
An Improved Algebraic Attack on Hamsi-256

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute

Rehovot 76100, Israel

Abstract. Hamsi is one of the 14 second-stage candidates in NIST’s SHA-3 competition. The only
previous attack on this hash function was a very marginal attack on its 256-bit version published by
Thomas Fuhr at Asiacrypt 2010, which is better than generic attacks only for very short messages
of fewer than 100 32-bit blocks, and is only 26 times faster than a straightforward exhaustive search
attack. In this paper we describe a different algebraic attack which is less marginal: It is better than
the best known generic attack for all practical message sizes (up to 4 gigabytes), and it outperforms
exhaustive search by a factor of at least 512 for all messages with at least 40 blocks. The attack is
based on the observation that in order to discard a possible second preimage, it suffices to show that
one of its hashed output bits is wrong. Since the output bits of the compression function of Hamsi-
256 can be described by low degree polynomials, it is actually faster to compute a small number of
output bits by a fast polynomial evaluation technique rather than via the official algorithm.
Keywords: Algebraic attacks, second preimages, hash functions, Hamsi.

1 Introduction

The Hamsi family of hash functions [1] was designed by Özgül Küçük and submitted to the
SHA-3 competition in 2008. In 2009 it was selected as one of the 14 second round candidates of
the competition. Hamsi has two instances, Hamsi-256 and Hamsi-512, that support four output
sizes 224, 256, 384 and 512.

Previous results on Hamsi include distinguishers [4], pseudo-preimage attacks [5] and near
collision attacks [6]. However, these results do not break the core security properties of a hash
function. More recently, Thomas Fuhr introduced the first real attack on Hamsi-256 [2]. The
attack exploits linear relations between some input bits and output bits of the compression
function in order to find pseudo preimages for the compression function of Hamsi-256 (a pseudo
preimage of an arbitrary chaining value h∗i under the compression function F is a message block
M̄i and a chaining value h̄i−1 such that F(M̄i, h̄i−1) = h∗i). The pseudo preimages can then be
used in order to find a second preimage for a given message with complexity 2251.3, which is
better than exhaustive search by a factor of 24.7 ≈ 26. This is quite a marginal improvement,
whose existence depends on how we measure the complexity of various operations. In addition,
Fuhr’s attack is better than a generic long message attack only for very short messages with up
to 96 32-bit blocks1(i.e. 384 bytes). Nevertheless, it is the first attack on Hamsi-256 that violates
its core security claims.

In this paper, we develop new second preimage attacks on Hamsi-256 which are slightly less
marginal. Our best attack on very short messages of Hamsi-256 runs in time which is faster than
exhaustive search by a factor of 200. For slightly longer messages that contain at least 40 blocks,
the ratio can be improved to 512, which is about 20 times faster than Fuhr’s attack. For even
longer messages, we develop another attack which is faster than the Kelsey and Schneier attack
by a factor which is between 6 and 4 for all messages of practical size (i.e., up to 4 gigabytes). Our
short message attack exploits some of the observations made in [2] regarding the Hamsi Sbox,

1 Since Hamsi-256 is built using the Merkle-Damg̊ard construction and it has a 256-bit intermediate state, the
best known generic second preimage attack on Hamsi-256 with long messages is the Kelsey and Schneier attack
[3] that runs in time k · 2128 + 2256−k for messages of length 2k.

but uses them in a completely different way to obtain better results: While Fuhr solved linear
equations in order to speed up the search for pseudo preimages, our attacks use fast polynomial
enumeration algorithms to quickly discard compression function inputs which cannot possibly
yield the desired output.

Since the straightforward evaluation of the compression function of Hamsi-256, Fuhr’s attack,
and our attacks use different bitwise operations, comparing these attacks on Hamsi-256 cannot be
done simply by counting the number of compression function evaluations. Instead, we compare
the complexity of straightline implementations of the algorithms, counting the number of bit
operations (such as AND, OR, XOR) on pairs of bits and ignoring bookkeeping operations such
as moving a bit from one position to another (which only requires renaming of variables in
straightline programs). In this model of computation, the best available implementation of one
compression function evaluation of Hamsi-256 (given as part of the submission package in [1]
and used as the reference complexity in this paper), requires about 10, 500 bit operations. Our
best attack is about 512 times faster, and is thus equivalent to an algorithm than performs only
20 bit operations per message block.

Polynomial enumeration algorithms evaluate a polynomial function over all its possible in-
puts. Clearly, the complexity of such enumeration algorithms must be at least 2n for n-bit
functions and thus they may seem to provide little advantage over trivial exhaustive search.
However, cryptographic primitives are usually heavy algorithms that require substantial compu-
tational effort per execution. Consequently, the complexity of exhaustive search (measured by
the number of bit operations) can be much higher than 2n. However, for low degree polynomials,
the complexity of enumeration algorithms is higher than 2n only by a small multiplicative factor.
In order to attack Hamsi-256, we search for polynomials of low degree that relate some of the bits
computed by the compression function: The variables of each polynomial are chosen from the
inputs to Hamsi-256, and the output of each polynomial is either an output bit of Hamsi-256, a
linear combination of output bits of Hamsi-256, or an intermediate state bit of Hamsi-256 from
which an output bit (or output bits) can be easily computed.

Our attack on short messages of Hamsi-256 is divided into two stages: In the first stage
we find multiple pseudo preimages of a single target chaining value obtained by one of the
invocations of the compression function during the computation of the hash of the given message.
In the second stage we obtain a second preimage for the message by searching for a second
preimage for one of the target pseudo preimages that are found in the first stage (this is done by
traversing a tree-like structure of chaining values, as shown in figure 1). In both stages, we first
efficiently enumerate a set of low degree polynomials for all the possible values of a carefully
chosen set of variables which are input to Hamsi-256. We then run the compression function
only for the inputs for which the polynomial evaluations match the values of the target (or
targets). Since the compression function of Hamsi-256 mixes the chaining value less extensively
than the message, in the first stage we find only pseudo preimages by selecting our set of
input variables of the enumerated polynomials among the bits of the chaining value. In the
second stage, we have to find second preimages and thus we have to select our set of input
variables of the enumerated polynomials among the message bits. Therefore, the polynomials
enumerated in the first stage have a lower degree than those enumerated in the second stage,
implying that the first stage gives a better improvement factor than the second stage (compared
to exhaustive search). We note that our two-stage process of finding a second preimage using
an efficient pseudo preimage search algorithm is a variant of the well-known meet-in-the-middle
algorithm, described in appendix B. The difference is that the second stage of meet-in-the-middle
is performed using exhaustive search, whereas the second stage of our algorithm is optimized
using efficient polynomial enumeration algorithms.

For longer messages, the generic attack of Kelsey and Schneier becomes increasingly better
with the length, and quickly overperforms both Fuhr’s attack and our enumeration-based attack.
In this case, we develop another attack that directly plugs into and speeds up the algorithm of
Kelsey and Schneier. The attack is based on the second stage of our short message attack, but
uses different parameters since in this case we try to find a second preimage for a potentially
huge number of targets.

