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Abstract. So far, all solutions proposed for authenticated key agreement
combine key agreement and authentication into a single cryptographic
protocol. However, in many important application scenarios, key agree-
ment and entity authentication are clearly separated protocols. This fact
enables efficient attacks on the näıve combination of these protocols.
In this paper, we propose new compilers for two-party key agreement
and authentication, which are provably secure in the standard Bellare-
Rogaway model. The constructions are generic: key agreement is exe-
cuted first and results (without intervention of the adversary) in a secret
session key on both sides. This key (or a derived key) is handed over,
together with a transcript of all key exchange messages, to the authen-
tication protocol, where it is combined with the random challenge(s)
exchanged during authentication.
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1 Introduction

Authenticated key agreement (AKE) is a basic building block in modern cryptog-
raphy. Many secure protocols for two-party and group key agreement have been
proposed, including generic compilers that transform simple key agreement pro-
tocols into authenticated key agreement protocols, with many additional security
properties.

However, all known constructions (including e.g. the modular approach of
[1], and the Katz-Yung compiler [22]) result in a single cryptographic proto-
col, whereas many security-critical real-world applications combine two or more
clearly separated protocols:

– (Client) Authentication and SSL/TLS. The most prominent example is
SSL/TLS. Although server and browser can be authenticated in a provably
secure way [20, 25] within a single cryptographic protocol (the TLS hand-
shake protocol), nearly all known web applications authenticate the client
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through a different protocol on top of the TLS channel. The security of these
protocols is based on the sole assumption that the (human) user is able to
authenticate the server on the basis of security indicators of the browser,
which was shown to be false in [17]. We do not rely on this assumption. In-
stead, we regard SSL/TLS simply as a key agreement protocol, which cannot
be changed due to the large number of implementations that are running
worldwide. We may however change the authentication protocol, since the
authentication protocol is often implemented in HTML/Javascript. 1

– Browser based Single Sign-On (SSO). This scenario is perhaps the most
complex one and a formalization is out of scope of this paper. However, it
may serve as an illustration of how cryptographic protocols are combined
today to implement key exchange (KE) and authentication functionalities. In
SSO protocols, two key agreement protocols, and two different authentication
protocols are combined to achieve the desired goal. Cryptographically secure
SSO protocols have e.g. been described in [19].

In this work, we present a new compiler that handles these scenarios. More-
over, we can use our compiler to combine existing authentication protocols in a
novel way with key exchange protocols. This includes:

– Zero-Knowledge Authentication. Zero-knowledge protocols have been
developed with the goal to authenticate entities. However, in all known com-
pilers, they cannot be combined with key agreement, except if they are trans-
formed into digital signature schemes using the Fiat-Shamir heuristic. With
our second compiler, ZK protocols can be used directly, which enables many
interesting new protocols.

– Privacy-preserving authentication. With our compiler, we can easily
combine privacy-preserving authentication protocols like Direct Anonymous
Attestation with different key agreement protocols.

Man-in-the-middle Attack. Our real world attack scenario is as follows (cf.
Figure 1): the adversary E (”Eve”) acts as an active (wo)man-in-the-middle
(MITM) between A and B during key exchange, and then acts as a passive
”wire” during authentication. As a result, E has successfully authenticated as
”A” towards B, and as ”B” towards A, and shares (different) keys with A and
B.

To counter this attack, one could of course apply standard cryptographic
primitives to turn the key exchange protocol into an authenticated key exchange
protocol (AKE) [1], but this is not possible in the cases cited above, because the
implementation of the KE protocol cannot be changed, or the desired security

1 At first glance, it seems that the security of TLS as a key agreement protocol could
easily be proven in the Bellare-Rogaway model, since we only have to consider passive
adversaries, and the TLS ciphersuites includes e.g. ephemeral Diffie-Hellman key
exchange. However, there are some subtle problems with the Reveal query and the
fact that the final Finished message of the TLS handshake is already encrypted.
Therefore it is still unclear if TLS fits in our theoretical framework.
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Fig. 1. Attack Scenario: Real world man-in-the-middle attack (left), and unknown key
share attack (right)

goals (e.g. privacy) cannot be reached with standard compilers. Our compiler
turns the combination of the two protocols into a provably secure AKE protocol.
During compilation, only the authentication protocol is changed slightly.

Unknown Key Share (UKS) Attacks. To be able to prove the security in
the standard Bellare-Rogaway (BR) model, the resulting AKE protocol must
also be secure against unknown key share (UKS) attacks [14, 13] that do not
directly lead to an attack in the real world, but invalidate security proofs in
the model. Interestingly, in our scenario this is a kind of orthogonal attack to
MITM attacks (cf. Figure 1): The adversary acts as a man-in-the-middle on
the authentication protocol. To achieve security against both (MITM and UKS)
attacks, one usually needs two compilers: One compiler who adds authenticators
to each message [1], and one compiler who includes the complete state of the
session into the computation of the session key [15]. Our compilers achieve this
in one step, because we force the adversary to prove knowledge of the session key
k through the derived key dk during authentication. Thus the adversary cannot
authenticate to A or B without knowing k, and neither A nor B will accept.

