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Abstract. Hummingbird-1 is a lightweight encryption and message authentica-
tion primitive published in RISC ’09 and WLC ’10. Hummingbird-1 utilizes a
256-bit secret key and a 64-bit IV. We report a chosen-IV, chosen-message at-
tack that can recover the full secret key with a few million chosen messages
processed under two related IVs. The attack requires at most 264 off-line com-
putational effort. The attack has been implemented and demonstrated to work
against a real-life implementation of Hummingbird-1. By attacking the differen-
tially weak E component, the overall attack complexity can be reduced with a
significant’factor. Our cryptanalysis is based on a differential divide-and-conquer
method with some novel techniques that are uniquely applicable to ciphers of this
type. 20101201100100
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1 Introduction

The advent of small-form wireless control and communication devices, sensors and
authentication tags is affecting commercial, military and domestic security engineering
in ways which were almost unimaginable only 10–20 years ago.

An important selection criterion when choosing cryptographic security components
for such extremely constrained devices is obviously cost, which directly relates to the
complexity of hardware and software implementation of the component and its compu-
tational efficiency. These lightweight cryptographic solutions must also meet stringent
security requirements as they are often critical links in the overall “chain of security” –
user authentication with a RFID token, a private conversation using a wireless hands-
free set and encryption of key presses on a wireless keyboard are some examples.

Hummingbird-1 [2, 5] is a recent cryptographic algorithm proposal for RFID tags
and other constrained devices. It is covered by several pending patents and is being com-
mercially marketed by the Revere Security [7]. Revere has invested into Hummingbird’s
cryptographic security assurance before its publication by contracting ISSI, a private
consultancy employing some ex-NSA staff [6] and members of U. Waterloo CACR [4].

In the present report we show that the published version of Hummingbird-1 is sus-
pectible to a chosen-IV, chosen message attack that many cryptographers would con-
sider to be a “full break” – with an attack complexity of significantly less than 264

operations and data complexity of only few megabytes, the entire 256-bit secret key



can be recovered. The attack has been implemented and demonstrated to work against
a validated implementation of Hummingbird-1.

This paper is structured as follows. In Section 2 we give a description of Hummingbird-
1 and make a key observations about its initialization procedure. In Section 3 we build
an attack, step by step, that breaks Hummingbird-1. Section 4 contains a discussion
about the implementation and implications of the attack, followed by conclusions in
Section 5.

2 Description of Hummingbird-1

Hummingbird-1 [2, 4, 5] is an encryption and message authentication primitive that has
a 256-bit secret key, uses a 64-bit IV (nonce) and optionally produces a 64-bit authenti-
cator for the message. Hummingbird-1 is similar to ciphers such as Helix [3] and Phelix
[10] in that it is a word-based stream cipher that can also be used for authentication. We
have not analyzed the security of the proposed authentication functionality and it will
not be discussed in this paper.

2.1 Notation and Parameters

The 256-bit secret key K is indexed as a vector of four 64-bit subkeys K(i). Each one
of the 64-bit subkeys further consists of 16-bit words K(i)

j as follows:

K = (K(1),K(2),K(3),K(4))
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The 80-bit internal state of Hummingbird-1 at round t consists of four 16-bit regis-
ters RS1t, RS2t, RS3t, RS4t and the independent shift register LFSRt.

When considering differential attacks, we denote by ∆ the additive difference be-
tween two values. In our differential analysis we will be working on pairs of related
instances of Hummingbird-1 which share the same secret key K. The state of the first
and second instance at round t is written as

(RS1t,RS2t,RS3t,RS4t,LFSRt) and

(RS1′t,RS2
′
t,RS3

′
t,RS4

′
t,LFSR

′
t).

The additive state difference ∆(RS1t,RS2t,RS3t,RS4t,LFSRt) is

(RS1t � RS1′t, RS2t � RS2′t, RS3t � RS3′t, RS4t � RS4′t, LFSRt � LFSR′
t).

Here � denotes two’s complement subtraction modulo 216. We will also write
∆Pi = Pi � P ′

i and ∆Ci = Ci � C ′
i to denote plaintext and ciphertext difference

at message word i. Numerical values for differentials are in hexadecimal notation.



