
Eavesdropping over Random Passwords via
Keyboard Acoustic Emanations

Tzipora Halevi
Electrical and Computer Engineering

Polytechnic Institute of New York University
thalev01@students.poly.edu

Nitesh Saxena
Computer Science and Engineering

Polytechnic Institute of New York University
nsaxena@poly.edu

ABSTRACT
The sounds resulting from keyboard typing can reveal information
about the input data. We revisit such keyboard acoustic emana-
tions for the purpose of eavesdropping over random passwords. In
this scenario, dictionary and HMM language models, capitalized
in prior work, are not applicable; the attacker can only utilize the
raw acoustic information which has been recorded. We investi-
gate several existing signal processing techniques for our purpose,
and introduce a novel technique – time-frequency decoding – that
improves the detection accuracy compared to previous techniques.
We also carefully examine the effect of typing style – a crucial vari-
able largely ignored by prior research – on the detection accuracy.
Specifically, we compare “hunt and peck typing” with “touch typ-
ing”, and quantify the impact of changing the typing style on the
overall success of the eavesdropping algorithms. Our results show
that using the same typing style (hunt and peck) for both training
and decoding the data, the best case success rate for detecting cor-
rectly the typed key is 64% per character. The results also show
that changing the typing style during the decoding stage reduces
the success rate, but using the time-frequency technique, we can
still achieve a success rate of around 40% per character.

Our work takes the keyboard acoustic attack one step further,
bringing it closer to a full-fledged vulnerability. We explore the
limitations of acoustic eavesdropping techniques under realistic and
security-sensitive scenarios (different typing styles and random pass-
words). Our results suggest that while the performance of these at-
tacks degrades under such conditions, it is still possible, utilizing
the time-frequency technique, to considerably reduce the exhaus-
tive search complexity of retrieving a random password.

Keywords: Keyboard acoustic emanations; random passwords;
signal processing

1. INTRODUCTION
The attacks based on acoustic emanations produced by electronic

devices have been a known source of concern. These attacks present
a threat to user privacy. Specifically, a few studies examined acous-
tic emanations of keyboard devices. These studies demonstrate that
the seemingly conspicuous sounds resulting from keyboard typing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

can be used to learn information about the input data. Asonov and
Agrawal [2] were the first to extract frequency features from the
sound emanations of different keyboard clicks so as to identify the
different keys used, utilizing neural networks to classify the result-
ing keys. This work made an important discovery that since the
keyboard has a physical plate beneath the keys, each key produces
a different sound depending on its location on the plate (this is very
similar to hitting a drum at different locations). This makes key-
board typing vulnerable to eavesdropping attacks, in which simi-
larities between clicks of the same key can be used to extract infor-
mation about the keys pressed and the resulting data typed by the
user.

Zhuang et al. [22, 23] improved upon the attack of [2] by ob-
viating the need for a labeled training recording. Instead, HMM
English language-based model [10] was used on a 10-minute typed
English text to detect and label the typed keys and decode the text.
In this work, a few iterations of feedback-based supervised training
using previously classified characters were used to further improve
the overall detection accuracy. The authors showed that Mel Fre-
quency Cepstrum Coefficients (MFCC) features [12] yield better
classification accuracies compared to the Fast Fourier Transform
(FFT) features previously used in [2].

Berger et al. [5] further utilized dictionary attacks to decode 8
letter or longer English words. This attack was implemented uti-
lizing correlation calculations on the recorded signal (in the time
domain). For each recorded word, the attack detected a list of best-
matching words from an English dictionary. The primary insight of
this work is that the keys which are in close physical proximity on
the keyboard typically have higher cross-correlation than the keys
that are farther from each other.

1.1 Open Research Problems
Our paper takes a fresh look at keyboard acoustic attacks and

aims to address some important aspects that prior work left unex-
plored. First, it investigates the possibility of eavesdropping over
“random” textual passwords via keyboard acoustic emanations. Tex-
tual passwords are by far the most dominant means of user au-
thentication deployed today, used in a variety of different contexts
and applications. However, passwords suffer from several well-
documented vulnerabilities [11, 21, 1]. One of the most prominent
problems is that users often select “weak” passwords that can be
easily guessed or are susceptible to small-space dictionary attacks
(i.e., for a k-letter password, the size of the password space is much
smaller than 26k). In order to address this weakness, users are of-
ten instructed, and at times forced, to use random passwords [9,
19]. These passwords possess relatively high bit entropy and em-
ploy random selection of characters. Therefore, in the realm of
eavesdropping over a random password via keyboard acoustic em-
anations, a dictionary attack or an HMM language model is not

1

useful and prior research is not applicable.1 The first question this
raises is: how feasible it is to retrieve random passwords by means
of keyboard acoustic eavesdropping?.

In addition, we examine the effect of typing style on key detec-
tion and eavesdropping ability. Our hypothesis is that the typing
style has a significant effect on the sound produced and can re-
duce the sound differences among clicks of different keys (as well
as the similarities between separate clicks of the same key) which
are due to the physical mechanics of the keyboard as discovered
in [2]. To our knowledge, ours is the first work that specifies the
typing style employed in the experiments and analyzes/quantifies
the impact of different typing styles. Reportedly, previous work
has used the “hunt and peck” or “search and peck” technique [15,
20]. In this technique, as the name suggests, the typist finds and
presses each key individually [17]. However, in real-life scenarios,
many people employ “touch typing” [17]. Consequently, the sec-
ond question that we ask is: how much is the eavesdropping ability
impacted by the variation in typing style, i.e., with respect to hunt
and peck typing versus touch typing?.

The two questions posed above together drive the research we
present in this paper. Our work starts by generating training data
and then uses it to classify keys typed by making use of different
signal processing techniques. Our focus is on eavesdropping ran-
dom passwords. We emphasize, however, that in situations where a
dictionary or HMM model may be used (e.g., while eavesdropping
over English words or text), the techniques we explore are still use-
ful. Our work quantifies the ability of these techniques to provide
information about the keys that can be combined with the language
models wherever applicable.

1.2 Our Technical Contributions
Our work explores acoustic eavesdropping techniques under re-

alistic and security-sensitive scenarios (different typing styles and
random passwords). In doing so, it brings about several technical
contributions which we outline below.

− Techniques for Individual Key Detection: We investigate dif-
ferent signal processing techniques for key detection using acoustic
emanations. Specifically, we first consider signal processing tech-
niques which were previously investigated (e.g., the cross-correlation
techniques of [5]) and compare them to a well-known technique
employed in speech recognition – Dynamic Time Warping [18].
We then introduce a novel technique based on time-frequency clas-
sification. Utilizing these techniques, we examine the ability to
detect the individual key pressed from its recorded signal.

Our implementation of and experimentation with these techniques
shows that all the examined techniques achieve significantly better
results compared to random character guessing, ranging from 46%
to 83% per char (Table 1 provides a summary). We further show
that the time-frequency classification technique improves the de-
tection capability and provides the best results compared to all the
techniques we studied. We note that these results are applicable to
both language text as well as random passwords.

− Effect of Typing Style on Signal Similarity: We provide an
objective measure as to the degree of similarity between different
presses of the same key and the ability to distinguish it from the
presses of other keys. We examine the effect of different typing
styles on the similarity between the audio emanations of different
presses of the same key, using signal correlation measurements.

