
Solving Systems of Multivariate QuadratiEquations over Finite Fieldsor: From Relinearization to MutantXLEnrio Thomae, Christopher WolfHorst Görtz Institute for IT-seurityFaulty of MathematisRuhr-University of Bohum, 44780 Bohum, Germany{enrio.thomae,hristopher.wolf}�ruhr-uni-bohum.de,hris�Christopher-Wolf.deAbstrat. In this artile we investigate algorithms for solving non-linearmultivariate equations over �nite �elds and the relation between them.For non binary �elds usually omputing the Gröbner basis of the or-responding ideal is the best hoie in this ontext. One lass of algo-rithms is based on Buhberger's algorithm. Today's best algorithms likeF4 and F5 belong to this lass. Another strategy to solve suh systemsis alled eXtended Linearization (XL) from Eurorypt 2000. In the pastboth strategies were treated as di�erent ideas and there was a heateddisussion whih of them to prefer. Sine Ars et al. proved in 2004 thatXL is a redundant version of F4, the latter seemed to be the winner.But that was not the end of the line as piee for piee the idea emergedthat both lasses are only di�erent views on the same problem. We eventhink that they are just di�erent time-memory optimizations. One in-diation to that an be found in the PhD of Albreht, who introduedMatrixF5, a F5 version of XL. A seond indiation an be found in thePhD of Mohamed, who introdued a memory-friendly version of XL usingWiedemanns algorithm. We want to give further evidene by providinga theoretial analysis of MutantXL. We show that MutantXL solves atthe same degree of regularity as its ompetitors F4 and F5 for most in-stanes. Thereby we also on�rm reent results of Albreht, who showedthat MutantXL is a redundant version of F4, i.e. it never solves belowthe degree of regularity of F4. We show that MutantXL has, omparedto WiedemannXL, to pay its gain in e�ieny with memory.To enhane the understanding of the whole XL-family of algorithms wegive a full overview from Relinearization over XL to MutantXL and pro-vide some additional theoretial insights.



2 Enrio Thomae, Christopher Wolf1 IntrodutionSolving systems of Multivariate Quadrati (MQ) equations is hard in general.More preisely, the assoiated MQ-problem is known to be NP-omplete [25℄.The seurity of many ryptosystems relies diretly or indiretly on this problem,what makes solving systems of MQ equations an established tool in ryptanal-ysis.Todays best known algorithms to solve suh systems are based on a breakthroughresult due to Bruno Buhberger [7℄ in 1965. He used so-alled S-polynomials toompute the Gröbner Bases of the ideal spanned by the MQ-system. This algo-rithm an be seen as a generalization of the well known Gaussian Elimination forlinear systems. In 1999 Jean-Charles Faugère proposed a more e�ient variantof Buhberger's algorithm by using the Maaulay matrix as well as sparse matrixalgebra and alled it F4-algorithm [17℄. In 2002 he also got rid of the redutionsto zero and published the F5-algorithm [19℄. In pratie F5 and its variants havean impressive trak reord in bringing down ryptographi systems and hal-lenges [18, 20, 21, 23, 22, 6, 24℄. On the theoretial site a omplexity analysisof both algorithms was unknown until Bardet et al. ame up with a solutionin 2005 [5℄. Before then it was hard to theoretially analyze the omplexity ofattaks using F4 or F5. This might be the reason why Kipnis and Shamir de-veloped a simpler but slower algorithm alled Relinearization to analyze theirryptanalysis of the HFE publi key ryptosystem in 1999 [26℄. One year laterCourtois et al. ame up with a similar but salable algorithm named eXtendedLinearization or XL for short [12℄. As the idea is very simple, it turned out thatLazard proposed a very similar algorithm already deades before [27℄. Unfortu-nately the latter provided only a bad upper bound on the omplexity and Moh[29℄ pointed out that the omplexity analysis of XL was �awed and way moredi�ult as for Relinearization. So, at this time both XL and F5 su�ered froma missing omplexity analysis. Nevertheless Courtois and Pieprzyk laimed tohave broken AES [14℄ using a variant of XL, alled XSL, in 2002. At least sinethey were disproved by Cid and Leurent [9℄ only two years later, the ommunityof ryptographers beame inreasingly reserved against this method, even if theomplexity analysis is understood quit well today. This is mainly due to Moh[29℄, Diem [15℄ and Yang and Chen [35℄.During the last years XL and F5 were treated as two di�erent algorithms andthere was a heated disussion whih of them is the better hoie for ryptographiproblems. For example Ars et al. [3℄ showed 2004 that XL is a redundant versionof F4, i.e. it produes more equations than neessary. In 2011 Albreht et al.[2℄ even showed that MutantXL, one of the most promising variants of XL, is aredundant version of F4. On the one hand these results suggest that F4/F5 isalways faster than the XL-family. On the other hand Mohamed et al. introdueda variant of XL using Wiedemann's algorithm [32, 31℄ and thus onsuming lessmemory than F4.This immediately suggests one of the questions we want to disuss in this artile:Might it be possible that both XL and F5 are just di�erent views of the sameproblem? One attempt in this diretion is due to Albreht [1℄ who started with



From Relinearization to MutantXL 3the polynomial view of F5 and ended with the matrix view of XL by introduingMatrix-F5. Essentially this algorithm applies the F5 riteria to XL and providesa Gröbner basis as output. Unfortunately Matrix-F5 is neither faster nor needsless memory than F5.1.1 Organization and AhievementThis artile gives an overview of the XL-family with a strong link to Gröbnerbasis algorithms and the most promising variant of XL, namely MutantXL oralso alled XL2. Our work an be seen in line with the overview of XL-likealgorithms of Yang and Chen [35℄, the summary of XL-algorithms with fous onapplying Wiedemanns algorithm in the PhD of Mohamed [31℄ and the F5 viewon XL in the PhD of Albreht [1℄.First we shortly reap the well known tehnique of Relinearization in setion 3.1.Seond we proof that this is a speial ase of the XL algorithm in setion 3.3.Third we shortly introdue most of the variants of XL, with a speial fous onMutantXL in setion 3.4. Setion 4 deals with the question how random systemsof MQequations look like. Setion 5 will repeat the omplexity analysis of XL.In setion 6 we give a omplexity analysis of MutantXL and observe that most ofthe time it solves at the same degree as F4 and F5, what somehow on�rms theresults of Albreht et al. [2℄. Setion 7 investigates the memory onsumption ofF4/F5, MutantXL and WiedemannXL and thus gives rise to the assumption thatthey are di�erent time-memory optimizations of the same lass of algorithms.2 NotationHere we introdue the notation we use throughout the artile. As mentionedabove, solving non-linear systems of m equations and n unknowns is a di�ultproblem in general. Restriting to the seemingly easy ase of degree 2 equa-tions is equally di�ult, as there is a polynomial time redution. Atually theassoiated problem to deide if some system is solvable or not, also known as
MQ-problem, is proven to be NP-omplete [25℄.Let P : Fn

q → F
m
q be an MQ-system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0... (1)
p(m)(x1, . . . , xn) = 0,with

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑

1≤i≤n

β
(k)
i xi + α(k). (2)