Practical AKE protocols. If the two parties accept, they share a common
state. This state consists of the secret key k, and the transcript of all messages
sent and received. This transcript plays an important role in the BR model, since
it defines the attack possibilities of the adversary. In practically relevant AKE
protocols, a hash of this transcript is included in a final message secured with a
MAC, to protect against MITM attacks.

The A&KE Compilers. To protect against MITM attacks in our generic sce-
nario, it is sufficient to simply include the transcript of the KE protocol into the
authentication protocol. (Many authentication protocols offer the possibility to
authenticate arbitrary strings chosen by A od B, e.g. authentication protocols
based on digital signatures, or the MAP2 protocol from [2].) Such a compiler
protects against MITM attacks because (a) any modification of messages in the
KE protocol automatically results in a modification of messages in the authen-
tication protocol (since the transcript is included), which results in an abort of
the authentication protocol if this protocol is secure in the BR model. Thus (b)
the adversary is restricted to a passive role when attacking the KE protocol, but
this protocol is by definition secure against passive adversaries.



Unfortunately, this simple compiler cannot be proven secure in the BR model,
because the adversary also has access to the transcript of the protocol, and can
use this in both instances of the authentication protocol (cf. right side of Fig.
1.) To avoid this attack, a secret value only known to A and B (i.e. the session
key k) must be used in the authentication protocol in a generic way. There are
at least two different methods (besides [15]) how to achieve this:

– An additional pair of messages can be sent after the KE and the authenti-
cation protocol. These messages contain a cryptographic checksum over the
transcripts of both protocols. This checksum is basically a MAC, computed
over the transcript of both the KE and the authentication protocol, using
a key Kmac = PRF(k, “MAC”) derived from the key k returned by the KE
protocol and some pseudo-random function PRF. The actual session key K
returned by the compiled protocol (i.e., the value returned by a Reveal or
Test query in the BR model) is also derived from k as K = PRF(k, “KE”). In
Section 3, we describe the compiler for this in detail, and prove its security
in the standard model.

– Alternatively, we can modify a value that is present in all secure authentica-
tion protocols, in such a way that it does not change the security properties
of the protocol:
In a generic authentication protocol, a random challenge rA guaranteeing the
freshness of the message(s) must be sent from the challenger A to the prover
B, which is answered with a response sB from B. Ideally, this challenge is
chosen from a large message space with uniform distribution. We assume
that rA is chosen uniformly from {0, 1}t, for some security parameter t. The
answer sB := f(skB , rA) is computed using the secret long-lived key skB of
B, and the challenge rA.
Our compiler changes the computation of sB slightly. Instead of using the
challenge rA directly, we use a derived value r′A from the same distribution:

r′A := H(Kmac, rA, transcriptKE), s′B := f(skB , r
′
A),

where H is some hash function modeled as a random oracle. Please note
that r′A is never sent (cf. Figure 3), but has to be computed by A and B.
Thus the adversary E does not learn r′A. This construction does not alter
the security properties of the authentication protocol. In Section 4, we give
a security proof for this compiler in the random oracle model.

1.1 Related Work

In their seminal papers [2, 1] on two-party authenticated key agreement, Bellare
et al. started a line of research that has expanded in two directions: group key
agreement [9], [8, 22, 10], and refined models to cover different types of attacks
[11, 23, 24]. All these models cover concurrent execution of the protocol, and at
least corruption of non-related session keys.

All models can roughly be classified in two groups: models that require a
unique session ID before the start of the protocol, and models that construct



this session ID. [11] is the prototype of the former case: proofs and definitions are
easier, but it is unclear how a session ID can be defined for practical applications.
(E.g. in case of an SSL man-in-the-middle, browser and server do not share any
common state.) Newer models like [24] or [23] thus avoid this assumption, and
construct the session identifiers from the messages sent and received by the
intended communication partners.

Unknown key share [5] attacks do not threaten the real world security of
cryptographic protocols, but invalidate security proofs in the formal models that
follow [2]: If the adversary is able to force two protocol participants into accepting
the same session key, but without a matching conversation, a Reveal query
to one of the participants will help to win the Test game against the other
participant. Choo, Boyd and Hitchcock have shown how to invalidate security
proofs of various protocols in the different models [14, 13], and how to fix the
problem by including the whole session information in the computation of the
session key [15]. They were able to compare the relative strengths of the different
models assuming that session identifiers are constructed as a concatenation of
the exchanged messages.

Canetti and Krawczyk in [12] consider a practically important protocol (IPSec
IKE), which has a structure that places authentication after key exchange. Still,
this is a single AKE protocol, and thus not comparable to our construction. In
2008 Morissey et al. studied the security of the TLS key agreement protocol
[25] and provided a modular and generic proof of security for the established
application keys.