Our results indicate that this correlation diminishes significantly
when changing the typing style from hunt and peck to touch typ-

1HMM model can still be useful for creating the training data, but
not for the actual password guessing/decoding.

ing (see Table 2). This leads to our higher level conclusion and
key insight that while the location of the key on the physical plate
may contribute in part to the audio emanations key similarity, its
contribution is limited and the resulting audio emanations are sig-
nificantly affected by the typing style. This renders the problem of
detecting the key typed fundamentally much more challenging in
realistic scenarios where people often use touch typing.

−Random Character (Password) Detection with Different Typ-
ing Styles: We examine the scenario whereby a user inputs a ran-
dom password, and we determine the probability of detecting each
character in the password by eavesdropping using the techniques
mentioned previously. In addition, we study different typing styles
and the effect they have on detecting the typed random characters.
We look at three scenarios: typing each key separately, typing ran-
dom passwords in a hunt and peck style, and typing the same pass-
words using a touch typing style. We compare the similarity results
corresponding to each typing style and the ability of an eavesdrop-
per to detect which key was typed. We demonstrate that the perfor-
mance of the key detection techniques reduces significantly when
the typing style changes . We further show that our time-frequency
classification technique produces better results for the different typ-
ing styles (see Table 3).

Our research further shows that using data typed with touch typ-
ing style during the training phase improves the detection probabil-
ity of data typed with the same typing style (but is still lower than
the data typed as well as trained using hunt and peck style) (Ta-
ble 3). This shows that the typing technique affects the resulting
audio signal, and that the algorithms which use the data typed with
the same typing style – during both training and decoding phases
– provide significantly improved detection capability. This insight
is again applicable to both language text as well as random pass-
words.

Finally, we suggest two methods for performing exhaustive search
which significantly reduce the password search space while con-
siderably improving the detection capability over random search.
Specifically, we reduce the search space size to only 5 letters per
character (from 26 letters per character). This reduces the search
size by a factor roughly 2, from 4.7 bits per character to 2.3 bits
per character, while still improving significantly the detection rate
(compared to brute-force attack).

− Broader Implications of Our Work: We note that in real-life,
users employ different typing styles. Specifically, touch typing is
one of the more popular typing techniques used. We examine the
effect of different typing techniques on the key detection in cases of
random passwords where, as previously mentioned, a dictionary at-
tack or language-based model is not useful. The reason typing style
affects the audio emanations from the keys is that the finger touches
the key from different angles as well as at different strengths. In ad-
dition, depending on the hitting angle, other fingers may touch/hit
other keys, when using the touch typing style. Therefore, under-
standing the effect of the typing style is necessary to understanding
keyboard eavesdropping attacks. We also note that our attack gives
an objective indication as to the amount of data that eavesdrop-
ping can provide about the keys. While utilizing a language-based
model can be very helpful to an eavesdropper, its success is depen-
dent on choosing an appropriate model for the typed data context.

Paper organization: The remainder of this paper is organized as
follows. We start by defining our threat model in Section 2. We
continue in Section 3 by describing the different techniques used
to detect pressed key and the performance of these techniques. We
then describe, in Section 4, our experiments for testing the effect of
different typing styles for eavesdropping over random passwords,

2

followed by the performance of our password detection techniques
in Section 5. Next, we discuss and interpret our results in Section 6.
Finally, in Section 7, we review some other work related to acoustic
emanations and password attacks.

2. THREAT MODEL
Our attack model is very similar to the one considered by prior

research on keyboard acoustic emanations [2, 22, 23, 5]. Basically,
we assume that the adversary has installed a hidden audio listening
device very close to the keyboard (or host computer) being used for
user data input. A covert wireless “bug” or a PC microphone (per-
haps a compromised microphone belonging to the host computer
itself) is an example of such a listening device. The listening de-
vice can be programmed to record the acoustic emanations as the
user types the data and transmits the recordings to another com-
puter controlled by the adversary. This computer is then used for
executing the signal processing and/or machine learning techniques
in order to extract the input data corresponding to the recordings.

Our model, however, differs from prior research since data of
interest to the adversary is a random password typed by the user,
and not English (or text in other languages) or weak passwords
susceptible to dictionary attacks. This results in a more challenging
set-up for eavesdropping due to the fact that the adversary can not
use a language-based model or dictionary to decode data. In our
experiments, we consider random passwords consisting of lower-
case English alphabets. We assume that the adversary precisely
knows the position of the password in the stream of all the data
input by the user and recorded by the microphone.2

Our attack examines the advantage which an adversary can ob-
tain by comparing previously taken recordings of known data to
new samples of data. In this scenario, the training and typed data
will be captured with the same typing style. The attacker may
also previously eavesdrop on an English text and use an HMM
language-based model in order to recognize and label the typed
keys, and use those samples to train our system. We emulate this
scenario by using both training and testing data typed with the same
typing style (this is done in two typing styles, as mentioned in sec-
tion 4).

Another possibility, which we employ in our attack, is that the
attacker itself gains access to the keyboard for a limited amount
of time, and uses the hunt and peck style to capture samples with
the natural audio sounds of the keyboard, minimizing the effect of
the individual typing style of the user. To emulate this possibility,
our training data is captured in a “mechanical” style (discussed in
Section 4.1) which maximizes the effect of the underlying keyboard
plate on the recorded sound. This data can then be used to detect
keyboard emanations of text recorded by the user at a later time
(using a more natural touch typing style). In this case, the attacker
will use the “mechanical” training data to decode the tested text.

We emphasize that since an HMM language-based model or dic-
tionary can not be used for the attack, and since passwords may be
as short as 6 characters, producing some form of training data is
necessary to eavesdrop over random passwords. Using the training
data, audio information can be extracted about the keyboard and
used later in the password guessing step.

Finally, we assume that the attacker has access to the device or
a service that needs authentication (e.g., a personal desktop or a
web-site) for a limited amount of time. The attacker is usually al-

2Contextual or timing information may be used to determine this.
As an example, the first keyboard input a user may provide every
morning, while logging to her work computer, would usually be a
password.

lowed to make a certain number of password trials to determine the
correct password. We therefore suggest a method of password ex-
haustive search that reduces significantly the overall search space
while increasing the probability of correct password detection. We
also provide the success probabilities of finding the correct pass-
word when the attacker is only allowed up to three trials, as it is
a common practice among many online services (especially bank-
ing web-sites) to lock out the owner’s account after three failed
attempts.

Attack Set-Up and Tools: Throughout our experiments, we used a
standard Lenovo keyboard (model JME7053 English) for our typ-
ing needs and for producing the acoustic data as an input to our
algorithms. We used a standard inexpensive PC microphone for
recording the keyboard acoustic signals and a Thinkpad X60 lap-
top computer for our development and evaluation work. To record
the samples, we used the RecordPad software (v.3.03). For the sig-
nal processing computations, we used the Matlab software. These
off-the-shelf equipment and tools were used, similar to the prior
research [22, 23, 5], so as to maximize the overall impact (feasi-
bility) of the underlying attacks, which can possibly be perpetrated
by an unsophisticated adversary. The random password charac-
ters were generated using the Matlab’s “rand” command that yields
uniformly distributed pseudo-random numbers. (The full password
can be generated with the “char(‘a’ + ceil(rand(1,6) * 26) - 1)” Mat-
lab script).

