
Scrutinizing rebound attacks: new algorithms for improving the
complexities

Maŕıa Naya-Plasencia∗

FHNW, Windisch, Switzerland

Abstract. Rebound attacks are a state-of-the-art analysis method for hash functions. These crypt-
analysis methods are based on a well chosen differential path and have been applied to several hash
functions from the SHA-3 competition, providing the best known analysis in these cases. In this
paper we study rebound attacks in detail and find for a great number of cases, that complexities of
existing attacks can be improved. This is done by determining problems that adapt optimally to
the cryptanalytic situation, and by using better algorithms to follow the differential path. These
improvements are essentially based on merging big lists in a more efficient way, as well as on new
ideas on how to reduce the complexities. As a result, we introduce general purpose new algorithms
for enabling further rebound analysis to be as performant as possible. We illustrate our new algo-
rithms for real hash functions and demonstrate how to reduce the complexities of the best known
analysis on five hash functions: JH, Grøstl, ECHO, Luffa and Lane (the first four are round two
SHA-3 candidates).

Keywords: hash functions, SHA-3 competition, rebound attacks, algorithms

1 Introduction

The rebound attack is a recent technique introduced in [11] by Mendel et al. It was conceived to
analyze AES-like hash functions (like Grøstl [5] in [12, 6, 13], Echo [2] in [12, 6, 15], Whirlpool [1]
in [9]). The rebound attack is composed of two parts: the inbound phase and the outbound phase.
The inbound phase finds with a low cost a big number of pairs of values that satisfy a part of a
differential path that would be very expensive to satisfy in a probabilistic way. The outbound
phase uses these values to perform an attack. This technique has been used in other algorithms
that use permutations that are less AES-like. For example JH [17](reduced to 22 rounds) [14]
and Luffa [3](reduced to 7 rounds) [8], that use Sboxes of size 4 × 4 and have a linear part
in which mixing is done in a very different way than in the AES; or LANE [7], that includes
several AES states treated by the AES round transformation but where the mixing between
these states is a different transformation, and was analysed in [10, 18]. In these cryptanalysis
results, the rebound attack needs to be refined and adapted to each case, but all of them are
based first, on a differential path, and second, on an algorithm that finds solutions that verify
this differential path. Something common to all those algorithms is that a merge of big lists is
needed. In this paper we introduce some new algorithms specific for the rebound attack that
allow a lower complexity for finding pairs that verify the differential path by introducing some
ideas that improve the previous procedures and/or by making a better merging of lists than
the ones done so far. This will allow us to reduce the complexities of the attacks, as shown
on Table 1. In this table we can see how we have considered the best existing attacks against
five hash functions (4 of them are second round candidates of the SHA-3 competition) and we
have been able to improve their complexity by scrutinizing the original attack and finding an
algorithm more efficient for finding the wanted solutions for the differential path, which most of
the times involves a better merging of the lists, and sometimes it is due to stating more adequate
conditions in the general algorithm. The problem of merging the lists can be described as one
generalized problem, and, depending on which case we are in, one or more algorithms will be
considered. In most of the cases, the main idea is to do a sieving (in general like the one done

∗Supported by the National Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center of the Swiss National Science Foundation under grant number 5005-67322

in [4]) so that we do not have to try all the elements in one list with all the elements in the
other(s).

The generalized problem: Let L1, . . . , L2N be 2N lists with 2l1 , . . . , 2l2N elements respec-
tively. Each element in a list consists of x groups of values and y groups of differences. Each
group contains a specific value (or difference) stored with |s| bits. We want to merge these 2N
lists into a new one that consists of the 2N−tuples formed by elements of L1, . . . , L2N so that
the elements of each 2N -tuple verify a certain relation t.

The relation t can have many different forms, as we will see later. Let us remark here that
the aim is to find all the 2N -tuples that verify the relation t (the case where we want to find
just some of them for a linear t is treated in [16]). Depending on the values of N , x, y and in
particular on the type of relation t, we will propose different algorithms for merging these lists in
an efficient way. Finding which is the reduced problem (lists, parameters, transformation) that
best adapts to our situation and that will give us the best complexity is an important task that
must be done by the cryptanalyst in each particular case. We are going to give here different
algorithms for several very common cases and for different parametters: when t is linear, when
t is non-linear, when t can be applied group-wise. We will also show in some particular cases
how to correctly identify the more adequate problem (or problems) to solve can reduce the
complexity.

We will give some real examples of application:

Table 1. Improvements on best known attacks.

Hash function
Best Known analysis Rounds Previous This paper

Time Memory Ref. Time memory

JH semi-free-start coll. 16 2190 2104 [14] 296.12 296.12

JH semi-free-start near coll. 19,22 2168 2143.70 [14] 295.63 295.63

Grøstl-256 compresion function prop. full(10) 2192 264 [13] 2182 264

Grøstl-256 internal permutation dist. full(10) 2192 264 [13] 2175 264

Grøstl-512 compresion function prop. 11 2640 264 [13] 2630 264

ECHO-256 internal permutation dist. full(8) 2182 237 [15] 2151 267

Luffa semi-free-start coll. 7 2132 2132 [8] (2104) (2102)

Lane-256 semi-free-start coll. full(6+3) 296 288 [10] 280 266

Lane-512 semi-free-start coll. full(8+4) 2224 2128 [10] 2224 264

– JH: For d = 4 (d is the dimension of a block of bits) and d = 8 some reduced round
attacks were given in [14]. When one-inbound phase is used (the 16 rounds analysis), we can
instantiate a problem where N = 1, the relation t applies independently to each group, and
is derived from a linear transformation (where the elements of both lists are each half of the
input of the linear transformation, and we want half of the output to have no differences). We
propose an algorithm that improves the complexities. In the case of 19 and 22 rounds where
three-inbounds are used, we can improve the complexities by using the same algorithm as
for the one-inbound attack, combined with a different order of solving the inbound phases,
as we will see in Section 5.1.

– Grøstl: In [13] a non-random property of the Grøstl-256 compression function is given using
a technique called SuperSbox with a complexity of 2192 in time and 264 in memory. The same
complexity is given for a distinguisher on the internal permutation. Here we have identified
an instance of the problem that allows us to perform the same attacks with time complexity
of 2182 and 2175 respectively and the same memory.

– ECHO-256: In [15] a distinguisher on the internal permutation is given with complexity 2182

in time and 237 in memory. We propose here an algorithm that solves the problem for a
particular case of N = 1, x = 0 and t cannot be applied independently to each group, and
that allows to perform the same attack with a complexity of 2151 in time and 267 in memory,
which is a previously unknown trade off that improves the time complexity.

