosen quadrati
 polynomials f and g are not 
o-prime i�they share a 
ommon fa
tor. There are (q− 1)2 possibilities for λ1, λ2 ∈ F

∗
q with

λ1g = λ2f . Let g = ab and f = ac with a, b, c ∈ F[x1, x2] and deg(a) = deg(b) =
deg(c) = 1. There exist (q3 − q) possibilities ea
h for a, b, c. The total amountof quadrati
 polynomials in Fq[x1, x2] is (q6 − q3) and thus we have (q6 − q3)2possibilities to 
hoose f and g. ⊓⊔For the 
ommon setting q = 28, the probability of a system with m = n = 2 tobe not regular is 2−24. Note that this probability qui
kly de
rease if n in
rease.5 Complexity Analysis of XL revisitedThe 
ru
ial point when using XL is to determine the number of linearly inde-pendent equations I produ
ed by BlowhomD or XLinhD . This is needed to 
al
ulate
D through T − I < D + 2 and therefore implies the 
omplexity of the wholealgorithm. For random equation systems (see se
tion 4) we will now revisit theformulas derived theoreti
ally by Moh [29℄, Yang and Chen [35℄ or by experi-ments for D between 0 and 5 over F2 by Courtois and Patarin [13℄.We run own experiments to 
on�rm previous results. All equations in table 2, 3and 4 were obtained by a total of several 10,000 experiments. We omitted dis-
ordant values whi
h o

urred with very low probability every time the randomsystem did not mat
h the 
onditions of se
tion 4. All experiments were performedon a Intel Xeon X33502.66GHz (Quad
ore) with 8 GB of RAM using only one
ore and the software system Magma V2.16-1 [10℄. Parameters were running forvarious tuples (n,m,D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50, 1 ≤ D ≤ 8.Noti
e, for a ground �eld Fq and D + 2 < q, the formulas are independent ofthe ground �eld. If D + 2 ≥ q we have to take the �eld equations xq = x intoa

ount and things get messy�at least from a theoreti
al perspe
tive. For ex-ample if q = 2 the number of monomials of degree D de
reases from (

n+D−1
D

)to (nD) and besides of the trivial dependen
y fg = gf there is an additional
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y due to f2 = f for f, g quadrati
 polynomials. The important 
aseof F2 was treated by Rønjom and Raddum in [34℄. See table 5 for their resultsrestri
ted to the homogeneous 
ase.Table 2. Number of linearly independent equations produ
ed by BlowhomD , experimen-tally derived.
D Number of linearly independent equations0 m1 mn2 m

(
n+1

2

)
−

(
m
2

)3 m
(
n+2

3

)
−

(
m
2

)
n4 m

(
n+3

4

)
−

(
m
2

)(
n+1

2

)
+

(
m
3

)5 m
(
n+4

5

)
−

(
m
2

)(
n+2

3

)
+

(
m
3

)
nTable 3. Number of linearly independent equations produ
ed by BlowinhD , experimen-tally derived.

D Number of linearly independent equations0 m1 mn2 m
(
n+1

2

)3 m
(
n+2

3

)
−

(
m−1

3

)4 m
(
n+3

4

)
−

(
m−1

3

)
n+

(
m−1

4

)5 m
(
n+4

5

)
−

(
m−1

3

)(
n+1

2

)
+

(
m−1

4

)
n−

(
m−1

5

)
+

(
m−1

4

)6 m
(
n+5

6

)
−

(
m−1

3

)(
n+2

3

)
+

(
m−1

4

)(
n+1

2

)
−

(
m−1

5

)
n+

(
m−1

4

)
n+

(
m−1

6

)
−

(
m−1

5

)

Table 4. Number of linearly independent equations produ
ed by XLinhD , experimentallyderived.
D Number of linearly independent equations0 m1 m+mn2 m+mn+m

(
n+1

2

)
−

(
m
2

)3 m
(
n+3

3

)
−

(
m
2

)
(n+ 1)4 m

(
n+4

4

)
−

(
m
2

)(
n+2

2

)
+

(
m
3

)5 m
(
n+5

5

)
−

(
m
2

)(
n+3

3

)
+

(
m
3

)
(n+ 1)