3. TECHNIQUES FOR INDIVIDUAL KEY
DETECTION

To develop our attack algorithms, we started by exploring tech-
niques for the detection of individual keys/characters pressed on
the keyboard.

To this end, we examine the use of Dynamic Time Warping
(DTW) technique [18] – which has been widely used in speech
recognition – for key detection. We then compare the performance
of the DTW technique to that of previously used techniques for
key recognition. Specifically, we utilize the cross-correlation based
technique employed in [5] and frequency-based feature extraction
using neural networks employed in [2] as well as suggest a method
of using frequency-based distance (similar to the technique used
in [5]) and analyze their suitability for detecting the characters
pressed. We next introduce a novel time-frequency based clas-
sification technique for individual key detection. In this method,
we combine both the cross-correlation and the frequency spectrum
features to choose the best matching key. We measure the perfor-
mance of this method for individual key detection and eventually
for strong password detection (as will be discussed later in Section
5).

3.1 Determining Key Press Signal
Keyboard acoustic signals have two distinct regions: push (also

referred to as press) and release (Figure 1), as demonstrated in [2].
The push region relates to the period where the finger touches the
keyboard while the release is the sound generated when the key is
released. However, our experiments detect that depending on the
force sustained while pressing the key, both the push and the re-
lease have between 1 to 3 distinct peaks. We first examined using
short regions of the signal to measure the correlation between sig-
nals generated by the same key. We compared between two cases:
choosing the first peak in the push region versus using the most
pronounced one. We found that the most pronounced peak gave
the best result. We then experimented with using larger regions
versus short regions and found that for regions of 50 ms (which

3

Figure 1: Acoustic Signal of a Single Key

started from the beginning of the first press and release regions),
the results obtained were the best. The reason seems to be that in
this case, the region includes all of the signal data produced by the
key press.

Detecting Key Press Regions: We record our signals with a sam-
pling frequency of 44.1 kHz. To detect the beginning of each press,
we calculate the FFT (Fast Fourier Transform) coefficients of the
signal using a window size of 440 samples. We then sum-up the
FFT coefficients in the range of 0.4-22 kHz and use a threshold to
detect the beginning of each keypress (Figure 4 and Figure 5). To
detect the key release region, we examine the area following the
push region (first 50 ms section of the signal). Since the release
is less pronounced, we calculate the FFT coefficients for the rest
of the region using a smaller window size of 88 samples. We then
sum-up again the FFT coefficients and use a threshold to determine
the beginning of the release region. As stated in Section 2, we uti-
lized the Matlab software to implement all our signal processing
calculations. For calculating the FFT coefficients for each signal,
we used the Matlab “specgram” command.

3.2 Technique 1: Dynamic Time Warping
DTW is an algorithm which measures similarities between se-

quences. We examined the capability of the algorithm to detect the
similarities between recordings of different instances of the same
key (while distinguishing instances of different keys). We used the
simple distance measure between each two elements in the signal
vectors to calculate the difference between them. We tested the
algorithm on both the press and release regions of the signal. We
implemented the main program in Matlab, but used a C source code
for a Matlab executable (MEX) for the DTW function implemen-
tation, which resulted in a faster overall running time. We exper-
imented with different signal length for the press and release, and
found that for the DTW technique, longer regions (50 ms) produce
better results (compared with shorter regions).

Our experiments showed that the audio key signals have vary-
ing amplitude depending on the strength with which the keys were
pressed. Since correct normalization is essential for DTW, we tried
using different methods of normalization (as well as no normal-
ization). We tried normalizing according to the amplitude, mutual
joint distribution [14], and energy. We found that normalizing ac-
cording to the energy (normalized to 1). provided superior results
to the other methods and is inline with the normalization used for
the cross-correlation technique employed in [5]. We also examined
the results for using DTW only on the push period, release period

and on a mean of both. We found that using the mean of the algo-
rithm results calculated for the push and release periods gave the
best results.

Letter Data Set We created a training dataset for each letter to be
used for decoding. Each Letter Data Set is made up of n
samples that are typed for the corresponding alphabet letter.

The DTW technique produces a distance measure between each
two signals. To match each test key with an alphabet key, we ex-
amine all the instances in the training data and compare between
two possibilities. In the first case, we pick the closest training in-
stance (the one with the smallest distance to the test character) in
the training data and match its corresponding alphabet key. In the
second case, we calculate the average distance from the test char-
acter for each alphabet key. This is done by getting the mean of the
similarity measurement for the test character and the Letter Data
Set of each alphabet key. We then pick the best match as the al-
phabet key which has the smallest average distance to the test key.
We found that using the mean value for each training alphabet key
produced better results, since it minimizes the noise contribution of
each single test instance.

3.3 Technique 2: Cross-Correlation
Cross-Correlation (denoted X-Corr) is a commonly used sig-

nal processing technique for measuring similarity between signals.
As done in [5], we performed the cross-correlation between the
recorded signals. We first normalized the signals according to the
energy level. For each pair of signals, we calculated the cross-
correlation between their press regions and took the maximum value.
We repeated the process for the release regions. We then took the
average of the two values and used it as our similarity measure-
ment.

To match each test instance to an alphabet letter, similar to the
DTW technique, we compared between two cases. In the first case,
we chose the key which belongs to the closest instance in the train-
ing data (the one with the highest correlation). In the second case,
we calculate the average similarity measurement for each alphabet
key. This is done by taking the Letter Data Set for each alphabet key
and calculating the average of their cross-correlation measurement,
receiving one similarity measurement for each alphabet key. Then,
we chose as the matching alphabet letter the one with the highest
similarity measurement. We found that for the cross-correlation
technique, choosing the second option produced better results as
well (similar to the DTW technique).

Therefore, to determine the alphabet letter belonging to our test
character, we chose – as the best match – the key which gives the
highest cross-correlation to our training signals.

We also compared using the mean between the press and re-
lease cross-correlations to using only the press or release cross-
correlation. Our tests confirmed that the mean between the press
and release values produced the best performance (similar to the
results in [5]).

Another variation we tried was matching the peaks of both sig-
nals and calculating the correlation, similarly to the technique de-
scribed in [7]. Our experiments showed that this produces worse
results than taking the maximum correlation (contrary to what was
found in [7]). We therefore continued all our experiments using the
max correlation.

3.4 Technique 3: Frequency-based Distance
Measure

The Frequency-domain Features-based Distance Measure (de-
noted Freq-Dist) technique is similar to the one described in [5].

4

However, instead of using only a small part (typically 2-3 ms) of
the press and release signals, we take the full 50 ms region for both
the press and release region. We then produce the frequency spec-
trum for both regions. We examined using different bands of the
frequencies but found that the best results were achieved when us-
ing the coefficients in the 0.4 - 22 kHz. For each of the signals, we
normalize the coefficients to one.

We compute the frequency-based distance between each two sig-
nals by calculating the Euclidean difference between those features.
We repeated this for both the press and release parts of the signal
and calculate the mean of both to get a single distance measure.

We use the distance measure between the signals to calculate the
average distance between the test character and the Letter Data Set
of each alphabet letter (as described in Section 3.3). We chose as
the best match the alphabet letter which gives the smallest distance
to the test character.