– Luffa: We will have the case where N = 1, x = 0 and relation t can be applied independently
to each group and establishes a relation between an element of the input and an element
of the output. In [8] an algorithm (parallel matching) was introduced that could reduce the
complexity (from 2132 to 2102) for solving this problem. Here we generalize this method.

– Lane-256: Here several problems are identified and several algorithms are applied for reduc-
ing the total complexity of the attack given in [10] from 296 in time and 288 in memory to
280 in time 258 in memory + 264 in time and 266 in memory (which are the complexities of
two different steps). The first algorithm solves the problem in the case N = 2 and where t
is the identity for the y groups of differences and is a linear relation between the x elements
of the lists L1, L2, L3 and L4. The other algorithm solves the problem for N = 1, x = 0 and
t cannot be applied independently to each group.

– Lane-512: Here we use three algorithms for reducing the complexity of the attack given in
[10]. The first one is applied in the case N = 2 and t is the identity for the y groups of differ-
ences and a linear relation between the elements of the lists L1, L2, L3 and L4 independent
for each group, so it is the same one as we used for Lane-256. The second one is applied
when N = 2, y = 0 and t is a linear relation between the elements of the lists L1, L2, L3 and
L4. The last algorithm is applied when N = 3, y = 0 and t cannot be applied independently
to each group.

Besides these results, the aim and main interest of this paper is to show some general lines for
improving the rebound attacks. In particular, the introduction of several new algorithms that
improve considerably the overall effectiveness when big lists are needed to be merged in different
rebound scenarios and that we will be able to apply in a quite automated way once we have
identified the problem. First we will introduce the basic algorithms classified by the relation
t and choosing some parameters for simplifying the explanation that can be adapted in each
particular case. All these algorithms are quite related and can allow some trade-offs, depending
on the actual parameters. We will next show how to identify and decompose a specific problem
for applying these algorithms with some examples on real attacks, improving their complexity.
Identifying the most adequate problem is a fundamental task.

1.1 Notations

– |s| is the size of a group. In general the size of the |s| × |s| Sbox involved.
– S will represent the Sbox involved in each particular case.
– di

j is the ith group out of y from the list Lj . It represents a difference of a group.
– vi

j is the ith group out of x from the list Lj . It represents a value of a group.
– `i is a linear permutation.
– 2−po is the probability of a property in o to be verified.
– AES state: is a state of size 128 bits that can be seen as a 4x4 matrix of bytes.
– ECHO state: is a state of size 2048 bits that can be seen as a 4x4 matrix of AES states.
– Grøstl state: is a state of size 512 bits that can be seen as a 8x8 matrix of bytes.
– Lane state: is two (for 256) or four (for 512) AES states in parallel.
– JH state: a state of size 2d+2 that can be seen as 2d words of 4 bits.
– Luffa state: is a state of size 256 that can be seen as 64 4-bit words.
– SB: The AES-like transformation SubBytes.
– SR: The AES-like transformation ShiftRows.
– MC: The AES-like transformation MixColumn.

– SC: The Lane Transformation SwapColumns, that mixes two or four AES states by inter-
changing it’s columns.

– BigSR, BigMC, BigSB: the three operations defined in ECHO for treating the AES states
(instead of bytes) that are similar to the AES ones.

– SuperSbox: is an Sbox defined by SR ◦ SB ◦MC ◦ SR ◦ SB. Applied on an AES state, it can
be seen as a 32x32 Sbox. Applied on a Grøstl state, as a 64x64 Sbox.

– SuperSbox set: each one of the 4 (in the AES state) or 8 (in the Grøstl state) sets that act
as input and output of the SuperSbox.

– BigSuperSbox: is an SuperSbox defined by BigSR ◦BigSB ◦BigSC ◦BigSR ◦BigSB. Applied
to ECHO it defines sets of size 4 AES-states.

2 Algorithms for t linear and group-wise

These algorithms are the simplest ones. Still, they have not been aplied to some of the previously
mentioned attacks though they can reduce considerably the complexity. This is mainly due to
the overall complexity of the attacks when considering all the parts together, and that is also
why it is useful to identify and isolate the problem and the algorithm to solve it, as we have
done here.

2.1 N = 2, x 6= 0, y 6= 0

Here we treat the case when t is a very simple relation that can be decomposed into smaller
ones, which modelizes quite well the message insertion relations:

di
1 = di

2 = di
3 = di

4 and

`1(v
j
1, v

j
2) = `2(v

j
3, v

j
4),

for i ∈ [1, y] and j ∈ [1, x]. Without loss of generality, we consider that l1 + l2 ≤ l3 + l4. Merging
these four lists for keeping the values that verify the defined relation can be done efficiently by
making a sieve regarding the differences. We will first order the four lists by their groups of
differences. Next, for each of the 2|s|y values for these differences, we consider the 2l1−|s|y and
the 2l2−|s|y elements related to lists L1 and L2 and we compute `1(v

j
1, v

j
2) for j ∈ [1, x] with each

possible pair. The cost of this step will be 2l1+l2−2|s|y, and we generate a list L12. We can do the
same with lists L3 and L4 generating the new list L34. Now we want to merge these two lists. We
will do it by checking, for each element of L12 if it appears in L34. This is done with complexity
also 2l3+l4−2|s|y. Let us remark here that list L34 does not need to be stored but we can check
each element as soon as we generate it. We repeat this for each of the possible values of the y
groups of differences. The total complexity will be 2l1+l2+l3+l4−3|s|y−|s|x +2l1+l2−|s|y +2l3+l4−|s|y

in time and 2l1 +2l2 +2l3 +2l4 +2l1+l2−2|s|y in memory. The number of solutions on the merged
list will be 2l1+l2+l3+l4−3|s|y−|s|x

2.2 N = 2, x 6= 0, y = 0

This case can be treated as a special case of the previous one. The proposed algorithm will
be useful in cases where some other step is the time bottle-neck and we want to reduce the
memory requirements. It allows us to make a time-memory trade-off (that reduces memory) for
the particular problem. We write t like the relation on the values that we had before

`1(v
j
1, v

j
2) = `2(v

j
3, v

j
4), j ∈ [1, x].