The fact that our short message attack is faster than Fuhr’s attack may seem surprising,
as Fuhr’s attack is based on very simple and efficient algorithms for solving linear equations,
whereas our attack is based on exponential-time polynomial enumeration algorithms. However,
linear equations are much more difficult to obtain than non-linear equations of relatively low
degree. In particular, Fuhr can obtain linear equations in only 7 or 8 variables in the first stage.
The complexity of interpolating and solving such a system is faster than exhaustive search (which
requires 27 or 28 function evaluations) only by a small factor. In the second stage, [2] can not
obtain any linear equations and proceeds by performing an exhaustive search, which makes the
attack faster than Kelsey and Schneier’s attack only for very short messages. Another reason
why our attack is faster is that in the first stage we also exploit the weak diffusion of the input
variables into some of the output bits. This allows our enumeration algorithms to evaluate some
polynomials only over the possible values of small subsets of variables in order to obtain the
values for the entire variable set.

2 Description of Hamsi-256

In this section we provide a brief description of the compression function of Hamsi-256. For more
details, please refer to its specification [1].

The compression function of Hamsi-256 takes as an input a 32-bit message block Mi and
a 256-bit chaining value hi and outputs a new 256-bit chaining value hi+1. The compression
function first expands the 32-bit message to 8 blocks of 32 bits using a linear code over GF (4):
E(Mi) = (m0,m1, ...,m7). The expanded message is then concatenated to the chaining value to
form a 512-bit state treated as a 4× 4 matrix of 32-bit blocks as follows:

(m0,m1, ...,m7, c0, c1, ..., c7) −→

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11

s12 s13 s14 s15

=

m0 m1 c0 c1
c2 c3 m2 m3

m4 m5 c4 c5
c6 c7 m6 m7

The concatenation is followed by three application of a permutation which consists of three
layer: In the first layer, the state bits are XORed with some constants. In the second layer, the
128 4-bit columns of the state undergo simultaneous applications of a 4 × 4 Sbox described in
table 1.

Table 1. The Hamsi Sbox.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

The third layer consists of several applications of a linear transformation L on the state.

(s0, s5, s10, s15) := L(s0, s5, s10, s15)
(s1, s6, s11, s12) := L(s1, s6, s11, s12)
(s2, s7, s8, s13) := L(s2, s7, s8, s13)
(s3, s4, s9, s14) := L(s3, s4, s9, s14)

Finally, the second and forth rows of the state are discarded and the initial chaining value hi
is XORed with the remaining state to form hi+1. The last message block is processed differently,
by applying this permutation 8 (instead of the standard 3) times.

3 A Direct Attack on Hamsi-256

3.1 The Properties and Weaknesses of Hamsi-256 which are Exploited by the
Attack

In the direct attack our goal is to consider the 32 message bits as variables and the 256-bit
chaining value as a fixed input and analyze the degree of the state bits after each one of the
three rounds of the Hamsi-256 compression function as polynomials in the message bits. Every
Hamsi Sbox can be described as a polynomial of degree 3 in its 4 input variables. However, due
to the way the expanded message bits and the chaining value bits are interleaved in Hamsi-256,
after 1 round of the compression function, each state bit is a polynomial of reduced degree 2 in
the message bits. This may seem insignificant, but after 2 rounds, the degree of each state bit as
a polynomial in the message is at most 6 instead of the expected value of 32 = 9. After the final
compression function round, the degree is 18 instead of the expected 27, but even this reduced
degree is too high for our algebraic attack. Instead, we exploit the low diffusion property of one
round of Hamsi-256, namely, that several output bits of the compression function depend only
on a small number of inputs from the second round.

3.2 Analysis of Polynomials of Degree 6 in 32 Variables

Since the attack on Hamsi-256 is quite marginal, we have to use every possible saving and
shortcut in the implementation of our algorithms, and can not ignore constants or low-order
terms. In particular, we show how to efficiently interpolate and evaluate any polynomial of
degree 6 in 32 variables for all the 232 possible values of its inputs using fewer than 7 · 232 bit
operations (instead of the 264 complexity of the naive evaluation of the 232 possible terms for
each one of the 232 possible inputs):

1. Given any black box implementation of the polynomial (e.g. in the form of the Hamsi-256
program), evaluate the output of the polynomial (which is a single bit value) only for input
vectors of hamming weight ≤ 6 and store all the results.

2. Compute the coefficient of each term tI of degree at most 6, where I ⊂ {0, 1, ...31}, |I| ≤ 6
represents some subset of variables multiplied together. The coefficient of tI is computed by
summing all the outputs of the polynomial obtained from all inputs which assign 0 values
to all variables that are not contained in I (where the variables that are contained in I are
assigned all possible values).

3. Allocate an array of 232 bits and copy all the coefficients of the polynomial into the array.
The coefficient tI is copied into the entry whose binary index is encoded by b0, b1, ..., b31

where bi = 1 if and only if i ∈ I. All the other entries of the array are set to 0.
4. Apply the Moebius transform [7] on the array and obtain an array which contains the eval-

uations of the polynomial for all 232 possible input values.

Step 1 requires
6∑
i=0

(
32
i

)
≈ 220 compression function evaluations. Step 2 requires

6∑
i=0

2i
(

32
i

)
<

226 bit operations. Step 3 can be combined with step 2 by writing the coefficients directly into
the array and does not require additional work. A naive implementation of step 4 requires 32 ·231

bit operations, since the generic Moebius transform consists of 32 iterations, where in each itera-
tion we add half of the array entries to the other half. However, in our case, the initial array can
contain only about 220 non zero values, whose locations are known and represent all the vectors
with hamming weight of at most 6. In the first iteration of the Moebius transform, we split the
array into 2 parts according to one variable and add only the entries whose index has a hamming
weight of at most 6 in the remaining 31 variables (the others entries are left unchanged). The

total complexity of the first iteration is thus
6∑
i=0

(
31
i

)
bit operations. In the second iteration,

each half of the array is split into 2 parts according to another variable. Similarly, we add only
the entries whose index has a hamming weight of at most 6 in the remaining 30 variables. The

total complexity of the second iteration is thus 2
6∑
i=0

(
30
i

)
. Generally, the complexity of the j′th

iteration where 0 ≤ j ≤ 25 is min(231, 2j
6∑
i=0

(
31− j
i

)
). For 26 ≤ j ≤ 31, the complexity is 231.

Summing over all iterations, we get a total complexity of less than 7 · 232. We note that it is
also possible to use the Gray-code based polynomial enumeration algorithm recently presented
in [8] which is a bit more complicated than our Moebius-based transform, and has a similar time
complexity.

Assuming that the straightforward evaluation of one Hamsi-256 compression function re-
quires about 10, 500 bit operations, step 4 is the heaviest step and dominates the complexity
of the algorithm. Note that when analyzing several polynomials which correspond to different
output bits, step 1 needs to be performed only once since every compression function evaluation
gives us the values of all the required polynomials. In addition, the bit locations XORed together
during the Moebius transformation do not depend on the evaluated polynomial, and thus the
evaluation of k unrelated polynomials can be achieved by XORing k bit words instead of single
bits. This is particularly convenient when k = 32 or k = 64, which are standard word sizes in
modern microprocessors.

3.3 Efficiently Eliminating Wrong Messages

Assume that we are given a target chaining value h∗i , and a fixed chaining value hi−1. We would
like to efficiently find a single message block Mi such that F(Mi, hi−1) = h∗i , or decide that
such a message does not exist for the given hi−1, h∗i . Due to the short message blocks of Hamsi-
256, the probability to find a desired message for random chaining values hi−1 and h∗i is about
232−256 = 2−224. Hence, to succeed with high probability for a given h∗i , we have to generate
about 2224 random values for hi−1. In order to obtain this number of chaining values, the target
h∗i must be located at least in block number 8 of the message (i.e. i ≥ 8). This implies that we
can apply our attack only when the given message contains at least 8 blocks.

