
COMPUTING DISCRETE LOGARITHMS IN AN INTERVAL

STEVEN D. GALBRAITH, JOHN M. POLLARD, AND RAMINDER S. RUPRAI

Abstract. The discrete logarithm problem in an interval of size N in a group G is: Given g, h ∈ G and
an integer N to find an integer 0 ≤ n ≤ N , if it exists, such that h = gn. Previously the best low-storage

algorithm to solve this problem was the van Oorschot and Wiener version of the Pollard kangaroo method.

The heuristic average case running time of this method is (2 + o(1))
√

N group operations.

We present two new low-storage algorithms for the discrete logarithm problem in an interval of size N .
The first algorithm is based on the Pollard kangaroo method, but uses 4 kangaroos instead of the usual

two. We explain why this algorithm has heuristic average case expected running time of (1.714 + o(1))
√

N
group operations. The second algorithm is based on the Gaudry-Schost algorithm and the ideas of our first

algorithm. We explain why this algorithm has heuristic average case expected running time of (1.660 +

o(1))
√

N group operations. We give experimental results that show that the methods do work close to that

predicted by the theoretical analysis.
Keywords: discrete logarithm problem (DLP)

1. Introduction

The discrete logarithm problem (DLP) in an interval is the problem: Given g, h in a group G and
N ∈ Z>0 such that h = gn for some 0 ≤ n ≤ N (where N is less than the order of g), to compute n. This is
a fundamental computational problem that arises naturally in a number of contexts, for example the DLP
with c-bit exponents (c-DLSE) [7, 12, 18], decrypting in the Boneh-Goh-Nissim homomorphic encryption
scheme [1], counting points on curves or abelian varieties over finite fields [6], the analysis of the strong
Diffie-Hellman problem [2, 9], and side-channel or small subgroup attacks [8, 10]. One can solve the DLP
in an interval using the baby-step-giant-step algorithm; this requires O(

√
N) group operations and storage

of O(
√
N) group elements. The fastest variant (given in Section 3 of Pollard [14]) has average case running

time of 4
3

√
N group operations.

The Pollard kangaroo method [13] was designed to solve the DLP in an interval using constant number of
group elements of storage. This is a randomised algorithm, which was originally given a heuristic analysis.
Recently, Montenegro and Tetali [11] have given a more rigorous analysis of the kangaroo method.

The state-of-the-art for solving the DLP in an interval since the early 1990s was the distributed kangaroo
algorithm as developed by van Oorschot and Wiener [17, 19]. The algorithm of van Oorschot and Wiener
solves the DLP in an interval of size N with heuristic average case expected running time of (2 + o(1))

√
N

group operations and polynomial storage. This record has stood for over 15 years so it might have been
natural to believe that (2 + o(1))

√
N group operations was the best possible result for algorithms of this

type. However, we provide two new algorithms, both of which beat this record. The first algorithm is a
simple modification of the kangaroo method. The trick is to translate the discrete logarithm problem to the
interval [−N/2, N/2] and then start wild kangaroos at both h and h−1. The second algorithm is a variant
of an algorithm due to Gaudry and Schost [6].

In groups for which inversion can be computed much more quickly than a general group operation (for
example, elliptic curves) then an improvement was recently given by Galbraith and Ruprai, using an algo-
rithm due to Gaudry and Schost. The main result of [4] is an algorithm for the DLP in an interval of size
N with heuristic average case expected running time of approximately (1.36 + o(1))

√
N

This work supported by EPSRC grant EP/D069904/1.

1

2. Background on the Pollard Kangaroo Method

We first briefly recall the Pollard kangaroo method using distinguished points as described by van Oorschot
and Wiener [19] and Pollard [14]. To fix notation: We are given g, h and N (throughout the paper we assume
N is even) and asked to find 0 ≤ n ≤ N such that h = gn.

For a, b ∈ R we use the notation [a, b] to denote {n ∈ Z : a ≤ n ≤ b}. One pictures the kangaroo method
in terms of the exponents in the group. In other words, we identify a group element gn with the integer
n ∈ [0, N].

As with the rho method, the kangaroo method relies on a pseudorandom walk, however steps in the
kangaroo walk correspond to known small increments in the exponent (in other words, kangaroos make
small jumps). The tame kangaroo starts in the middle of the interval (i.e., at gN/2) and jumps towards the
right. The wild kangaroo starts at the group element h (with unknown discrete log) and jumps to the right
using the same pseudorandom walk. For both walks, one stores the current group element z and also some
information about its discrete logarithm: for tame walks one stores y such that z = gy and for wild walks
one stores y such that z = hgy. On a serial computer one alternately jumps the tame and wild kangaroos.
Every now and then a tame or wild kangaroo lands on a distinguished group element and this is stored in
a sorted list, binary tree or hash table together with a flag indicating whether the kangaroo was tame or
wild and the corresponding value y as above. Once the same group element is visited twice, by kangaroos
of different types, the DLP is solved (since we have an equation of the form gy = hgy

′
). Van Oorschot and

Wiener [19] and Pollard [14] discuss how to parallelise this algorithm; the idea is to use herds of kangaroos
with longer jumps.