Katz and Yung presented in [22] a first scalable compiler that transforms any
passively secure group key-exchange protocol to an actively secure AKE. Their
compiler adds one round and constant size (per user) to the original scheme, by
appending an additional signature to each message of the protocol.

1.2 Contribution

In this paper, we describe two new compilers that allow us to combine key
agreement protocols (which, in the BR model, need only be secure against passive
adversaries) with arbitrary authentication protocols to form an authenticated
key agreement (AKE) protocol in the sense of [2].

These compilers enable us to formally prove the security of real world proto-
cols in the BR model, which was not possible before. The most important case
here is TLS with an authentication protocol on top of the TLS channel, which
can be proven secure if the authentication protocol is secure in the BR model.
This is possible since we consider TLS only as a key agreement protocol, and not
as an AKE protocol, and it seems likely that the security of (some ciphersuites
of) TLS against passive adversaries can be proven.

Additionally, the compilers allow for a modular design of new AKE protocols,
using existing protocols (e.g. TLS, IPSec IKE) or new ones (e.g. zero-knowledge
authentication, group signatures). The formal security proof is simplified consid-
erably, since the security of key agreement and authentication protocols can be
proven separately, and our theorems yield the security of the combined protocol.



2 Preliminaries and Definitions

In this section, we recall the syntax and security definitions of the building blocks
for our protocol compilers.

2.1 Digital Signature Schemes

A digital signature scheme is a triple Σ = (SIG.Gen,SIG.Sign,SIG.Vfy), consist-

ing of a key generation algorithm (sk, pk)
$← SIG.Gen(1κ) generating a (public)

verification key pk and a secret signing key sk on input of security parameter

κ, signing algorithm σ
$← SIG.Sign(sk,m) generating a signature for message m,

and verification algorithm SIG.Vfy(pk,m, σ) returning 1, if σ is a valid signature
for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIG.Gen(1κ),

the adversary receives pk as input.
2. The adversary may query arbitrary messages mi to the challenger. The chal-

lenger replies each query with a signature σi = SIG.Sign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries
can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We say that Σ is secure against existential forgeries under adap-
tive chosen-message attacks (EUF-CMA), if

Pr
[
(m,σ)

$← AC(1κ, pk) : SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}
]
≤ ε.

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.2 Message Authentication Codes

A message authentication code is an algorithm MAC. This algorithm implements
a deterministic function w = MAC(Kmac,m), taking as input a (symmetric) key
Kmac ∈ {0, 1}κ and a message m, and returning a string w.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger samples Kmac
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies each query with wi = MAC(Kmac,mi). Here i is an index, rang-
ing between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries can be made
adaptively.

3. Eventually, the adversary outputs a pair (m,w).



Definition 2. We say that MAC is a secure message authentication code, if

Pr
[
(m,w)

$← AC(1κ) : w = MAC(Kmac,m) ∧m 6∈ {m1, . . . ,mq}
]
≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.3 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a
deterministic function z = PRF(k, x), taking as input a key k ∈ {0, 1}κ and some
bit string x, and returning a string z ∈ {0, 1}κ.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger samples k
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The chal-
lenger replies each query with zi = PRF(k, xi). Here i is an index, ranging
between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries can be made
adaptively.

3. Eventually, the adversary outputs value x and a special symbol >. The

challenger sets z0 = PRF(k, x) and samples z1
$← {0, 1}κ uniformly random.

Then it tosses a coin b
$← {0, 1}, and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

Definition 3. We say that PRF is a secure pseudo-random function, if

|Pr [b = b′]− 1/2| ≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.4 Key Exchange Protocols

A (two-party) key-exchange protocol is a protocol executed among two parties
A and B. At the end of the protocol, both A and B obtain the same key K0 as
the output of the protocol.

Definition 4. We say that a key-exchange protocol is passively-secure if for all
polynomial-time adversary holds that |Pr[b = b′] − 1/2| ≤ ε for some negligible
function ε in the following experiment.

1. A challenger generates the public parameters Λ of the protocol (e.g. a gen-
erator describing a group etc.).

2. The adversary receives Λ as input, and may query the challenger. To this
end, it submits a symbol ⊥. Then, the challenger runs a protocol instance,
and obtains the transcript T of all messages exchanged during the protocol
and a key K0. The challenger returns (T,K0).



3. Eventually, the adversary outputs a special symbol >. Given >, the chal-
lenger runs a protocol instance, obtaining the transcript T and key K0, sam-
ples K1 uniformly at random from the key space of the protocol, and tosses
a fair coin b ∈ {0, 1}. Then it returns (T,Kb) to the adversary.

4. The adversary may continue making ⊥-queries to the challenger.

5. Finally, adversary E outputs a bit b′.

We say that the adversary wins the game, if b = b′.