18 Enri
o Thomae, Christopher WolfTable 5. Number of linearly independent equations produ
ed by BlowhomD over F2.
D Number of linearly independent equations0 m1 mn2 m

(
n
2

)
− (

(
m
2

)
+m)3 m

(
n
3

)
− (

(
m
2

)
+m)n4 m

(
n
4

)
− (

(
m
2

)
+m)

(
n
2

)
+ (

(
m
3

)
+ 2

(
m
2

)
+m)5 m

(
n
5

)
− (

(
m
2

)
+m)

(
n
3

)
+ (

(
m
3

)
+ 2

(
m
2

)
+m)nWe restri
t our analysis to D + 2 < q in the whole paper. Repla
ing formulaswill easily 
over the other 
ases.In se
tion 3.2 we 
laimed that BlowhomD (n+ 1) and XLinhD (n) are equivalent dueto homogenization. With the formulas of table 2 and 4 we proof this 
laimexemplarily for D = 2:Note that for BlowhomD (n + 1), the number of monomials is (n+4

4

)
− 1 be
ausewe know x4

n+1 by the 
hoi
e of xn+1 = 1 for homogenization. Considering theformula I − T we get the following.Blowhom2 (n+ 1) :

m

(
n+ 2

2

)
−

(
m

2

)
−

(
n+ 4

4

)
+ 1

= m

(
n+ 1

2

)
+m

(
n+ 1

1

)
−

(
m

2

)
−

(
n+ 3

4

)
−

(
n+ 3

3

)
+ 1

= m+mn+m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)
−

(
n+ 2

3

)
−

(
n+ 2

2

)
+ 1

= m+mn+m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)
−

(
n+ 2

3

)
−

(
n+ 1

2

)
− n

: XLinh2 (n)Now we proof the formulas given in table 2 theoreti
ally. The following resultwas given and proven indu
tively by Moh [29℄. We want to formulate this proofin more detail and show were the systemati
 linear dependen
ies arise.Lemma 1. If Phom is a semi-regular sequen
e, then the number of linearly in-dependent equations produ
ed by BlowhomD with D = 2k+b and b ∈ {0, 1} is givenby
IBlowhom

D
,n :=

k∑

i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)− 1 + b

2(k − i) + b

)
. (10)Before proving this lemma at the end of this se
tion, we need some intermediateresults. First we 
on
entrate on Blowhom2 and sear
h for the (m2 ) linear dependent
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2

) produ
ed equations. Let f, g be two Multivari-ate Quadrati
 polynomials in n variables ea
h. Denote Monf , Mong the set ofmonomials in f and g, respe
tively. Assume the existen
e of some admissibleordering for multivariate polynomials f, g, e.g. degrev-lex or lex.Lemma 2. Let f, g be a pair of 
o-prime Multivariate Quadrati
 polynomials.Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be the sets of
ross-wise monomial multipli
ation of f and g, respe
tively. Then these two setsprodu
e |F |+ |G| − 1 linearly independent equations.Proof. We denote our two polynomials by f :=
∑σ

i=1 αiai and g :=
∑τ

i=1 βibifor non-zero �eld elements αi, βj ∈ F
∗ and monomials ai, bj for 1 ≤ i ≤ σ and

1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. Theimportant property of the two sets F,G is that ea
h monomial ab for a ∈ Monfand b ∈ Mong exists twi
e, namely on
e in bf ∈ F and on
e in ag ∈ G. Thefollowing equation shows that adding all equations of F multiplied by 
oe�
ients
βi is equal to adding all equations of G multiplied by 
oe�
ients αi and thusthe set F ∪G is linear dependent.