The idea is to algebraically compute only a small set of output bits (indexed by N) for all
the 232 messages and compare their values to the values of those bits of the target chaining
value. If the bits match, we run the compression function for the message to compute the whole
256-bit output, and compare it to the target h∗i . Otherwise, we discard the message. Using the
algorithm of section 3.2, we efficiently evaluate only the bits produced after 2 rounds of the
compression function, which are required in order to determine the output bits specified by N .
We then combine these values as specified by the last round, and obtain the values of the output
bits indexed by N for all the possible 232 messages.

In order to minimize the complexity of the attack, we need to select a set N that is big enough
to eliminate a large number of messages with high probability. On the other hand, choosing N

too big, will force us to evaluate many bits after two rounds, increasing the complexity of the
attack. In fact we don’t need to analyze all the second round bits that are required to compute the
output bits N : We write the ANF form of the output bits N as a function of the second round
bits and note that the sum of the second round variables which are not multiplied together
(which we call the simple sum) is itself a polynomial of degree 6 in the message. Thus, the
simple sum of each such output bit can be analyzed in the same way as the second round bits
without computing separately each one of the summed bits. Note that in Step 1 of the analysis
(interpolation), evaluating the polynomial means computing the sum of variables numerically
from the output. The complexity of this computation is negligible compared to a compression
function evaluation of Hamsi-256.

After choosing the set N of output bits and the set of second round bits of degree 6 S(N)
we have to evaluate, we do the following:

1. Given that i ≥ 8: Choose an arbitrary message prefix of i − 8 blocks M1,M2, ...,Mi−8 and
compute hi−8 = F(M1,M2, ...,Mi−8, IV) (which is fixed throughout the attack). Use DFS
to traverse the tree of chaining values rooted at hi−8 by assigning values to the blocks
Mi−7,Mi−6, ...,Mi−1 and computing the next chaining value hi−1 (as shown in figure 1). For
each generated hi−1:

2. Evaluate all the bits of S(N) for all possible 32-bit message values using the algorithm of
Section 3.2 and list them as |S(N)| bit arrays of size 232.

3. Using the ANF form of the outputs bits of N as a function of the second round bits, calculate
|N | bit arrays of size 232 representing the values of the |N | output bits for all the messages.

4. Traverse the |N | bit arrays and check whether the values of the output bits in N match the
values of those bits in h∗i , for each message Mi. Store all the messages for which there is a
match.

5. For each message Mi stored in the previous step, evaluate the full Hamsi-256 compression
function output by using its standard implementation and check whether F(Mi, hi−1) = h∗i .
If equality holds, output M = M1,M2, ...,Mi. Otherwise go to step 1.

The memory requirements of the algorithm can be reduced by calculating the bits of N
iteratively and eliminating wrong messages according to the current calculated bit. We can then
reuse some memory which was used for the calculation of the previous bits of S(N) and which
is not required anymore.

Given that |N | = n1, |S(N)| = n2, and the number of bit operations per message that is
required to compute N from S(N) is n3 (calculated using the ANF form of the outputs bits),
the complexity of the attack is about 2224(n3232 + 7n2232 + 10500 · 232−n1) =
2256(n3 +7n2 +10500 ·2−n1) bit operations. Compared to exhaustive search which requires about
10500 · 2256 bit operations, this gives an improvement factor of about (n3+7n2

10500 + 2−n1)−1.
We searched for sets of output bits N that optimize the complexity of the attack. The best

set that we found is N = {5, 156, 184, 214, 221, 249} whose 6 output bits depend just on 56
second round bits. We also have to add 6 bits for the simple sums of the second round variables,
and the full list of 56+6 = 62 bits is described in appendix A. For this parameter set we get that
n2 = 62, n1 = 6 and the computation of all the evaluated output bits requires about n3 = 150
bit operations per message. We calculated this number after a few optimizations which are based
on finding some common parts in the ANF representation of the output bit polynomials (which
can be calculated only once). The improvement factor (compared to exhaustive search) of this
direct attack is therefore a very modest (150+7·62

10500 + 2−6)−1 ≈ 14. The memory complexity is
about 64 · 232 = 238 bits and can be further reduced by iterative calculation of the output bits.
We also found another interesting set of parameters: N = {5, 156, 214, 221, 249} gives a slightly
worse improvement factor of 13.

...
...

F

...

F

...

F

Partial
evaluation

F
IV

M
 (2)32

M
 (1)

Fig. 1. A sketch of the second stage of the attack. After generating a prefix of chaining values using arbitrary
message blocks, we start to traverse a tree-like structure of chaining values (shown as lightly filled boxes) using
DFS: A node is expanded by selecting the next value for the 32-bit message block (starting from 0) and applying
F on the chaining value and message block. Since a node has 232 successors, the tree has 8 levels so that the
final level contains 2256 chaining values (which is roughly the number of chaining values that we need to generate
in order to match the 256-bit target with high probability). The 7 − th level nodes are not expanded in the
standard way. Instead, we first efficiently evaluate only a small set of bits for all the 232 possible message blocks.
We then execute the compression function only for the messages for which the evaluation of those bits match the
corresponding values of the target. The attack succeeds once we find an 8− th level node that matches the target.

4 Improving the Direct Attack by Using Pseudo Preimages

While the direct attack seems to be worse than Fuhr’s attack [2] , it can be the basis for substan-
tial improvements. In this section we consider the generalized problem of finding a pseudo preim-
age, defined as a pair of a message block and chaining value M̄i, h̄i−1 such that F(M̄i, h̄i−1) = h∗i
for a given value h∗i . Whereas in the direct attack described in the previous section we could only
select our variables from the message, here we have the extra power of choosing our variables
also from the chaining value bits which are mixed less extensively than the message bits by the
Hamsi-256 compression function. By carefully choosing these variables, we can lower the degree
of the polynomials, allowing us to compute these outputs more efficiently compared to the direct
attack.

Our improved attack exploits the very interesting observations made by Thomas Fuhr in
section 3 of [2]. For a given message block M , we select our variables from the state that precedes
the first Sbox layer as follows: Let x(j) denote the j′th bit of the 32-bit word x. We define one
variable bit x(j) ∈ {0, 1} for each j such that s(j)14 = 1 and set s(j)2 = x(j), s(j)10 = x(j). In addition,
we define one variable bit y(j) ∈ {0, 1} for each j such that s(j)1 = 1, s(j)9 = 0 and set s(j)5 = y(j),
s
(j)
13 = y(j). According to [2], after 2 rounds of the compression function of Hamsi-256, the state

bits depend linearly on our variable set: We chose our variable set such that after the first Sbox
layer, only s2, s13 depend linearly on our variable set. After the first round, only s2, s7, s8, s13

depend linearly on our variable set. After the second Sbox layer, the dependency of the state on
the variables remains linear and the second diffusion layer does not change this property. Note
that for a random message, we expect |V1| = |{x(j)}j∈jx | = 16, |V2| = |{y(j)}j∈jy | = 8. We define
V = V1 ∪ V2 and for a random message we expect |V | = 24.