Simple protocols satisfying the above definition are the Diffie-Hellman protocol
(under the DDH assumption), or key-transport using an IND-CPA secure en-
cryption scheme (i.e., party A samples a random key k, encrypts k under B’s
public key, and sends the ciphertext to B).

2.5 Secure Authenticated Key Exchange

While the security model for passively-secure key-exchange protocols is very
simple, a more complex model is required to model the capabilities of active
adversaries to define secure authenticated key-exchange. We must describe the
subtleties of executions that we expect from the implementations of the protocol,
the attacks against which our protocol should be secure, and which outcome we
expect if we run the protocol with the defined adversary. In accordance with the
line of research [5, 11, 24, 16] initiated by Bellare and Rogaway [2], we model our
adversary by providing an “execution environment”, which emulates the real-
world capabilities of an active adversary. That is, the adversary has full control
over the communication network, thus may forward, alter, or drop any message
sent by the participants, or insert new messages.

Execution Model. Let I = I(κ) and S = S(κ) be polynomials in the security
parameter κ. Our model is characterized by a collection of oracles

{πsi,j : i, j ∈ [I], s ∈ [S]}

An oracle πsi,j represents an entity i running the protocol with entity j for the
s-th time. Each oracle maintains its own internal state (e.g. nonces), all oracles
representing some entity i share the same long-term secrets of entity i. Moreover,
each oracle πsi,j maintains a variable T storing an ordered list of all messages
sent and received by πsi,j so far.

An oracle aborts, if it receives a message which is not valid according to the
protocol specification, or terminates after it has sent or received the last protocol
message according to the protocol specification. When a process terminates, it
outputs “accept” or “reject” and (possibly) a key k.

An adversary may interact with these oracles by issuing different types of
queries. Before the first query is asked, long-term secret/public key pairs (pki, ski)
for each entity i are generated. An adversary A receives as input the long-term
public keys (pk1, . . . , pkl) of all parties, and may then ask the following query:



– Send(πsi,j ,m): The adversary can use this query to send any message m of his
own choice to oracle πsi,j . The oracle will respond according to the protocol
specification. If m = ∅, where ∅ denotes the empty string, then πsi,j will
respond with the first protocol message.

Secure Authentication Protocols. An authentication protocol is a pro-
tocol run between two processes πsi,j and πtj,i of two parties Pi and Pj , where
both processes output either “accept” or “reject” at the end of the protocol. We
define correctness and security of an authentication protocol following the idea
of matching conversations, as introduced by Bellare and Rogaway [2].

In the following let Ti,s denote the transcript of all messages sent and received
by process πsi,j . Intuitively, we would like to say that a protocol is correct, if a
process πsi,j outputs “accept” if there exists a process πtj,i with Ti,s = Tj,t.
Likewise, we would like to say that a protocol is secure, if a process accepts only
if there exists a process πtj,i with Ti,s = Tj,t.

As in [2], we face a minor technical obstacle here, which is inherent to authen-
tication protocols. Suppose that Pj sends the last message of the protocol (thus,
Pi has initiated the protocol run if the number of protocol rounds is even, or Pj
has initiated the protocol if the number of rounds is odd). Party Pj does not get
any response to its last message, thus has to accept without knowing whether
Pi received the last message.2 To overcome this obstacle, we let T ′i,s be the tran-
script Ti,s truncated by the last message, and we have to define correctness and
security in a slightly more complicated way.

Definition 5. We say that two processes πsi,j and πtj,i have matching conversa-
tions, if either

– Pi sends the last message of the protocol according to the protocol specification
and it holds that T ′j,t = T ′i,s, or

– Pj sends the last message of the protocol according to the protocol specifica-
tion and it holds that Tj,t = Ti,s.

Definition 6. We say that an authentication protocol is correct, if for all pro-
cesses πsi,j holds that πsi,j “accepts” if there exists a process πtj,i such that πsi,j
and πtj,i have matching conversations.

Definition 7. We say that an authentication protocol is secure in the Bellare-
Rogaway model, if for all probabilistic polynomial-time (PPT) adversaries A,
interacting with the black-box O(Π) as described above in the execution model,
holds that:

Each process πsi,j of O(Π) “accepts” only if there exists a process πtj,i such
that πsi,j and πtj,i have matching conversations, except for some negligible prob-
ability ε = ε(κ) in the security parameter.

2 In contrast, a protocol can be designed such that the party receiving the last mes-
sage accepts only if it has received this message correctly according to the protocol
specification.



Secure Authenticated Key-Exchange Protocols. An authenticated key-
exchange protocol is an authentication protocol, where additionally both parties
obtain a key k after accepting. Intuitively, we would like to say that a authenti-
cated key-exchange protocol is secure, if

– the protocol is a secure authentication protocol, and
– an adversary can not distinguish a key k computed in a protocol run from

a uniformly random value from the key space. This should hold even if the
adversary is able to learn the key computed in other protocol instances.