τ∑

i=1

βibif =

τ∑

i=1

βibi

σ∑

j=1

αjaj =

σ∑

j=1

αjaj

τ∑

i=1

βibi =

σ∑

j=1

αjajgFor short we write fg = gf and 
all this relation trivial syzygy. On the otherhand assume the existen
e of a nontrivial syzygy h1f = h2g. As g and f are
o-prime this dire
tly implies f |h2 and g |h1 whi
h 
ontradi
ts that h1f = h2gis a nontrivial syzygy . ⊓⊔Corollary 2. The largest linearly independent subset of Blowhom2 for regular orsemi-regular sequen
es is of size (n+1
2

)
m−

(
m
2

).Proof. By its de�nition, we have at most (n+1
2

)
m distin
t elements in Blowhom2 .This explains the �rst part of the sum and also gives an upper bound. Consideringall pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain (m2 ) lineardependen
ies. ⊓⊔Corollary 3. The largest linearly independent subset of XLinh2 is of size (n2)m+

nm+m−
(
m
2

).Proof. This 
orollary works similar to 
orollary 2. By its de�nition, we have atmost (n2)m+ nm+m elements in XLinh2 . This explains the �rst part of the sumand also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < gand also Lemma 2, we obtain (m2 ) linear dependen
ies. ⊓⊔Lemma 3. Let f, g be a pair of linearly independent, homogeneous Multivariate
Quadrati
 polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}
ontains at most 2(n+k−1

k

)
−
(
n+k−3
k−2

) linearly independent equations.
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o Thomae, Christopher WolfProof. The �rst part of the sum is a result of the (n+k−1
k

) 
hoi
es of the monomial
µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we 
an now applylemma 2. We have |Monk−2| =

(
n+k−3
k−2

) individual 
hoi
es for v. ⊓⊔Extending this lemma from pairs to sets is kind of tri
ky, be
ause sin
e D ≥ 4we obtain new linear dependen
ies between 3 and more equations. Thus we are
ounting linear dependen
ies twi
e if we only 
onsider pairs f, g. To 
ount allequations only on
e, we need (9) 
f. se
tion 4.Proof (lemma 1). First we reformulate the formula of lemma 1. The number oflinearly independent equations #Lin(P hom, D) there is given by
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
. (11)We proof this by indu
tion via m. The 
ase m = 1 is trivial.Let us assume (11) holds for m. We have to show that it also holds for m+ 1.We have Phom

m+1 := P hom
m ∪ {pm+1} and write

#Lin(P hom
m+1, D) = #Lin(P hom

m , D) + #Lin(pm+1, D)

− #(Lin(P hom
m , D) ∩ Lin(pm+1, D)).The last term simpli�es to #Lin(Phom

m , D − 2) using (9). Using the indu
tionhypothesis we obtain the following formula for #Lin(Phom
m+1, D).

∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+

(
n+D − 1

D

)

−
∑

0≤2i≤D−2

(−1)i
(

m

i+ 1

)(
n+D − 2i− 3

n− 1

)

=
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+
∑

0≤2i≤D

(−1)i
(
m

i

)(
n+D − 2i− 1

n− 1

) (12)Exploiting (ml ) = (m−1
l

)
+
(
m−1
l−1

) yields
(12) =

∑

0≤2i≤D

(−1)i
(
m+ 1

i+ 1

)(
n+D − 2i− 1

n− 1

)
.

⊓⊔
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omplexity of the XL algorithm is essentially the workload of theGaussian Elimination step and thus given by (n+D+2
D+2

)ω for 2 ≤ ω ≤ 3. Forplain Gaussian Elimination we have ω = 3. Using sparse matrix algebra, we 
anassume ω = 2 [32℄. Table 6 give the saturation degree D + 2 for some pra
ti
alimportant 
hoi
es of m equations and n = m − r variables, i.e. r variables areguessed. The 
orresponding log2 
omplexity, in
luding guessing over F28 , 
an befound in table 7.
m\r 0 1 2 3 55 - 5 3 2 210 - 10 6 5 315 - 15 8 7 520 - 20 11 9 725 - 25 13 11 930 - 30 16 14 11Table 6. Degree D + 2 of XL.