The observations of [2] allow us to select a relatively large set of variables such that the
degree of all the output bits in those variables is 3. In addition, there are 28 specific output
bits that depend only on 16 state bits after 2 rounds of the compression function. The indexes
of these bits are 150− 156, 182− 188, 214− 220, 246− 252. Moreover, each one of these output
bits usually does not depend on all of our input variables. We calculate for each of these output

bits the variables on which it actually depends, and efficiently enumerate (over all their possible
values) only a certain subset of output polynomials (whose size we denote by α), called the
analyzed polynomials or analyzed bits. We note that the dependencies of the 28 output bits on
our variable set are influenced by the values of the message and the chaining value, but there
are certain patterns that are common to most messages and chaining value pairs. For example,
if our variable set contains 21 variables, there is usually an output bit which depends on only
12 of our variables, another 1 or 2 output bits that depend on 13 of our variables, another 2 or
3 output bits that depend on 14 of our variables and so forth.

4.1 The Polynomial Analysis Algorithm

All the 28 polynomials defined above have degree of at most 3 in the input variables. Given a
message, a corresponding set of variables and a chaining value, we first interpolate the linear state
bit polynomials of Hamsi-256 after 2 rounds. We can then use the optimized Moebius transform
of section 3.2 (adapted to cubic polynomials) to efficiently evaluate any cubic polynomial, which
corresponds to output bits 150 − 156, 182 − 188, 214 − 220, 246 − 252 over all its inputs. These
values are written into an array of size 2|S|, where S ⊆ V is the set of input variables on
which this polynomial depends. The enumeration algorithm starts with an initialization phase

that interpolates the coefficients of the cubic polynomial by evaluating the function
3∑
i=0

(
|S|
i

)
times and performing

3∑
i=0

2i
(
|S|
i

)
bit operations. The evaluation can be done by running the

compression function, but we can use the second round polynomials in order to speed up this
process: Given that we know the values of the 16 polynomials that are input to the third round,
we can calculate the value of the output bit by evaluating 4 Sboxes and summing 4 of their
outputs. An evaluation of one Hamsi Sbox output bit requires 8 bit operations (computing the
4 Sbox outputs requires 14 bit operations, but this number is reduced for individual bits), and
the sum requires 3 more bit operations giving a total of 35 bit operations per evaluation. The 16
linear polynomials can be efficiently evaluated using a simple differential method which requires
an average of 16 bit operations per evaluation. In total, one evaluation requires 16 + 35 = 51 bit

operations and the initialization step of the enumeration algorithm requires
3∑
i=0

(51 + 2i)
(
|S|
i

)
bit operations. After optimizations similar to the ones performed in section 3.2 (which exploit
the sparseness of the coefficients in the array in most iterations of the algorithm), we get that
the algorithm itself requires an additional number of 4 · 2|S| bit operations.

4.2 The Query Algorithm

Assume that we have already analyzed polynomials pi for 1 ≤ i ≤ α where pi depends on the
subset of variables Si. The output of the enumeration of each pi is a table of size 2|Si|. These
α tables define a set of about 2|V |−α possible values for the variables such that when they are
used as chaining value bits which are plugged into the compression function, the values of the
α analyzed output bits match those of the target. Clearly, the remaining values of the variables
that do not match the target can be safely discarded. However, these 2|V |−α solutions are only
implicitly given by the tables and we have to efficiently obtain their explicit representation.

For example, assume that our set of variables is V = {v1, v2, v3, v4}, and we have analyzed
polynomials p1 that depends on S1 = {v1, v2, v4}, and p2 that depends on S2 = {v2, v3, v4}. The
table obtained after analyzing p1 contains 23 = 8 entries (an entry for each possible value of the
variables of S1). Out of these 8 entries, only entries 000, 010, 110, 111 have a value that matches

the value of the corresponding bit of the target. The other 4 entries have the complementary
value (which does not match the value of the corresponding bit of the target). Note that each
entry actually corresponds to two assignments of the 4 variables (For example, the point 001
corresponds to the assignments 0001 and 0011). Out of the 8 entries of the table obtained after
analyzing p2, the entries 000, 011, 110 have a value that matches the value of the corresponding
bit of the target. Our goal is to find the assignments to the 4 variables whose corresponding
entries in both tables match the bits of the target. The explicit set of solutions in our example
contains the points 0000, 0110, 1110.

A naive approach in order to obtain an explicit representation of the solutions is to iterate the
possible 2|V | values for the variables, and check whether the value of the entry that corresponds
to the value of the variables in each of one of the tables matches the value of the corresponding
analyzed bit. This algorithm requires at least 2|V | bit operations. We can easily save a factor of 2
by iterating only the values that match the target in one of the tables. However, we can do even
better by considering the actual variable sets on which each analyzed output bit depends. The
details and analysis of the improved query algorithm are specified in appendix C. Its expected
complexity is |S1| + 2|S1

⋃
S2|−1 + ... + 2|

⋃α
i=1 Si|−α+1 bit operations. Note that this complexity

estimate is not symmetric with respect to the various Si’s, and thus different orders of analyzing
the various tables will yield different complexities.

4.3 Post Filtering the Solutions

After the query algorithm, we are left with 2|V |−α solutions and we have to determine whether
they indeed give a preimage which matches all the 256 bits of the given chaining value h∗i . One
option is to simply run the compression function and check whether the solutions match the
target. However, it is more efficient to apply the following post filtering algorithm first.

1. For each solution, evaluate the remaining 28 − α output bits (that were not analyzed) one
by one, and compare the output to the corresponding value of h∗i . If the value of an output
bit does not match the value of the corresponding target bit, drop the solution.

For each solution, we expect to evaluate 2 additional bits. Evaluating a bit requires evaluation
of the 16 input linear polynomials up to round 2 plus 35 additional bit operations for the Sbox
and XOR evaluations. A random linear polynomial in the |V | input bits has about |V |2 non zero
coefficients, but this is not the case here. Our special choice of variables makes them diffuse slowly
into the state of Hamsi-256, and as a result, our linear polynomials are very sparse and require
about 3 bit operations per evaluation. The 2 evaluations thus require 2(35 + 3 · 16) = 166 bit
operations. The post filtering requires in total about 166 · 2|V |−α bit operations. The number of
solutions that remain after the post filtering is about 2|V |−28 (i.e. we expect to have no solutions
if |V | < 28), and running the compression function after the post filtering requires negligible
time.

4.4 Finding a Good Sequence of Analyzed Bits

In the previous sections we designed and calculated the complexities of the polynomial analysis
algorithm, the query algorithm, and the post filtering algorithm. Given the sets S1, ..., S28 that
correspond to the potential analyzed bits, we would like to find a good sequence of analyzed
bits (of size α) which minimizes the complexity of the attack. Since there are many possible
sequences, exhaustive search for the optimal sequence of analyzed bits is too expensive and
thus we used a heuristic algorithm for this problem. A naive greedy algorithm which iteratively
builds the sequence by selecting the next analyzed bit i that minimizes the added complexity

51|S|3 + 3 · 2|S| + 2|
⋃i
j=1 Sj |−i+1 seems to give reasonable results, but we got even better results

by combining the greedy algorithm with exhaustive search over short sequences, as described
next.

1. Given the dependencies of the 28 potential analyzed bits, exhaustively search for the optimal
sequence of 3 analyzed bits that minimizes the sum of complexities of the query algorithm
and their analysis.

2. Fill in the remaining 28 − 3 = 25 bits of the sequence by iteratively searching for the next
analyzed bit i that minimizes the added complexity 51|S|3 + 3 · 2|S| + 2|

⋃i
j=1 Sj |−i+1 (the

post-filtering complexity is the same given the value of i).
3. Determine the length of the sequence α by calculating the total complexity of the attack for

each possible value of 1 ≤ α ≤ 28 and truncate the sequence of 28 bits to size α.