4 Enrio Thomae, Christopher WolfWe all equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-neous ase onsists only of quadrati terms and is thus de�ned by
p(k)(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)We need the lassi�ation into homogeneous and inhomogeneous polynomialslater on, beause it is not always easy to see that formulas for both ases areequal after transforming an inhomogeneous system in a homogeneous one.Let π(k) be the oe�ient vetor of p(k)(x1, . . . , xn) in lexiographi order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ(k)

nn , β
(k)
1 , . . . , β(k)

n , α(k)),then Π denote the oe�ient matrix of P
Π :=




π(1)...
π(m)


 .Denote by IΠ the number of linearly independent equations of Π . More for-mal IΠ is the dimension of the vetor spae generated by {π(k)|1 ≤ k ≤ m}.Sometimes we just write I instead of IΠ . The number of di�erent monomialsourring in P is denoted by T .Note that the problem of solving non-linear equations beomes easier ifm exeeds

n or vie versa. Even if not proven yet, experiene suggest that m = n is thehardest instane. The naive algorithm is to solve (1) by linearization, i.e. tosubstitute every monomial in p(k) by a new variable and to solve the obtainedlinear system of equations Π via Gaussian Elimination. This leads to a orretsolution if we have m = n(n+1)
2 + n linearly independent equations, i.e. if thenumber of linearly independent equations I is equal to the number of monomials

T . Otherwise we obtain an exponential number of parasiti solutions. With thetehnique of Relinearization, introdued in [26℄, we an solve P (asymptotially)if we have m ≥ 0.09175 · n2 linearly independent equations. Lowering the trivialfator of 1
2 to roughly 1

10 was a big leap and su�ient to ryptanalyze HFE.3 From Relinearization to MutantXL3.1 RelinearizationThe idea of Relinearization is very lear and simple. Given a random MQ-system P we �rst linearize, i.e. introdue new variables yk := xixj . For thesimpliity of the analysis we assume P to be homogeneous. That means thenumber of unknowns xixj is (n+1
2

)
= n(n+1)

2 . Notie that this is no restrition aswe an express any non-homogeneous system in form of a homogeneous systemby introduing one more variable. For random systems it is very likely that all



From Relinearization to MutantXL 5of the m equations are linearly independent, f. setion 4. This underdeterminedsystem of linear equations is now solved by Gaussian Elimination, see �gure 1for illustration. As we an see there, we obtain q
n(n+1)

2 −m parasiti solutions in
ym+1, . . . , yn(n+1)

2

, i.e. a number exponential in n.
∗

0

0

Π

x1x1 x1x2 . . .
n(n+1)

2
−m remaining unknowns

︷ ︸︸ ︷

y1 y2 . . . ym ym+1 . . .Fig. 1. Coe�ient Matrix Π of P after Gaussian eliminationAfter linearization both y1 := x1x1 and y2 := x1x2 are two independent lin-ear variables. But from an algebrai point of view this is not true as both y1and y2 depend on x1. Relinearization exploits this struture to eliminate par-asiti solutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)
2

impliitlyvia new equations. The following equations are trivially true and also linearlyindependent for some ya = xixj :
xixjxkxl = xixkxjxl = xixlxjxk (4)

⇔ yi1yi2 = yi3yi4 = yi5yi6Kipnis and Shamir required i < j < k < l in the above equation. There are (n4)possible hoies for xixjxkxl and thus we get 2(n4) linearly independent equationsby (4). If this is larger than the number of unknowns in the remaining variables
y's we are done and an solve the system, i.e. for

2

(
n

4

)
≥

(n(n+1)
2 −m+ 1

2

)
.For m in the same magnitude as n this is not the ase in general. For m = εn2and only onsidering the n4 part, we get the following asymptoti equation

0 ≤ −ε2 + ε−
1

12and hene ε ≥ 0.09175.Note that for inhomogeneous equations the overall analysis is the same but witha bigger number of unknowns. By
2

(
n

4

)
≥

(n(n+1)
2 + n−m+ 1

2

)
,



6 Enrio Thomae, Christopher Wolfwe obtain the same asymptoti result. But later in the exat analysis we willneed to distinguish between these two ases, as Relinearization in the homoge-neous ase is exatly the same as XL of degree 2.3.2 The XL algorithmThe idea of XL [12℄ is simpler but not as easy to analyze. Basially we multiplyevery equation of P by every monomial of a ertain degree D. Obviously thispreserves the original solution. At some pointD is large enough to obtain roughlyas many linearly independent equations as monomials and thus we an solve thesystem by linearization. We all this D solving degree and the orrespondingdegree D + 2 of the polynomials saturation degree. The ruial question is, howmany of the produed equations are linearly independent. We will look at thisin setion 5. First let us de�ne the XL algorithm in a rigorous way.De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneousquadrati polynomials p(k) as de�ned in (2) and P hom := {p(k)| 1 ≤ k ≤ m} theset of homogeneous quadrati polynomials p(k) as de�ned in (3). We de�ne theset of all monomials of degree D ∈ N0 byMonD(n) := {
D∏

j=1

xij | 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.Multiplying Pinh by all monomials of degree D yields the setBlowinhD (n) := {ab | a ∈ MonD(n) and b ∈ Pinh}.The set BlowhomD (n) is de�ned analogously. The following set desribes what isommonly used as XL algorithm of degree D.XLinhD (n) :=
D⋃

i=0

Blowinhi (n).If n is lear out of the ontext, we just write MonD, BlowinhD or XLinhD .Notie that XLinhD (n) and BlowhomD (n+1) are equivalent sets of polynomials andthus we an restrit our analysis to the homogeneous ase (see setion 5 for aproof). Furthermore we desribe the XL algorithm for MQ-systems only. Firstthis is the most important ase for ryptanalysis and seond substituting theterm D + 2 by D + deg(P ) easily generalizes the algorithm.De�nition 2 (XL algorithm). First we generate XLinhD and hek if the num-ber of linearly independent equations I is equal to the number of produed mono-mials T subtrated by D+2. In this ase we linearize the system and solve it byGaussian elimination. Notie, if T − I ≤ D + 2 we an hoose the order of themonomials suh that we obtain at least one univariate equation after Gaussianelimination, whih an be solved, e.g. by Berlekamp's algorithm. If T−I > D+2we set D := D + 1 and try again.



From Relinearization to MutantXL 7Another way of looking at this algorithm is to �rst homogenize P and thenjust produe BlowhomD (n + 1). Notie that the orresponding oe�ient matrixof BlowhomD (n+ 1) is also known as Maaulay matrix. We speak of XL of degree
D+2, referring to the highest total degree of all polynomials and not the solvingdegree. This degree D + 2 is alled the saturation degree of XL.3.3 Relinearization as speial ase of XLThe laim of Relinearization being a speial ase of XL was already made inthe paper that introdued XL [12℄. Due to many tehnial details the proof wasomitted and referred to the extended version of the paper, what is to the bestof our knowledge not publily available. But as we use Moh's detailed analysisof Relinearization, i.e. i ≤ j ≤ k ≤ l [29℄, to ompare Relinearization with XL,we think our proof di�ers from what Courtois et al. had in their mind.For i ≤ j ≤ k ≤ l we get

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)equations by Relinearization, instead of 2(n4) in the ase i < j < k < l. Toallow to distinguish di�erent ases in the proof we assume m to be of the form
γ−1∑
i=0

(n − i) = γn + γ−γ2

2 for γ = εn and thus m = (ε − ε2

2 )n
2 + ε

2n. Throughthis ym+1 = xγ+1xγ+1 holds and due to the graded lexiographial order forall indies of not spei�ed monomials xixj in the ∗ blok, see �gure 2, it holds
i, j > γ. This allows us to analyse xixjxkxl in the two ases i ≤ γ and i > γ.