Now, we do not have differences to make a sieve. If we applied the same algorithm as before,
we would need a memory of max(2l1+l2 , 2l3+l4). If we want to reduce this memory requirements,

because this part of the attack is far from the bottle neck in time but is the bottleneck in
memory, we can reduce considerably the memory requirements (it will be 2l1 + 2l2 + 2l3 + 2l4)
by increasing the time complexity: if we can re-write t as

`′(vj
1, v

j
2, v

j
3) = vj

4.

So with a complexity of 2l1+l2+l3 + 2l1+l2+l3+l4−x|s| (instead of 2l1+l2 + 2l1+l2+l3+l4−x|s|) we can
try all the combinations of these 3 lists and for each, we compute `′(vj

1, v
j
2, v

j
3) and check if

this value is on the list L4 (which we had previously ordered). We will obtain 2l1+l2+l3+l4−x|s|

matches with a time complexity of 2l1+l2+l3 and no additional memory requirements, appart
from the already given four lists, if each time we obtain a match we use it instead of stocking
it (as it is the case in the example that of Section 5.6).

2.3 N = 1, x 6= 0, y 6= 0 and the elements on both lists are inputs to t

In this case we can write the relation t as

`(di
1, d

i
2) = oi,

where oi must have some special property. Let us remark here that the size of the input of ` is
22|s|. We can precompute a table of all it’s possible inputs and all it’s related outputs with a cost
of 2|s| in both time and memory. We will obtain the wanted property in oi with a probability
of 2−poi once the first input is fixed. Now, for merging lists L1 and L2 we will order them by
the y groups of differences. We next just have to go through all the min(2|s|y − 1, 2l1) possible
values for these differences in L1 and for each one check which values of the precomputed
table can be separately associated to d0

1 . . . dy
1. We will obtain 2(|s|−poi)y possible matchs for

all of the y involved groups. Next we check if those values of differences can be found in the
L2 list. In total, we will find 2(|s|−poi)y min(2|s|y, 2l2) matches on the y groups of differences
between the two lists with a complexity of 2(|s|−poi)y min(2|s|y − 1, 2l1) in time and 2l1 + 2l2 in
memory. We can see that this scenario would be the same if x = 0, as we do not use the x
values and we just keep a difference match. In real attacks the values will be used in further
steps. For example, if another relation is established between the remaining groups, for each
match of the y groups, we can try the 2l1−|s|y elements of L1 associated with the corresponding
2l2−|s|y elements of |L2| to see if they verify the remaining relations. The total complexity will be
[2(|s|−poi)y min(2|s|y−1, 2l1)2l1+l2−2|s|y]+2l1+l2−ypoi in time and 2l1 +2l2 +2l1+l2−ypoi in memory.
As in the previous section, if each time we obtain a match we can use it and don’t need to store
it, this last memory term can be reduced to 2l1 + 2l2 .

3 Algorithm for t non-linear and group-wise: Parallel matching

In this section we will only discuss the case when x = 0. Otherwise, the groups of differences that
have an associated value will be instantly matched to their corresponding value (if possible).
The scenario for the case with x = 0 is a very interesting one, where we want to find a solution of
differences for a part of a differential path. In [8] a new technique is introduced to find solutions
for a differential path where they first find all the possible differences that could verify it, and
next, the associated values. In this case we have to merge big lists of differences before and
after an Sbox. Also in [8], a technique was introduced for reducing the cost of merging these
lists: the parallel matching. Here we generalize this technique. When talking about differences,
(2|s| − 1) is all the possible differences in the input of each one of the y groups, as we exclude
0. The relation t here is

S(a)⊕ S(a⊕ di
1) = di

2,

where a exists but we do not want to recover it here and i ∈ [1, y]. Lets say that a difference
in the input of the Sbox can be associated to a difference in the output with a probability of
2
−p

di
2 . Then, we expect 2

l1+l2−yp
di
2 matches.

We order the lists L1 = {d1
1, . . . , d

y
1} and L2 = {d1

2, . . . , d
y
2} by the differences in the first n

groups {d1
i , . . . , d

n
i }. We will supose for simplicity that 2li > 2n|s| (which is a more usual case to

consider). This will define 2n|s| sets in each list with 2l1−n|s| and 2l2−n|s| elements associated to

each set and to L1 and L2 respectively. We can build a new list Ln of matches of size 2
2n|s|−np

di
2

formed by elements of the form {d1
1, . . . , d

n
1 , d1

2, . . . , d
n
2}. We repeat the process with the m next

groups, {dn+1
i , . . . , dn+m

i }, creating the list Lm of size 2
2m|s|−mp

di
2 formed by elements of the

form {dn+1
1 , . . . , dn+m

1 , dn+1
2 , . . . , dn+m

2 }. Next, this list Lm is used to build a new one, L′
m in the

following way:
Each element {dn+1

1 , . . . , dn+m
1 , dn+1

2 , . . . , dn+m
2 } from the list Lm is associated to 2l2−m|s| el-

ements {d1
2, . . . , d

n
2 , dn+m+1

2 , . . . , dy
2} by list L2. With this, we can build the list L′

m of size

2
l2+m(|s|−p

di
2
)
and of elements of the form {dn+1

1 , . . . , dn+m
1 , d1

2, . . . , d
y
2} which are ordered by the

first (n + m) groups. Now, for each one of the 22n|s|−np matchs obtained from the list Ln, and
for each of the 2l1−n|s| elements {dn+1

1 , . . . , dy
1} from L1 associated, we check if the value their

for the differences dn+1
1 , . . . , dn+m

1 , d1
2, . . . , d

n
2 appears in the list L′

m. This can be done with cost

one for each of the 2
l1+n|s|−n

di
2 tries. When the value appears of L′

m, we know that this pair of

differences can satisfy the first (n+m) groups (we will find 2
l1+l2−(n+m)p

di
2), so we have to check

if it verifies the remaining (y−n−m) groups. In total we will find the 2
l1+l2−yp

di
2 matches that

exist, with a complexity in time (2
l1+l2−(n+m)p

di
2 + 2

l1+n|s|−np
di
2) and 2

l2+m(|s|−p
di
2
)

in memory.

4 Algorithm for t non-linear and non-group-wise

We are going to explain these algorithms in the particular framework where they have been
applied, giving also the general expressions and characteristics that will allow them to be used
in other cases.