The first step involves exhaustive search over 28!
25! < 214.5 sequences, each requires a union

of sets of at most |V | variables represented as bit arrays, and an addition operation. The union
requires |V | bit operations and the addition a few more bit operations since the terms 51|S|3 +
3 · 2|S| are computed only once and can be rounded in order to nullify the least significant bits.
Assuming that |V | < 25, the complexity of the first step is about 219.5 bit operations, which
can be easily reduced to about 218.5 by considering the sequences in a more clever way. The
second and third steps take negligible time compared to the first step. Note that this algorithm
is performed before analyzing the polynomials, although it is specified last.

4.5 Details of the Pseudo Preimage Attack on Hamsi-256

The details of the pseudo preimage attack on Hamsi-256 are specified below:

1. Generate the next message block M̄i (starting from the zero block, and incrementing its
value each time this step is performed).

2. Compute the set of variables V ′ = V1 ∪ V2 according to M̄i. If |V ′| < 21 then discard the
message and go to step 1. Otherwise, obtain the final set of 21 variables V for the current
message block by dropping |V ′| − 21 variables from V ′. The variables that are dropped are
arbitrarily chosen from the set V1 (the variables are dropped from V1 since the variables of
V2 tend to diffuse more slowly into the state of Hamsi-256, as noted in section 4 of [2]).

3. Generate the next partial chaining value h̄i−1 , which does not assign values to the variables
(starting from the zero partial chaining value each time step 1 is performed, and incrementing
its value each time this step is performed). If no more partial chaining values exist, go to 1.

4. Given M̄i, V and h̄i−1, interpolate the linear state bit polynomials of Hamsi-256 after 2
rounds.

5. For each of the 28 output bits (150 − 156, 182 − 188, 214 − 220, 246 − 252), determine the
variable subset on which it depends. This is done by retrieving the 16 linear second round
state bits on which the output bit depends, and then performing a union over the variable
subsets on which the 16 state bits depend.

6. Determine the heuristically best sequence of analyzed bits according to the algorithm in
section 4.4.

7. Analyze the selected polynomials according to section 4.1.
8. Use the query algorithm of section 4.2 to determine the set of solutions.
9. Post filter the solutions according to section 4.3. If no solutions remain, go to step 3.

10. For each remaining solution, compute the compression function after assigning the value of
the solution to the unspecified part of the partial chaining value, and check whether the
output is equal to the target. If there is a solution for which equality holds, return the
message and full chaining value. Otherwise, go to step 3.

In order to find at least one pseudo preimage with high probability, we must verify that we do
not use too many degrees of freedom after throwing away messages and allocating the variables.
We start with 32 degrees of freedom since the input to the Hamsi-256 compression function
contains 256 + 32 = 288 bits, (32 message bits and 256 chaining value bits) and the output
of the compression function contains only 256 bits. We lose less than 0.5 degrees of freedom
by throwing away messages for which the number of variables is too small. In addition, every
variable sets one constraint on the input of the compression function and reduces the number of
possible inputs to the compression function by a factor of 2. Thus, we lose a degree of freedom
per allocated variable and less than 21.5 degrees of freedom overall. In total, we remain with a
bit more than 32 − 21.5 = 10.5 degrees of freedom which are expected to result in more than
210 pseudo preimages for a random target.

We now estimate the complexity of the pseudo preimage attack: The complexity of some
steps can be easily computed: For a given set of variables, step 4 of the algorithms requires 22
compression function evaluations of Hamsi-256 and 21 · 512 < 214 bit operations. Step 5 takes
negligible time. Step 6 requires about 218.5 bit operations. Step 10 requires 2|V |−28 compression
function evaluations, which takes negligible time compared to the other steps of the attack.
However, the complexity of the main steps of the attack 7− 9 cannot be easily computed since
it depends on the message and the value of the chaining value used. Thus, we can only estimate
the complexity of the attack by running simulations for randomly chosen messages and chaining
values. In each simulation, we estimate the complexity of the attack by summing the complexities
of the steps above with the complexity of steps 7−9, as calculated in section 4.4. After thousands
of simulations we found that for about 95% of messages and chaining values the attack is faster
than exhaustive search by a factor which is at least 213. The average complexity of the attack
is slightly better than 2256−13.5 = 2242.5 compression function evaluations.

Interestingly, the techniques of our pseudo preimage attack can also be used to speed up
generic pseudo collision search algorithms on Hamsi-256 that are based on cycle detection algo-
rithms (such as Floyd’s algorithm [10]). The details of the pseudo collision attack are described
in appendix D.

5 Using Pseudo Preimages to Obtain Second Preimages for Hamsi-256

Given a message M = M∗1 ||M∗2 ||...||M∗` with ` ≥ 9, we can use the naive meet-in-the-middle
algorithm described in appendix B in order to find an expected number of 213.5/2 = 26.75 pseudo
preimages and use them as targets for the second preimage attack. This gives a total complexity
of about 2256−5.75 = 2250.25 compression function evaluations. However, we can do better by
using the result of section 3: Recall that our algorithm for finding pseudo preimages has more
than 10 degrees of freedom left. We use 5 of the remaining degrees of freedom to set the input
bits that correspond to the output bits of the set N = {5, 156, 214, 221, 249} in all the pseudo
preimages to some fixed value. As specified in section 3.3, the set N represents the target bits for
the direct second preimage attack on Hamsi-256 and this choice allows us to speed up the second
phase by a factor of about 13 ≈ 23.7. In the first phase of the attack, the bits of N actually
function as input bits to the pseudo preimage search algorithm. The details of the algorithm are
specified below, where x is a numeric parameter:

1. Choose a target block with index of at least 9 (i.e. h∗i with i ≥ 9) and use the pseudo preimage
search algorithm to find 2x pseudo preimages in which the set of input bits {5, 156+128, 214+
128, 221 + 128, 249 + 128} is fixed to an arbitrary value. Note that the number 128 is added
to some indexes of N due to the truncation of the output of the compression function.

2. Use the direct second preimage search algorithm to find a second preimage to one of the 2x

pseudo preimages found in the previous step.

We note that we still have 10 − 5 = 5 degrees of freedom left, so we must choose x ≤ 5 in
the first step. The complexity of step 1 is about 2256−13.5+x = 2242.5+x compression function
evaluations. The complexity of step 2 is about 2256−x−3.7 compression function evaluations. To
optimize the attack, we choose 2x = 30, i.e x ≈ 4.9 for which the total complexity of the attack is
about 2248.4, which is about 27.6 ≈ 200 times better than exhaustive search. This is significantly
better than the improvement factor of 26 published by Thomas Fuhr [2].

The algorithm presented above works for any message that contains at least 9 blocks. When
the message contains at least 40 blocks, it is possible to improve the algorithm further by building
a layered hash tree, similar to the one used in [9], which yields an improvement factor of 29 = 512
over exhaustive search. The details of this algorithm are specified in appendix E

6 Second Preimages for Longer Messages of Hamsi-256

The best known generic algorithm for finding second preimages for any Merkle-Damg̊ard con-
struction of hash functions is due to Kelsey and Schneier [3]. The algorithm needs to undergo
a slight adaptation in order to be applied to the special structure of Hamsi-256 (see [2]). The
complexity of the generic algorithm for Hamsi-256 is k · 2128 + 2256−k, where the message length
satisfies ` ≥ 4k + 2k + 8. Hence, the algorithm developed in the previous section is better than
the generic algorithm only for k ≤ 9, i.e. for messages that contain at most 4 · 9 + 29 + 8 = 556
blocks. For longer messages, we design a different algorithm that combines the techniques used
in section 3 with a modified version of the Kelsey and Schneier algorithm. We elaborate only on
the parts of the Kelsey and Schneier algorithm that are relevant to our modified attack.