∗

0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .Fig. 2. Coe�ient Matrix Π of P after Gaussian eliminationWe want to show that multiplying by speial monomials is exatly the same asRelinearization. Due to the hoie of m we an distinguish two ases.



8 Enrio Thomae, Christopher WolfCase 1, i ≤ γ. For i ≤ γ Relinearization behaves exatly as XL, as we will shownow. Remember Relinearization uses
xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixl︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . ,m}. (5)As XL do not make use of additional variables yi, equations (5) are trivially trueand thus of no use for solving the original system. But instead we an produeall monomials of (5) by multiplying the row ontaining yi1 , yi2 and yi3 in �gure2 with xkxl, xjxl and xjxk. This way we obtain 3 equations whih are obviouslylinearly independent. To alulate the gain of this, i.e. the di�erene betweenthe number of linearly independent equations and monomials, we have to dis-tinguish 3 more ases.Case 1.1, i < j < k < l. There are γ∑
i=1

(
n−i
3

) possibilities for xixjxkxl, as well asfor xixkxjxl and xixlxjxk for i < j < k < l. So we produe 3 γ∑
i=1

(
n−i
3

) equationswith XL by multiplying yi by xkxl. But we also produe γ∑
i=1

(
n−i
3

) new mono-mials ontaining variables xi with i ≤ γ and so the number of remaining newequations is 2 · γ∑
i=1

(
n−i
3

).Case 1.2, (j = i and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In thease of two equal and two di�erent indies we have the following 3 possibilities ofmonomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produes 2 equationsdue to xixixkxl = xixkxixl = xixlxixk. Notie that the last equality is not usedby Relinearization, beause it is trivial. So we ignore them too. Sine xixixkxlintrodue one new monomial ontaining variables xi with i ≤ γ, only xixkxixlgives us a new equation. So we have 3 ·
γ∑

i=1

(
n−i
2

) new equations in total.Case 1.3, i = j and k = l and i 6= k. In this ase Relinearization uses xixixkxk =
xixkxixk. The left monomial produes one new monomial ontaining variables
xi with i ≤ γ for every equation in XL and thus only the right monomial pro-dues γ∑

i=1

(n− i) new equations.



From Relinearization to MutantXL 9To sum up ases 1.1 - 1.3, we produed
2 ·

γ∑

i=1

(
n− i

3

)
+ 3 ·

γ∑

i=1

(
n− i

2

)
+

γ∑

i=1

(n− i)new linearly independent equations by adapting Relinearization to XL. Notiethat we produed more equations than this, but used them to eliminate thenewly introdued monomials of degree 4 with variables xi and i ≤ γ. So thenumber of unknowns in XL is only the number of degree 4 monomials ontain-ing variables xi with i > γ, i.e. (n−γ+3
4

).Case 2, i > γ. For i > γ Relinearization uses the equations
xixjxkxl = xixkxjxl = xixlxjxk.These equations annot be rebuilt by XL. But the di�erene between both meth-ods is that Relinearization introdue more variables after the seond linearizationstep and XL does not. So we do not need these equations for XL beause theyare only needed in Relinearization to eliminate variables we do not have in XL.The following equations sum up the number of unknowns and equations in bothmethods. The terms on the left hand side are the number of unknowns and onthe right hand side the number of equations.Relinearization:

(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
≤ 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

↑ ↑

∆1 ∆2

↓ ↓XL: (
n− γ + 3

4

)
≤ 2 ·

γ∑

i=1

(
n− i

3

)
+ 3 ·

γ∑

i=1

(
n− i

2

)
+

γ∑

i=1

(n− i)To show that both are equal, we have to show that the di�erene ∆1 betweenthe terms on the left is equal to the di�erene ∆2 of the terms on the right. Weus m = γn+ γ−γ2

2 (∗) and the following equality for k ∈ N>0

(
n

k

)
−

(
n− γ

k

)
=

γ∑

i=1

(
n− i

k − 1

)
.



10 Enrio Thomae, Christopher WolfWe get
∆1 =

(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
−

(
n− γ + 3

4

)

(∗)
= 2

(
n− γ

4

)
+ 3

(
n− γ

3

)
+

(
n− γ

2

)

= 2

((
n− γ

4

)
−

(
n

4

)
+

(
n

4

))

+3

((
n− γ

3

)
−

(
n

3

)
+

(
n

3

))

+

(
n− γ

2

)
−

(
n

2

)
+

(
n

2

)

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)

−2 ·

γ∑

i=1

(
n− i

3

)
− 3 ·

γ∑

i=1

(
n− i

2

)
−

γ∑

i=1

(n− i)

= ∆2 �To onlude, if we use XL and multiply not by all quadrati monomials, but onlyby speial ones, we do the same as Relinearization and thus Relinearization isa speial ase of XL. Now we want to show that it is equal in the homogeneousase of degree two.In setion 5 we will explain that the number of linearly independent equationsprodued by Blowhom2 is m(n+1
2

)
−
(
m
2

). Using this we an analyze if XL outper-forms Relinearization or not. In the homogeneous ase the following must holdfor Blowhom2 to obtain a solution.
m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)
≥ −D − 2 (6)The following must hold for Relinearization to obtain a solution.

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 −m+ 1

2

)
≥ −D − 2 (7)Beause of the following equality, inequations (6) and (7) are equal.

m

(
n+ 1

2

)
−

(
m

2

)
−

(
n+ 3

4

)

=
n4

24
+

n3

4
−

n2m

2
+

11n2

24
−

nm

2
+

n

4
+

m2

2
−

m

2

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−

( (n+1)n
2 −m+ 1

2

)



From Relinearization to MutantXL 11In the inhomogeneous ase, Blowinh2 is slightly better than Relinearization. Wegain a fator of 1
12 instead of 0.09175 in the asymptoti analysis. We an alsoderive this from the inequations above. If we homogenize the inhomogeneoussystem, we have to substitute n by (n + 1) in inequation (6). Relinearizationdoes not depend on whether equations are homogeneous or not, i.e. inequation(7) remains the same and thus both are not longer equal.3.4 Variants of XLInspired by Gröbner bases and some other observations there is a whole familyof XL-like algorithms, whih try to use some additional ideas to speed up theoriginal XL algorithm. We revisit the most important ones, namely FXL, XFL,XLF, XL', XSL, MutantXL/XL2 and WXL. [6, 11, 12, 13, 16, 30, 35℄ and givesome reasons if and under whih irumstanes they are useful. See the PhDthesis of Mohamed [31℄ for a more extensive list of XL variants.FXLFXL, or �xing extended linearization, was suggested in the original paper ofCourtois et al. [12℄ and is XL with guessing some variables beforehand. Thisis quit a good idea also for the Gröbner base algorithm F4 [6℄. An empirialon�rmation for XL was given in [36℄. They showed thatD is exponential, namely

2m, in the ase m = n and already polynomial in the ase m = n+1. So it helpsto guess at least one variable. The optimal number of guessed variables is givenby Yang and Chen [35, setion 5.2℄.XFLXFL is a variant of FXL. We hoose f variables, but do not guess them in thebeginning. We hoose the order of the monomials in a way that all monomialsontaining any of the f variables are eliminated last. Now we linearize the systemand apply Gaussian elimination. Beause the system was underdetermined, weobtain no unique solution. To do so, we guess one of the f variables and applyGaussian elimination again. Why is this stepwise guessing better than FXL insome ase? First we have to do the most work, i.e. the �rst Gaussian elimination,only one. In FXL we have to do this after every wrong guessing. But notie,that there the number of monomials is smaller, so we arefully have to alulatethe right tradeo� between the two variants. Seond XFL may use dependeniesamong the f variables and thus sueed.XLFXLF just takes the �eld equations (xq − x) = 0 in Fq into aount and was�rst mentioned in [11℄. XLF makes sense in the inhomogeneous ase, if D getslarger than (q − 2). In this ase the analysis beomes slightly di�erent, beausethe number of produed monomials derease, i.e. monomials xD+2
i redue to thealready existing xi. This means we need less linearly independent equations tosueed.