We formalize this by extending the execution model by two more type of queries,
which may be asked by the adversary.

– Test(πsi,j): This query may only be asked once throughout the game. If pro-
cess πsi,j has not (yet) “accepted”, the black-box returns some failure symbol
⊥. Otherwise the black-box flips a fair coin b. If b = 0, a random element
from the keyspace is returned. If b = 1 then the session key k computed in
process πsi,j is returned.

– Reveal(πsi,j): The adversary may learn the encryption key K computed in
process πsi,j by asking this type of query. The adversary submits πsi,j to the
black-box. If process πsi,j has “accepted”, the black-box responds with the
key k in process πsi,j . Otherwise some failure symbol ⊥ is returned.

Definition 8. Let A be a PPT adversary, interacting with the black-box O(Π)
described in the above execution model (denoted with AO(Π)).

We say that an authenticated key-exchange protocol Π is secure in the Bellare-
Rogaway model, if 1.) Π is a secure authentication protocol according to Defini-
tion 7, and 2.) ∣∣∣∣Pr[AO(Π)(1κ) = b]− 1

2

∣∣∣∣ ≤ ε
for all A.

As Shoup pointed out in [27, §15], we do not have to explicitly model a
Corrupt-query, as one can efficiently reduce the standard BR-Model to a model
without Corrupt-queries (see also [6, p. 70 ff.]).

3 Authenticated Key Exchange Compiler in the Standard
Model

Let us now describe our generic AKE compiler. The compiler takes as input the
following building blocks (which have been defined in Section 2).

– A key-exchange protocol KE,
– a digital signature scheme Σ = (SIG.Gen,SIG.Sign,SIG.Vfy),
– a message authentication code MAC,
– and a pseudorandom function PRF.



The compiled protocol between two parties A and B proceeds as follows (see
also Figure 2).

1. A and B run the key exchange protocol. For instance, both parties may run
the well-known Diffie-Hellman protocol [18]. Throughout this protocol run,
both parties compute key k and record a transcript TAKE and TBKE, where TCKE
consists of the list of all messages sent and received by party C ∈ {A,B}.

2. The key k computed by KE is used to derive two keys K = PRF(k, “KE”)
and Kmac = PRF(k, “MAC”), where “KE” and “MAC” are some arbitrary
fixed constants such that “KE” 6= “MAC”.3

3. Then A samples a random nonce rA
$← {0, 1}λ and sends it to B, B samples

rB
$← {0, 1}λ and sends it to A.

4. Party A computes a signature σA
$← SIG.Sign(skA, T

A
1 ) under A’s secret key

skA, where TA1 = (TAKE||rA||rAB) is the transcript of all messages sent and
received by A so far. Then B computes a signature over the transcript TB1 =
(TBKE||rBA ||rB) of all messages sent and received by B. Let TA2 = (σA||σAB)
denote the signatures sent and received by A, and TB2 = (σBA ||σB) be the
signatures sent and received by B.

5. A sends a MAC tA = MAC(Kmac, T
A
2 ||0) over transcript TA2 using the key

Kmac computed in 2. B replies with tB = MAC(Kmac, T
B
2 ||1).

6. Party A accepts, if SIG.Vfy(pkB , T
A
1 , σ

A
B) = 1 and tB = MAC(Kmac, T

A
2 ||1),

that is, if σAB is a valid signature for TA2 under B’s verification key pkB
and if wB is a valid MAC under key Kmac for TA2 ||1. B accepts if it holds
that SIG.Vfy(pkA, T

B
1 , σ

B
A ) = 1 and wA = MAC(Kmac, T

B
2 ||0). Finally, if both

parties accept then the key K is returned.

Observe that the signatures and MACs are verified using the internal transcripts
of party A and B. The intention behind the idea of embedding the transcripts
in the protocol is to detect any changes that an active adversary makes to the
messages sent by A and B. Informally, in the two-layer authentication consisting
of the signature scheme and MAC, the signature is used to authenticate users
and thwart man-in-the-middle attacks on the key-exchange protocol, while the
MAC is used as an implicit “key confirmation” step to avoid unknown key-share
attacks [14, 13].

This allows us to prove security requiring only pretty weak security properties
from the utilized building blocks, namely we require that KE is secure against
passive adversaries only, that the digital signatures are existential unforgeable
under (non-adaptive) chosen-message attacks, and that the MAC and PRF meet
their standard security notions.

Remark 1. The digital signatures sent in the first round after running KE are
merely a concrete instantiation of a tag-based authentication scheme as intro-
duced in [21]. It is possible to generalize the above protocol by replacing the

3 Note that we assume here implicitly, that the output key space of KE matches the
input key space of PRF. This fact is not only important for correctness, but also for
the security proof.