2.2 The 16-bit permutation E

The 16-bit permutation component E(x,K(i)) consists of five invocations of four S-
Boxes, interleaved with a mixing of a 16-bit subkey and a linear transform L. Figure 1
illustrates the operation of the the block cipher E.
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Fig. 1. The “E box” is a 16-bit permutation with a 64-bit key. L is a 16-bit linear transform
L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10).

Four permutations of values 0..15 are used as the four-bit S-boxes S1(x), S2(x),
S3(x) and S4(x). We have discovered that at least two variants of the four S-Boxes
exist, one set being described in [5] and an another set in ISSI’s analysis [6]. The second
set of S-Boxes is equivalent to S4-S7 of Serpent-1 [1] and is compatible with test vectors
provided by Revere Security [9]. Tables 1 and 2 give both S-Boxes in full.

Table 1. Hummingbird S-Boxes as reported in [5].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 8 6 5 15 1 12 10 9 14 11 2 4 7 0 13 3
S2(x) 0 7 14 1 5 11 8 2 3 10 13 6 15 12 4 9
S3(x) 2 14 15 5 12 1 9 10 11 4 6 8 0 7 3 13
S4(x) 0 7 3 4 12 1 10 15 13 14 6 11 2 8 9 5

Table 2. The actual Hummingbird S-Boxes in an implementation obtained from its authors [9].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S2(x) 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S3(x) 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S4(x) 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

Any particular choice of S-Boxes does not affect the main cryptanalysis presented
in this paper. In fact, the attack is applicable regardless of what type of E function is
used as long as it is keyed with only 64 bits. Hence the particular choice of the number
of rounds, S-Boxes and the linear transformation has little effect to the overall security
of the cipher.



We define the linear transform L(x) as

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10), (1)

where ≪ is a left circular shift operator. By S(x) we denote the application of the four
S-boxes in parallel on the four nibbles of x = x0 | x1 | x2 | x3:

S(x) = S1(x0) | S2(x1) | S3(x2) | S4(x3). (2)

The complete 16-bit keyed permutation E(x,K(i)) is described by:
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2.3 Initialization

To set up Hummingbird-1, we first load the 64-bit IV value to the state registers:

(RS1−4,RS2−4,RS3−4,RS4−4) = (IV1, IV2, IV3, IV4). (3)

After this, four rounds of special stepping is performed for t = −4,−3,−2,−1:

v12t = E((RS1t � RS3t)� RS1t, K
(1))

v23t = E(v12t � RS2t, K
(2))

v34t = E(v23t � RS3t, K
(3))

tvt = E(v34t � RS4t, K
(4))

RS1t+1 = RS1t � tvt

RS2t+1 = RS2t � v12t
RS3t+1 = RS3t � v23t
RS4t+1 = RS4t � v34t .

Here the � operator denotes addition modulo 216. After the final round, we set the
bit 12 (or the 13th bit as it is expressed in the specification) in the tv temporary variable
and assign that as the LFSR value:

LFSR0 = tv3 ∨ 1000. (4)

Therefore the 80-bit state after the initialization phase consists of the five words

(RS10 RS20 RS30 RS40 LFSR0). (5)



Observation 1 The Hummingbird-1 initialization function has a high-bit XOR differ-
ential that holds with probability 1:

∆(IV1, IV2, IV3, IV4) = (8000, 0000, 0000, 0000)

⇓
∆(RS10,RS20,RS30,RS40,LFSR0) = (8000, 0000, 0000, 0000, 0000).

In Figure 2 we have emphasized this loss of high bit information by writing the
double addition in the computation of v12 as a (non-cyclical) left shift and arranging all
operations on this row to the left.

RS1t RS2t RS3t RS4t

Repeat 4 times.

<< 1

EK(1)

(v12)

EK(2)

(v23)

EK(3)

(v34)

EK(4)

Set 13

LFSR0

Only last round.
t = −1

RS1t+1 RS2t+1 RS3t+1 RS4t+1

Fig. 2. Hummingbird-1 initialization (four rounds t = −4,−3,−2,−1). LFSR is set after the
last round.