12 Enrio Thomae, Christopher WolfXL'Introdued by Courtois and Patarin in [13℄ this variant solves the equation sys-tem by XL until there are only (r+D+2
D+2

) equations in r variables left. This re-maining system of equations is solved by brute fore or other algorithms likeGröbner bases.Claim. For pratial purposes, FXL is better than XL'.Proof. We all FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smallerthan (T − I)XL'. With setion 5 and D = 2k we an write
(T − I)FXL =

(
n− r +D + 1

D + 2

)
−

k∑

i=0

(−1)i
(

m

i+ 1

)(
n− r +D − 2i− 1

n− r − 1

)

=
2k+2∑

i=0

(−1)i
(
m− n+ r

i

)(
m

2k − i+ 2

)and
(T − I)XL' = (n+D + 1

D + 2

)
−

k∑

i=0

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
−

(
r + 2k + 2

2k + 2

)

=

2k+2∑

i=0

(−1)i
(
m− n

i

)(
m

2k − i+ 2

)
−

(
r + 2k + 2

2k + 2

)
+ 1.If we plotted formula (T − I)XL' − (T − I)FXL we would see that this is greaterthan zero, i.e. FXL is better than XL', for r less than some bound depending on

k. For inreasing k the bound on r derease. It seems very hard to alulate thisbound in an analytial way. But for real world parameter k < 10 and r ≪ n weare below this bound. W.l.o.g. we an assume m = n, otherwise we substitute
r. See table 1 for the upper bound on r depending on m and k. With F5 wean solve MQ-systems up to m = 20 in 266 operations, so we stopped the tableat m = 30 for pratial purpose. Even k > 6 is of no pratial interest beausethe workload without onsidering guessing would be larger than (n+2k+2

2k+2

)ω for
2 ≤ ω ≤ 3. Note that the ases marked gray are always solvable by XLinh2k

m\k 1 2 3 4 5 65 1 0 0 0 0 010 6 3 1 0 0 015 11 8 6 5 1 120 15 13 12 10 8 625 20 18 17 15 12 1030 25 23 22 19 17 15Table 1. Upper bound on r suh that FXL ≥ XL'.



From Relinearization to MutantXL 13without guessing. In any other ase the bound on r is high enough to guess asmany variables as we need to solve the equation system with FXL. So we laimthat FXL is always better than XL' for pratial purpose.XSLCourtois and Pieprzyk [14℄ published this method at Asiarypt 2002 and laimedto have broken AES using it. This was disproved in 2005 by Leurent and Cid[9℄. The idea of XSL is to use the speial struture of the equation system.If some equations are sparse you might introdue more new monomials thanequations by multiplying them by all monomials of a speial degree. So in somease it might be better to multiply some equations only by some monomials.It still is an open question how to do this. The idea of XSL is onneted toCoppersmiths lattie based method to solve modular equations. Like in XL youmultiply the equation by so alled shift polynomials. Choosing the orret shiftset is a di�ult problem. In the ase of two unknowns, we an plot the Newtonpolytope and get an intuition. But in multivariate ryptography you deal witha lot more unknowns. So it even is an open problem to �nd the orret shift setfor some given equation.MutantXLOne of the most e�ient variants of XL is alled MutantXL [16, 30℄ respetivelyXL2 [35℄. It is laimed to be as fast as F4 in some ases. This laim was derivedfrom experiments on HFE [8℄.Let I be the number of linearly independent equations produed by XLinhD and
T =

(
n+D+2
D+2

) the number of monomials of degree ≤ D+2. If (T − I) > (D+2)it is highly unlikely that XL �nds a univariate polynomial and thus solves thesystem. As outlined above, XL will ontinue with D := D + 1. MutantXL isa step in between. Instead of doing a full extension from D to D + 1 it usesequations that would be produed by XLinhD+k with k > 0 as long as they do notintrodue new monomials. To this aim we use polynomials of degree < D+2 thatare produed in the Gaussian elimination step of XLinhD . These polynomials arealled mutants. For example multiplying these polynomials by all monomials ofMon1 leads to new equations without generating new monomials. However, thisstrategy is only useful for inhomogeneous equations. In the homogeneous aseall monomials have same degree and thus mutants simply never our.De�nition 3. Let f =
m∑
i=1

gjih
(i) with h(i) ∈ P inh and gji some polynomial ofdegree ≤ D be a representation of f . This representation is not unique. The set Jdenotes all representations (j1, . . . , jm) of f . The level (lev) of this representation

j ∈ J is de�ned by
lev

(
m∑

i=1

gjih
(i)

)
:= max{deg (gjih(i)

)
| 1 ≤ i ≤ m

}
.



14 Enrio Thomae, Christopher WolfThe level (Lev) of f is de�ned by the minimum level of all its representations.
Lev (f) := min{lev( m∑

i=1

gjih
(i)

)
| j ∈ J}We all g a mutant if deg(f) < Lev(f).We will give a detailed omplexity analysis of MutantXL in setion 6.WXL, PWXL and WMXLIn his PhD thesis [31℄ Mohamed used Wiedemann's algorithm instead of Gaus-sian Elimination to derease the amount of memory needed for XL and alledthis algorithmWXL. He showed experimentally that his variant always onsumesless memory than F4. As Wiedemanns algorithm allows easy parallelization healso introdued a parallel version alled PWXL. The laim that this version isfaster than F4 is not ompletely fair as they used several proessors in parallelbut ompared to F4 running on only one proessor. In ryptanalysis it is veryommon to guess some variables before solving a system of equations. Due tothis guessing you an also easily run F4 in parallel. Combining Wiedemannsalgorithm with MutantXL is alled WMXL.4 The generi ase of random systemsTo analyze the omplexity of XL in setion 5 we need to ount the dimensionof the vetor spae spanned by {ap(k) | 1 ≤ k ≤ m and a ∈ MonD} or to put itsimpler, the number of linearly independent equations I generated by BlowhomD .Obviously if two rows of Π are linearly dependent, all their multiples are, too.Moreover, even if two polynomials share a ommon fator, we get a nontrivialdependeny in XLinh1 (see setion 5 for details). Thus it seems infeasible to deriveone formula overing all MQ-systems. Instead we onentrate our analysis onthe generi ase of random MQ-systems. The question to deal with in thissetion is: Whih properties does a random MQ-system typially have? A �rstattempt is due to Maaulay [28℄, who de�ned regular sequenes as early as 1916.De�nition 4 (regular sequene). A sequene of m polynomials (p1, . . . , pm)is regular if for all i = 1, . . . ,m, pi is not a zero-divisor in the quotient ring

F[x1, . . . , xn]/(p1, . . . , pi−1). In other words if there exists g suh that gpi ∈
〈p1, . . . , pi−1〉 then g ∈ 〈p1, . . . , pi−1〉 also holds.Aording to this de�nition regular sequenes an be viewed as sequenes with-out any speial internal struture, i.e. the only relations holding are the trivialones. More preisely gpi ∈ 〈p1, . . . , pi−1〉means that there is a linear ombinationof multiples of p1, . . . , pi−1 that equals gpi and thus gpi is linearly dependentto the equations produed by p1, . . . , pi−1. For regular sequenes this implies
g ∈ 〈p1, . . . , pi−1〉 whih means that pig ∈ 〈p1, . . . , pi−1〉 is trivially true andthus there only exist the trivial dependeny gpi = pig.