m\r 0 1 2 3 55 - 22 25 29 4010 - 41 39 43 5215 - 60 51 55 6320 - 80 66 67 7525 - 100 78 79 8730 - 119 93 94 98Table 7. Complexity of XL over F286 Complexity Analysis of MutantXLAgain, the 
ru
ial question is how many equations produ
ed by mutants arelinearly independent to the previous ones. We give a nontrivial upper boundon this number. Assuming this bound to be tight we are able to 
al
ulate thesaturation degree of MutantXL, whi
h mat
hes empiri
al data. To 
on
lude we
ompare MutantXL to Gröbner basis algorithms like F4 and show that it solvesat the degree of regularity more often than not, but never below.First we observe that not all mutants are useful, as some of them trivially produ
elinearly dependent elements.De�nition 7 (trivial mutant). Let D+2 be the saturation degree of Mutant-XL. We 
all mutants (
f. Def. 3) in the linear hull of XLinhD−1 trivial.The de�nition of trivial mutants is motivated by the following observation. Let
g be a trivial mutant, i.e. g ∈ span(Blowinhd ), deg(g) < (d + 2) and d < D. Forevery x ∈ MonD−d we obtain by xg a mutant of BlowinhD . Thus all the linearlyindependent equation produ
ed by trivial mutants are produ
ed twi
e by non-trivial mutants of BlowinhD .Let DBlowinh

D
,n := dim(span(XLinhD )) − dim(span(XLinhD−1)) denote the di�eren
ebetween the dimensions of the ve
tor spa
es generated by XLinhD and XLinhD−1 orto put it simpler the number of new linearly independent equations produ
ed byBlowinhD . We 
al
ulate DBlowinh

D
,n using (11) by

DBlowinh
D

,n = IXLinh
D

,n − IXLinh
D−1,n

= IBlowhom
D

,n+1 − IBlowhom
D−1,n+1 . (13)
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o Thomae, Christopher WolfRe
all the strategy of MutantXL (
f. se
tion 3.4). In step 0 we produ
e XLinhD sim-ilar to the XL algorithm. In step 1 we determine all nontrivial mutants throughBlowinhD and multiply them by all monomials with degree at most k, with k ∈ Nfull�lling the following 
ondition.
k−1∑

j=0

|MonD+2−j | ≤ DBlowinh
D

,n ≤
k∑

j=0

|MonD+2−j | . (14)For the sake of simpli
ity we use k = 1, i.e. |MonD+2| ≤ DBlowinh
D

,n ≤ |MonD+2|+
|MonD+1| illustrated in �gure 3, in our explanation. Note that neither we founda set of parameters m,n with k > 1 in step 1 nor 
ould formally proof this fa
t.But as we only distinguish the 
ases k = 0 and k > 0 in our �nal analysis thatquestion is of no e�e
t. For k = 1 mutants will produ
e at most n(DBlowinh

D
,n −

∗

∗

0

0

0

0
0

0

MonD+2︷ ︸︸ ︷
MonD+1︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
(
n+D+1

D+1

)

︷
︸︸

︷

m̃

Fig. 3. Coe�
ient Matrix Π of BlowinhD after Gaussian elimination. Here m̃ indi
atesthe number of mutants for the 
orresponding system P .
|MonD+2|) equations or nm̃ using the notation of �gure 3, as we multiply all
m̃ mutants by all n monomials of degree one. See 
orollary 4 for arbitrary k.Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 over F28 show that this trivial boundis far above the 
orre
t number of new linearly independent equations.Corollary 4. The maximal number of equations produ
ed by nontrivial mutantsis given by

k−1∑

i=1

(
n+ i− 1

i

)
|MonD+2−i|+

(
n+ k − 1

k

)(
DBlowinh

D
,n −

k−1∑

i=0

|MonD+2−i|

)
.Our nontrivial upper bound uses the fa
t that all nm̃ equations produ
ed bymutants are impli
it equations of BlowinhD+1. Exa
tly DBlowinh

D+1,n
(see eqn. 13)of them are linearly independent to XLinhD . But they all 
ontain monomials of
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ed by mutants have maximal degree D + 2 and thus�rst all |MonD+3| monomials have to be redu
ed. Therefore DBlowinh
D+1,n

−|MonD+3|is an upper bound on the number of linearly independent equations produ
edby mutants. For arbitrary k this leads to the following upper bound.Corollary 5. A nontrivial upper bound on the number of linearly independentequations produ
ed by mutants is given by
k∑

i=1

(
IXLinh

D+i
,n − IXLinh

D+i−1,n
− |MonD+2+i|

)