2.4 The encryption function

Each Hummingbird-1 encryption round accepts a 16-bit plaintext word Pi to produce a
ciphertext word Ci. Figure 3 illustrates one round of Hummingbird encryption.

For t ≥ 0 (after initialization) we have

v12t = E(Pt � RS1t, K
(1))

v23t = E(v12t � RS2t, K
(2))

v34t = E(v23t � RS3t, K
(3))

Ct = E(v34t � RS4t, K
(4))

LFSRt+1 = STEP(LFSRt)

RS1t+1 = RS1t � v34t

RS4t+1 = RS4t � v12t � RS1t+1

RS2t+1 = RS2t � v12t � RS4t+1

RS3t+1 = RS3t � v23t � LFSRt+1.

The Hummingbird LFSR has been implemented in a slightly unusual right-cyclical
fashion, which is best desribed in the C language:

lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & 0xCA44);

THe LFSR operates independently from the other registers as there is no feedback
from them or the plaintext to it. The particular LFSR selection or its operation does not
affect on our attack in any way.

In this paper we will denote by HB(IV, v) = z a query for encryption of vec-
tor v with the given IV value. Conversely, HB−1(IV, z) = v is a decryption query.
Since Hummingbird is attacked in a “black box” fashion in this chosen-IV, chosen
message attack, we don’t include the unknown secret key into the notation of encryp-
tion/decryption queries.

3 Building an attack

Our attack proceeds in several stages, first attacking the initialization function and then
each 64-bit subkey individually, proceeding from the “outer layer” subkeys K(1) and
K(4) towards the “inner layer” subkeys K(3) and K(2). Each stage of the attack is
constructed differently.

The line of attack described in this paper is just one of many. A small modification
of the algorithm or adjustment of the usage model may lead to wholly different security
properties.

We will first describe a very simple chosen-IV distinguisher for Hummingbird,
which will be a part of subsequent stages of the attack. For any two nonces (IVs) that
have a difference in the most significant bit (MSB) of the first word, we can simply flip
the MSB of the plaintext word and the ciphertext words will match.



Observation 2 There is a Chosen-IV distinguisher for Hummingbird that works with
probability P = 65535/65536 and has data complexity of 1 word. One can use the
high-bit differential of Observation 1 and the following differential for the first round:

∆(P0,RS10,RS20,RS30,RS40,LFSR0) = (8000, 8000, 0000, 0000, 0000, 0000)

m
∆(C0,RS11,RS21,RS31,RS41,LFSR1) = (0000, 8000, 8000, 0000, 8000, 0000)

Pt RS1t RS2t RS3t RS4t LFSRt

EK(1)

(v12)

EK(2)

(v23)

EK(3)

(v34)

EK(4)

Ct RS1t+1 RS2t+1 RS3t+1 RS4t+1

STEP

LFSRt+1

Fig. 3. Encrypting a single 16-bit word Pt to produce a ciphertext word Ct with Hummingbird.
After initialization t ≥ 0.

The differential works both ways (chosen plaintext and chosen ciphertext). If we
decipher the same word, say, 0000 under the two different nonces that are related by
only having a MSB difference in the first word, there will be a high-bit difference in the
first word of the corresponding plaintext. This constitutes the distinguisher.



3.1 An iterative differential

Observation 3 There is a one-round iterated differential that works if a collision oc-
curs inside the cipher as follows:

∆v12t = 8000 , ∆v23t = 0000 , ∆v34t = 0000

∆(RS1t,RS2t,RS3t,RS4t,LFSRt) = (8000, 8000, 0000, 8000, 0000)

m
∆(RS1t+1,RS2t+1,RS3t+1,RS4t+1,LFSRt+1) = (8000, 8000, 0000, 8000, 0000).

The initial condition for t = 5 can be satisfied using the initialization and first-round
encryption differentials given in Observations 1 and 2.

To verify Observation 3, one may find it useful to trace the high-bit differentials
(and their internal cancellation) in Figure 3 with a highlighting pen. We note that each
one of the conditions ∆v12 = 8000, ∆v23 = 0000, ∆v34 = 0000 implies the other
two if the input (or output) state differential holds.