From Relinearization to MutantXL 15De�nition 4, i.e. gpi ∈ 〈p1, . . . , pi−1〉 ⇔ g ∈ 〈p1, . . . , pi−1〉 an also be written as
gpi =

i−1∑

j=1

hjpj ⇔ g =

i−1∑

j=1

ljpj (8)
⇔ gpi =

i−1∑

j=1

ljpjpi,for some polynomials hj and lj .If we denote the linear losure of degree k of a polynomial f or a set P , respe-tively, as Lin(f, k) := span ({µf : µ ∈ Monk})Lin(P, k) := span ({µp : µ ∈ Monk, p ∈ P}) ,and de�ne with #Lin(P, k) the dimension of Lin(P, k) or to put it simpler thenumber of linearly independent equations, then ondition (8) an, due to Moh[29, setion 4℄, be equivalently formulated as follows.
#(Lin({p1, . . . , pi−1}, k) ∩ Lin(pi, k)) = #Lin({p1, . . . , pi−1}, k − 2) (9)We will need this equation to proof lemma 1 later on.Bardet et al. mentioned in their omplexity analysis of Gröbner basis ompu-tations [4, 5℄ that regular systems only exists if the number of equations m isless or equal the number of variables n. Thus they introdued the de�nition ofsemi-regular systems to over the overdetermined ase m > n. Therefore they�rst needed the notion of the degree of regularity, whih is the smallest degree

d suh that the dimension of the vetor spae spanned by all polynomials of anideal I = 〈p1, . . . , pm〉 with degree d equals the number of monomials of degree
d. Or to put it simpler, the number of linearly independent equations I equalsthe number of monomials T .De�nition 5 (degree of regularity). The degree of regularity of a homoge-neous ideal I = 〈p1, . . . , pm〉 is de�ned by

dreg := min{d ≥ 0 : dim ({p ∈ I | deg(p) = d}) =

(
n+ d− 1

d

)}
.De�nition 6 (semi-regular sequene). A homogeneous sequene of m poly-nomials (p1, . . . , pm) is semi-regular if for all i = 1, . . . ,m and g suh that

gpi ∈ 〈p1, . . . , pn〉 and deg(gpi) < dreg then g ∈ 〈p1, . . . , pi−1〉 also holds.Unfortunately it is not proven yet that semi-regular sequenes are generi andthus all the proofs are built on this assumption. Diem [15℄ redued this as-sumption to the more ommon MinRank onjeture or also known as Fröbergsonjeture.



16 Enrio Thomae, Christopher WolfTo give some intuition on the behavior of random MQ-systems, we will nowalulate the probability for suh a system with m = n = 2 to be regular. In thatspeial ase de�nition 4 is equivalent to the ondition of both polynomials beingo-prime. Let f = h1h2 and g = h1h3 be two quadrati polynomials sharinga ommon fator h1, then obviously h3f = h2g is a nontrivial dependeny.Conversely if h1g = h2f and h1 /∈ 〈f〉 then obviously gcd(f, g) 6= 1. The followingorollary gives the probability of two random quadrati polynomials f, g beingnot o-prime.Corollary 1. Two randomly hosen MQ-polynomials f, g ∈ Fq[x1, x2] are noto-prime with probability
(q − 1)2 + (q3 − q)3

(q6 − q3)2
≈ O(q−3).Proof. Two randomly hosen quadrati polynomials f and g are not o-prime i�they share a ommon fator. There are (q− 1)2 possibilities for λ1, λ2 ∈ F

∗
q with

λ1g = λ2f . Let g = ab and f = ac with a, b, c ∈ F[x1, x2] and deg(a) = deg(b) =
deg(c) = 1. There exist (q3 − q) possibilities eah for a, b, c. The total amountof quadrati polynomials in Fq[x1, x2] is (q6 − q3) and thus we have (q6 − q3)2possibilities to hoose f and g. ⊓⊔For the ommon setting q = 28, the probability of a system with m = n = 2 tobe not regular is 2−24. Note that this probability quikly derease if n inrease.5 Complexity Analysis of XL revisitedThe ruial point when using XL is to determine the number of linearly inde-pendent equations I produed by BlowhomD or XLinhD . This is needed to alulate
D through T − I < D + 2 and therefore implies the omplexity of the wholealgorithm. For random equation systems (see setion 4) we will now revisit theformulas derived theoretially by Moh [29℄, Yang and Chen [35℄ or by experi-ments for D between 0 and 5 over F2 by Courtois and Patarin [13℄.We run own experiments to on�rm previous results. All equations in table 2, 3and 4 were obtained by a total of several 10,000 experiments. We omitted dis-ordant values whih ourred with very low probability every time the randomsystem did not math the onditions of setion 4. All experiments were performedon a Intel Xeon X33502.66GHz (Quadore) with 8 GB of RAM using only oneore and the software system Magma V2.16-1 [10℄. Parameters were running forvarious tuples (n,m,D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50, 1 ≤ D ≤ 8.Notie, for a ground �eld Fq and D + 2 < q, the formulas are independent ofthe ground �eld. If D + 2 ≥ q we have to take the �eld equations xq = x intoaount and things get messy�at least from a theoretial perspetive. For ex-ample if q = 2 the number of monomials of degree D dereases from (

n+D−1
D

)to (nD) and besides of the trivial dependeny fg = gf there is an additional



From Relinearization to MutantXL 17dependeny due to f2 = f for f, g quadrati polynomials. The important aseof F2 was treated by Rønjom and Raddum in [34℄. See table 5 for their resultsrestrited to the homogeneous ase.Table 2. Number of linearly independent equations produed by BlowhomD , experimen-tally derived.
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nTable 3. Number of linearly independent equations produed by BlowinhD , experimen-tally derived.
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Table 4. Number of linearly independent equations produed by XLinhD , experimentallyderived.
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18 Enrio Thomae, Christopher WolfTable 5. Number of linearly independent equations produed by BlowhomD over F2.
D Number of linearly independent equations0 m1 mn2 m
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+m)nWe restrit our analysis to D + 2 < q in the whole paper. Replaing formulaswill easily over the other ases.In setion 3.2 we laimed that BlowhomD (n+ 1) and XLinhD (n) are equivalent dueto homogenization. With the formulas of table 2 and 4 we proof this laimexemplarily for D = 2:Note that for BlowhomD (n + 1), the number of monomials is (n+4