The kangaroo method is not analysed using the birthday paradox but using the mean step size m of the
pseudorandom walks. Once the rear kangaroo reaches the starting point of the front kangaroo it is jumping
over a region where roughly one in m group elements have been visited by the front kangaroo. Heuristically,
there is therefore a 1/m probability at each step that the back kangaroo lands on a footprint of the front
kangaroo. Hence, the walks join after an expected m steps.

One obtains the heuristic average case expected running time of approximately (2 + o(1))
√
N group

operations as follows: The rear kangaroo is, on average, distance N/4 from the front kangaroo. The rear
kangaroo therefore performs an expected N/(4m) jumps to reach the starting point of the front kangaroo,
followed by an expected m more steps until the walks collide (and then a small number more steps until
a distinguished point is hit; see analysis in the next paragraph). Since there are two kangaroos in action
the total running time is roughly 2(N/(4m) +m) group operations. This expression is minimised by taking
m =

√
N/2, which leads to a count of 2

√
N group operations.

Let θ be the probability that a group element is distinguished. Since the algorithm does not detect the
collision until a distinguished point has been visited by the second walk, it follows that the overall heuristic
average case expected running time is 2

√
N + 1/θ group operations. Taking θ = c log(N)/

√
N for some

constant c > 0 means the expected number of group elements storage is c log(N) (i.e., polynomial storage)
and the average case expected running time of the algorithm is (2 + 1/(c log(N))

√
N = (2 + o(1))

√
N group

operations.

3. Using More Than Two Kangaroos

We start with three kangaroos. We now assume that g has odd order r (in practice r is usually prime)
and that the width N of the interval is such that N < r. It is convenient to assume that 10 | N .

We shift the problem (multiplying the instance by g−N/2 which requires an inversion in the group) so
that it is of the form

h = gn , −N/2 ≤ n ≤ N/2.
The idea of the algorithm is to start two wild kangaroos, W1 and W2, from h and h−1 respectively (hence,
one more inversion in the group is needed). Start a tame kangaroo T from the point 3N/10. This is the
middle of the interval I = [N/10, N/2]. Either one wild kangaroo is in the interval I, or both are in the
interval J = [−N/10, N/10]. In either case there is a pair whose distance apart is not more than N/5.
Effectively, this pair are performing the original method in an interval of reduced width 2N/5.

As with the kangaroo method, we store the current group element together with some information about
the DLP: for the tame kangaroo we store (z, y) such that z = gy; for W1 we store (z, y) such that z = hgy;

2

for W2 we store (z, y) such that z = h−1gy. Whenever z is distinguished we store z, y and a flag indicating
the type of kangaroo (T , W1 or W2). The crucial idea is that a collision between any pair will solve the
DLP: if gy = hgy

′
or gy = h−1gy

′
we can compute logg(h); also if hgy = h−1gy

′
then, since g has odd order,

we can solve logg(h) = (y′ − y)2−1 (mod r).
This method only requires two inversions in the group and so is applicable even in groups where inversions

are much slower than a multiplication (such as F∗p). The method can be parallelised, giving a linear speedup,
using the methods of van Oorschot and Wiener [19] or Pollard [14].

3.1. Analysis of the Running Time. We now give a heuristic analysis of the running time of this al-
gorithm. As with the usual kangaroo method, we first determine the expected number of steps for a rear
kangaroo to pass the starting point of a kangaroo in front of it. Then we determine the expected number of
steps until the rear kangaroo visits a group element already visited by the front kangaroo.

Let the DLP be h = gxN/2 where 0 ≤ x ≤ 1 (without loss of generality we can assume it is in the right
hand side of the interval). Let 0 ≤ a(x) ≤ b(x) ≤ 1 be such that the closest pair of kangaroos start a distance
a(x)N/2 apart, and the second closest pair of kangaroos start a distance b(x)N/2 apart.

One has the following values for a(x) and b(x).

x a(x) b(x)
0 ≤ x ≤ 1

5 2x 3
5 − x

1
5 ≤ x ≤

3
5

3
5 − x 2x

3
5 ≤ x ≤ 1 x− 3

5 x+ 3
5

Let m = α
√
N be the mean step size. The naive and pessimistic assumption is that the closest pair of

kangaroos will meet. The theory of the preceding section (applied to an interval of length 2N/5) shows that
we should take α =

√
1/10. The existing results on the kangaroo method imply the heuristic average case

expected running time would be at most (3/2)(2 + o(1))
√

2N/5 = (1.897 + o(1))
√
N group operations. The

following, more precise, analysis allows for collisions involving the third kangaroo.

Theorem 1. Suppose the three-kangaroo algorithm above is performed, to solve the DLP in an interval of
size N , with a walk uniformly chosen from the set of all possible kangaroo walks of mean step size 0.375

√
N .

Let θ = log(N)/
√
N be the probability of a group element being distinguished, and assume that distinguished

points are uniformly distributed in the group. Then the average case expected number of group operations is
(1.818 + o(1))

√
N .

Proof. We ignore the cost of the inversions in the group, and the cost of the group operations to compute
the initial value T = g3N/10.

The expected number of steps for the rear kangaroo to pass the starting point of the front kangaroo for the
closest pair of kangaroos is A(x) = a(x)N/(2m) where m = α

√
N is the mean step size and the optimality

of the choice α = 0.375 will be justified later. Similarly, for the second closest pair it is B(x) = b(x)N/(2m).
Finally, the expected time for the rear kangaroo to pass the start point of the front kangaroo for the most
distant pair of kangaroos is C(x) = A(x) +B(x).