= IXLinh
D+k

,n − IXLinh
D

,n −
k∑

j=1

|MonD+2+j | . (15)In step 2 we would redu
e the equations obtained in step 1 and thus re
eivenew mutants whi
h we would multiply by all monomials of a 
ertain degree toobtain new equations and so on and so forth. We 
an iterate this pro
ess andthus get an upper bound on the number of new linearly independent equationsprodu
ed by mutants, if we 
onsider k su
h that equation 15 is maximal. We donot even have do go that far, as obviously T − I is a trivial upper bound and we
an show that for k → ∞ equation 15 mat
hes these trivial bound. Let thereforetransform equation 15 as follows.
IXLinh

D+k
,n − IXLinh

D
,n −

k∑

j=1

|MonD+2+j |

=

(
n+D + 2

D + 2

)
− IXLinh

D
,n + IXLinh

D+k
,n −

(
n+D + k + 2

D + k + 2

)

=

(
n+D + 2

D + 2

)
− IXLinh

D
,n −

D+k∑

i=0

(−1)i
(
m− n− 1

i

)(
m

D + k + 2− i

)

︸ ︷︷ ︸
=:ΩNote, the se
ond equality is due to Yang and Chen [35℄. Obviously Ω is zero if

D+ k+2−m > i > m− n− 1 and thus for k > 2m− n− 3−D the number ofnew linearly independent equations produ
ed by mutants is upper bounded by
T − I, what is exa
tly the range left until we obtain maximal rank. Note thatdepending on the solution of the MQ-system T = I might be impossible. But as
T −I < D+2 su�
es to �nd a solution using MutantXL the upper bound mightnot be mat
hed but su�
iently tight to obtain a solution. Even if we are notable to proof that mutants produ
e su�
iently many equations to solve theMQ-system, there are three good arguments. First all the equations are from di�erentspa
es BlowinhD+i for i > 0. Se
ond, if we multiply equations with monomials ofdegree one that are impli
itly from BlowinhD+k and D+k is even, than all multiplesshould be linearly independent as new trivial syzygies are only introdu
ed fromodd to even degree (
f. se
. 5). And last but not least experimental eviden
e. We
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o Thomae, Christopher Wolfdid experiments for 2 ≤ n ≤ 7 and n+ 1 ≤ m ≤ (n+ 1)n/2 whi
h all 
on�rmedthe saturation degree for MutantXL given in the following lemma.Lemma 4. If we assume T−I to be a su�
iently tight upper bound on the num-ber of new linearly independent equations produ
ed by mutants, then MutantXLsolves at saturation degree D + 2 as soon as nontrivial mutants o

ur, i.e.
DBlowinh

D
,n >

(
n+D + 1

D + 2

)
.We want to mention that a similar result was given by Yang and Chen [35,Prop.4℄ looking at the problem from a di�erent perspe
tive. They also state thatMutantXL (respe
tively XL2) solves as soon as Mutants o

ur. This happens assoon as all top-degree monomials are eliminated. If we separate the top-degreemonomials of every equation, we 
an think of an homogeneous system with

n variables or equivalently an inhomogeneous system of n − 1 variables. ThusYang and Chen 
on
luded that Mutants �rst o

ur at the saturation degree ofXLinhD (n− 1). Due to the following equality this is equal to lemma 4.
DBlowinh

D
,n = IXLinh

D
,n − IXLinh

D−1,n
= IXLinh

D
,n−1By having a 
loser look at the problem, espe
ially by 
orollary 5, we gave addi-tional intuition and hopefully did a step to proof lemma 4 without assumptions.In �gures 4 and 5 we 
al
ulated the saturation degree D + 2 of MutantXLwith the degree of regularity dreg [5℄ of Gröbner basis algorithms like F4 orF5 for random MQ-systems with n ∈ [1, 10] respe
tively n ∈ [1, 30] variablesand m ∈

[
n+ 1, n(n+1)