4

)
− 1 beausewe know x4

n+1 by the hoie of xn+1 = 1 for homogenization. Considering theformula I − T we get the following.Blowhom2 (n+ 1) :
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− n

: XLinh2 (n)Now we proof the formulas given in table 2 theoretially. The following resultwas given and proven indutively by Moh [29℄. We want to formulate this proofin more detail and show were the systemati linear dependenies arise.Lemma 1. If Phom is a semi-regular sequene, then the number of linearly in-dependent equations produed by BlowhomD with D = 2k+b and b ∈ {0, 1} is givenby
IBlowhom

D
,n :=

k∑

i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)− 1 + b

2(k − i) + b

)
. (10)Before proving this lemma at the end of this setion, we need some intermediateresults. First we onentrate on Blowhom2 and searh for the (m2 ) linear dependent



From Relinearization to MutantXL 19equations out of all m(n+1
2

) produed equations. Let f, g be two Multivari-ate Quadrati polynomials in n variables eah. Denote Monf , Mong the set ofmonomials in f and g, respetively. Assume the existene of some admissibleordering for multivariate polynomials f, g, e.g. degrev-lex or lex.Lemma 2. Let f, g be a pair of o-prime Multivariate Quadrati polynomials.Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be the sets ofross-wise monomial multipliation of f and g, respetively. Then these two setsprodue |F |+ |G| − 1 linearly independent equations.Proof. We denote our two polynomials by f :=
∑σ

i=1 αiai and g :=
∑τ

i=1 βibifor non-zero �eld elements αi, βj ∈ F
∗ and monomials ai, bj for 1 ≤ i ≤ σ and

1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. Theimportant property of the two sets F,G is that eah monomial ab for a ∈ Monfand b ∈ Mong exists twie, namely one in bf ∈ F and one in ag ∈ G. Thefollowing equation shows that adding all equations of F multiplied by oe�ients
βi is equal to adding all equations of G multiplied by oe�ients αi and thusthe set F ∪G is linear dependent.

τ∑

i=1

βibif =

τ∑

i=1

βibi

σ∑

j=1

αjaj =

σ∑

j=1

αjaj

τ∑

i=1

βibi =

σ∑

j=1

αjajgFor short we write fg = gf and all this relation trivial syzygy. On the otherhand assume the existene of a nontrivial syzygy h1f = h2g. As g and f areo-prime this diretly implies f |h2 and g |h1 whih ontradits that h1f = h2gis a nontrivial syzygy . ⊓⊔Corollary 2. The largest linearly independent subset of Blowhom2 for regular orsemi-regular sequenes is of size (n+1
2

)
m−

(
m
2

).Proof. By its de�nition, we have at most (n+1
2

)
m distint elements in Blowhom2 .This explains the �rst part of the sum and also gives an upper bound. Consideringall pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain (m2 ) lineardependenies. ⊓⊔Corollary 3. The largest linearly independent subset of XLinh2 is of size (n2)m+

nm+m−
(
m
2

).Proof. This orollary works similar to orollary 2. By its de�nition, we have atmost (n2)m+ nm+m elements in XLinh2 . This explains the �rst part of the sumand also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < gand also Lemma 2, we obtain (m2 ) linear dependenies. ⊓⊔Lemma 3. Let f, g be a pair of linearly independent, homogeneous Multivariate
Quadrati polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}ontains at most 2(n+k−1

k

)
−
(
n+k−3
k−2

) linearly independent equations.



20 Enrio Thomae, Christopher WolfProof. The �rst part of the sum is a result of the (n+k−1
k

) hoies of the monomial
µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we an now applylemma 2. We have |Monk−2| =

(
n+k−3
k−2

) individual hoies for v. ⊓⊔Extending this lemma from pairs to sets is kind of triky, beause sine D ≥ 4we obtain new linear dependenies between 3 and more equations. Thus we areounting linear dependenies twie if we only onsider pairs f, g. To ount allequations only one, we need (9) f. setion 4.Proof (lemma 1). First we reformulate the formula of lemma 1. The number oflinearly independent equations #Lin(P hom, D) there is given by
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
. (11)We proof this by indution via m. The ase m = 1 is trivial.Let us assume (11) holds for m. We have to show that it also holds for m+ 1.We have Phom

m+1 := P hom
m ∪ {pm+1} and write

#Lin(P hom
m+1, D) = #Lin(P hom

m , D) + #Lin(pm+1, D)

− #(Lin(P hom
m , D) ∩ Lin(pm+1, D)).The last term simpli�es to #Lin(Phom

m , D − 2) using (9). Using the indutionhypothesis we obtain the following formula for #Lin(Phom
m+1, D).

∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+

(
n+D − 1

D

)

−
∑

0≤2i≤D−2

(−1)i
(

m

i+ 1

)(
n+D − 2i− 3

n− 1

)

=
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+
∑

0≤2i≤D

(−1)i
(
m

i

)(
n+D − 2i− 1

n− 1

) (12)Exploiting (ml ) = (m−1
l

)
+
(
m−1
l−1

) yields
(12) =

∑

0≤2i≤D

(−1)i
(
m+ 1

i+ 1

)(
n+D − 2i− 1

n− 1

)
.

⊓⊔



From Relinearization to MutantXL 21The overall omplexity of the XL algorithm is essentially the workload of theGaussian Elimination step and thus given by (n+D+2
D+2

)ω for 2 ≤ ω ≤ 3. Forplain Gaussian Elimination we have ω = 3. Using sparse matrix algebra, we anassume ω = 2 [32℄. Table 6 give the saturation degree D + 2 for some pratialimportant hoies of m equations and n = m − r variables, i.e. r variables areguessed. The orresponding log2 omplexity, inluding guessing over F28 , an befound in table 7.
m\r 0 1 2 3 55 - 5 3 2 210 - 10 6 5 315 - 15 8 7 520 - 20 11 9 725 - 25 13 11 930 - 30 16 14 11Table 6. Degree D + 2 of XL.

m\r 0 1 2 3 55 - 22 25 29 4010 - 41 39 43 5215 - 60 51 55 6320 - 80 66 67 7525 - 100 78 79 8730 - 119 93 94 98Table 7. Complexity of XL over F286 Complexity Analysis of MutantXLAgain, the ruial question is how many equations produed by mutants arelinearly independent to the previous ones. We give a nontrivial upper boundon this number. Assuming this bound to be tight we are able to alulate thesaturation degree of MutantXL, whih mathes empirial data. To onlude weompare MutantXL to Gröbner basis algorithms like F4 and show that it solvesat the degree of regularity more often than not, but never below.First we observe that not all mutants are useful, as some of them trivially produelinearly dependent elements.De�nition 7 (trivial mutant). Let D+2 be the saturation degree of Mutant-XL. We all mutants (f. Def. 3) in the linear hull of XLinhD−1 trivial.The de�nition of trivial mutants is motivated by the following observation. Let
g be a trivial mutant, i.e. g ∈ span(Blowinhd ), deg(g) < (d + 2) and d < D. Forevery x ∈ MonD−d we obtain by xg a mutant of BlowinhD . Thus all the linearlyindependent equation produed by trivial mutants are produed twie by non-trivial mutants of BlowinhD .Let DBlowinh