Suppose a kangaroo has walked across an interval of length l. Then we expect l/m group elements to
have been visited, and can think of all elements as being roughly of distance m apart. If another kangaroo
walks along the same interval then, at each step, the probability that it lands on a group element visited
by the first kangaroo is (under our assumption that the random walk is uniformly chosen from the set of all
possible random walks of the correct type) 1/m. Hence, the probability to make k steps and avoid the steps
of the first kangaroo is (1− 1/m)k ≈ e−k/m.

Suppose the algorithm is organised so that at each time step, all three kangaroos make one jump. The
algorithm stops when there is a collision: namely two kangaroos of different type visit the same group element
(here we ignore the fact that collisions are only detected once a distinguished point is visited). Let X(x) be
the random variable on N such that Pr(X = k) is the probability (for a fixed instance of the DLP, but over
all possible choices for the pseudorandom walk) that the first collision takes place at time step k. Then, for

3

k ≥ 0, we have

Pr(X(x) = (k + 1)) =

0 1 ≤ k < A(x)
1
me
−(k−A(x))/m A(x) ≤ k < B(x)

2
me
−(k−A(x))/me−(k−B(x))/m B(x) ≤ k < C(x)

3
me
−(k−A(x))/me−(k−B(x))/me−(k−C(x))/m C(x) ≤ k.

Indeed, these formulae are upper bounds on the probability. The expected value of X(x) is
∞∑
k=1

kPr(X(x) = k) ≤ 1 +
∫ ∞

1

kPr(X(x) = k)dk.

Using ∫ v

u

ze−a(z−b)dz = −
[(

z
a + 1

a2

)
e−a(z−b)

]v
u

one computes∫ ∞
1

kPr(X(x) = k)dk = 1
m

∫ B+1

A+1

e−(z−1−A)/mdz + 2
m

∫ C+1

B+1

e−(2z−C)/mdz + 3
m

∫ ∞
C+1

e−3(3z−2C)/mdz

≈ A(x) +m− m
2 e
−(B(x)−A(x))/m − m

6 e
−C(x)/m.

The approximation error error is bounded by a multiplicative factor corresponding to the difference between
the estimates for Pr(X(x) = k) and Pr(X(x) = k + 1). This multiplicative factor is e3/m which is 1 + o(1)
when m = α

√
N .

The expected number of group operations performed by the algorithm on a specific instance (parameterised
by x) up to the first collision is therefore

(3 + o(1))
(
A(x) +m− m

2 e
−(B(x)−A(x))/m − m

6 e
−C(x)/m

)
.

One also has to perform an expected 1/θ time steps to hit a distinguished point (and so detect the collision)
which adds 3/θ to the running time. The expected running time of the algorithm is therefore (c+o(1))

√
N+

3/θ where

c = 3
(
a(x)/(2α) + α− α

2 e
(a(x)−b(x))/(2α2) − α

6 e
−(a(x)+b(x))/(2α2)

)
.

Taking θ = log(N)/
√
N gives (c+ o(1))

√
N group operations.

Now we determine the average case running time (averaging over all 0 ≤ x ≤ 1). Inserting the values for
a(x) and b(x) and integrating over 0 ≤ x ≤ 1 gives

c = 3
(

1
10α + α− 2α3

3 +
(

5α3

6 −
α
5

)
e−3/(5α2) − α3

6 e
−1/α2

)
.

One computes the optimal value of α to be 0.3752120113 . . . giving c = 1.8182026 The naive choice
α =

√
1/10 gives c ≈ 1.8338. �

Our conjecture is that when the random walk is replaced by a pseudorandom walk of the standard type,
assuming sufficiently many partitions and that distinguished points are sufficiently common and evenly
distributed, then one can solve the DLP in an interval in (1.82 + o(1))

√
N group operations. This is a

noticeable improvement over the heuristic (2 + o(1))
√
N group operations of the van Oorschot and Wiener

method.

3.2. Four Kangaroo Method. We can make a further improvement. The starting points of W1 and W2,
namely x and −x, are integers of the same parity. Hence, to obtain wild-wild collisions more quickly one
should take walks whose jumps are all even length. However, now there is the possibility that the wild walks
will never collide with the tame walk. The solution is to have two tame kangaroos, T1 and T2, starting on
adjacent integers (one even and one odd). There is no possibility of a useless tame-tame collision, but there
is a chance of tame-wild collisions, as desired (though with only one of the tame kangaroos).