A B

←−
KE

−−−−−−−−−−−−−−→
obtain k, TA

KE obtain k, TB
KE

K := PRF(k, “KE”) K := PRF(k, “KE”)
Kmac := PRF(k, “MAC”) Kmac := PRF(k, “MAC”)

−
rA

−−−−−−−−−−−−−−→
←−

rB
−−−−−−−−−−−−−−

record TA
1 = (TA

KE||rA||r
A
B) record TB

1 = (TB
KE||r

B
A ||rB)

σA := SIG.Sign(skA, T
A
1 ) σB := SIG.Sign(skB , T

B
1 )

−
σA

−−−−−−−−−−−−−−→
←−

σB
−−−−−−−−−−−−−−

record TA
2 = (σA||σA

B) record TB
2 = (σB

A ||σB)

wA := MAC(Kmac, T
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Fig. 2. AKE Protocol

digital signatures with a tag-based authentication scheme, without making sub-
stantial changes to the protocol or the security proof given below.

3.1 Security Analysis

Theorem 1. If the KE protocol, the signature scheme, the message authentica-
tion code and the pseudo-random function are secure with respect to the defini-
tions in Section 2, then the above protocol is a secure AKE protocol in the sense
of Definition 8.

We prove the above theorem by two lemmas. Lemma 1 states that the AKE
protocol meets property 1) of Definition 8, Lemma 3 states that it meets property
2) of Definition 8.

Lemma 1. If the key exchange protocol (KE), the signature scheme (SIG), the
message authentication code (MAC) and the pseudo-random function (PRF) are
secure with respect to the definitions in Section 2, then the above protocol holds
property 1) of Definition 8.

Proof. (Sketch) The proof proceeds in a sequence of games, following [3, 28].
We assume there exists an adversary A that breaks the security of the above
protocol. We then describe several intermediate games that step-wisely modify
the original game. Next we show that in the final security game the adversary
has only negligible advantage in breaking the security of the protocol. Finally we
prove that (under the stated security assumptions) no adversary can distinguish
any of these games Gi+1 from its predecessor Gi. Let Wini be the event that
A wins in Game i. In the following let negl(κ) be some (unspecified) negligible



function in the security parameter κ and let Wini be the event, that A wins in
game Gi (meaning he can answer the Test-query correctly).

In the following proof we introduce certain events, which we use to describe
a difference between two games. We introduce a Difference Lemma as follows:

Lemma 2. Let two Games Gi and Gi+1 proceed identical until an event abort
occurs.

Pr[Wini ∧ ¬abort] = Pr[Wini+1 ∧ ¬abort].

Then we have

|Pr[Wini]− Pr[Wini+1]| = |Pr[Wini ∧ abort] + Pr[Wini ∧ ¬abort]
− Pr[Wini+1 ∧ abort]− Pr[Wini+1 ∧ ¬abort]|

= |Pr[Wini ∧ abort]− Pr[Wini+1 ∧ abort]|
≤ Pr[abort]

The simulator starts by internally choosing an oracle πsi,j , which will hold
the challenge information in the following games. In the following for reasons of
simplicity we call this oracle πch. The simulator aborts, when the adversary asks
a Test-query to a different oracle than πch. (Note: The probability for choosing
the correct oracle is 1/q2, q being the number of all parties of S.)

Game 0. This is the original security game.

Game 1. In this game, the challenger proceeds exactly like the challenger in
Game 0, except that we add an abort rule. The challenger raises event Koll and
aborts, if during the simulation any of the nonces (rA or rB) appears twice.

Since both games proceed identical until Koll is raised, we can state by
Lemma 2 that

|Pr[Win0]− Pr[Win1]| ≤ Pr[Koll].

All oracles sample rA or rB uniformly random from {0, 1}λ1 . Thus, by ap-
plying the birthday bound and the fact that the adversary has access to at most
d` oracles, we have

Pr[Koll] ≤ d2`2

2λ1
.

The right-hand term is a negligible function in the security parameter, since d,
`, and λ1 are polynomials.

Game 2. This game proceeds like the previous game, except that in this game
we let the challenger raise event NoMatch1 and abort, if A or B accept and
TA1 6= TB1 .

Claim 2. We claim by lemma 2 that

|Pr[Win1]− Pr[Win2]| ≤ Pr[NoMatch1].



by the EUF-CMA security of the digital signature scheme.
Proof. We show by contradiction that Pr[NoMatch1] = negl(κ) by designing
a simulator S that uses an adversary A in a black-box manner to break the
EUF-CMA security of the digital signature scheme for a given challenge public
key pk∗ when event NoMatch1 occurs with non-negligible probability. We say,
that games G1 and G2 are also identical-until-bad, meaning the games proceed
identical until event NoMatch1 occurs in game G2. Thus, we have

|Pr[Win2]− Pr[Win1]| ≤ Pr[NoMatch1].