Our experiments show that this technique produces poorer re-
sults than the cross-correlation technique, but produces significantly
better results than the DTW technique (please refer to the next sub-
section for our performance results). We conclude that different
instances of the same key produce similar spectrum when examin-
ing the full press and release signal.

3.5 Technique 4: Frequency-Domain Features
with Neural Networks

We implemented the frequency-domain features based technique,
described in [2], and tested it on our data. To detect the most active
3 ms window corresponding to the press and release regions, we
used the algorithm described in Section 3.1 with a window size of
3 ms (132 samples). We calculated the signal spectrum and sum-
marized the FFT coefficients over the 0.4-22 kHz, using a threshold
to detect when the peak press and peak release began.

After creating the frequency-domain features, we used the Mat-
lab Feed-Forward Neural Network to classify the keys. However,
we were not able to reproduce the results described in [2]. Our
experiments indicated that this technique was worse than either
DTW, the correlation techniques or the frequency-based distance
technique (which we will discuss in the following subsection).

We note that previous research [22, 23] also could not achieve
results similar to the original ones described. The difference in the
findings could be due to different reasons. (We did not have ac-
cess to the original data used for those tests.) The keyboard used
for our tests is different from the one used in the experiments of
[2] (which may have produced acoustic emanations with higher
volume or more pronounced characteristics). Another difference
could result from the fact that we are using the Matlab neural net-
work while the original research used Java neural network. Also,
the authors of [2] did not specify how to choose the press and re-
lease regions. We chose an automatic method but other methods
(based on visual examination of the signal) may be used. How-
ever, such methods will be less efficient and not quite feasible for
an eavesdropper using real-time data.

3.6 Performance
The techniques were evaluated on the training data, which was

taken with the hunt and peck style and is described in Section 4.1.
This style minimizes the noise due to the fingers touching other
keys and the overlap of other key presses.

While conducting our experiments to determine performance of
the techniques, due to the relatively high computation requirements
for the DTW algorithm, we used only four instances per alphabet
letter as our training data. We then tested the ability of the tech-
niques to pick the correct key pressed out of 26 alphabet letters.

Table 1: Single Character Detection
Method Detection Rate

DTW 46.15%
X-Corr 73.08%

Freq-Dist 63.46%
Time-Frq 82.69%

Overall, we found that the cross-correlation technique gave the
best results, with a single key detection rate of 73%. The frequency-
based distance measure produced a lower detection rate of 63%.

For the DTW algorithm, the detection rate was 46%. We note
that if we were to pick the key value randomly, our chances of pick-
ing the correct key would be less then 4%. Thus, both DTW and
cross-correlation significantly raise the ability to chose correctly
the matching key. The detection results for the training data, using
four instances per key, can be found in Table 1.

For better visualization, we show, in Figure 6 and Figure 7, the
decoding results for the different alphabet letters (values which lie
on the line Y=X are successful identifications. Each letter was
typed four times and is represented by its index (′a′ = 1 to ′z′ =
26). Each row shows the decoding of the four instances of the
corresponding test alphabet letter (i.e., which training letters were
found to be the best matches for each of the four instances tested).
The brighter the rectangle, the more instances were assigned to the
same alphabet letter. Values which lie on the line Y = X indicate
successful identifications.

DTW is used to measure similarity between two sequences which
vary in time or the speed in which they occur. Since the audio key
signals are affected by the typing technique, we examine the possi-
bility this causes warping in the resulting press and release signals,
and different instances of the same key may include delays which
affect the output signals. However, our experiments show that the
DTW technique gives lower detection results compared to the cor-
relation algorithm. This indicates that the key press and release do
not vary much in time, even when the typing technique changes. As
a result, using this technique causes reduction in the differences be-
tween presses of different keys in the keyboard, making it harder to
distinguish between them and therefore raising the error rate when
choosing the “best match” for each typed key.

3.7 The New Technique: Time-Frequency
Classification

In the time-frequency classification method (denoted Time-Frq),
we combine both the correlation calculation and the frequency-
based calculations to choose the best-matching letter for each train-
ing letter. We start by calculating the frequency-domain features-
based distance measure for each instance, as described in section
3.4.

For each of our test samples, we took 4 instances of each typed
key from our training data. We calculated the frequency distance
between each test character and the Letter Data Set of each alphabet
key, for both the key press and the key release. We then calculated
the mean between the press and the release value and obtained a
final frequency distance value F for each key combination.

Similarly, we calculated the cross-correlation for all the test char-
acter with each alphabet key and obtained the cross-correlation C
value for each key combination.

We note that when calculating the frequency difference cross-
correlation for the signal with itself, we get F = 0 (which is the
minimum possible value for any two signals). Similarly, we get
that the cross-correlation is C = 1 (which is the maximum possible
cross-correlation value for any two signals). Since we are looking

5

to combine both elements, we calculate MC = 1 − C. At this
point, both F and MC are ascending with a minimum of 0 for the
distance of a signal with itself.

At this point, we examined a few methods of combining both ma-
trices. We tried picking the minimum of each value (min(MC, F))
and the average of the two values (MC, F). We also looked at (F ,
MC) as a point on a 2-D space and calculate the Euclidean distance
from zero. We found that the best results were achieved using the
last method. We therefore use the Euclidean distance as our dis-
tance measure for classifying each key (denoted as TF).

To this end, we examine each test sample and calculate the TF
distance measure to all of the alphabet letters in the training data.
We then chose as the best match the alphabet letter which yields
the lowest distance measure (corresponding to the point closest to
zero).

Using the time-frequency classification technique, we get an in-
creased probability of 83% for the training data (please refer to
Table 1 for comparison with other techniques). This technique
combines the information in both the time (cross-correlation) and
the frequency spectrum. We observe that even though the cross-
correlation provides better information in most cases, in some of
the cases, the time-based signal changes but most of its frequency
characteristics are still evident. The time-frequency classification
technique incorporates this information into the key classification
process. We therefore conclude that both the frequency and the
time data can be used together to produce better results. In Figure
8, we provide a visualization for the decoding results correspond-
ing to different alphabet letters in case of time-frequency classifi-
cation.

4. RANDOM PASSWORDS AND TYPING
STYLES

To recall, in this paper, our goal is to determine the advantage
that an attacker can have by using key detection techniques (studied
in the previous section) to eavesdrop over random passwords. We
further aim to examine the effects of the typing style, i.e., hunt and
peck vs. touch typing, on the detection ability.

To this end, we first create the training data. The training data
produces the “best” sounds that the audio emanations can provide
- i.e., using the hunt and peck and always hitting the keys from a
vertical position. This maximizes our ability to capture the sounds
emanated from the physical plate underneath the keys and mini-
mizes the effect of the interaction between the keys and the fingers.
We recall that this typing style has been employed in previous re-
search and is expected to produce the best similarity between the
audio emanations of the keys.