The overall effect is to effectively halve the width of the interval but increase from 3 to 4 kangaroos. The
algorithm itself is essentially identical to the three-kangaroo case. We run 4 kangaroos and store 4 lists of

4

numbers. The jumps are even and the mean step size m′ is m′ =
√

2 · α
√
N ≈ 0.53

√
N (i.e., the value m

used before is multiplied by
√

2).
We now estimate the complexity of the method. As before, we organise the algorithm so that at each

time step, each of the 4 kangaroos takes one jump. The number of steps for a kangaroo to travel distance
d is d

m′ = 1√
2
d
m and, once a rear kangaroo passes the start of a front kangaroo, the probability of standing

on a footstep of the front kangaroo is 2/m′ (since the steps are even). Hence, the expected number of steps
for a collision is m′

2 =
√

2m
2 = 1√

2
m. By ignoring the tame kangaroo for which collisions cannot occur,

the algorithm is equivalent to applying the 3 kangaroo algorithm in an interval of size N/2. Theorem 1
therefore implies that the total number of steps to be performed by the idealised version of the algorithm
is (1.818 + o(1))

√
N/2. In other words, the algorithm takes roughly 1/

√
2 of the number of steps of the

three-kangaroo algorithm. But we now do 4 jumps in each time step instead of 3, so we must multiply
the running time by 4/3. In other words, the expected number of group operations of the three-kangaroo
algorithm is the number from the three-kangaroo case multiplied by 4/(3

√
2) =

√
8/9 ≈ 0.9428.

Hence, using 4 kangaroos gives an algorithm for the DLP in an interval whose heuristic average case
expected running time is (1.714 + o(1))

√
N group operations. This is a significant further improvement over

the heuristic (2 + o(1))
√
N group operations of the van Oorschot and Wiener method.

3.3. Why are 4 Kangaroos Optimal? One might also consider using one tame kangaroo and four wild
kangaroos starting at h, h−1, h2 and h−2 respectively and a tame kangaroo gt starting near the right hand
side of the interval. Any collision between walks allows us to solve the discrete logarithm problem. This
idea is tempting since the “most likely” collision can come from h being close to h2 (this is the case when
h = gx and x is small), or from h2 being close to gt (i.e., when x ≈ t/2) or from h being close to gt (i.e.,
when x ≈ t).

However, the fact that one is now running 5 walks and that only 2 or 3 are likely to lead to a collision in
any situation seems to offset the improved collision probability. We have given a rough analysis. We note
that the closest kangaroos have distance x apart when 0 ≤ x ≤ t/4, distance |t − 2x| when t/4 ≤ x ≤ 2t/3
and distance |t − x| when 2t/3 ≤ x ≤ 1. A rough calculation suggests the overall running time for optimal
choices of t and α is still at least 2

√
N .

4. Gaudry-Schost Variant

Gaudry and Schost [6] developed a different approach to algorithms for solving the DLP. Their method
involves pseudorandom walks of different types (typically, “tame” walks and “wild” walks) in subsets of the
group. One applies a version of the birthday paradox in the regions of overlap of the subsets. A collision
between walks of two different types leads to a solution to the DLP. Galbraith and Ruprai [3, 4] have shown
that the Gaudry-Schost method can have some advantages over the Pollard kangaroo method. In particular,
it can be used to efficiently solve the DLP in an interval when using equivalence classes under inversion.

We now explore versions of the Gaudry-Schost algorithm motivated by the 3 and 4 kangaroo algorithms
in the previous section.

4.1. Basic Three-Set Gaudry-Schost Algorithm. This section presents a version of the Gaudry-Schost
algorithm for the DLP in an interval. The algorithm in this section is what you get when you apply the
standard Gaudry-Schost philosophy to the three-kangaroo method of Section 3. We will give an improved
algorithm in Section 4.3.

Let N be the width of the interval. It is convenient to assume that 10 | N . As before, let h = gn where
−N/2 ≤ n ≤ N/2.

Recall that the three-kangaroo method starts random walks at n, −n and 3N/10 (the latter being the
middle of the interval [N/10, N/2]. For a, b ∈ R we use the notation [a, b] to denote {n ∈ Z : a ≤ n ≤ b}.
The Gaudry-Schost philosophy is therefore to run pseudorandom walks in 3 sets. The “tame” set is centered
on 3N/10 and has length 4N/10 and the two “wild” sets also have length 4N/10 and are centered on n and
−n respectively. We give formal definitions now.

Tame set T = 3
10N + [−2N/10, 2N/10] = [N/10, N/2]},

Wild set 1 W1 = n+ [−2N/10, 2N/10],
Wild set 2 W2 = −n+ [−2N/10, 2N/10].

5

Throughout the paper we approximate the number of integers in an interval [a, b] by its length b − a.
Hence we write |T | = |W1| = |W2| ≈ 4N/10 = 2N/5 rather than |T | = 2N/5 + 1

The algorithm starts three walks, each at a random point in the sets T,W1 and W2 respectively. At each
time step the walks advance to a new point by applying a deterministic function, just as in the kangaroo
method. If two walks collide then they follow the same path. Collisions are detected using distinguished
points. Unlike the kangaroo method, there will occasionally be useless collisions between walks of the same
type. A collision between walks of any two different types will lead to a solution of the DLP.

Unlike the kangaroo method, pseudorandom walks in the Gaudry-Schost method do not travel long
distances. Instead, we typically use walks with relatively “local” behaviour (though not too local, otherwise
they are “not random enough”). More precisely, let θ be the probability that a group element is distinguished
(e.g., θ = log(N)/

√
N). Then walks have length 1/θ on average, and we assume that after this many steps

a walk has travelled significantly less than the width of the set in which it starts (our experiments suggest
that each walk should cover around 0.1 to 1 percent of the size of the tame set, assuming that the number
of individual walks performed is at least 1000). Unlike the kangaroo method, instead of continuing the walk
when we hit a distinguished point, we start a new walk at a fresh, uniformly chosen, element of the interval
(computing this new group element requires some group operations; the cost can be somewhat mitigated by
precomputation and other tricks). Care must be taken when starting walks near the boundaries of the set
so that the probability of a walk going outside the set is low. For more discussion of these issues we refer to
[3, 6, 15].