The simulator proceeds as follows: It first chooses a party Pa belonging to πch.
The simulator generates key pairs (pki, ski) ∀ Pi with i 6= a with SIG.Gen(1κ)
and inputs the challenge public key pk∗ to Pa. A now receives all public keys and
may ask queries to any processes, receiving the appropriate response according to
the protocol specification. If needed, the simulator may compute signatures for
all parties Pi 6= Pa using ski and may ask the signing oracle OSIG for Pi = Pa.
If queried, OSIG outputs a signature σ for any input message m, such that σ is
verifiable under the challenge public key pk∗.

It follows from the protocol specification that a party Pi accepts only if it
holds that SIG.Vfy(pkj , T

j
1 , σ

j
1) = 1. If NoMatch1 is triggered at one time during

the protocol run of a process πsa,j (or πsj,a) A must have sent a signature σ∗ of
a message m∗ (here: m∗ = T a1 ), which he has not received from OSIG before, so
that SIG.Vfy(pk∗,m∗, σ∗) = 1. If the simulator initially guessed the correct party
Pa, it follows that (m∗, σ∗) is a valid forgery for the challenge public key pk∗,
contradicting definition 1. It follows from game G1, that an identical Transcript
has not been sent before. This concludes the proof. ut

Game 3. This game proceeds exactly like the previous game, except that the
simulator now chooses a uniformly random key k̂ to derive Kmac and K as
Kmac = PRF(k̂, “MAC”) and K = PRF(k̂, “KE”).

Claim 3. We claim that

|Pr[Win3]− Pr[Win2]| ≤ negl(κ)

by the passive security of the KE.

Recall that our modifications in Game 2 guarantee that TA1 = TB1 if A or B
accept, so we only have to consider a passive adversary in this game. Proof. We
show that we can use an attacker A able to distinguish between this game and
the previous game to break the passive security of our KE as follows:

Our simulator proceeds as in the previous game. A may ask queries to any
processes, receiving the appropriate response according to the protocol specifi-
cation (except for πch). If needed, the simulator computes the transcripts and
the corresponding key. When A queries the challenge oracle πch it receives the
challenge transcript T chKE and the challenge key kch as output by the KE. The
adversary may continue to ask queries and at some time point in time A asks



Test(πch) and outputs a guess b′. Observe that for b = 0 (K = PRF(k, “KE”))

we behave identical to Game 2 and for b = 1 (K = PRF(k̂, “KE”)) we are in
Game 3. Thus, if there is an attacker able to distinguish between games 2 and
3 with non-negligible probability ((|Pr[Win3] − Pr[Win2]| > negl(κ)), we can

distinguish between k and k̂. ut
(Note, that an adversary able to distinguish between k and k̂ would also be

able to distinguish betweenKmac = PRF(k̂, “MAC”) andKmac = PRF(k, “MAC”),
hence breaking the security of the PRF.)

Game 4. This game proceeds exactly like the previous game, except that the
simulator now chooses a uniformly random key k̃ (instead of Kmac output by the
PRF) to compute wA and wB as wA = MAC(k̃, T2||0) and wB = MAC(k̃, T2||1).

Claim 4. We claim that

|Pr[Win4]− Pr[Win3]| ≤ negl(κ)

by the security of the pseudorandom function PRF. In the proof we exploit that
we have exchanged the “real” key k computed in KE with a “random” key k̃ in
Game 3.

Observe here that, since the output key space of KE must match the input
key space of PRF, and PRF is assumed to be secure, it follows implicitly here
that the output key space of KE needs to be super-polynomially large. Proof.

Similar to the previous game, the adversary A may ask queries to any pro-
cesses, receiving the appropriate response according to the protocol specification.
When A queries the challenge oracle πch it receives the challenge key kch. For
all other processes, the simulator computes the output of PRF. At some point A
asks Test(πch) and then may continue to ask queries.

Observe that for b = 0 we behave identical to Game 3 (w = MAC(, T2||x))
and for b = 1 we are in Game 4 (w = MAC(k̃, T2||x)). Thus, if there is an at-
tacker able to distinguish between games 3 and 4 with non-negligible probability
((|Pr[Win4]− Pr[Win3]| > negl(κ)), we can distinguish between Kmac and k̃.

ut

Game 5. This game proceeds exactly like the previous game, except that the
simulator aborts if A or B accepts and TA2 6= TB2 . We call that event NoMatch2.

Claim 5. We claim by lemma 2 that

|Pr[Win4]− Pr[Win5]| ≤ Pr[NoMatch2].

Recall that in Game 5 we must have TA1 = TB1 due to our abort condition from
Game 1, and that we have replaced the key k computed in KE with a uniformly
random key k̃ in Game 3 to compute the MACs in the considered protocol
instance. Thus, if we have TA2 6= TB2 , then the adversary must have forged a
MAC to make A or B accept. We can therefore use the adversary to break the
security of MAC as follows:



Proof. We show by contradiction that Pr[NoMatch2] = negl(κ) by designing
a simulator S that uses an adversary A in a black-box manner to break the
security of the message authentication code (MAC) when eventNoMatch2 occurs
with non-negligible probability.