4.1 Straw Man Approach: Typing Each Key
Separately

Our first scenario involves typing each letter multiple times al-
ways using the same finger. In this scenario, each letter is typed
a few times continuously before moving to the next letter and a
few seconds are allowed before typing the next letter (similar to the
technique used in [2]). This causes the finger to hit the key from a
vertical position in each case. The benefit of using this technique is
that it ensures virtually no overlap of keyboard acoustic sounds. It
also enabled typing each letter using approximately the same force
and hitting the keys from the same angle, resulting in a relatively
similar sound for multiple clicks of the same key. Overall, this
technique minimizes any audio signal noise or overlap sounds dur-
ing the key press and therefore maximized the contribution of the
keys hitting the underlying keyboard plate. Since this plate acts like

a “drum”, it produces the emanated audio sound ([2]). Since each
key is positioned differently on the keyboard plate, different keys
will produce a different sound.

In addition, this technique maximizes the contribution of the un-
derlying plate on the audio emanations (relatively to other factors)
while minimizing the typing style contribution. This technique can
therefore be used to train the system by an attacker (not the original
typist) who is trying to get information about the audio emanations
of the keyboard which are due to the physical structure of the key-
board and the differences between the location of its keys.

We used the above technique to take ten signal recordings for
each key of the alphabet letters as our training data. We refer to
this data in the rest of the paper as “Train Hunt and Peck data”.

4.2 Hunt and Peck Typing
In the second scenario, random passwords are typed using the

hunt and peck style. This case differs from the first case since con-
secutive letters are different from each other. This causes the finger
to hit the key from possibly different angles (depending on which
key was typed earlier). For this test, we chose to generate random
passwords of 6-character each (since the characters are chosen ran-
domly, the data could be divided into any password size). Since
6-character is still the minimum size of password one can chose for
many sites today, this still provides a realistic scenario where the
attacker has the highest probability of guessing the password. We
generated a total of 25 different such random passwords, and each
password was typed 3 times consecutively. We refer to this data as
the “Test Hunt and Peck data” in the rest of the paper.

4.3 Touch Typing
In the third scenario, we type the same password list – as in the

Hunt and Peck case – using the touch typing technique. In this sce-
nario, each key has its own designated finger and the rest of the
fingers may possibly touch the keyboard while typing (depending
on the hands’ movement). We recall that this typing technique is
very popular among users. However, this typing style does affect
the acoustic emanations of the key as the key is hit from different
angle, depending both on the finger used as well as the hand posi-
tion during the typing of each key (which depends on the previous
letters typed). In addition, since both hands touch the keyboard at
the same time, there are overlapping sounds from the other fingers
as they release the previous keys and are re-positioned on the orig-
inal middle keys. We refer to this data as the “Test Touch Typing
data”.

4.4 Effects of Typing Style on Signal
Correlation

To measure the effect of typing style on the detection of typed
random password, we examine the maximum correlation between
instances of the keys in the test data with the Letter Data Set of the
same keys in the training data, termed as matching keys. We then
compare it to the correlation with the Letter Data Set of the rest of
the keys in the training data, termed as non-matching keys. We note
that for each signal, the correlation with itself is normalized to 1.
We therefore expect the max correlation with any other signal to be
between 0 and 1.

Our training data included 10 training samples using the straw
man typing approach (described in Section 4.1), when each key
was typed separately multiple times. Recall that this causes the key
to be hit from a vertical angle each time and reduces the variability
within the signal.

Straw Man Typing: We started by using the aforementioned data as
test data itself. For each sample, we calculate the maximum corre-

6

Table 2: Probability of Keys Matching the Training Data with Typing Style Variation
Straw Man Typing Hunt and Peck Touch Typing
Press Release Press Release Press Release
56% 67% 28% 43% 13% 24%

lation with that sample itself and with each of the other instances
taken with the same key. We then calculate the mean of these val-
ues. We did this for both the press and release part of the signal. We
mark these values as PcorrMatchPrs(i) and PcorrMatchRls(i)
for each sample i of the data.

We also examined the correlation between samples taken with
each key and the Letter Data Sets of the rest of the keys. Specifi-
cally, for each key signal, we calculated the maximum correlation
to each instance in the training data. We then calculate the average
correlation of the sample to the Letter Data Set of each alphabet
letter.

For each tested sample, we take the highest value of the 25 values
we received, which shows the correlation to the most likely key to
be chosen as a match to the original sample. We mark this value
as PcorrNonMatchPress(i) and PcorrNonMatchRls(i) for each
sample i of the data. At this point, we compare the correlations of
the press and release samples. If the sample has highest correlation
to the other instances of the same letter, i.e.,

PcorrMatchPrs(i) > PcorrNonMatchPrs(i), (1)

we mark the press part of the sample as a Match correlation. We
do the same for the release part of each signal. If, on the other
hand, the instance has higher correlation to any of the other let-
ters in the training data, we mark it as Non-Matching. Since, in
this case, the key press (or release) is more similar to instances
of another letter in the training data and therefore will be decoded
as the non-matching letter based on this press (or release) sample.
We calculate the Match probability as the number of keys found to
Match (i.e., being best correlated to the samples of the correspond-
ing typed letter in the training data) divided by the total number of
samples. For the training Straw Man Typing, we found that 56%
of the press signals and 67% of the release signals best matched
their corresponding typed letter, which shows a relatively high cor-
relation between the presses and releases of the different samples
belonging to the same letter.

Hunt and Peck Typing: We next performed the above analysis for
the passwords data typed in hunt and peck style. We found that for
this case, the Match probability was reduced to 28% for the press
samples and 43% for the release samples.

We therefore observe that the percentage of signals that are best
correlated to the training data belonging to the matching letter is
significantly reduced for both the press and release samples.

We see that when the typing style changed slightly (since the
keys are not hit from the top anymore in a monotonic fashion but
rather may hit the keys from different angles, depending on the
previous letter in the password), the correlation between instances
of the same key reduces compared to the correlation to instances of
the other keys. Therefore, it is more likely to choose the wrong key
as the best matching key to the new sample.

Touch Typing: We further repeated the analysis for the data taken
with the touch typing style. We calculated the correlation between
these samples to the training data. In this case, we found that the
probability of each instance matching the correct letter in the train-
ing data was reduced to 13% for the press part of the signal, and
24% for the training part of the signal.

A summary of the results of our overall analysis is presented
in Table 2. In conclusion, we observe that the maximum correla-

tion is stronger between instances of the same key taken with the
same typing style but reduces when the typing style changes. On
the other hand, the correlation to instances taken with other key
increases which makes it hard to detect correctly the pressed key.
This confirms our hypothesis that typing style has a strong effect
on the similarity of audio signals taken with the same key and the
ability to distinguish them from other keys in the keyboard.

We note that this insight applies to both random passwords as
well as language text.

5. PERFORMANCE OF PASSWORD
DETECTION TECHNIQUES

Out of the five techniques explored in Section 3, we found that
the cross-correlation (X-Corr) and time-frequency classification (Time-
Frq) techniques yielded higher accuracies. In this section, we in-
vestigate the advantage that an attacker can get by using these two
techniques to eavesdrop over random passwords.

We examine the performance of these techniques when the typ-
ing styles changes. We compare the detection rates – using the
training data (specified in Section 4.1) – for random passwords
typed with both the hunt and peck and the touch typing styles.

We start by examining the key detection rate for each of the data
groups. We utilize as training data ten instances of each alpha-
bet key (as opposed to four instances used in Section 4.1). This
improves the detection ability as it helps in reducing the effect of
noise in each instance.