Running random walks in this way, the DLP is solved when there is a collision between walks of different
types. Hence, the expected running time of the algorithm depends on the sizes of the intersections T ∩W1,
T ∩W2 and W1 ∩W2. We first determine the sizes of these intersections.

Lemma 2. Let notation be as above. Write h = gxN/2 where, without loss of generality 0 ≤ x ≤ 1. Then
the sizes of T ∩W1, T ∩W2 and W1 ∩W2 are given, up to an error O(1/N), in the following table.

x |T ∩W2|/(N/2) |W1 ∩W2|/(N/2) |T ∩W1|/(N/2)
0 ≤ x ≤ 1/5 1/5− x 4/5− 2x 1/5 + x

1/5 ≤ x ≤ 2/5 0 4/5− 2x 1/5 + x
2/5 ≤ x ≤ 3/5 0 0 1/5 + x
3/5 ≤ x ≤ 1 0 0 7/5− x

Proof. This is easily verified. For example, to compute |W1 ∩W2|, the upper limit of W2 is 2N/10−xN/2 =
(2/5− x)(N/2) and the lower limit of W1 is −2N/10 + xN/2 = (−2/5 + x)(N/2). Hence, as long as the sets
overlap, the length of the overlap is (2/5 − x − (−2/5 + x))(N/2) = (4/5 − 2x)(N/2). The other cases are
similar. �

For the analysis of the algorithm we need a generalisation of the birthday paradox that applies when
seeking collisions between objects of different “types”. A basic example of this is the following: Suppose we
sample uniformly at random from a set of size M and write the element in one of two lists (either write
elements alternately on the lists, or flip an unbiased coin to determine the list for each draw). It is known
(e.g., see [16]) that the expected number of trials until the two lists have an element in common is

√
πM .

Theorem 3. Let n ∈ N (we only require n = 2 or n = 3). Let N,m ∈ N (these will be assumed to be large
and with m < N). Let S1, . . . , Sn be subsets of {1, . . . , N} of size m and L1, . . . , Ln lists that are initially
empty.

Suppose elements are repeatedly and independently sampled by the following method: choose i ∈ {1, . . . , n}
uniformly with probability 1/n and then choose x ∈ Si uniformly with probability pi = 1/m and store x in
list Li.

Let M =
∑

1≤i<j≤n |Si ∩ Sj | and suppose M/N > c for some constant independent of N . Then the
expected number of draws until the same element is sampled twice but put into different lists is

nm
2

√
π/M +O(N1/4).

Proof. This is a special case of Theorem 1 of Galbraith and Holmes [5]. It can also be deduced (with a less
precise error term) from the result of Selivanov [16]. �

6

Theorem 4. Let notation be as above. Suppose the three-set Gaudry-Schost algorithm described above is run
with a truly random walk and assume that distinguished points are uniformly distributed in the group. Then
the average case expected running time is (1.811 + o(1))

√
N group operations. (Note that the expectation is

over all choices for the random walk.)

Proof. Write h = gxN/2 where 0 ≤ x ≤ 1. We will compute the expected running time of the algorithm
(over all choices for the random walk) for the specific value x. Then we will average over all possible values
for 0 ≤ x ≤ 1.

The total number of group operations is equal to the sum of: the set up cost; the number of steps taken
in pseudorandom walks to the first useful collision; the number of “wasted” steps due to collisions between
walks of the same type; the number of group operations used to restart walks; the number of steps after the
first useful collision until a distinguished point is hit. Taking θ = log(N)/

√
N means that c log(N) walks

in total will be performed (so the number of group operations in restarting walks is bounded by log(N)2)
and the number of steps after collision to next distinguished point is o(1)

√
N . Similarly, the set up cost is

polynomial time if the number of partitions is polynomial. Adapting the analysis below (determining the
number of steps before the first good collision) shows that the number of wasted steps in walks from collisions
of the same type is a negligible proportion of the total number of steps (essentially, one only expects a small
constant number of such collisions). Hence, the total number of group operations is (c + o(1))

√
N where

c
√
N is the number of steps to the first collision. Hence, the rest of the proof is to compute this value.
We will apply Theorem 3 where N is the width of the interval and the sets S1, S2 and S3 are T , W1 and

W2. We have m = |S1| = 4N/10 and will write M = F (x)N/2. By Lemma 2 we have

F (x) =

6/5− 2x 0 ≤ x ≤ 1/5
1− x 1/5 ≤ x ≤ 2/5
1/5 + x 2/5 ≤ x ≤ 3/5
7/5− x 3/5 ≤ x ≤ 1.

Theorem 3 implies that the expected number of steps is
3
5

√
2πN F (x)−1/2 + O(N1/4).

To get an average time complexity we need to compute∫ 1

0

F (x)−1/2dx = 5
√

4/5 +
√

6/5− 4
√

3/5− 2
√

2/5 = 1.204283.