4.1 N = 1, x = 0 and t can be split into two independent relations

We are going to study here a particular case that can be easily applied when mixing two or
more AES states. We suposse that t can be separated in two relations (a and b), involving each
half of the elements. So t can be represented this way:

Fa(ca, d
a
1) = da

2 and Fb(cb, d
b
1) = db

2, with

Fa(ca, d
a
1) = f(ca)⊕ f(ca ⊕ da

1)

Fb(cb, d
b
1) = f(cb)⊕ f(cb ⊕ db

1)

where ca = c1
a||c2

a and cb = c1
b ||c2

b are the values associated to each match of differences that we
also want to recover and d1 = da

1||db
1 and d2 = da

2||db
2 are the elements from the two lists. We

are going to consider the case where we can decompose:

Fa(ca, d
a
1) = F 3

a (c2
a
′
, F 2

a (F 1
a (c1

a, d
a
1))),

Fb(cb, d
b
1) = F 3

b (c2
b
′
, F 2

b (F 1
b (c1

b , d
b
1))),

and re-write t as
F 2

a (F 1
a (c1

a, d
a
1)) = F 3

a
−1(c2

a, d
a
2),

F 2
b (F 1

b (c1
b , d

b
1)) = F 3

b
−1(c2

b , d
b
2).

It is easier to understand the utility of these expressions with an example that defines F i
a and F i

b

for i ∈ [1, 3]. As in the Lane-256 attack from [10] we can use this algorithm for improving the
complexity we will explain this particular case here, which will simplify the explanation. In the
Lane-256 hash function, each lane has a size of two AES states. If we refer to the differential
path used in [10], who’s two first inbounds are represented in Figure 1, we can observe that
the state that intervenes in the first inbound (from #1 to #8) can be separated in two parts
so that they do not interact with each other during this first inbound and additionally are
associated each to one half of the state intervening in the second inbound (from #9 to #16) so
that they do not interact with each other either. Using the notations from [10], if we consider

2 2 2 2

SR MC SC SB SR MC SC 2 2 2 2 SB2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2
2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

#1 #2 #3 #4 #5 #6 #7 #8

2 2
2 2

2 2 2 2 2 2 2 2 2 2
2 2 2 2 SR 2 2 MC 2 2 2 2 SC SB SR MC SC1 1 2 2 2 2 2 2 2 2 2 1 1 2

1 1 2 2 2 2 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1
1 2 2

#9 #10 #11 #12 #13 #14 #15 #16

cb
2 ' cb

2 '

cb
2 ' cb

2 '

ca
2 ' ca

2 '

ca
2 ' ca

2 '

Fig. 1. Differential path associated to the first improvement on the Lane analysis.

the active AES state at instant 4, we can separate it in the two sets that we have just talked
about: one formed by the bytes [(0, 2),(0, 3),(1, 1),(1, 2), (2, 0),(2, 1),(3, 0),(3, 3)] and the other by
[(0, 0),(0, 1),(1, 0),(1, 3),(2, 2),(2, 3), (3, 1),(3, 2)]. The first set will be associated to the following
bytes of the state 14: [(0, 1),(0, 2),(1, 2),(1, 3),(2, 0),(2, 3), (3, 0),(3, 1)] and the second set will
be associated to [(0, 0),(0, 3),(1, 0),(1, 1), (2, 1),(2, 2),(3, 2),(3, 3)]. It is important to notice that
the list L1 will be the list of possible differences at state 4 and L2 will be the list of possible
differences at the state 14. So, as we have just seen, the differences d1 in L1 can be separated
conforming this two sets in da

1 and db
1, as well as the differences in L2 can be separated in da

2

and db
2. We can now forget about the ShiftRow opperations, as we will see each of the sets

as one block, already including implicitely this operation, and define the relation t using the
previous notations (we will define it for Fa, representing the first set, being similar for the second
set, Fb). F 1

a takes 8 bytes of values and differences (16 bytes of information in total) of input
and outputs 8 bytes of values with 4 bytes of differences (so 12 bytes of information in total,
corresponding to half of the active state in 7, but afterwards we will only use the values and
differences associated to the active bytes: c1

a
′ and da

1
′); F 2

a takes as input c1
a
′ and da

1
′ and outputs

another 4 active bytes with it’s values and differences (8 bytes in total); F 3
a takes as input the

values and differences of the 4 active bytes of the output of F 2
a , and also a 4 bytes value c2

a
′ that

completes the 8 byte half state in the instant 10 and outputs 8 bytes of values c2
a and differences

da
2 (16 in total) of state 14:

F 1
a (c1

a, d
a
1) = MixColumns(SubBytes(c1

a))⊕MixColumns(SubBytes(c1
a ⊕ da

1))

F 2
a (c1

a
′
, da

1
′) = SubBytes(c1

a
′)⊕ SubBytes(c1

a
′ ⊕ da

1
′)

F 3
a
−1(c2

a, d
a
2) = MixColumns(SubBytes(c2

a))⊕MixColumns(SubBytes(c2
a ⊕ da

2)).

As already said, here we want to find a match between the two lists of differences as well
as finding the values that make it possible. We will choose 2n values for the differences in the
active bytes of F 3

a
−1(c2

a, d
a
2) and we will try tp match them with the 2l2 differences da

2 in L2 (the
probability for finding a match will be 2−p and it will produce 2p possible values associated).
This will define 2p values c2

a for each one of the 2n+l2−p matchs of differences that we will obtain.
With this we build a list La of differences and values of size 2n+l2 . We repeat the same with the
other half of the differences, building the list Lb, of the same size than La.
Now, for each one of the 2l1 differences in L1, we do the following: first, we choose 2m values
for the differences in F 1

a (c1
a, d

a
1) and we will try to match them with the correspondings da

1 (the
probability for finding a match will be 2−p1 and it will produce 2p1 possible values associated).
This will leave 2m−p1 matchs with 2p1 possibles c1

a each; so 2m possible values for pairs (da
1, c

1
a).

For each of this 2m values and differences, we compute F 1
a (c1

a, d
a
1). The probability of finding a

match between the input and the output of F 2
a is 2−p2 . The number of matches that we will

find between this values and the precomputed list La will be 2n+l2+m−p2 . We repeat all of this
with the differences in F 1

b (c1
b , d

b
1) and Lb obtaining also 2n+l2+m−p2 matches. Now, for each of

the 2n+l2+m−p2 da
2, we check if it’s corresponding half db

2 associated by L2 belongs to one of the
2n+l2+m−p2 obtained with Lb. The time complexity will be 2l1+m+1 + 2l1+m+l2+n−p2 + 2l2+n+1

and the memory complexity 2l1 + 2l2 + 2l2+n+1 for obtaining

2l1+2(l2+n+m−p2)−l2 solutions.