We calculate the similarity measure – max correlation for cross-
correlation and TF distance for time-frequency classification – be-
tween each tested instance and each of the ten instances of the train-
ing data. We then calculate the average of the similarity measure-
ment between each tested instance and all instances belonging to
each alphabet letter in the training data. For the cross-correlation
technique, we chose as the best matching letter the one with the
highest correlation. For the time-frequency classification technique,
we chose the alphabet letter with the lowest TF distance measure.

5.1 Training Data, Hunt and Peck style
To measure the performance for our training data, we use the

same method as discussed in Section 3.3. Since we now raise the
number of instances for each alphabet key to ten, this averages the
noise per instance and improves the detection performance.

As a result, we found that the cross-correlation statistics calcu-
lated using this technique resulted in a 83% accuracy rate per key
(up from 73% when using only four instances per alphabet key).
We conclude that when the typing is repetitive, the probability of
detecting each key using cross-correlation is relatively high and the
underlying physical characteristics of the keyboard has strong ef-
fect on the acoustic emanations and the ability to eavesdrop on the
recorded characters. When using the time-frequency based classi-
fication, we found that the results were further improved to 89%
.

5.2 Test Data, Hunt and Peck Style
For calculating the detection rate for the password (test) data,

we start by calculating the similarity measure (max correlation and
time-frequency distance) for each character in the password. To
do this, we begin by calculating the similarity to all the instances

7

Table 3: Single Character Detection Rates, best character guess

Training → Hunt & Peck Touch Typing
Testing Stage → Hunt & Peck Touch Typing Touch Typing

X-Corr 53.78% 33.78% 49.33%
Time-Frq 64.67% 40.67% 58.89%

Random Guess 3.84%

Table 4: Single Character Detection Rates, 5-character guess

Training → Hunt & Peck Touch Typing
Testing Stage → Hunt & Peck Touch Typing Touch Typing

X-Corr 79.33% 63.78% 76.00%
Time-Frq 88.22% 74.89% 85.11%

Random Guess 19.23%

in the training data. We then calculate the mean of the similarity
measure for each alphabet letter in the training data (by averaging
the values received for all the instances of each letter). For the
cross-correlation technique, we chose the matching letter as the one
with the highest cross correlation for each test instance.

For the password data typed with the hunt and peck typing style,
we find that the cross-correlation performance is reduced to a 54%
accuracy rate per key. We see that the typing style causes a re-
duction of the detection accuracy compared to typing the same key
continuously. We conclude that the angle at which the finger hits
the key affects the acoustic signal emanated by the key and the abil-
ity to detect correctly the key by comparing it to the training data.

When employing the time-frequency classification technique, we
chose as the best matching alphabet letter, for each test instance,
the one which produces the smallest TF distance. We found that
our results were improved to a detection rate of 65% per character
in this case.

5.3 Test Data, Touch Typing Style
We repeated the testing process for the passwords typed using the

touch typing style. We find that for this scenario, using the cross-
correlation technique for key detection, the accuracy rate is reduced
to 34%. When using the time-frequency based classification, we
observe that the rate of detection per correct character has increased
to 41%.

5.4 Best Guesses Search
In order to raise our detection rate, we decided to create a list

of additional keys to be checked against our recorded password.
We implemented this by creating a list of keys having the high-
est max correlation, for the cross-correlation technique, to each
recorded password character. For the time-frequency classification
technique, we created a list of keys having the lowest TF distance
from the test character.

For each key, we tried matching both the best matching letter
and the next few highest matching alphabet letters. When exam-
ining the ordered list of highest matching alphabet letters, we saw
that the probability of the key matching each of the letters reduces
significantly after the fifth letters.

We therefore implement a “Best Guesses Search” – in which
for each typed character, we create a list of the 5 best matching
keys. We then determine the probability of a correct detection for
the five keys. Using the correlation-based technique, we found that
the probability of each character to be in the list of the top five keys
was increased to 79% for the hunt and peck data. For the touch

typing data, in contrast, the probability that the key is in the first
five choices was found to be 64%.

For the time-frequency based classification, we found that the
probability of each character to be in the list of the top 5 keys was
increased to 88%. For the touch typing data, the rate was increased
to 75%. All of our results, corresponding to the single best key,
and the first five keys produced by our algorithms, are summarized
in Tables 3 and 4, respectively. The results corresponding to the
two best guesses are depicted in Table 6 (moved to appendix due to
space constraints).

5.5 Training, Touch Typing Style
We now examine the case where the training is also performed

using continuous typed characters. In this scenario, the attacker
first eavesdrops over a user typing continuous text. He records the
text and uses language model tools to detect the keys pressed. Then,
when the user types his password (testing phase), the attacker uses
the previous recordings he has as training data to decode the char-
acters typed.

To perform this test, we first type each letter continuously and
record the audio signal, using touch typing. We then use the typed
signals to create the training data. We then use both the cross-
correlation and the time-frequency method to decode the password
data based on the recorded training data.

Our tests show that as expected, the password decoding has sig-
nificantly improved in this case (compared to training with hunt
and peck style data). We also found that, in this case too, the time-
frequency method produced better results than cross-correlation.
We summarize the results in Table 3.

5.6 Password Decoding
Next, we look at the advantage that an eavesdropper can achieve

by using an exhaustive search to detect an n-character password
(i.e., by making use of a certain number of trials). While a brute-
force attack on the entire password space would take 26n ' 24.7×n

trials, we introduce the Best Guesses Search, which includes a
lower number of tests. This reduces significantly the computing
complexity and speeds-up the attack. Therefore, it can be used by
an attacker who has access for a limited amount of time to a de-
vice (or a service) that requires password authentication. We also
provide the success probabilities of finding the correct password
when the attacker is only allowed up to three trials, as it is a com-
mon practice among many online services to lock out the owner’s
account after three failed attempts.

We start by analyzing the Best Guesses Search. For this algo-
rithm, we choose for each character the five keys which are the
closest (the most similar) from all the keys in the training data. We
therefore reduce the number of tests to:

N(n) = 5n ' 22.3×n (2)

This yields a probability of detecting the full password with the
Best Guesses Search as:

PrPasswordDetection(n) = (Pchar5)n (3)

Here, Pchar5 denotes the probability that each char matches one
of the five best guesses.

Overall, this means that our attack can cut down the entropy of
the password search space by a factor of about 2 (from 4.7 to 2.3).

We further compare the accuracies of the cross-correlation and
time-frequency classification techniques for detecting n−character
passwords for the Best Guesses Search as well as when perform-
ing a small number of trials. We check, as a test example, the Best
Guesses Search detection probability for 6-character passwords (which

8

Table 5: 6-Character Password Detection Rates

Method → EXHAUSTIVE SEARCH BRUTE FORCE

Cross-Correlation Time-Frequency
Training Stage → Hunt and Peck Touch Typing Hunt and Peck Touch Typing
Testing Stage → Hunt and Peck Touch Typing Touch Typing Hunt and Peck Touch Typing Touch Typing
No. of Trials ↓

1 2.42% 0.15% 1.44% 7.31% 0.38% 4.17% 3.24E−07%
2 2.92% 0.19% 1.80% 8.87% 0.59% 5.14% 6.47E−07%
3 3.42% 0.24% 2.16% 10.43% 0.80% 6.12% 9.71E−07%

15, 625 24.00% 5.33% 22.67% 42.67% 21.33% 34.67% 0.0051%

includes 56 = 15625 trials) and verify that it indeed matches our
calculations using Equation 3. We start by calculating this proba-
bility using the cross-correlation techniques. When using the hunt
and peck training on the password typed with the hunt and peck
technique, we managed to detect 24% of the passwords. For the
passwords typed with the touch typing technique (using the hunt
and peck training), on the other hand, the detection rates went down
significantly – to only 5.3%. We emphasize, however, that our re-
sults are still considerably better than a brute force attack which
would produce on average 0.005% success rate for the size of our
search space (which includes about 214 password tests). When ex-
amining the average detection rate for the case where touch train-
ing is performed, we find that the average password rate is raised to
22.7%.