The result follows from 3
5

√
2π · 1.204283 ≈ 1.811214. �

Under the heuristic assumptions that the pseudorandom walk is sufficiently close to random (i.e., there
are enough partitions, and those partitions are determined by a good enough hash function) and that 1/θ is
sufficiently large (so that we can safely ignore the group operations from re-starting walks) then we conclude
that there is an algorithm for the DLP in an interval that performs (1.81 + o(1))

√
N group operations.

4.2. Basic Four-Set Gaudry-Schost Algorithm. In the same way as the four-kangaroo algorithm is
derived from the three-kangaroo algorithm, we can improve the three-set Gaudry-Schost algorithm by using
steps of even length and having two tame sets – one consisting of elements with even DLP and one consisting
of elements with odd DLP. There is no need to modify the random walks any further, since there is no “mean
step size” in the Gaudry-Schost method.

To analyse the algorithm it is not necessary to prove a new version Theorem 4. The point is that one of
the tame sets is completely wasted (collisions between tame and wild walks will only occur with respect to
the tame set involving elements whose discrete logarithm has the same parity as n). Hence, we can apply
the same argument as that in Section 3.2. The algorithm is basically the same as working in an interval of
size N/2, but we have to do 4/3 of the work. Hence, one expects the four-set algorithm to run in

√
8/9 the

time of the three-set algorithm.
In other words, one makes the conjecture that the four-set algorithm has average case expected running

time of
(1.707 + o(1))

√
N

group operations.
7

Figure 1. Tame and Wild sets for the improved Gaudry-Schost algorithm.

This already gives a small improvement in theory over what was achieved using kangaroos. One caveat
is that there are a number of reasons why the Gaudry-Schost algorithm does not necessarily work quite as
well as the theory predicts. The main problem is that it is difficult to design a pseudorandom walk that
behaves close to a truly random walk in the precise regions as stated in the description of the algorithm. For
example, it is difficult to design pseudorandom walks that cover the sets uniformly without also sometimes
stepping outside the regions. Extensive discussion of this issue is given in [3, 15]. A second problem is that
extra group operations are needed when re-starting the random walks at new group elements.

For these reasons, it is unclear whether, in practice, this algorithm would be faster than the four kangaroo
method. In the next section we obtain a further improvement which could mean that the Gaudry-Schost
approach really is faster in practice.

4.3. Improved Three-Set Gaudry-Schost Algorithm. One powerful feature of the Gaudry-Schost phi-
losophy is that there are many variations one can make to optimise the running time. In particular, the
tame and wild sets can be different shapes and sizes and one is not even obliged to sample uniformly within
them.

We now explain one variant of this algorithm and derive an improved running time. We write h = gxN/2

with −1 ≤ x ≤ 1 and, without loss of generality, x ≥ 0. We take the widths of the tame and wild intervals
to be γN/2 where γ is a variable whose value will be chosen later. We also start the tame set at a variable
point, namely the tame set is T = [αN/2, (α + γ)N/2]. The wild sets are W1 = [x − γN/4, x + γN/4] and
W2 = [−x− γN/4,−x+ γN/4]. The sets are drawn in Figure 1.

Lemma 5. Let notation be as above. Write h = gxN/2 where, without loss of generality 0 ≤ x ≤ 1. Suppose
γ/2 ≤ α ≤ γ and α+ 3γ/2 ≥ 1. Then the sizes of T ∩W1, T ∩W2 and W1 ∩W2 are given in the following
table.

x |T ∩W2|/(N/2) |W1 ∩W2|/(N/2) |T ∩W1|/(N/2)
0 ≤ x ≤ α− γ/2 0 γ − 2x 0
α− γ/2 ≤ x ≤ γ/2 0 γ − 2x x− (α− γ/2)
γ/2 ≤ x ≤ α+ γ/2 0 0 x− (α− γ/2)
α+ γ/2 ≤ x ≤ 1 0 0 (α+ 3γ/2)− x

Proof. This is straightforward. �

Theorem 6. The improved three-set Gaudry-Schost algorithm in this section, with truly random walks and
assuming that distinguished points are uniformly distributed in the group, has average case expected running
time of (1.761 + o(1))

√
N group operations.

Proof. As argued in the proof of Theorem 4 the total number of group operations is (c + o(1))
√
N where

c
√
N is the number of elements to be sampled until the first collision between walks of different types. Since

T ∩W1∩W2 = ∅, in any region there can only be a collision between two types of walk. Write M = F (x)N/2
for the size of the overlap set (T ∩W1) ∪ (T ∩W2) ∪ (W1 ∩W2). By earlier arguments, the average case
expected running time is

3γ
2

√
πN/2

∫ 1

0

F (x)−1/2dx.

8

By Lemma 5 we have

F (x) =

γ − 2x 0 ≤ x ≤ (α− γ/2)
3γ/2− x− α (α− γ/2) ≤ x ≤ γ/2
x− α+ γ/2 γ/2 ≤ x ≤ α+ γ/2
α+ 3γ/2− x α+ γ/2 ≤ x ≤ 1.

One easily computes
∫ 1

0
F (x)−1/2dx as a function of γ and α. A crude optimisation gives the values γ = 0.588

and α = γ/2. The integral is then 0.9366 and the average case expected complexity is (1.7608 + o(1))
√
N

group operations. �

We therefore conjecture that by taking 1/θ is sufficiently large and by using good enough random walks,
there is an algorithm for the DLP in an interval that performs (1.761 + o(1))

√
N group operations.