Depending the number of solutions needed and the disponibility, we will choose n and m. We
will see in Section 5.5 how this algorithm allows to considerably reduce the complexity of the
Lane-256 semi-free-start collision presented in [10]; and in Section 5.3 how an related algorithm
can be applied for improving the time complexity of the ECHO distinguisher.

4.2 N = 3, y = 0 and we have some additional constraints

In this case, t can not be separated into smaller relations, but for it to be verified we can identify
some constraints that will facilitate the task of finding a match between both lists. We will study
the particular case in which t can be represented this way:

F1(v1, v2, v3) = F2(v4, v5, v6), with

F1(v1, v2, v3) = f(k1, v1, v2, v3)⊕ f(k2, v1, v2, v3)

F2(v4, v5, v6) = f(k3, v4, v5, v6)⊕ f(k4, v4, v5, v6),

where k1, k2, k3 and k4 are constants and v1, v2, v3, v4, v5 and v6 are the elements from the six
lists. In particular, we are looking to reduce the memory needs. A basic algorithm would build
a table of size 2l1+l2+l3 with all the possible combinations of the elements of the three first
lists, and for each combination, would compute and store in order the value F1(v1, v2, v3). Next
would go through all the possible combination of the lists L4, L5 and L6, for each compute
F2(v4, v5, v6) and check if it is included on the previously computed list. The complexity will
be of 2l1+l2+l3 + 2l4+l5+l6 in time and 2l1+l2+l3 in memory. We are going to see how, when
F2(v4, v5, v6) (and F1(v1, v2, v3) then) can only take a reduced number of values in an output
of size 2n, bigger than 2l4+l5+l6 , this will allow us to reduce the memory needs of solving this
problem if this values can be known and follow a certain structure that allow us to identify
them easily. As done in the previous section, we will identify the previous expressions with a
concrete case, which will help understanding the framework. For instance, we are going to apply
the following algorithm in a part of the Lane-512 attack for reducing the memory needs. In
this case t is non-linear and non-group-wise, N = 3 and y = 0. The elements from the lists L1

to L6 correspond to v1 to v6. The constants k1 to k4 are determined by the previous inbounds
steps of the attack. The previous expression f will be:

f : SB ◦ SC ◦MC ◦ SR ◦ SB ◦ SC ◦MC ◦ SR ◦ SB ◦ SC ◦MC ◦ SR ◦ SB ◦ SC

So we divide the output of F2 in four equal parts, each one corresponding to a column,
F2(v4, v5, v6) = c1||c2||c3||c4, and we observe that each part ci takes values among 2m =
2(l4+l5+l6)/4 instead of 2n/4, where 2n/4−(l4+l5+l6)/4 is the number of values that will never
be taken by one of the ci parts of the output of F2. In these case we can store the 4 lists of
2n/4−(l4+l5+l6)/4 values that will never be taken by each part of the output of F2. Next, for each
one of the 2l1+l2+l3 possible combinations of lists L1, L2 and L3 we compute F1(v1, v2, v3) =
c′1||c′2||c′3||c′4. When one of the four c′i parts appears to be in the corresponding precomputed list
of imposible values for F2, we know that this combination of (v1, v2, v3) won’t make a match, so
we do not store it. This way, when building the list formed by all the possible good combinations
of lists L1, L2 and L3, it’s size will be smaller than before, as it will be 2l1+l2+l3−(n−(l4+l5+l6)),
as those are the only ones we are keeping. The rest of the algorithm will work the same way as
the basic one: we go through all the possible combination of the lists L4, L5 and L6, for each
compute F2(v4, v5, v6) and check if it is included on the previously computed list. The complex-
ity will now be of 2l1+l2+l3 + 2l4+l5+l6 in time and 2n−(l4+l5+l6) + 2l1+l2+l3−(n/4−(l4+l5+l6)/4) in
memory.

As we said, this case simulates very well the AES differentials generated by fewer differences,
and we can directly apply it to the Lane-512 case described in [10]. In the associated differential
path, in the state before the last MixColumn of f , the four active bytes have already a value
and a difference assigned, because of the third inbound, but the remaining three bytes of each
column are not determined yet. That means that if we separate the differences of the final state
in the four active columns defined before the last ShiftRows (as the last operations are linear,
we can omit them for finding the collision), the difference in each column will only take 224

values out of 232. It is easy to compute, then, which are the possible values that the difference
of each column can take. If we do this for one of the two lanes, we can try all the possibilities
for the other lane, and only store the ones that can be a match, i.e., the ones that have the four
differences in the four columns that can correspond to the first lane. This way, we will only store
a list of 232×32−8×4 = 264 elements instead of 296. Next, we just have to try all the possibilities
for the first lane and try to find a match. We will see in Section 5.6 a more detailed analysis of
the improvements on the analysis of Lane-512.

5 Identifying the problems: examples

In this section we are going to show how, from the best known attacks on the hash functions JH,
Grøstl, ECHO, Luffa, Lane-256 and Lane-512 we can apply some improvements based on the
proposed algorithms and on the correct identification of the problem to solve, that will reduce
the overall complexity of the attacks. For a detailed description of the hash functions, we refer
to their SHA-3 submission documents. As those attacks are quite complex, we will not explain
here all the details, but we will just give the information needed for identifying the problem,
refering in each case to the corresponding attack.

5.1 JH

For simplicity, we consider here the attack on JH with (d = 4) for 8 rounds when using the
three-inbound attack given in [14] with a complexity of 233.09 in time and 224.18 in memory. We
shall see here how, when we apply one of the previously introduced algorithms, this complexity
can be significantly improved. For d = 8 the improvement is performed the same way for the
three-inbound attack on 19 and 22 rounds, and it is simpler in the case of one-inbound for 16

rounds, where we just have to apply the algorithm from Section 2.3. The three-inbound attack
for (d = 4) uses the differential path represented in Figure 2, where #0 represents the initial
internal state and #8 the final one. The colored parts are the parts with a difference. Each
small square represents the 4x4 Sbox for rows from 0 to 15, and each rectangle represents the
linear permutation on 8 bits. Each wire contains 4 bits.

#0 #1 #2 #3 #4 #5 #6 #7 #8

Fig. 2. Differential path for d = 4 of JH of the three-inbound attack.