Given an ` block message, in the the first phase of the Kelsey and Schneier algorithm, the
attacker generates a (p, q) expandable message for p = 4k and q = 4k + 2k − 1 such that
q + 8 ≤ `− 1. This phase is left unchanged. We concentrate on the second phase of the Kelsey
and Schneier algorithm, where we apply the compression function from a common chaining
value and try to connect to one of the chaining values obtained by one of the invocations of the
compression function during the computation of the hash of the given message. If the message is
of size about 2k, the complexity of this phase is 2256−k compression function evaluations, which
forms the bottleneck of the attack (assuming k < 128). Similarly to section 3, the idea is to
speed up this phase simply by efficiently computing several bits of the output for all possible 232

messages and filtering out messages which do not connect to any of the targets. Assuming that
we efficiently compute the values of x output bits, then we still need to run the compression
function a factor of 2−x+k times for x > k compared to the original algorithm.

Unlike section 3, a significant portion of the work here involves computing the output bits
(almost) directly, and a smaller portion of the work involves analysis of the second round bits.
The output bits are of degree 18 which is too high to be analyzed efficiently. However, we can
exploit polynomials of a lower degree relatively easily. As in section 3.3, we use the ANF form of
the output bits as a function of the second round bits. The symbolic representation is of degree
3 and we would like to get equations of degree 2. We remove all terms of degree lower than 3 in
the ANF form. We then linearize the system of polynomials by assigning each distinct term of
degree 3 a dedicated variable. We perform Gaussian Elimination on the linearized system and
get a system in which about 120 rows contain only 1 variable and the rest of the rows contain 2
variables (each linearized variable represents 3 variables of round 2 multiplied together). This is of
course not sufficient in order to reduce the degree. However, these linearized simple expressions
(composed of 3 variables of degree 6 in the message bits) can be handled separately by the
technique specified in section 3.2. We select a set of x linear combinations from the rows which
contain only one linearized variables. The rest of the polynomial is of degree 2 · 3 · 2 = 12 in
the message bits, and is analyzed slightly differently. The analysis algorithm for such a linear

combination is specified below. Its input is an arbitrary chaining value h and it outputs an
array of size 232 that contains the evaluations of the linear combination of the output bits for
all possible 232 message blocks.

1. Analyze the 3 second round variables that appear in the expression of the linearized variable
of the linear combination, as specified in section 3.2.

2. Evaluate the remainder of the output bit combination on all input vectors of hamming weight
≤ 12 and store the results.

3. Interpolate the coefficients of the output bit combination: Place all its values in an array of
size 232, where the values of entries of hamming weight ≥ 13 are set to zero. Then apply the
Moebius transform [7] on the array and take only the coefficients of hamming weight ≤ 12
(the rest are known to be 0).

4. Apply the Moebius transform once more on the array and obtain the evaluations of the
polynomial (not including the linearized variable) for all 232 possible input values.

5. Add the values of the linearized variable to the array by computing it from the arrays
produced in step 1.

Step 1 requires 3 ·7 ·232 = 21 ·232 bit operations. Step 2 requires
12∑
i=0

(
32
i

)
≈ 232

10
compression

function evaluations (which need to be performed once per chaining value). In addition, step 2
requires several bit operations to compute the value of the linear combination. Most of the linear
combinations contain fewer than 40 additions and step 2 requires additional 40 ·0.1 ·232 = 4 ·232

bit operations. Step 3 requires an application of the Moebius transform, which takes 16 · 232 bit
operations. However, only about 0.1 of the entries of the array are relevant (the others are not
accessed), hence the complexity is less than 2 · 232 bit operations. Step 4 requires the full 16 · 232

bit operations. Step 5 requires additional 3 · 232 bit operations. In total, the algorithm requires
about (21 + 4 + 2 + 16 + 3) · 232 = 46 · 232 bit operations in addition to the 232

10 compression
function evaluations that are performed globally.

The algorithm to find the second preimage is specified below, where x is a numeric parameter.
It get as an input a message M∗1 ||M∗2 ||...||M∗` and outputs a message of the same length with
the same Hamsi-256 hash value.

1. Generate a p, q expandable message for p = 4k and q = 4k + 2k − 1 such that q + 8 ≤ `− 1.
2. Choose a set of x output bit combinations from the Gaussian elimination of the third round

output bits in terms of the second round variables, such that each of these combinations
contains a single expression of 3 second round bits multiplied together.

3. Compute and store all the values of the x output bit combinations of all the target chaining
values h∗i for p+ 8 ≤ i ≤ q + 8.

4. Choose the common digest value of the expandable message h as a chaining variable and
traverse the chaining value tree rooted at h using DFS by generating the next value for
message blocks M1,M2, ...,M7 (as shown in figure 1).

5. Compute the next chaining value h7 = F(M1,M2, ...,M7, h).
6. Analyze each one of the x output bit combinations as specified above for all possible 232

values for the message block M8, with the input chaining value h7.
7. Traverse the x bit arrays and check whether the values of the output combinations match

the values of the combinations of the target chaining values h∗i for p+ 8 ≤ i ≤ q+ 8, for each
possible value of the message block M8. Store all the messages for which there is a match.

8. For each message block M8 stored in the previous step, evaluate the full compression function
and check whether F(M8, h7) = h∗i for p + 8 ≤ i ≤ q + 8. If equality holds, output the
message µi−8||M1||M2||...||M8||M∗i+1||...||M∗` , where µi−8 is a message prefix of size i − 8

blocks (computed from the expandable message) such that h = F(µi−8, IV). Otherwise, if
there is no match, go to step 4.

We analyze the complexity of the algorithm per chaining value h7 (i.e. steps 6− 8) in order
to calculate the improvement factor of the attack over the generic algorithm. The Kelsey and
Schneier algorithm requires 232 compression function evaluations per chaining value, whereas we
use only 232

10 compression function evaluations. In addition, we require 46 · x · 232 bit operations
in step 6. However, we can optimize the complexity of this step for a group of combinations
by taking combinations in which the linearized expressions share some common variables of the
second round (which need to be analyzed only once). In particular, we can easily select a group
of x combinations in which the x linearized expressions depend only on 2 · x (instead of 3 · x)
variables of the second round. This reduces the number of bit operations in step 4 to 39 · x · 232.
The improvement factor of the attack is thus (1

10 + 39x
10500 + 2−x+k)−1. By selecting an optimal

value for x, we get a total improvement factor which is between 6 and 4 for all messages of
practical length containing up to 230 32-bit blocks, whereas Fuhr’s attacks [2] becomes worse
than the generic attack for all messages which are longer than 96 blocks.

7 Conclusions

In this paper, we presented several second preimage attacks on Hamsi-256 that are based on
polynomial enumeration algorithms. Our attacks are considerably faster than Fuhr’s attack for
all message lengths, and unlike Fuhr’s attack they are faster than the generic Kelsey and Schneier
attack for all practical message sizes. Our new techniques can be applied in principle to any hash
algorithm whose compression function can be described by a low degree multivariate polynomial,
and demonstrate the potential vulnerability of such scheme to advanced algebraic attacks.

Acknowledgements: The authors thank Orr Dunkelman and Nathan Keller for helpful
discussions that led to this paper.