4.4. Improved Four-Set Gaudry-Schost Algorithm. One can of course apply the four-set trick. This
multiplies the complexity by

√
8/9, giving an algorithm with conjectured complexity of (1.6602 + o(1))

√
N

group operations. This slightly beats the value obtained from the kangaroo method.

4.5. Further Improvement. We have considered a more general setting where the tame interval and the
wild intervals do not have the same length. This does not seem to lead to an algorithm with better complexity.
We have also considered sampling from sub-regions of the tame and wild sets as was done in Sections 4.1.5
and 4.3.3 of [15]. Again, these ideas do not seem to give any further improvement to our main result.

5. Experimental Results

As remarked, all the results in this paper are heuristic, and there are several good reasons why the
methods may not work quite as well in practice as the theory predicts. It is therefore essential to give some
experimental results to support the theoretical calculations.

For simplicity we implemented the algorithm in the additive group Z. There is no reason to think results
would be any different for elliptic curve groups, assuming that the interval length is significantly smaller
than the order of the group (if the interval is the same size as the order of the group then it is better to use
the Pollard rho method).

All our experimental results are for an interval of size N = 240.

5.1. Four-Kangaroo Method. Implementing the four-kangaroo method is quite straightforward. We
choose jumps of even length so that they have the correct mean step size. Our implementation parti-
tioned the set into 32 pieces using a simple non-linear function on Z reduced modulo 32. We took θ = 1/500
(which is actually much bigger than log(N)/

√
N in this case; in other words, walks are rather short and the

storage is rather large) so that each of the 4 lists contains around 900 group elements.
We performed over 1000 experiments and recorded the average running time of the algorithm. Each

experiment is for a fresh value of the discrete logarithm (uniformly chosen in [0, N/2]) and a fresh choice of
jumps in the random walk (uniformly chosen in the interval [1, 2m]). Recall that the theoretical prediction
is 1.714

√
N group operations.

Indeed, we computed a confidence interval so that, with 95% confidence, the true value of the expected
average case running time divided by

√
N lies in 1.733 ± 0.044 (in other words, the interval [1.689, 1.777]).

The theoretical value 1.714 does lie in this interval, so our experiments do not dispute the theoretical running
time. These results are also given in Table 1.

For completeness, we also gathered some data about the three-kangaroo method under the same con-
ditions. We computed a confidence interval so that, with 95% confidence, the true value of the expected
average case running time divided by

√
N lies in 1.851 ± 0.067 (in other words, the interval [1.784, 1.918]).

The theoretical value of 1.818 lies in this interval.
The results confirm our conjecture about the performance of the four-kangaroo method. Note that the

group operation counts in Table 1 exclude the group operations that are part of the set-up of the algorithm
(i.e., those required to compute the set of jumps for the walks and to compute the starting values of the
tame and wild walks). These steps are negligible as N →∞.

9

Method Theoretical value Sample mean 95% confidence interval
Three-kangaroo 1.818 1.851 [1.784, 1.918]
Four-kangaroo 1.714 1.733 [1.689, 1.777]

Three-set Gaudry-Schost 1.761 1.814 [1.796, 1.833]
Four-set Gaudry-Schost 1.660 1.719 [1.698, 1.739]

Table 1. Experimental results. The numbers are total number of group operations to solve
the DLP, divided by

√
N .

5.2. Four-Set Gaudry-Schost Method. We implemented the (improved) four-set Gaudry-Schost method
using jumps of even length. Recall that the theoretical prediction is 1.66

√
N group operations. To get

accurate data, we performed 10000 experiments (i.e., more than were performed for the kangaroo method;
since it is better understood and easier to analyse).

We took θ = 1/500 so that each of the 4 lists contains around 900 group elements. We used walks as in
the kangaroo method (i.e., jumps only to the right rather than “side-to-side” walks). The mean step size of
the jumps was taken to be around 0.01 ·N · θ so that a typical walk covers a distance of around 0.01N . We
used 32 partitions of the group, using the same hash function to determine partitions. As in [15] we disallow
walks to start in the extreme right hand end of the regions (we omitted an interval of length 0.00001N).

The results are given in Table 1. We also give results for the three-set algorithm. Note that the theoretical
prediction 1.660 for the constant does not lie in the confidence interval (similarly, for the three-set method,
the value 1.761 does not lie in the confidence interval). In both cases, the constants from the experimental
results are around 0.05 to 0.06 greater than the theoretical prediction. This indicates that our implementation
is not able to achieve the theoretical running time. In other words, for problem instances of this size, effects
which were treated as negligible in the theoretical analysis do have a noticeable impact on the running time.

As in the four-kangaroo case, we have ignored the set-up costs. Further, and more serious, we did not
count the full cost of the group operations needed to restart the walks after hitting a distinguished point.
Such costs can be reduced by using precomputation and storage of certain powers of g, and other strategies
for fast exponentiation. In any case, these costs become negligible if the average length 1/θ of the walks is
long, but it would have been significant in our case.

The running time can probably be slightly improved by taking different choices of parameters. Finding the
best way to implement the Gaudry-Schost algorithm is a significant challenge compared with other methods.
In particular, if the walks are too “local” or if they overflow the regions “too often” then the performance
can be a lot worse than desired. These effects become insignificant for sufficiently large groups, but they can
cause problems for small experiments.