To improve this attack, we use the algorithm from Section 2.3 together with a reordering of
the steps. We start the attack as in [14] by finding the possible solutions for the first inbound
(from round #0 to the beginning of round #2), storing a list LA of 211.36 solutions with a cost
of 216. We will consider a different third inbound: from round #5 to the beginning of round #7.
In this part, we will have two sets, each one associated to a list: L0,1,8,9 and L2,3,10,11. Using the
algorithm from Section 2.3 we can generate this two lists of values and differences of size 216

that satisfy the corresponding parts of the differential path between rounds #5 and #7 with
a cost of 216: at the end of round #5, four outputs of the linear permutations are active and
have been generated by a 4-bit difference (each one will define a set). For each one of these four
sets, we can guess the values of the 8 bits and of the 4-bit difference and compute the output of
round #5. This way we build 4 lists (L5

0,1, L
5
2,3, L

5
8,9, L

5
10,11) of 211.95 elements in each. So each

list L5
j,j+1 will have y = 2 difference groups d1

j,j+1 and d2
j,j+1 (differences at the end of round

#5). We are now merging the lists L5
0,1, L

5
8,9 into L5

0,1,8,9 using the algorithm from Section 2.3,
where ` is the linear permutation. Here the special property of oi,j is that only its 4 rightmost
bits are active and poi,j = 4.09 (so we will have 8.18 bit conditions per merge):

`(d1
0,1, d

2
8,9) = o0,9

`(d1
8,9, d

2
0,1) = o8,1.

We will obtain L5
0,1,8,9 of size 216 with a cost of 216. Merging the lists L5

2,3, L
5
10,11 into L5

2,3,10,11

will be done the same way. Next, for rounds #3 and #4 we will repeat the same procedure at
the same cost for obtaining two sets of solutions for these two rounds: L4

0,1,2,3 and L4
8,9,10,11 of

size also 216. We will now merge these two lists and the list LA. Merging L4
0,1,2,3 and L4

8,9,10,11

determines 3.91×2 bit conditions, and for merging both of them with LA 16 bit conditions need
to be verified (from the two actives 4-bit words where they collide). Applying a close variant
of the algorithm from Section 2.3 we obtain a new list LB, of size 219.54, of solutions for the

rounds #0 to #5 with a cost of 219.54. Next, in a similar way we will merge LB with L5
0,1,8,9

and L5
2,3,10,11 (there are here 32 bit conditions to verify), and we will obtain 219.54 solutions

that verify the merge (and so rounds from #0 to #7) with a cost of 219.54. For each solution,
we check if it also verifies round #8 (3.91 × 2 bit conditions), obtaining 211.72 solutions (as
in [14], before taking the symmetries into account). The complexity of the attack using our
algorithm will then be 219.54 in time and 219.54 in memory, improving the previous complexity
of 233.09 in time and 224.18 in memory. Similarly as we have shown for d = 4 and 8 rounds, we
can identify the same problem and apply the algorithm of Section 2.3 to the attack on 19 and
22 rounds of [14] that uses three-inbound attacks and has a complexity of 2168.02 in time and
2143.70 in memory, so that it can also be improved using the same algorithm, and having a final
complexity of 295.63 in time and memory. The 16 rounds with one-inbound attack of [14], can
also be improved to 296.12 in time and memory, while it’s complexity was 2190 in time and 2104

in memory.

5.2 Grøstl

Here, we consider the results on Grøstl-256 presented in [13], where, in particular, distinguishers
are given for the full compression function as well as for the internal permutation. We can
improve by a factor of 210 or 217 (depending on the differential path considered) their time
complexities. In this case, instead of finding a new algorithm we have identified a better problem
to solve: the lists L1 and L2 of differences in the input and in the output of the SuperSbox phase
respectively, that in [13] are built with all the possible differences, can be smaller and be just
built with the differences that we know for sure might also satisfy the outbound phase. The
factor that we are going to gain will depend on the number of active columns in the input (Ni)
and the number of active columns in the output (No). So instead of merging two lists of size
2l1 = 264Ni and 2l2 = 264No , we want to merge one list of size 2l1 = 263Ni and one list of size
2l2 = 256No . The algorithm applied to merge these lists is the same one as in [13], obtaining a
complexity in time of 263Ni+56No instead of 264(Ni+No). This is possible because in this attack the
one byte differences introduced by the constants additions have a fixed value, implying that the
number of possible differences at the input and ouput of the SuperSbox will be smaller. In the
10-round compression function analysis this improves from 2192 to 2182 and in the permutation
distinguisher from 2192 to 2175. In the case of Grøstl-512 we can improve time complexity of the
analysis on 11 rounds of the compression function from 2640 to 2630.

5.3 ECHO

In [15] an analysis of the whole ECHO-256 permutation is provided which has complexity 2182

in time and 237 in memory. By studying in detail this analysis we have been able to provide
some trade-offs that were previously unknown and that allow to improve the time complexity.
For example, we can perform the same attack with a complexity 2151 in time and 267 in memory.
For this, we will use an algorithm closely related to the one introduced in Section 4.1, that we
explain here in detail. We consider the differential path given in [15]. In Figure 3, the inbound
part is represented. We need to find 286 solutions of this part in order to satisfy also the
outbound part. In the figure, the BigSB are decomposed into the AES operations (2 rounds,
where we omit operations that do not influence the differential path) and we can see how two
BigSB can be seen as a BigSuperSbox (from #α to #D), where the sets formed by it have the
form of the highlighted sets of four AES states. Inside this BigSuperSbox, we can identify two
separated SuperSboxes, each one formed by one of the BigSB, and where the sets formed by
them have the form of the grey bytes. We are going to explain our method for finding solutions
for this inbound phase at a lower cost. In [15], 232 solutions are found with a cost of 2128.
Here we will find 264 solutions with the same cost. We explain first how to find solutions for
one BigSuperSbox set, as the remaining three can be done the same way (one ECHO state is

MC

Big Big

SB

SR MC

SR MC SB SR MC

Big Big

SB

SR MC

#A #B #C

SR MC SB SR MC

Big Big

SR MC

#D

Represents the AES states linked by a BigSuperSbox

Grey bytes represent SuperSbox sets

#α

#β

Fig. 3. Inbound part of the differential path on ECHO. A number of 286 solutions needs to be found for satisfying
the outbound part.

composed by 4 BigSuperSbox sets). Once we have 264 solutions for each BigSuperSbox set, each
one will be associated to only one on each of the other sets by the differences in #β (the last
state represented in Figure 3), giving in total 264 solutions for the whole inbound phase. We
will describe the procedure for the BigSuperSbox set defined in Figure 3, being similar for the
remaining three.
First, we will fix the differences in #α. Next, we compute and store the 232 values and differences
for the 12 associated SuperSbox sets in #A, building the lists Li

A for i ∈ [1, 12].
Then, for each of the 232 possible differences in one AES state from #D (AES state (0,0) or AES
state (3,0) for the first column), we will compute and store the 232 values and differences for the
4 associated SuperSbox sets in #C. This will build the (4×232) lists Li

∆(0,0)
, each one containing

the 232 possible values and differences for the diagonal i of the AES state (0,0) in #C; as well
as the (4× 232) lists Li

∆(3,0)
, associated to AES state (3,0) in #C.