We then compare our results to the one achieved with the time-
frequency classification. For the hunt and peck typing, we obtain a
detection rate of 42.7%. For the touch typing techniques passwords
(using the hunt and peck training data), the results improve using
the time-frequency technique and the detection rate reached 21.3%.
For the case where we use touch training on this data, we find that
the average password rate for the touch-typing passwords goes up
to 34.7%.

All of the detection rates are summarized in Table 5. The detec-
tion rates, for the case involving 1 to 3 trials are obtained directly
from the detection rates corresponding to the best matching single
character listed in Tables 3, 4 and 6.

Finally, we use the probabilities from Table 4 to calculate the
password search space size (as per Equation 2) and the average
detection probabilities (as per Equation 3) for the Best Guesses
Search. We show the results for passwords of different lengths up
to 12 characters in Figures 2 and 3. We therefore see that the Best
Guesses Search significantly reduces the search space size and im-
proves the detection probability for passwords of different length.

6. SUMMARY AND IMPLICATIONS OF
RESULTS

Our research establishes that keyboard acoustic eavesdropping
attacks are affected by three variables, namely, detection technique,
typing style, and type of input data. Below we outline some of the
insights that our research provides vis-a-vis these variables.

6.1 Detection Technique
We explored several techniques, based both on the time signal

and frequency spectrum. We further present a new technique which
gives improves detection results and is based on both time and fre-
quency data. Our work also examines other potential time-based
detection techniques and the usage of Dynamic Time Warping tech-
nique for key detection. Our work shows that the signals do not
“stretch” significantly in time which results in the poorer perfor-

mance of Dynamic Time Warping technique compared to signal
time correlation (Table 1). We conclude that while the audio signal
changes from click to click, the changes affect mainly the audio
signal amplitude. We further observe that the similarities in signals
emanated from the same key are detectable both in the frequency
and in the time domain. Therefore, combining this information
leads to improved detection results, as is the case with our time-
frequency classification.

6.2 Typing Style
Our work demonstrates that typing style significantly affects the

emanated keyboard sound. We further conclude that while the un-
derlying plate contributes to the key sound, the typing style also
contributes to it significantly. We confirmed that the similarity be-
tween the audio sounds belonging to each key is reduced when the
typing style changes from hunt and peck typing to touch typing.
One of our observations is that while there are still sound differ-
ences between some of the keys, when examining all the alphabet
keys in the keyboards, it becomes hard to distinguish between a
single key and the rest of the keys. While it may be easier to distin-
guish the key from some of the keys (which confirms our perception
that some keys sound “different”), distinguishing it from the rest of
all the alphabet keys is challenging and some of the audio ema-
nations corresponding to other keys may become indistinguishable
from the target key.

We found, from our experiments, that the accuracy of detecting
a single character on the keyboard is reduced when moving from
hunt and peck typing to touch typing (Tables 3, 4 and 6). An impli-
cation of our result therefore is that users who employ touch typing
are less prone to keyboard acoustic eavesdropping. Since in real-
life many users touch type, this suggests that, in practice, keyboard
acoustic attacks may not constitute to be as significant a threat as
believed to be.

6.3 Type of Input Data
Our research shows that detection of random password poses a

significant challenge, since only the (raw) audio signal is available
as input to the attack. On the other hand, attacks on English-text
or weak passwords may achieve better results due to the underly-
ing language model and the dictionary tools, as demonstrated by
prior research [22, 23, 5]. Such attacks may achieve better re-
sults because the raw acoustic information can be clubbed together
with an optimized context-based language models or a dictionary.
This means that random passwords are less vulnerable to keyboard
eavesdropping attacks.

We can conclude that users who employ random passwords are
less susceptible to keyboard acoustic attacks than those who em-
ploy weak passwords. On the other hand, our attacks on random
passwords are still orders of magnitude more successful than ran-

9

4 5 6 7 8 9 10 11 12

10
5

10
10

10
15

10
20

Password Length

N
um

be
r

of
 T

ra
ils

Search Space Size

Best Guesses Search
Brute Force

Figure 2: Best Guesses Search space size

4 5 6 7 8 9 10 11 12

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Password Length

S
uc

ce
ss

 R
at

e

Password Detection Rate

Best Guesses Search, Hunt and Peck Training
Best Guesses Search, Touch typing Training
Brute Force search

Figure 3: Best Guesses Search detection probability

dom guessing or brute-forcing attempts (as depicted in Table 5).
For example, with only 3 trials, for touch typed passwords, our at-
tacks are better by a factor of about 150,000; with 16,457 trials,
they are better by a factor of about 2,000.

7. OTHER RELATED WORK
Acoustic emanations were also utilized for eavesdropping on dot

matrix printers. In [6], Briol showed that significant information
can be extracted about the printed text, using acoustic emanations
to distinguish between the letters ‘W’ and ‘J’. In [3], Backes et
al. presented an attack which recovers English printed text from
the printer audio sounds. This attack is word-based and starts by
training the system with a list of dictionary words. Then, an HMM
language-based model is utilized to detect the typed words from the
dictionary word list.

In a proof-of-concept work published on the web [13], Shamir
and Tromer explore inferring of CPU activities (e.g., patterns of
CPU operations and memory access) via acoustic emanations. In
particular, they investigate how acoustic emanations associated with
RSA decryption and signing operations produce unique signatures
per RSA private key, and how they can be used to learn the keys.

In [8], Halevi and Saxena studied acoustic emanations in order to
learn key exchange information during the wireless device pairing
operation. In this work, device pairing schemes utilizing out-of-
band channels – including audio-based key exchange and device
vibrations – were investigated and found to be vulnerable to acous-
tic eavesdropping attacks.

Additional methods to extract keyboard input focus on other sources
of information (i.e., other than audio). In [4], Balzaroni et al. ex-
plored recovering keyboard input based on video of the typing ses-
sion. In this approach, the manual typing is recorded using a video
camera and each typed key is assigned a list of possible characters.
Then, a language model and context-sensitive techniques are used
to choose the best matching characters for each key typed. In [16],
Song et al. showed that timing information of key-presses can be
used to exploit weaknesses in SSH protocol. The algorithm uses
SSH data to first train an HMM model for timing analysis. The
system is then used to recover passwords consisting of 5-8 charac-
ters.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we took a fresh look at the vulnerability of key-

board typing to audio emanations. Our work shows that keyboard

eavesdropping is affected by a few variables, including the typ-
ing style, the input data and the detection technique. We showed
that while the detection performance is reduced for realistic typing
styles, keyboard typing still remains vulnerable to eavesdropping
attacks.