Hence, it seems non-trivial to get a significant improvement when working in small groups. In particular,
our experiments for N = 240 do not support our conjectured (1.66 + o(1))

√
N complexity for the four-

set Gaudry-Schost algorithm, but they do support a conjectural running time of (1.72 + o(1))
√
N group

operations. To conclude, though the four-set Gaudry-Schost algorithm is, asymptotically and in theory,
superior to the four-kangaroo method, it may be hard to realise this improvement in practice for relatively
small groups.

6. Conclusions

We have given two methods that improve the solution of the DLP in an interval in an arbitrary group.
At most two inversions in the group are needed, so our methods are applicable in groups such as F∗p where
inversion is slow. For the discrete logarithm problem in elliptic curve groups one would prefer the methods
of [4].

Our experimental results confirm that the algorithms work well in practice and that one can solve the
discrete logarithm problem in an interval of size N in approximately 1.71

√
N group operations. This is a

significant improvement over the previous methods, which required 2
√
N group operations. The kangaroo

method is straightforward to implement and so is probably the preferred choice in practice, though there are
some subtleties when parallelising the kangaroo method (see [14] for discussion) whereas the Gaudry-Schost
method is easy to parallelise (see [6, 15]).

10

References

[1] D. Boneh, E.-J. Goh and K. Nissim, Evaluating 2-DNF Formulas on Ciphertexts, in J. Kilian (ed.), TCC 2005, Springer

LNCS 3378 (2005) 325–341.
[2] J. H. Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In S. Vaudenay, editor, Advances in Cryptology -

EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 2006.
[3] S. D. Galbraith and R. S. Ruprai, An improvement to the Gaudry-Schost algorithm for multidimensional discrete logarithm

problems, in M. Parker (ed.), Twelfth IMA International Conference on Cryptography and Coding, Cirencester, Springer

LNCS 5921 (2009) 368–382.
[4] S. D. Galbraith and R. S. Ruprai, Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a

Short Interval, in P. Q. Nguyen and D. Pointcheval (eds.), PKC 2010, Springer LNCS 6056 (2010) 368–383.

[5] S. D. Galbraith and M. Holmes, A non-uniform birthday problem with applications to discrete logarithms, In preparation
(2010)

[6] P. Gaudry and E. Schost, A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm, in D. A. Buell (ed.),

ANTS VI, Springer LNCS 3076 (2004) 208–222.
[7] R. Gennaro. An Improved Pseudo-random Generator Based on Discrete Log. In Crypto 2000, volume 1880 of Lecture Notes

in Computer Science, pages 469–481. Springer-Verlag, 2000.

[8] K. Gopalakrishnan, N. Thériault, and C. Z. Yao. Solving Discrete Logarithms from Partial Knowledge of the Key. In
K. Srinathan, C. P. Rangan, and M. Yung, editors, Indocrypt, volume 4859 of Lecture Notes in Computer Science, pages

224–237. Springer-Verlag, 2007.
[9] D. Jao and K. Yoshida. Boneh-Boyen signatures and the Strong Diffie-Hellman problem. In H. Shacham and B. Waters,

editors, Pairings 2009, Lecture Notes in Computer Science. Springer-Verlag, 2009.

[10] C. H. Lim and P. J. Lee. A Key Recovery Attack on Discrete Log-based Schemes Using a Prime Order Subgroup. In B. S.
Kaliski Jr., editor, Crypto, volume 1294 of Lecture Notes in Computer Science, pages 249–263. Springer-Verlag, 1997.

[11] R. Montenegro and P. Tetali, How long does it take to catch a wild kangaroo? STOC 2009, ACM (2009) 553-560.

[12] S. Patel and G. Sundaram. An Efficient Discrete Log Pseudo Random Generator. In Crypto ‘98, volume 1462 of Lecture
Notes in Computer Science, pages 304–317. Springer-Verlag, 1998.

[13] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32(143):918–924, 1978.

[14] J. M. Pollard. Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology, 13:437–447, 2000.
[15] R. S. Ruprai, Improvements to the Gaudry-Schost Algorithm for Multidimensional discrete logarithm problems and Ap-

plications, PhD thesis, Royal Holloway University of London, 2009.

[16] B. I. Selivanov, On waiting time in the scheme of random allocation of coloured particles Discrete Math. Appl., 5(1) (1995)
73–82.

[17] P. C. van Oorschot and M. J. Wiener. Parallel collision search with application to hash functions and discrete logarithms.
In ACM Conference on Computer and Communications Security, pages 210–218, 1994.

[18] P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with Short Exponents. In Eurocrypt, volume

1070 of Lecture Notes in Computer Science, pages 332–343. Springer-Verlag, 1996.
[19] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. Journal of Cryptology,

12:1–28, 1999.

E-mail address: S.Galbraith@math.auckland.ac.nz

Mathematics Department, The University of Auckland, Private Bag 92019 Auckland 1142 New Zealand. Phone:
(+64 9) 923-87 77 FAX: (+64 9) 3737 457

E-mail address: jmptidcott@googlemail.com

Tidmarsh Cottage, Manor Farm Lane, Tidmarsh, Reading, Berkshire RG8 8EX, UK.

E-mail address: raminder@email.com

Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

11