From the algorithm description we see that the internal value v34 satisfies

∆v34 = ∆E−1(Ci,K
(4))�∆RS4t. (6)

For the condition ∆v34 = 0000 to be satisfied and the iterative differential to work
it suffices to find a pair of ciphertext words Ci = a and C ′

i = b such that

E−1(a,K(4))� E−1(b,K(4)) = 8000. (7)

The first stage of our overall attack is based on chosen-ciphertext queries of the type

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a, a, . . . , a)

)
(8)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b, b, . . . , b)

)
. (9)

If a and b are related in as in Equation 7, the iterative differential of Observation 3
will hold for all t ≥ 1 in Equations 8 and 9 above. The initial x word is arbitrary; the
differential will work as long as C0 = C ′

0. This will result in ∆P0 = 8000.
For our attack any pair (a, b) satisfying Equation 7 will suffice. It is easy to see

that there are 216 such pairs. By the birthday paradox, by decrypting about
√
216 = 28

vectors of the form given in Equations 8 and 9, we should have found one such pair.
How to distinguish it from the other pairs ?

From the algorithm definition we can see that if the iterative differential holds, then
∆v12 = 8000, ∆RS1t = 8000 and the plaintext words satisfy for all t > 0

∆Pt = E−1(v12t ,K
(1))�

(
E−1(v12t � 8000,K(1))� 8000

)
. (10)

To analyze this condition, we may consider a random bijective function F on n-bit
values and the behavior of the differential

∆F (x) = F (x)� F (x� c) (11)



where c is some nonzero constant and x takes on all values 0 ≤ x ≤ 2n. It is easy to
show that the behavior of ∆F (x) resembles that of a random function in that its range
can be expected to be 2n(1−e−1) ≈ 0.6321×2n rather than 2n. For ease of exposition
we will be considering the absolute delta value

abs(∆x) = x− x′ if x > x′ and x′ − x otherwise. (12)

∆Pi in Equation 10 has similarly limited range if the iterative differential holds. If
the differential does not hold, ∆Pi may have any value. We use this feature to test for the
right pair; if the iterative differential holds for some ciphertext words x and y, the range
of abs(∆Pi) values will be close to 215(1 − e−1) ≈ 20713 rather than 215 = 32768.
The procedure is given by Algorithm 1. The complexity of Algorithm 1 is less than
230 operations and data complexity is equivalent to decrypting eight megabytes of data.
The choice of looping through 29 values of i and using 212 words of data in Algorithm
1 may not be optimal, but will be sufficient for actually finding a correct pair with a
reasonable probability.

In practice the algorithm finds a right pair in a few seconds. The current implemen-
tation also rechecks the pair with longer decryptions and performs a retry if the count
of the absolute range is larger than 25000.

Algorithm 1 Probabilistically find a pair (a, b) satisfying Equation 7 as discussed in
Section 3.1.

for i = 1, 2, . . . , 29 do
v = (0000, i, i, . . . , i), a vector of 212 words.
x[i][1..212] = HB−1

(
(0000, 0000, 0000, 0000), v)

)
.

y[i][1..212] = HB−1
(
(8000, 0000, 0000, 0000), v)

)
.

end for
a = 0, b = 0,m = 215.
for i = 0, 1, . . . , 29 do

for j = 0, 1, . . . , 29 do
Count the number of different words n in the set defined by abs(x[i][k]� y[j][k]).
if n < m then

a = i, b = j, m = n.
end if

end for
end for

3.2 Attacking K(1)

Our first target is to attack the 64-bit subkey K(1). With the (a, b) ciphertext word pair
obtained with Algorithm 1, and further chosen-message queries, we will extract the
entire range S1 of the function δ1 defined by

δ1(x) = abs
(
E−1(x,K(1))� E−1(x� 8000,K(1))

)
. (13)



The expected size of S1 is 215(1 − 1
e ) ≈ 20713 elements. To compute S1, we

decrypt two at least megaword-long vectors consisting of the a and b words:

P = HB−1
(
(0000, 0000, 0000, 0000), (0000, a, a, . . . , a)

)
(14)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (0000, b, b, . . . , b)

)
. (15)

Since the iterative differential of Observation 3 holds for all rounds t > 1 but the
internal state is otherwise evolving and can be modelled as random, each difference in
corresponding plaintext words can be simply inserted into the set S1:

abs(Pi � P ′
i ⊕ 8000) ∈ S1 when i > 0. (16)

Note that the completeness of S1 is highly dependent on the length of the ciphertext
vectors; one million words will yield a complete set with high certainty, but one hundred
thousand words with very low certainty.

Armed with the set S1, we can perform an off-line attack on the first subkey. To
test a subkey candidate K(1) it suffices to loop through values x doing the membership
test δ(x) ∈ Si, as indicated by Equation 13. For a false key candidate the membership
test will fail with probability of roughly 63.2%. Most key candidates can be discarded
after two trials. Since each membership test (for x) is independent, the certainty that a
correct key has not been found after n successful trials (1− 1

e )
n. n = 97 trials gives a

2−64 uncertainty. Our implementation performs all n = 215 trials, as the performance
penalty is negligible due to the early exit strategy.

3.3 Attacking K(4)

The next subkey to be attacked after K(1) is the last to be used during encryption, K(4).
There are several ways to do this efficiently. We will describe the one we implemented.

We use our knowledge of K(1) and the differential of Observation 3 to find more
ciphertext pairs (Ci, C

′
i) that have a ∆ = 8000 input difference to the last invocation

of E. This implies that these ciphertext pairs satisfy the equation

E−1(Ci,K
(4)) = E−1(C ′

i,K
(4))� 8000. (17)

If at least four such ciphertext word pairs are available, we may do a conclusive
exhaustive search over the entire 64-bit subkey K(4) by using Equation 17 as a test.

We will first obtain a known value for RS11. We use the known (a, b) pair from
Section 3.1 and Algorithm 1 and decrypt a set of two-word vectors for few running
values of initial ciphertext word x:

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a)

)
(18)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b)

)
. (19)

For each decryption ∆P0 = 8000 as indicated by Observation 2. The second plain-
text word will satisfy

E(P1 � RS11,K
(1)) = E(P ′

1 � RS11 � 8000,K(1))� 8000 (20)



since ∆RS11 = 8000. There usually is only one or at most few possible values of RS11
that satisfy Equation 20. Such an unique value is found for some x by simply searching
through all possible 216 values of RS11 using the knowledge of the subkey K(1) (that
was obtained in the previous section). This gives us information about the internal state
of the cipher after one encryption round.

Let y = P0 = P ′
0 � 8000 for some pair of related decryptions described in

Equations 18 and 19 such that an unique value for RS11 can be established. To create
pairs suitable for testing by Equation 17 we again turn into a chosen-plaintext attack
and encrypt few vectors for a chosen running value of v121 :

C =HB
(
(0000, 0000, 0000, 0000), (y, E−1(v121 ,K

(1))� RS11)
)

C ′ =HB
(
(8000, 0000, 0000, 0000),

(y � 8000, E−1(v121 � 8000,K(1))� RS11 � 8000)
)
.

The ciphertext words C1 and C ′
1 can be used for exhaustive search of the 64-bit

subkey K(4) using Equation 17.

3.4 Attacking K(3)

Thus far we have recovered 128 bits of the secret key K, K(1) and K(4) using MSB
differentials only. The next in turn is K(3), which appears to require a slightly more
complicated attack also involving second highest bit.

We will be using the two new differentials in addition to the ones given in Observa-
tion 1 for initialization rounds t = −4, . . . ,−1 and Observation 2 for t = 0. For t = 1
the differential is:

∆v121 = C000 , ∆v231 = d , ∆v341 = 8000

∆(RS11,RS21,RS31,RS41,LFSR1) = (8000, 8000, 0000, 8000, 0000)

⇓
∆(RS12,RS22,RS32,RS42,LFSR2) = (0000, 8000, d, 4000, 0000).