D
,n := dim(span(XLinhD )) − dim(span(XLinhD−1)) denote the di�erenebetween the dimensions of the vetor spaes generated by XLinhD and XLinhD−1 orto put it simpler the number of new linearly independent equations produed byBlowinhD . We alulate DBlowinh

D
,n using (11) by

DBlowinh
D

,n = IXLinh
D

,n − IXLinh
D−1,n

= IBlowhom
D

,n+1 − IBlowhom
D−1,n+1 . (13)



22 Enrio Thomae, Christopher WolfReall the strategy of MutantXL (f. setion 3.4). In step 0 we produe XLinhD sim-ilar to the XL algorithm. In step 1 we determine all nontrivial mutants throughBlowinhD and multiply them by all monomials with degree at most k, with k ∈ Nfull�lling the following ondition.
k−1∑

j=0

|MonD+2−j | ≤ DBlowinh
D

,n ≤
k∑

j=0

|MonD+2−j | . (14)For the sake of simpliity we use k = 1, i.e. |MonD+2| ≤ DBlowinh
D

,n ≤ |MonD+2|+
|MonD+1| illustrated in �gure 3, in our explanation. Note that neither we founda set of parameters m,n with k > 1 in step 1 nor ould formally proof this fat.But as we only distinguish the ases k = 0 and k > 0 in our �nal analysis thatquestion is of no e�et. For k = 1 mutants will produe at most n(DBlowinh

D
,n −

∗

∗

0

0

0

0
0

0

MonD+2︷ ︸︸ ︷
MonD+1︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
(
n+D+1

D+1

)

︷
︸︸

︷

m̃

Fig. 3. Coe�ient Matrix Π of BlowinhD after Gaussian elimination. Here m̃ indiatesthe number of mutants for the orresponding system P .
|MonD+2|) equations or nm̃ using the notation of �gure 3, as we multiply all
m̃ mutants by all n monomials of degree one. See orollary 4 for arbitrary k.Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 over F28 show that this trivial boundis far above the orret number of new linearly independent equations.Corollary 4. The maximal number of equations produed by nontrivial mutantsis given by

k−1∑

i=1

(
n+ i− 1

i

)
|MonD+2−i|+

(
n+ k − 1

k

)(
DBlowinh

D
,n −

k−1∑

i=0

|MonD+2−i|

)
.Our nontrivial upper bound uses the fat that all nm̃ equations produed bymutants are impliit equations of BlowinhD+1. Exatly DBlowinh

D+1,n
(see eqn. 13)of them are linearly independent to XLinhD . But they all ontain monomials of



From Relinearization to MutantXL 23MonD+3. Equations produed by mutants have maximal degree D + 2 and thus�rst all |MonD+3| monomials have to be redued. Therefore DBlowinh
D+1,n

−|MonD+3|is an upper bound on the number of linearly independent equations produedby mutants. For arbitrary k this leads to the following upper bound.Corollary 5. A nontrivial upper bound on the number of linearly independentequations produed by mutants is given by
k∑

i=1

(
IXLinh

D+i
,n − IXLinh

D+i−1,n
− |MonD+2+i|

)

= IXLinh
D+k

,n − IXLinh
D

,n −
k∑

j=1

|MonD+2+j | . (15)In step 2 we would redue the equations obtained in step 1 and thus reeivenew mutants whih we would multiply by all monomials of a ertain degree toobtain new equations and so on and so forth. We an iterate this proess andthus get an upper bound on the number of new linearly independent equationsprodued by mutants, if we onsider k suh that equation 15 is maximal. We donot even have do go that far, as obviously T − I is a trivial upper bound and wean show that for k → ∞ equation 15 mathes these trivial bound. Let thereforetransform equation 15 as follows.
IXLinh

D+k
,n − IXLinh

D
,n −

k∑

j=1

|MonD+2+j |

=

(
n+D + 2

D + 2

)
− IXLinh

D
,n + IXLinh

D+k
,n −

(
n+D + k + 2

D + k + 2

)

=

(
n+D + 2

D + 2

)
− IXLinh

D
,n −

D+k∑

i=0

(−1)i
(
m− n− 1

i

)(
m

D + k + 2− i

)

︸ ︷︷ ︸
=:ΩNote, the seond equality is due to Yang and Chen [35℄. Obviously Ω is zero if

D+ k+2−m > i > m− n− 1 and thus for k > 2m− n− 3−D the number ofnew linearly independent equations produed by mutants is upper bounded by
T − I, what is exatly the range left until we obtain maximal rank. Note thatdepending on the solution of the MQ-system T = I might be impossible. But as
T −I < D+2 su�es to �nd a solution using MutantXL the upper bound mightnot be mathed but su�iently tight to obtain a solution. Even if we are notable to proof that mutants produe su�iently many equations to solve theMQ-system, there are three good arguments. First all the equations are from di�erentspaes BlowinhD+i for i > 0. Seond, if we multiply equations with monomials ofdegree one that are impliitly from BlowinhD+k and D+k is even, than all multiplesshould be linearly independent as new trivial syzygies are only introdued fromodd to even degree (f. se. 5). And last but not least experimental evidene. We



24 Enrio Thomae, Christopher Wolfdid experiments for 2 ≤ n ≤ 7 and n+ 1 ≤ m ≤ (n+ 1)n/2 whih all on�rmedthe saturation degree for MutantXL given in the following lemma.Lemma 4. If we assume T−I to be a su�iently tight upper bound on the num-ber of new linearly independent equations produed by mutants, then MutantXLsolves at saturation degree D + 2 as soon as nontrivial mutants our, i.e.
DBlowinh

D
,n >

(
n+D + 1

D + 2

)
.We want to mention that a similar result was given by Yang and Chen [35,Prop.4℄ looking at the problem from a di�erent perspetive. They also state thatMutantXL (respetively XL2) solves as soon as Mutants our. This happens assoon as all top-degree monomials are eliminated. If we separate the top-degreemonomials of every equation, we an think of an homogeneous system with

n variables or equivalently an inhomogeneous system of n − 1 variables. ThusYang and Chen onluded that Mutants �rst our at the saturation degree ofXLinhD (n− 1). Due to the following equality this is equal to lemma 4.
DBlowinh

D
,n = IXLinh

D
,n − IXLinh

D−1,n
= IXLinh

D
,n−1By having a loser look at the problem, espeially by orollary 5, we gave addi-tional intuition and hopefully did a step to proof lemma 4 without assumptions.In �gures 4 and 5 we alulated the saturation degree D + 2 of MutantXLwith the degree of regularity dreg [5℄ of Gröbner basis algorithms like F4 orF5 for random MQ-systems with n ∈ [1, 10] respetively n ∈ [1, 30] variablesand m ∈

[
n+ 1, n(n+1)

2

] equations. Note, the ase m = n is an exeption, as
D + 2 = 2m both for XL and MutantXL.In a nutshell, MutantXL almost always solves at the degree of regularity. Onlyin very few ases, exept m = n, it solves at most one degree higher than F4/F5.Table 8 and 9 give numerial values. Table 10 show the orresponding di�ereneof the saturation degree of MutantXL and dreg. To mention the gain of Mutan-tXL over XL, table 11 shows the di�erene between the saturation degrees ofboth.
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26 Enrio Thomae, Christopher WolfThe omplexity of MutantXL is determined by the Gaussian elimination stepon all m(n+D
D