References

1. Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 2009.
2. Thomas Fuhr. Finding Second Preimages of Short Messages for Hamsi-256. In ASIACRYPT, 2010.
3. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less than 2n work. In

EUROCRYPT, pages 474-490, 2005.
4. Jean-Philippe Aumasson and Emilia Käsper and Lars Ramkilde Knudsen and Krystian Matusiewicz and

Rune Ødeg̊ard and Thomas Peyrin and Martin Schläffer. Distinguishers for the Compression Function and
Output Transformation of Hamsi-256. In ACISP, 2010.

5. Çagdas Çalik and Meltem Sönmez Turan. Message Recovery and Pseudo-preimage Attacks on the Compres-
sion Function of Hamsi-256. In LATINCRYPT, pages 205-221, 2010.

6. Meiqin Wang, Xiaoyun Wang, Keting Jia, Wei Wang. New Pseudo-Near-Collision Attack on Reduced-Round
of Hamsi-256. Cryptology ePrint Archive, Report 2009/484, 2009.

7. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, page 285-286.
8. Charles Bouillaguet and Hsieh-Chung Chen and Chen-Mou Cheng and Tony Chou and Ruben Niederhagen

and Adi Shamir and Bo-Yin Yang. Fast Exhaustive Search for Polynomial Systems in F2. In CHES, 2010.
9. Gaëtan Leurent. MD4 is Not One-Way. In FSE, pages 412-428, 2008.

10. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, page 225-226.

A Appendix: Parameters For the Direct Attack on Hamsi-256

The 56 second round bits on which the set N = {5, 156, 184, 214, 221, 249} depends are listed
below:
{3, 9, 18, 28, 44, 56, 63, 68, 79, 86, 91, 92, 93, 96, 107, 121, 131, 156, 184, 191, 196, 214, 219, 220, 221, 224, 249, 256, 259,

265, 274, 275, 284, 300, 312, 319, 324, 335, 342, 347, 348, 349, 352, 363, 377, 387, 412, 440, 447, 452, 470, 475, 476, 477,

480, 505}. The 6 simple sums for the sets N = {5, 156, 184, 214, 221, 249} are given in the table
below:

Table 2. The 6 simple sums of the second round variables denoted by xi for 0 ≤ i < 512 for the output bits
N = {5, 156, 184, 214, 221, 249}.

Output Bit Simple Sum
5 x9 + x18 + x19 + x63 + x86 + x92 + x121 + x137 + x146 + x147

+x214 + x249 + x265 + x274 + x275 + x319 + x342 + x393 + x402

+x403 + x470 + x476 + x505

156 x3 + x28 + x79 + x156 + x191 + x207 + x259 + x284 + x387 + x412

+x447 + x463

184 1 + x56 + x63 + x107 + x235 + x319 + x347 + x447 + x475 + x491

214 1 + x9 + x86 + x121 + x137 + xv214 + x249 + x265 + x342 + x393

+x470 + x477 + x505

221 1 + x18 + x63 + x68 + x92 + x96 + x146 + x224 + x274 + x319

+x324 + x352 + x402 + x452 + x476 + x477

249 1 + x28 + x44 + x96 + x121 + x156 + x172 + x224 + x249 + x300

+x377 + x412 + x428 + x480 + x505

B Appendix: Finding a Second Preimage of Hamsi-256 Using a Pseudo
Preimage Search Algorithm

We describe the well-known meet-in-the-middle algorithm for finding a second preimage of
Hamsi-256 using a pseudo preimage search algorithm that runs in time 2256−y compression func-
tion evaluations (for some y > 0). Assume that we are given a message M = M∗1 ||M∗2 ||...||M∗`
with ` ≥ 9 and let x be a numeric parameter which will be optimized later. The algorithm
(adapted to the special structure of Hamsi-256) is described below.

1. Use the pseudo preimage search algorithm to find 2x pseudo preimages of h∗i for any fixed
i ≥ 9 (i.e. a chaining value obtained after at least 9 compression function invocations on the
given message.

2. Generate arbitrary i− 9 message blocks M1,M2...,Mi−9 and compute
hi−9 = F(M1,M2, ...,Mi−9, IV). Generate 8-block messages Mi−8,Mi−7, ...,Mi−1 and check
whether F(Mi−8,Mi−7, ...,Mi−1, hi−9) matches one of the chaining values of the pseudo
preimages found in the first step. Assume that F(Mi−8,Mi−7, ...,Mi−1, hi−9) = h̄i−1, where
h̄i−1, M̄i is a pseudo preimage found in the first step.
Then, the message M1||M2||...||Mi−9||Mi−8||...||Mi−1||M̄i||M∗i+1||...||M∗` is a second preimage
of M .

The complexity of step 1 of the algorithms is 2256−y+x compression function evaluations. The
complexity of step 2 is 2256−x compression function evaluations. To optimize the complexity of
the attack, we need that both steps run in equal time. Thus, we choose x = y

2 for which the
total complexity of the attack is 2256− y

2
+1.

C Appendix: The Detailed Query Algorithm

The basic data structure that we use is a table T that assigns a bit value to all the points in
a subset S of our variable set V . The table contains 2|S| bit entries. An entry with a 0 value
represents a point is the subset, or an assignment to the subset of the variables, which is not in
our solution set. When expanded to all the |V | variables, this single point disqualifies 2|V |−|S|

points from our solution set. Note that all our α enumeration tables are of this type, except that

in some tables an entry with a 1 value represents a disqualified point in the subset (this occurs
if the value of the corresponding analyzed bit in the target is 0). However, this is just a minor
representation issue.

The main procedure of the query algorithm involves a table Ti that assigns values to all the
points in a subset Si and a query object q that assigns values to a subset of the variables R ⊆ V .

1. Expand the query object to 2|Si\R| queries that assign all possible values to the set |Si \ R|
and the same values as assigned by q to the set R (Note that each query assigns values to
the set Si

⋃
R).

2. For each query, check whether the table disqualifies it: If it does, discard it. Otherwise, if ti
is the last table (i.e. i = α), return the query as a solution, otherwise (i < α), pass it to the
next table Ti+1.

The query algorithm basically calls the procedure above with T1 and a query for the empty
subset.

We estimate the complexity of the query algorithm by the total number of queries that are
generated during its execution. In this analysis, we assume that half of the queries are discarded
by each table and half are passed to the next table (or returned as solutions by the last table).
The expected number of queries is then |S1|+ 2|S1

⋃
S2|−1 + ...+ 2|

⋃α
i=1 Si|−α+1.

D Appendix: The Pseudo Collision Attack on Hamsi-256

We show how to use the techniques of our pseudo preimage attack (described in section 4)
to speed up generic pseudo collision search algorithms on Hamsi-256 that are based on cycle
detection algorithms. Let v ≤ 28 be a numeric parameter that will be specified later. Let R
by an arbitrary subset of size v of output bits 150 − 156, 182 − 188, 214 − 220, 246 − 252 (as
described in section 4, these are output bits that depend only on 16 state bits after 2 rounds of
the compression function). We select an arbitrary fixed value for the bits of R which will function
as a static target for our fast polynomial enumeration techniques and reduce the effective output
size for finding a collision to 256 − v. Given a 32-bit message block M̄ , denote by M̄ ′ the first
v bits of M̄ and by M̄ ′′ its remaining 32 − v bits. We now describe the iteration function that
is used during the cycle detection algorithm. The input and output of the iteration function are
of size 256− v bits.