We will go through all the 264 possible differences in the two first diagonals of the AES state
(0,0) in #B (and not the 2128 possible differences of the AES state as done in [15]). These two
diagonals will determine the differences in the same two diagonals of the AES states (2,2) and
(3,3) in #B (because of the linear conditions imposed by the two AES states without differences
in #C), and also the differences in the same two diagonals of the AES states (0,0) and (3,0) in
#C (the two diagonals of differences of the active states in #B are already determined, and with
the BigSR and BigMC transformations we can compute the difference in the same diagonals in
#C). So for each one of these 264 differences:

– From the lists Li
∆(0,0)

and Li
∆(3,0)

for i ∈ [1, 2], we will create a new list Lo. Recall that the
differences in the first and second diagonal of the AES state (0,0) of #C are fixed. If we
want to find the elements from L1

∆(0,0)
and L2

∆(0,0)
that satisfy these differences, we will find

one element per list and per ∆(0,0), i.e., for each one of the 232 ∆(0,0) we will find one value
from the first list and one value from the second that will generate the desired difference.
The same will happen with the Li

∆(3,0)
lists. If we combine both results, we can generate the

list Lo of size 264 where we will store all the possible values (v1
(0,0), v2

(0,0)) for the diagonals
1 and 2 of (0,0) (in #C) combined with all the possible values (v1

(3,0), v2
(3,0)) for the same

diagonals of (3,0) (in #C). We are going to apply a transformation to the values that we have
stored: we will store, for each combination of ∆(0,0) with ∆(3,0) (and so, for each quadruple of
values), the following two 32 bits values: v1

(0,0)⊕(3×v1
(3,0)) and v2

(0,0)⊕(3×v2
(3,0)). Let us call

bi
(x,y) the values from diagonal i of AES state (x,y) of #B. From the BigMC transformation,

we know that:

v1
(0,0) ⊕ (3× v1

(3,0)) = (2× b1
(0,0))⊕ (b1

(2,2))⊕ (b1
(3,3))⊕ (9× b1

(0,0))⊕ (3× b1
(2,2))⊕ (6× b1

(3,3)),

v2
(0,0) ⊕ (3× v2

(3,0)) = (2× b2
(0,0))⊕ (b2

(2,2))⊕ (b2
(3,3))⊕ (9× b2

(0,0))⊕ (3× b2
(2,2))⊕ (6× b2

(3,3)).

We will order list Lo by these two values that we had just computed: v1
(0,0)⊕(3×v1

(3,0)), v
2
(0,0)⊕

(3× v2
(3,0)). The cost of this step is about 264.

– Now, we try the 264 possible remaining values for the differences in the AES state (0,0) in
#B. For each one of these 264 possible differences:
• This will determine the remaining differences in #B and #C and will also allow us to

compute all the differences in #A. Once the total difference in #A is fixed, it will have
only one associated value by the 12 lists Li

A for the three active states. This is due to
the fact that each difference on the 32 bit sets will appear only once on the lists of size
232, having then the fixed difference just one associated pair of values (determined by
the lists Li

A) for the active part of the state. With these values, we can compute

(2× b1
(0,0))⊕ (b1

(2,2))⊕ (b1
(3,3))⊕ (9× b1

(0,0))⊕ (3× b1
(2,2))⊕ (6× b1

(3,3))

and
(2× b2

(0,0))⊕ (b2
(2,2))⊕ (b2

(3,3))⊕ (9× b2
(0,0))⊕ (3× b2

(2,2))⊕ (6× b2
(3,3)),

and check if we obtain a match with one of the v1
(0,0)⊕(3×v1

(3,0)) and v2
(0,0)⊕(3×v2

(3,0)), so
we will check if what we have obtained appears in the list Lo, which is ordered conforming
to these values, and so the cost of this will be about one. The probability of finding these
values is 2−64 times the size of the list, which is 264, so we will find one match in the list.

• Once the match is found, ∆(0,0) and ∆(3,0) will be fixed by the value matched in Lo, and
as the differences for the whole BigSuperSbox set in #C are also fixed, we will obtain
from L3

∆(0,0)
, L4

∆(0,0)
, L3

∆(3,0)
and L4

∆(3,0)
the asigned values for the diagonals 3 and 4.

From the relations of BigMC they will need to satisfy 64 bit conditions, so it will be a
valid solution with a probability of 2−64.

In the end, we will have obtained 2642642−64 = 264 solutions per BigSuperSbox, and as we
explained at the beginning of this section, this will mean 264 solutions for the inbound part of
the differential path, with a complexity of 2129 in time and 267 in memory. Recall that we need
286 solutions for this part for satisfying the outbound part, so we will have to repeat this 222

times (with different differences fixed in #α), having a total compelxity of 2151 in time and 267

in memory.

5.4 Luffa

In [8], a way of finding a semi-free-start collision is provided for 7 rounds out of 8. In this case,
the problem is very easy to identify: we have two lists of differences, one of differences of the
inputs of 52 active Sboxes, the other one of the outputs of these 52 active Sboxes. Then, t is non-
linear and group-wise. We can apply the algorithm from Section 3, where y = 52, n = m = 13,
l1 = 65.6 and l2 = 67. The complexity was reduced from 2132 to 2102 (in time and in memory).

5.5 Lane-256

The analysis in [10] provides a way of finding a semi-free start collision for the complete compres-
sion function of Lane-256 with a complexity of 296 in time and 288 in memory. In this section
we are going to identify 2 concrete problems extracted from this attack, and by applying two
of the previously described algorithms, we are able to reduce the total complexity of the attack
to 280 in time and 266 in memory, or more precisely, to 280 in time and 258 in memory + 264

in time and 266 in memory. We are not going to describe in detail here the analysis from [10],
but we give the information needed for identifying and defining the problem to be treated by
the corresponding algorithm.