To make this differential work, we will use the known value for RS11 obtained in
Section 3.3. Loop through the values y = v121 = 0, 1, . . . , 216 − 1 and for each one
of those make the following two-word encryption queries until C1 = C ′

1 condition is
reached:

C =HB
(
(0000, 0000, 0000, 0000), (x,E−1(y,K(1))� RS11))

C ′ =HB
(
(8000, 0000, 0000, 0000),

(x� 8000, E−1(y � C000,K(1))� RS11 � 8000))

From the C1 = C ′
1 condition we will know that ∆v341 = 8000 as it cancels out

the differential ∆RS41 = 8000 before invocation of the last E function. When the
condition is met by some x, d = ∆v231 = ∆RS32 will be a quantity that satisfies

E−1(v341 ,K
(4))� E−1(v341 � 8000,K(4)) = d. (21)



Now we will extend the chosen-plaintext attack by one more round. We will use the
differential:

∆v122 = 8000 , ∆v232 = 0000 , ∆v342 = 8000

∆(RS12,RS22,RS32,RS42,LFSR2) = (0000, 8000, d, 4000, 0000)

⇓
∆(RS13,RS23,RS33,RS43,LFSR3) = (8000, 4000, d, 4000, 0000).

We now proceed to deriving the contents of RS12. We choose the first two plaintext
words P0, P

′
0, P1, P

′
1 as before. For some z and y = 0, 1, . . . , 216 − 1 the third words

will be chosen as

P2 = E−1(z,K(1)) � y (22)

P ′
2 = E−1(z � 8000,K(1)) � y (23)

until the corresponding ciphertext

C = HB
(
(0000, 0000, 0000, 0000), (P0, P1, P2)

)
C ′ = HB

(
(8000, 0000, 0000, 0000), (P ′

0, P
′
1, P

′
2)
)

satisfies the previous conditions and the additional condition

E−1(C2,K
(4))� E−1(C ′

2,K
(4)) = 4000. (24)

This will imply that the second differential works and the conditions ∆v122 = 8000,
∆v232 = 0000, and ∆v342 = 8000 hold. Furthermore we will have the contents of
register RS12 = y and v122 = z. Note that if the guess for RS12 = y is correct, then
Equation 24 will hold for any z in Equations 22 and 23.

We now have sufficient information about the internal state of Hummingbird to
mount a “quartet” attack on K(3). Additional quantities of the internal state can be
derived as follows:

v341 = RS12 � RS11 (25)

RS41 = E−1(C1,K
(4)) � v341 (26)

RS42 = RS41 � E(P1 � RS12,K
(1))� RS12 (27)

v342 = E−1(C2,K
(4))� RS42. (28)

We can now perform an exhaustive search for K(3) that satisfies

E−1(v341 ,K
(3))� E−1(v341 � 8000,K(3)) = d and (29)

E−1(v342 ,K
(3))� E−1(v342 � 8000,K(3)) = d (30)

for some value d. We call this a “quartet test” as it involves four (inverse) E invocations.
To get more quartets (you will need at least four), increase z in Equations 22 and 23
and perform more chosen-plaintext queries.



3.5 Attacking K(2)

After the recovery of K(1), K(3) and K(4), there is only 64 bits of unknown keying
material left to discover. A simple known-plaintext exhaustive search for K(2) will
suffice to recover this last missing piece.

4 Discussion

Hummingbird has some superficial similarities to the Helix [3] and Phelix [10] ciphers
– these are stream ciphers where message data is used to modify the internal state of the
cipher and an authentication code is produced. An analysis by Muller also used a lack
of high-bit propagation in a distinguishing attack [8].