1. Set the bits of M̄ ′ to the value of the first v input bits.
2. Iterate through the possible values of M̄ ′′ (reset to 0 on step 1, and increment each time this

step is performed).
3. Given M̄ , compute the set of variables V ′ = V1 ∪ V2 (as described in section 4). If |V ′| < v

go to step 2. Otherwise, obtain the set V of v variables for the message block by dropping
|V ′| − v variables from V ′. The variables that are dropped are arbitrarily chosen from the
set V1.

4. Let h′ be a partial chaining value in which the 2v bits which are assigned values that depend
on V are unspecified (there are two bits that depend on each variable). Set the value of h′

to be the remaining 256− 2v bits of the input (that were not used to set M̄ ′).
5. In the remaining steps, find an assignment to the variables of V that will match the target

bits of R: Given M̄ , V and h′, interpolate the linear state bit polynomials of Hamsi-256 after
2 rounds.

6. For each of the output bits of R, determine the variable subset on which it depends (as done
in the Pseudo Preimage Attack).

7. Determine the heuristically best sequence of analyzed bits according to the algorithm in
section 4.4.

8. Analyze the selected polynomials according to section 4.1.
9. Use the query algorithm of section 4.2 to determine the set of solutions. If there is no solution,

go to step 2.
10. Post filter the solutions according to section 4.3. If no solutions remain, go to step 2.
11. Choose the solution with the smallest lexicographic value (or using any other deterministic

algorithm), and compute the compression function after assigning the value of the solution to
the unspecified part of the partial chaining value h′. The 256− v output bits of the iteration
function are defined to be the 256− v output bits of the compression function (not including
the bits of R, which have a fixed value).

Assuming that we choose v ≤ 24, we do not expect to return to step 2 via step 3 most of the
time. In addition, for any partial chaining value h′ (that does not assign values to the variables),
there are 2v possible outputs defined by all the possible assignments to the variables. Thus, we
expect that the value of the v output bits of R will match our pre-defined constant value for the
bits of R for at least one of the 2v possible outputs, hence we do not expect to return to step
2 from steps 9 and 10 as well. As a result, for the complexity analysis, we assume that steps
3− 11 are performed once per invocation of the iteration function. However, since the iteration
function is invoked numerous times during the cycle detection algorithm, it is likely that we run
out of values for M̄ ′′ in step 2 without finding a solution more than once. In this case, we can
simply increment the value of M̄ ′ or h′. This may result in false alarms (in case we jump to a
node that was already visited), but this happens with negligible probability.

Assuming that the time complexity of the iteration function is 2y compression function
evaluations, then the modified pseudo collision search algorithm is expected to find a pseudo
collision in time 2

256−v
2

+y = 2128− v
2
+y (since the effective output size is 256 − v). Similarly to

our pseudo preimage attack, the complexity of the attack (and the optimal value for v) needs
to be determined via simulations. The best value for v that we found is 18 and our best pseudo
collision attack runs in time 2125 which is an improvement of about 23 = 8 compared to the
generic algorithms for finding pseudo collisions.

E Appendix: Details of the Improved Short Message Attack on Hamsi-256

We describe the details of the improved short message second preimage attack, given a message
M∗1 ||M∗2 ||...||M∗` such that ` > 40. It uses the layered hash tree construction, as described in [9]:
We start by selecting the root of the tree from the chaining values that are generated during the
computation of the hash of the message. We then find a pseudo preimage of the root and add it
to the tree. We continue building the tree by adding a pseudo preimage of one of the two nodes
of the tree, and so forth. Assuming that we need a workload of 2s to find a pseudo preimage
of a single target value, and we have a set of k target values in our pseudo preimage tree, we
can find a pseudo preimage of one of them in time 2s

k . Thus, the complexity of building a tree

containing 2x pseudo preimages is 2s
2x∑
k=1

1
k

.

Let v ,x and y be numeric parameters that will be specified later. Let R by an arbitrary
subset of size y of output bits 150 − 156, 182 − 188, 214 − 220, 246 − 252. The idea is to build
a tree of preimages in which the bits of R are fixed, and will function as a static target for our
fast polynomial enumeration techniques. The root is selected as an arbitrary chaining value h∗i
(i ≥ 40) that is generated during the computation of the hash of the message. The algorithm for
adding a node to the tree is very similar to the pseudo preimage algorithm of section 4.5. The
differences are that our variable set V is of size v (instead of 21), and the analyzed bits are chosen
from the set R. In addition, we have to compute more bits in the post filtering algorithm (of

section 4.3), since we have to eliminate possible pseudo preimages for a larger group of targets
(and not just 1, as in section 4.5). Note that the number of degrees of freedom is reduced by a
bit more than v + y (since we throw away a small fraction of the messages), so we must select
v + y < 32.

According to our simulations, the best parameters the attack are v = 20, y = 11, and x = 8.
These parameters give an expected workload of 2s = 2256−11.5 compression function evaluations,

and thus the time complexity of building the tree is 2256−11.5
28∑
k=1

1
k
≈ 2256−11.5 · 6 ≈ 2256−8.9.

We can improve this complexity a bit since we have the freedom to choose the 11 bits of R
among the output bits 150 − 156, 182 − 188, 214 − 220, 246 − 252. Thus, we first find 4 pseudo
preimages of the root according to the algorithm of section 4.5 (which has a better workload), in
which 6 of these bits are fixed to some value. With high probability these pseudo preimages will
share a common value for at least 11 of the output bits 150−156, 182−188, 214−220, 246−252
(from which we select the set R). Using this improved algorithm, the complexity of building
a tree with 28 pseudo preimages costs about 2256−9.5 compression function evaluations. It is
possible to prove (or verify experimentally) that such a layered tree with 28 nodes has at most
20 layers with very high probability.

After the construction of the layered hash tree, we have to find a preimage of one of the nodes
of the tree. Since the tree has several layers and we want to be able to connect to any node, this
is done using an expandable message (similar to our long message attack that is described in
section 6). The layered hash tree is rooted at h∗i with i ≥ 40, and it contains (at most) 20 layers
with high probability. Thus our (p, q) expandable message needs to satisfy p ≤ 20 (to connect
from block with index at least 40− 20 = 20) and q − p ≥ 20 (to connect to any of the possible
20 layers). The outline of the algorithm is given below.

1. Select an arbitrary chaining value h∗i (i ≥ 40) that is generated during the computation of
the hash of the message.

2. Construct a layered hash tree rooted at h∗i containing 28 pseudo preimages, such that the
bits of R in all the pseudo preimages are fixed (as specified above).

3. Use the Kelsey and Schneier [3] algorithm to generate a (p, q) expandable message for p =
4 · 5 = 20 and q = 4 · 5 + 25 − 1 = 51.

4. Select a subset N ⊂ R of output bits of size 5. Starting from the common digest value of
the expandable message, use the efficient elimination algorithm of section 3.3 (with the fixed
target bits of N) to connect to one of the nodes of the pseudo preimage tree. Once a match
is found, the second preimage can be easily constructed.

Building the tree requires an expected time of 2256−9.5 compression function evaluations. Step
3 requires negligible time compared to step 2. For a single target and an arbitrary set N of size
5 (selected from output bits 150− 156, 182− 188, 214− 220, 246− 252), the efficient elimination
algorithm of step 4 has time complexity of about 2256−3 compression function evaluations. Thus,
for 28 targets the complexity of step 4 is about 2256−3−8 = 2256−11. Overall, the complexity of
the attack is about 2256−9.5 + 2256−11 ≈ 2256−9 = 2247 compression function evaluations, which
is an improvement by a factor of 512 compared to exhaustive search.