Identifying the first problem: In this attack, the three first steps have as aim to find 256 solutions
for two inbounds in 4 independent lanes. Each one of the four lanes represents an independent
and similar problem. Instead of looking at it as three steps, we are going to unify it in just
one, and we will use the differential path from Figure 1. We can now build the list of possible
differences in the input: from five active bytes, we obtain 240 possible differences in the input,
before the first SB considered. This will form the list L1, where x = 0. We can do the same with
the possible difference in the output: out of a totally full active AES state, we want to reach a
possition with only 4 active bytes. The list L2 will be formed by all the 232 possible differences
in the output after the last Sbox considered (in the two inbounds). We want to merge these
two lists keeping the differences that can verify the whole path defined by the two inbounds as
well as recover the associated values that enable to obtain a total of 256 values and differences
as solutions. It is quite obvious that the relation t between the differences in both lists is not
linear and cannot be applied group-wise. We will directly apply the algorithm from Section 4.1
with the following parameters: m = 24, n = 32, p = p1 = 8, p2 = 64. The cost of this step was
296 in time and 288 in memory (it was the bottleneck in both). Now, we can perform these two
inbound phases with a complexity of 266 in time complexity and 265 in memory. As this step is
not anymore the time or memory bottleneck of the attack (it would have been if we had just
improved the other steps), we can try to reduce the rest of the complexities now.

Identifying the second problem: Once we have finished the newly defined first step (the previous
one) we have obtained 256 solutions for the first two inbounds, for each lane (four lists of values
and differences). They need to be merged so that they verify the message expansion. In [10] this
is done in steps 4 and 5 with a complexity of 280 in time and memory. This memory complexity
can be reduced to 248 by directly applying the algorithm in Section 2.1, where y = 4 and x = 8,
obtaining 264 solutions for this step and giving the new bottleneck of the time complexity of the
attack: 280. The last part of the attack is the same as in [10], and is the bottleneck in memory:
264 × 4.

5.6 Lane-512

A semi-free-start collision attack is given in [10] for the whole compression function of Lane-
512 with a complexity of 2224 in time and 2128 in memory. Applying three of the previously
described algorithms we can reduce this memory complexity from 2128 to 266. For being able to
do this we have to identify 3 problems.

Identifying the first problem: The first step of the attack on Lane-512 obtains 256 solutions
for a first inbound. Steps 2 and 3 merge these 4 lists for finding one solution that verifies also
the message expansion. We can apply, as we did before, the algorithm from Section 2.1 where
y = 4, x = 16 and we obtain one solution with complexity 256 in memory and 250 in time.

Identifying the second problem: In the attack on Lane-512, in the Starting Points phase, four
lists of values are built, of size 264. For doing the Merge Lanes and Message Expansion phases,
they need a complexity of 2128 in time and 2128 in memory. We can instead apply the algorithm
of Section 2.2 where li = 64, |s| = 8, x = 8, and with a complexity of 2192 in time and 264 × 4
in memory we can obtain the 2128 starting points needed for repeating the rest of the attack
enough times to find one solution for the whole path (and so a semi-free-start collision). We do
not need to store these 2128 starting points, because we can perform the rest of the attack as
soon as we find one. This way, the memory complexity does not go beyond 264, and the time
complexity, though higher, won’t be the bottleneck.

Identifying the third problem: In [10], the second merge of inbound phases (that finds a collision
between two lanes) needs a memory of 296 × 4. With the previous improvements, the memory

needed is 264, so we want to reduce the memory needs of this last phase to 264. We have three
lists of 232 elements for each of the two lanes of the same branch (6 in total). Instead of merging
the three lists into a new one of size 296, as done in [10], we can apply the algorithm from
Section 4.2 and obtain the wanted memory complexity. This way we will only store a list of 264

elements. Next, we just have to try all the possibilities for the first lane and try to find a match.
So, applying the algorithm from Section 4.2 we will have the same time complexity as before
but a memory complexity of 264 instead of 296.

Acknowledgements

The author would like to thank Willi Meier, Thomas Peyrin and Andrea Röck for many helpful
comments and discussions.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function, revised in 2003.
2. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: Sha-3 proposal:

ECHO. Submission to NIST (updated) (2009)
3. Canniere, C.D., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Submission to NIST (Round 2)

(2009)
4. Canteaut, A., Naya-Plasencia, M.: Internal collision attack on Maraca. In: Seminar 09031, Symmetric Cryp-

tography. Dagstuhl Seminar Proceedings (2009)
5. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.:

Grøstl – a SHA-3 candidate. Submitted to the SHA-3 competition, NIST (2008), http://www.groestl.info
6. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations. In: FSE.

LNCS (2010), to appear
7. Indesteege, S.: The Lane hash function. Submitted to the SHA-3 competition, NIST (2008),

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
8. Khovratovich, D., Naya-Plasencia, M., Røck, A., Schläffer, M.: Cryptanalysis of Luffa v2 components. In:

SAC. Lecture Notes in Computer Science (2010), to appear
9. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on

the Full Whirlpool Compression Function. In: ASIACRYPT. LNCS, vol. 5912, pp. 126–143. Springer (2009)
10. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the Full

Lane Compression Function. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 5912, pp. 106–125.
Springer (2009)

11. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Fast Software Encryption - FSE 2009. Lecture Notes in Computer Science, vol.
1008. Springer (5665)

12. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the reduced Grøstl compres-
sion function, ECHO permutation and AES block cipher. In: Jacobson, Jr., M.J., Rijmen, V., Safavi-Naini,
R. (eds.) Selected Areas in Cryptography. LNCS, vol. 5867, pp. 16–35. Springer (2009)

13. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 6223, pp. 370–392. Springer (2010)

14. Rijmen, V., Toz, D., Varici, K.: Rebound Attack on Reduced-Round Versions of JH. In: FSE. Lecture Notes
in Computer Science (2010), to appear

15. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-Full-Active Super-Sbox Analysis Applications to
ECHO and Grøstl. In: ASIACRYPT. Lecture Notes in Computer Science (2010), to appear

16. Wagner, D.: A generalized birthday problem. In: CRYPTO. Lecture Notes in Computer Science, vol. 2442,
pp. 288–303. Springer (2002)

17. Wu, H.: The hash function JH. Submission to NIST (updated) (2009), http://icsd.i2r.a-
star.edu.sg/staff/hongjun/jh/jh round2.pdf

18. Wu, S., Feng, D., W.Wu: Cryptanalysis of the Lane hash fonction. In: SAC 2009 - Selected Areas in Cryp-
tography. Lecture Notes in Computer Science, Springer (2009)