2

] equations. Note, the 
ase m = n is an ex
eption, as
D + 2 = 2m both for XL and MutantXL.In a nutshell, MutantXL almost always solves at the degree of regularity. Onlyin very few 
ases, ex
ept m = n, it solves at most one degree higher than F4/F5.Table 8 and 9 give numeri
al values. Table 10 show the 
orresponding di�eren
eof the saturation degree of MutantXL and dreg. To mention the gain of Mutan-tXL over XL, table 11 shows the di�eren
e between the saturation degrees ofboth.
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o Thomae, Christopher WolfThe 
omplexity of MutantXL is determined by the Gaussian elimination stepon all m(n+D
D

) equations produ
ed by XL and the number of mutants�if any.The latter is 
aptured by max{0, (n+D+2
D+2

)
− I −D − 2

}. Thus if m = n andwe guess r variables over Fq beforehand, the 
omplexity of MutantXL given intable 13 is 
al
ulated by
(
m

(
n− r +D

D

)
+max{0,(n− r +D + 2

D + 2

)
− I −D − 2

})ω

· qr.As Bettale et al. we use ω = 2 for the linear algebra 
onstant, to make theirhybrid approa
h algorithm 
omparable to our analysis of MutantXL. Table 12gives the 
omplexity of the HybridF5 algorithm, whi
h is 
omputed through
O

((
m
(
n+dreg−1

dreg

))2). Note for m = 20 and guessing one or two variables over
F28 we obtain the same results as in [6, table 4℄. The values in the tables arerounded Log2 
omplexities. The exa
t value for m = 20, r = 1 and F28 is 66.73respe
tively 67.79 for r = 2.Comparing values of table 12 and 13 suggest that MutantXL is faster than F5in many 
ases. Due to [2℄ that should be impossible. We think the reason forthat phenomena is the 
omplexity given in [6℄, whi
h should be a upper boundthat is not tight. If we use O

((
n+dreg

dreg

)2) instead (
f. [5℄), F5 indeed is fasterthan MutantXL as long as the degree of regularity is smaller or equal to thesaturation degree (see table 14).7 Comparison of Memory ConsumptionUsing XL, MutantXL or F4/5 in pra
ti
e brings new 
hallenges. In parti
ular,the memory 
onsumption of these algorithms seriously hinders pra
ti
al appli-
ations. Therefore, we outline the overall memory 
onsumption of F4 (upper andlower bound), of the rather memory friendly WiedemannXL, and MutantXL. Inall 
ases, we assume that we need ⌈log2 q⌉ bit to store one �eld element.Note that all memory bounds 
an be improved by spending an extra workloadof qr for some small r ∈ N>0. In parti
ular for r = 1, 2 this is usually feasible.
m\r 0 1 2 3 55 6 3 3 2 210 11 6 5 4 315 16 8 7 6 420 21 11 9 8 625 26 13 11 10 830 31 16 14 12 10Table 8. Degree of Regularity dreg.

m\r 0 1 2 3 55 32 4 3 2 210 - 6 5 4 315 - 9 7 6 420 - 11 9 8 625 - 14 11 10 830 - 16 14 12 10Table 9. Saturation Degree (D+2) ofMutantXL.
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m\r 0 1 2 3 55 26 1 0 0 010 - 0 0 0 015 - 1 0 0 020 - 0 0 0 025 - 1 0 0 030 - 0 0 0 0Table 10. Di�eren
e of D + 2 of Mu-tantXL and dreg.

m\r 0 1 2 3 55 0 1 0 0 010 - 4 1 1 015 - 6 1 1 120 - 9 2 1 125 - 11 2 1 130 - 14 2 2 1Table 11. Di�eren
e of D + 2 of XLand MutantXL
m\r 0 1 2 3 55 20 21 27 32 4010 41 38 42 46 5715 62 51 55 59 6720 83 67 68 72 7925 103 79 80 84 9130 123 95 96 96 104Table 12. Complexity of F5 over F28using [6℄.

m\r 0 1 2 3 55 - 21 25 32 4010 - 34 37 41 5215 - 50 50 54 6020 - 62 62 66 7325 - 78 75 78 8530 - 90 91 91 97Table 13. Complexity of MutantXLover F28 .For some parameter sets, this 
an also improve the overall atta
k (e.g. FXL orHybridF5).Lemma 5 (Memory Bounds for F4/5). The memory requirements (in bits)for F4/5 are bounded from above byMemUpperF4/5(q, n, dreg) = ⌈log2 q⌉