4.1 Implementing the Attack

Our attack on Hummingbird-1 was implemented using the C language on Linux plat-
form. Due to the divide-and-conquer technique that we are using, we may efficiently
demonstrate the attack with keys that have limited entropy in each one of the subkeys.
A typical run against a 4 × 24 = 96 - bit secret key on a Intel Core 2 Duo (clocked at
3.16 GHz) looks like this:

rand seed = 1288781850
self test - passed.
tru_key[] = 0000000000AF566900000000008CE17E00000000007625770000000000F5D5A2

hb1_break() started on Wed Nov 3 12:57:30 2010
decrypting ................................................................
right pair ................................................................
paired a/b .. 01A5 / 01EE .. c = 20835
EK1 search ..................... 0000000000AF5669
tabulating 49A1 8AD3 542C 9358 1BC0 FBBE 1ABB 0A97 4766 CA93 85BC E099 6049
EK4 search .............................. 0000000000F5D5A2
tabulating .. max slot = 7 .. quartets = 26
EK3 search .............. 0000000000762577 (d = 10)
EK2 search ................. 00000000008CE17E
hb1_break() finished on Wed Nov 3 12:57:47 2010
running time: 17 wall-clock seconds

crk_key[] = 0000000000AF566900000000008CE17E00000000007625770000000000F5D5A2

The demonstration code first performs a self-test of its Hummingbird-1 implementation
against test vectors supplied by Revere Security [9]. It then chooses a random key and
lets the attack code perform black-box chosen-IV encryption or decryption queries.
Typical execution time is 15-20 seconds before the correct 96-bit key is found.

It seems reasonable to assume that the the E function described in Section 2.2 of-
fers less than 264 security since its diffusion properties are far from perfect. To illustrate
this, we note that in Figure 1 it is easy to see that the 16-bit subkey K

(i)
4 affects two

invocations of the S-Box layer and a single bit linear diffusion layer – therefore a single
bit change in this subkey won’t even necessary affect all ciphertext bits. Since the se-
curity of Hummingbird-1 is reduced to the security of the E function by the techniques
described in this paper, we feel confident in estimating that Hummingbird-1 offers sig-
nificantly less than 64 bits of security.



We have attacked Hummingbird-1 “as it is”. It is true that trivial modifications can
be made to the initialization stage to make the present form of attack inapplicable.
However, it does not make sense for a cryptanalyst to attack a moving target as every
small detail is vital to the success or failure of the attack. We note that the present line
of attack was dictated by the way the cipher worked. Certainly a bug in the initialization
function should not have resulted in a devastating full key-recovery attack on the cipher
itself. Any proposed small “fix” may have equally serious consequences.

Throughout this paper the any constant pair of IVs can be used as long as

∆(RS10,RS20,RS30,RS40,LFSR0) = (8000, 0000, 0000, 0000, 0000). (31)

This initial condition follows from ∆IV = (8000, 0000, 0000, 0000) by Observa-
tion 1, but if the flaw in the initialization function is fixed, we may find such pairs by
the birthday paradox. If the initialization function would be completely random, finding
such a pair would require about

√
280 = 240 queries. Testing for the condition can be

done with Observation 2.

4.2 Lessons Learned

Due to its extremely light-weight application target scenario, the security margins used
in the design of Hummingbird-1 are very small. In addition to the unfortunate bug in the
initialization function (Observation 1), the security of Hummingbird-1 seems to suffer
from the fact its state size is very small and that chosen input can directly affect almost
all of its internal state bits (apart from the LFSR “counter”) in an adaptive attack. We
suggest that the number of state bits which run independently from input data should
be increased in future encryption algorithm designs of the Hummingbird type.

5 Conclusions

We have described a key-recovery attack against the 256-bit stream cipher Hummingbird-
1. The attack is based on a divide-and-conquer and differential techniques and has com-
plexity upper bounded by 264 operations. Significant improvements to this bound are
possible by attacking the E function. The attack requires processing of few megabytes
of chosen messages under two related nonces (IVs).

The attack proceeds in four stages, attacking each one of the 64-bit subkeys indi-
vidually. The attacks are mainly based on differentials in in the high bits of words. It is
noteworthy that the described attacks work regardless of the design of the main nonlin-
ear component, the E keyed permutation. The present line of attack are made effective
by a clear design flaw in the Hummingbird-1 initialization function, but similar attacks
can be envisioned for many possible straightforward fixes.

We conclude that the published version of Hummingbird-1 may not offer adequate
security for some cryptographic applications. The Revere Security team is actively de-
veloping an improved version that will remedy the security issues reported in this paper.
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