Our work further provides an objective measure for the perfor-
mance of key detection. This information is useful for implement-
ing future language model and dictionary based attacks as their
success relies on the underlying audio-based (raw) key detection
capability. Further, our work helps asses the performance of these
attacks, by providing an estimate as to how much the use of a lan-
guage model or dictionary may further improve the final detection
results.

Overall, we found that the strength of acoustic eavesdropping
attacks is limited when using different typing styles and random
passwords, and may therefore not be as significant a threat as previ-
ously believed to be under such realistic and security-sensitive set-
tings. On the other hand, we define a Best Guesses Search, which
reduces by half the entropy of the typed random passwords and
therefore considerably speeds-up the exhaustive search.

There exist several avenues for future work. First, our work con-
centrated on English alphabets but can be extended to also include
numbers (e.g., numeric PINs or credit card numbers). Since all the
keys are positioned on the keyboard in a similar way, have the same
size and share the same underlying physical plate, we expect the de-
tection behavior to be the same. However, it would be interesting
to verify this in future research. Another possible extension can be
to look at the combination of the Shift key with other characters.
This scenario is interesting since an overlap is expected between
the acoustic emanations of the keys which may make it harder to
detect the pressed keys.

We believe that testing laptop keyboard acoustic emanations is
also an interesting further step. We conducted preliminary tests and
noticed that the press signal is evident in laptop keyboard record-
ings. However, we found that the release audio signal either had
very low volume or was not noticeable at all in the recorded sig-
nal. Therefore, laptop keyboard eavesdropping needs to rely only
on the key press and is likely to be less successful than traditional
keyboard eavesdropping.

Acknowledgements
We thank Avishai Wool, Yigael Berger and Doug Tygar for discus-
sions related to prior work on keyboard acoustic emanations.

10

9. REFERENCES
[1] A. Adams and M. A. Sasse. Users are not the enemy.

Commun. ACM, 42(12): 40–46, 1999.
[2] D. Asonov and R. Agrawal. Keyboard acoustic emanations.

In IEEE Symposium on Security and Privacy, 2004.
[3] M. Backes, M. Dĺurmuth1, S. Gerling1, M. Pinkal3, C.

Sporleder Acoustic Side-Channel Attacks on Printers. In
Usenix Security Symposium, 2010.

[4] D. Balzarotti, M. Cova, G. Vigna ClearShot: Eavesdropping
on Keyboard Input from Video InProceedings of the 2008
IEEE Symposium on Security and Privacy, 2008.

[5] Y. Berger, A. Wool and A. Yeredor, Dictionary Attacks
Using Keyboard Acoustic Emanations. In Conference on
Computer and Communications Security, SESSION: Attacks
and cryptanalysis, Pages: 245 - 254, 2006.

[6] R. Briol Emanation: How to keep your data confidential. In
Symposium on Electromagnetic Security For Information
Protection, SEPI, Nov. 1991.

[7] A. H. Y. Fiona, Keyboard Acoustic Triangulation Attack.
Final Year Project, Available at http://personal.ie.
cuhk.edu.hk/~kwwei/FYP/keyboard_
acoustic_attack/Eric_Thesis2_final.pdf

[8] T. Halevi, N. Saxena On Pairing Constrained Wireless
Devices Based on Secrecy of Auxiliary Channels: The Case
of Acoustic Eavesdropping. In ACM Conference on
Computer and Communications Security, 2010.

[9] P. Inglesant and M. A. Sasse. The true cost of unusable
password policies: password use in the wild. In CHI ’10:
Proceedings of the 28th international conference on Human
factors in computing systems, pages 383–392, 2010.

[10] A. Moore, School of Computer Science, Carnegie Mellon
University. Hidden Markov Model.
http://www.autonlab.org/tutorials/hmm14.pdf.

[11] R. Morris and K. Thompson. Password security: a case
history. Commun. ACM, 22(11):594–597, 1979.

[12] L. Rabiner and B.H. Juang. Mel-Frequency Cepstrum
Coefficients. Prentice-Hall Signal Processing Series, 1993,
ISBN:0-13-015157-2.

[13] A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy
people and noisy machines. http:
//people.csail.mit.edu/tromer/acoustic/.

[14] R. Lachlan, Normalization for Dynamic Time Warping.
http://luscinia.sourceforge.net/page26/
page14/page14.html.

[15] “Keyboard Acoustic Emanations Revisited” presentation.
http://cs.unc.edu/~fabian/courses/CS600.
624/slides/emanations.pdf.

[16] D. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on ssh. In Tenth USENIX
Security Symposium, 2001.

[17] Typing. Wikipedia, available at
http://en.wikipedia.org/wiki/Typing.

[18] L. Rabiner and B. Juang. Fundamentals of Speech
Recognition. In Prentice-Hall, Inc, 1993.

[19] R. Shay, S. Komanduri, K.G. Patrick, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin and L. F. Cranor.
Encountering stronger password requirements: user attitudes
and behaviors In SOUPS ’10: Proceedings of the Sixth
Symposium on Usable Privacy and Security, 2010.

[20] A. Wool and Y. Berger. Personal communication on the
subject of typing styles used in prior research on keyboard

acoustic emanations. April, 2010.
[21] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password

memorability and security: Empirical results. IEEE Security
and Privacy, 2(5):25–31, 2004.

[22] L. Zhuang, F. Zhou, J. D. Tygar, Keyboard Acoustic
Emanations Revisited. In Proceedings of the 12th ACM
Conference on Computer and Communications Security,
November 2005, pp. 373-382.

[23] L. Zhuang, F. Zhou, J. D. Tygar, Keyboard Acoustic
Emanations Revisited. In ACM Transactions on Information
and System Security (TISSEC), October 2009, Volume 13
Issue 1, pp. 3-26.

APPENDIX
A. ADDITIONAL TABLES

Table 6: Single Character Detection Rates, 2-character guess

Training Stage → Hunt and Peck Touch Typing
Testing Stage → Hunt and Peck Touch Typing Touch Typing

Cross-Correlation 64.89% 43.78% 61.78%
Time-Frequency 78.44% 53.33% 72.67%
Random Guess 3.84%

11

B. ADDITIONAL FIGURES

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Recording of Multiple Keys

5 5.5 6 6.5 7 7.5 8 8.5 9
0

50

100

150

200

250

300

350

400

450

500

Figure 5: Sum of FFT Coefficients

Train letter index

T
yp

ed
 le

tte
r

in
de

x

DTW Decoding Results

5 10 15 20 25

5

10

15

20

25

Figure 6: DTW Decoding (4 recordings of each test alphabet let-
ter)

Train letter index

T
yp

ed
 le

tte
r

in
de

x

Cross−correlation Decoding Results

5 10 15 20 25

5

10

15

20

25

Figure 7: Cross-Correlation Decoding (4 recordings of each test
alphabet letter)

Time−Frequency decoding results

Train letter index

T
yp

ed
 le

tte
r

in
de

x

5 10 15 20 25

5

10

15

20

25

Figure 8: Time-Frequency based Decoding (4 recordings of each
test alphabet letter)

12