(
n+ dreg − 1

dreg

)2The lower bound is given byMemLowerF4/5(q, n, dreg) = ⌈log2 q⌉

(
n+ dreg − 1

dreg

)
n(n+ 1)

2Proof. MemUpperF4/5 is given by the number of monomials. As the number ofmonomials equals the number of rows, this is the size of the 
orresponding ma-trix. Without assuming sparsity, we need as many elements to store this matrix.In 
ontrast, MemLowerF4/5 assumes the same number of rows/
olumns, but onlythe minimal number of 
oe�
ients, i.e. n(n+ 1)/2.From a pra
ti
al point of view, both bounds are too vague: Neither are the rowsof the 
oe�
ient matrix Π in F4/5 dense, nor fully sparse. Unfortunately, we arenot aware of a treatment of this question in the open literature.



28 Enri
o Thomae, Christopher Wolf
m\r 0 1 2 3 55 18 18 25 29 4010 37 33 37 41 5215 56 45 48 52 6020 76 59 60 64 7125 96 71 72 76 8330 115 86 87 88 95Table 14. Complexity of F5 over F28 using [5℄.Lemma 6 (Memory Bounds for XL). XL needs at least a total ofMemLowerXL(q, n,D) = ⌈log2 q⌉

(
n+D + 1

D + 2

)
n(n+ 1)

2bits for saving the 
oe�
ient matrix, and at mostMemUpperXL(q, n,D) = ⌈log2 q⌉

(
n+D + 1

D + 2

)2Proof. As for lemma 5, we 
onsider the 
ase of extremely sparse matri
es (lowerbound) and dense matri
es.Corollary 6. WiedemannXL needs a total ofMemWiedXL(q, n,D) = MemLowerXL(q, n,D)memory for its 
oe�
ient matrix.Motivation for this 
orollary: As we do not need to perform row or 
olumnoperations on the 
oe�
ient matrix, we 
an preserve the sparsity. Consequently,we a
hieve the lower memory bound of XL.Lemma 7 (WiedemannMutantXL). Combining the ideas of Wiedemann andMutantXL, we a
hieve the following upper bound on the memory 
onsumption:MemWiedMutantXL(q, n,D) =MemWiedXL(q, n,D) +
log2 q

n

(
n+D + 1

D + 1

)((
n+D + 2

D + 2

)
− IXLinh

D

)Proof. To produ
e the mutants, we need to store the whole matrix in Wiedemannfashion. This explains the �rst part of the sum. Se
ondly, we obtain mutants. Forthese, we know that their �rst (n+D+1
D+2

) 
olumns must be all-zero. A

ordingly,we only need to save the following (n+D+1
D+1

) 
oe�
ients for ea
h degree. We haveto produ
e at most T − I new equations by multiplying mutants by monomials.We need at most (T − I)/n mutants to a
hieve this goal.
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all Wiedemann's algorithm for our 
urrent 
oe�
ient ma-trix around (T −I)/n times (assuming to optimizations like Blo
k-Wiedemann).Hen
e, our implementation will be slowed down by this fa
tor. On the otherhand, we 
an usually solve with a mu
h smaller value D and hen
e gain overplain XL.All lemmata are summarized in Figure 6. We see that XL 
onsumes far lessmemory than F4/5�regardless if we assume the higher or lower memory 
on-sumption. WiedemannXL is a step in between: Here, we have less memory thanfor F4/5 (upper 
ase), but more memory for F4/5 (lower 
ase). Reason: Wiede-mannXL needs a higher saturation degree D + 2, so it is outperformed by F4/5under ideal 
onditions (all rows are sparse). At �rst sight, the memory 
onsump-tion of WiedemannMutantXL looks surprising. However, we are kind of 
heatinghere as we only need to store the mutants and then 
ompute the intermediaterows on the �y.

5 10 15 20 25 30 35 40
101
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1021

1030

Variables
Memory

up F4/5XLWiedXLWiedMutXLlow F4/5

Fig. 6. Memory 
onsumption of di�erent algorithms for m = n+ 2 and q = 256.
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