) equations produed by XL and the number of mutants�if any.The latter is aptured by max{0, (n+D+2
D+2

)
− I −D − 2

}. Thus if m = n andwe guess r variables over Fq beforehand, the omplexity of MutantXL given intable 13 is alulated by
(
m

(
n− r +D

D

)
+max{0,(n− r +D + 2

D + 2

)
− I −D − 2

})ω

· qr.As Bettale et al. we use ω = 2 for the linear algebra onstant, to make theirhybrid approah algorithm omparable to our analysis of MutantXL. Table 12gives the omplexity of the HybridF5 algorithm, whih is omputed through
O

((
m
(
n+dreg−1

dreg

))2). Note for m = 20 and guessing one or two variables over
F28 we obtain the same results as in [6, table 4℄. The values in the tables arerounded Log2 omplexities. The exat value for m = 20, r = 1 and F28 is 66.73respetively 67.79 for r = 2.Comparing values of table 12 and 13 suggest that MutantXL is faster than F5in many ases. Due to [2℄ that should be impossible. We think the reason forthat phenomena is the omplexity given in [6℄, whih should be a upper boundthat is not tight. If we use O

((
n+dreg

dreg

)2) instead (f. [5℄), F5 indeed is fasterthan MutantXL as long as the degree of regularity is smaller or equal to thesaturation degree (see table 14).7 Comparison of Memory ConsumptionUsing XL, MutantXL or F4/5 in pratie brings new hallenges. In partiular,the memory onsumption of these algorithms seriously hinders pratial appli-ations. Therefore, we outline the overall memory onsumption of F4 (upper andlower bound), of the rather memory friendly WiedemannXL, and MutantXL. Inall ases, we assume that we need ⌈log2 q⌉ bit to store one �eld element.Note that all memory bounds an be improved by spending an extra workloadof qr for some small r ∈ N>0. In partiular for r = 1, 2 this is usually feasible.
m\r 0 1 2 3 55 6 3 3 2 210 11 6 5 4 315 16 8 7 6 420 21 11 9 8 625 26 13 11 10 830 31 16 14 12 10Table 8. Degree of Regularity dreg.

m\r 0 1 2 3 55 32 4 3 2 210 - 6 5 4 315 - 9 7 6 420 - 11 9 8 625 - 14 11 10 830 - 16 14 12 10Table 9. Saturation Degree (D+2) ofMutantXL.
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m\r 0 1 2 3 55 26 1 0 0 010 - 0 0 0 015 - 1 0 0 020 - 0 0 0 025 - 1 0 0 030 - 0 0 0 0Table 10. Di�erene of D + 2 of Mu-tantXL and dreg.

m\r 0 1 2 3 55 0 1 0 0 010 - 4 1 1 015 - 6 1 1 120 - 9 2 1 125 - 11 2 1 130 - 14 2 2 1Table 11. Di�erene of D + 2 of XLand MutantXL
m\r 0 1 2 3 55 20 21 27 32 4010 41 38 42 46 5715 62 51 55 59 6720 83 67 68 72 7925 103 79 80 84 9130 123 95 96 96 104Table 12. Complexity of F5 over F28using [6℄.

m\r 0 1 2 3 55 - 21 25 32 4010 - 34 37 41 5215 - 50 50 54 6020 - 62 62 66 7325 - 78 75 78 8530 - 90 91 91 97Table 13. Complexity of MutantXLover F28 .For some parameter sets, this an also improve the overall attak (e.g. FXL orHybridF5).Lemma 5 (Memory Bounds for F4/5). The memory requirements (in bits)for F4/5 are bounded from above byMemUpperF4/5(q, n, dreg) = ⌈log2 q⌉

(
n+ dreg − 1

dreg

)2The lower bound is given byMemLowerF4/5(q, n, dreg) = ⌈log2 q⌉

(
n+ dreg − 1

dreg

)
n(n+ 1)

2Proof. MemUpperF4/5 is given by the number of monomials. As the number ofmonomials equals the number of rows, this is the size of the orresponding ma-trix. Without assuming sparsity, we need as many elements to store this matrix.In ontrast, MemLowerF4/5 assumes the same number of rows/olumns, but onlythe minimal number of oe�ients, i.e. n(n+ 1)/2.From a pratial point of view, both bounds are too vague: Neither are the rowsof the oe�ient matrix Π in F4/5 dense, nor fully sparse. Unfortunately, we arenot aware of a treatment of this question in the open literature.
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m\r 0 1 2 3 55 18 18 25 29 4010 37 33 37 41 5215 56 45 48 52 6020 76 59 60 64 7125 96 71 72 76 8330 115 86 87 88 95Table 14. Complexity of F5 over F28 using [5℄.Lemma 6 (Memory Bounds for XL). XL needs at least a total ofMemLowerXL(q, n,D) = ⌈log2 q⌉

(
n+D + 1

D + 2

)
n(n+ 1)

2bits for saving the oe�ient matrix, and at mostMemUpperXL(q, n,D) = ⌈log2 q⌉

(
n+D + 1

D + 2

)2Proof. As for lemma 5, we onsider the ase of extremely sparse matries (lowerbound) and dense matries.Corollary 6. WiedemannXL needs a total ofMemWiedXL(q, n,D) = MemLowerXL(q, n,D)memory for its oe�ient matrix.Motivation for this orollary: As we do not need to perform row or olumnoperations on the oe�ient matrix, we an preserve the sparsity. Consequently,we ahieve the lower memory bound of XL.Lemma 7 (WiedemannMutantXL). Combining the ideas of Wiedemann andMutantXL, we ahieve the following upper bound on the memory onsumption:MemWiedMutantXL(q, n,D) =MemWiedXL(q, n,D) +
log2 q

n

(
n+D + 1

D + 1

)((
n+D + 2

D + 2

)
− IXLinh

D

)Proof. To produe the mutants, we need to store the whole matrix in Wiedemannfashion. This explains the �rst part of the sum. Seondly, we obtain mutants. Forthese, we know that their �rst (n+D+1
D+2

) olumns must be all-zero. Aordingly,we only need to save the following (n+D+1
D+1

) oe�ients for eah degree. We haveto produe at most T − I new equations by multiplying mutants by monomials.We need at most (T − I)/n mutants to ahieve this goal.



From Relinearization to MutantXL 29Note that we need to all Wiedemann's algorithm for our urrent oe�ient ma-trix around (T −I)/n times (assuming to optimizations like Blok-Wiedemann).Hene, our implementation will be slowed down by this fator. On the otherhand, we an usually solve with a muh smaller value D and hene gain overplain XL.All lemmata are summarized in Figure 6. We see that XL onsumes far lessmemory than F4/5�regardless if we assume the higher or lower memory on-sumption. WiedemannXL is a step in between: Here, we have less memory thanfor F4/5 (upper ase), but more memory for F4/5 (lower ase). Reason: Wiede-mannXL needs a higher saturation degree D + 2, so it is outperformed by F4/5under ideal onditions (all rows are sparse). At �rst sight, the memory onsump-tion of WiedemannMutantXL looks surprising. However, we are kind of heatinghere as we only need to store the mutants and then ompute the intermediaterows on the �y.
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Fig. 6. Memory onsumption of di�erent algorithms for m = n+ 2 and q = 256.
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