The simulator proceeds as follows: Similar to Game 2, it first guesses some
party Pa, which is, participating in a process πsa,j with some other party Pj , trig-

gering the event NoMatch2. The simulator also samples keys ki
$← {0, 1}κ ∀ Pi

with i 6= a (and implicitly lets Pa use the challenge MAC-key). A now may ask
queries to any processes, receiving the appropriate response according to the
protocol specification. If needed, the simulator may compute MACs for all par-
ties Pi 6= Pa using ki and may ask the MAC oracle OMAC for Pi = Pa. If queried,
OMAC outputs a value w = MAC(k∗,m) for any input message m.

It follows from the protocol specification that a party Pi accepts only if it
holds that MAC(k∗, TA2 ) = w∗ = MAC(k∗, TB2 ). If NoMatch2 is triggered at one
time during the protocol run of a process πsa,j (or πsj,a) A must have sent a value

w∗ of a message m∗ (here: m∗ = TA2 ), which he has not received from OMAC

before, so that MAC(k∗,m∗) = MAC(k∗, TB2 ). If the simulator initially guessed
the correct party Pa, it follows that (m∗, w∗) is valid under the challenge key k∗,
contradicting definition 2. It follows from Game 1, that an identical Transcript
has not been sent before. This concludes the proof. ut

Game 6. This game proceeds exactly like the previous game except that the
simulator aborts if A or B accepts and TA3 6= TB3 , where TA3 = (wA, w

A
B) consists

of the MACs sent and received by A and TB3 = (wBA , wB) consists of the MACs
sent and received by B.

Claim 6. We have
Pr[Win6] = Pr[Win5].

This follows from the fact that we have defined MAC as a deterministic function,
and we have TA1 = TB1 due to Game 2 and TA2 = TB2 due to Game 5.

Collecting probabilities from Game 0 to 6, we obtain that both A and B
accept only if they have matching conversations, except for some negligible
error probability.

Lemma 3. If KE, SIG, MAC and PRF are secure with respect to the definitions
in Section 2, then the above protocol holds property 2) of Definition 8.

Proof. (Sketch). Again we proceed in a sequence of games. The first 6 games of
the proof are identical to the sequence in the proof of Lemma 1. We merely add
one further game.

Game 7. This game proceeds exactly like the previous game except that the
simulator now chooses K uniformly at random from the keyspace.

Claim 7. We claim that

|Pr[Win7]− Pr[Win6]| ≤ negl(κ)



This again follows from the security of the PRF, where we use that the seed k̂ is
chosen uniformly random and independent (cf. Game 2).

In Game 7, the adversary receives a uniformly random key K. However, by
collecting probabilities from Game 0 to 7 we obtain that Game 7 is (computation-
ally) indistinguishable from Game 0, which proves indistinguishability of “real”
from “random” keys. Thus, the protocol is secure in the sense of Definition 8.

4 An Alternative AKE Compiler for Practical Protocols

Our second compiler is designed for practical applications, where we cannot
change the session key K resulting from the KE protocol [15], or where we
want to avoid an additional round of protocol messages after the authentication
protocol. In this compiler, we directly integrate the transcript of the KE protocol,
and the secret value Kmac, into the authentication protocol. To do so, we first
have to define a ”generic” scheme for an authentication protocol.

A B

−−
rA
−−−−→
←−
sB , rB
−−−−−−
−−
sA
−−−−→

A B

−
rA

−−−−−−−−−−−→
r′A :=

H(Kmac, rA, transcriptKE)
s′B := f(skB , r

′
A)

←−
s′B , rB

−−−−−−−−−−−
r′B :=

H(Kmac, rB , transcriptKE)
s′A := f(skA, r

′
B)

−
s′A

−−−−−−−−−−−→

Fig. 3. Scheme of a standard mutual authentication protocol Γ (left), and the version
Γ ′ modified by our compiler (right).

We only have minimal requirements on the authentication protocols. The
party (”challenger”) who wants to authenticate the other party (”prover”) has
to include a random value of high entropy into one of its protocol messages.
(Otherwise an adversary may just query different instances of the prover for
responses for the most probable challenges to increase her advantage.) The prover
must answer with a value that was computed using his long-lived key sk, and
the challenge itself.

The following protocols fulfill our requirements:

– AKEP1 and AKEP2 as defined in [2]
– Sigma- and Schnorr protocols (see [26])
– Zero-Knowledge Authentication protocols as introduced in [7]
– Zero-Knowledge Password-Proof protocols as introduced in [4].
– Signature based authentication protocols.



In this respect, our compiler may even enhance the security of the authentication
protocol. This applies to the authentication of both parties, or of one party only.

Let Γ be an authentication protocol as depicted in Fig. 3. Then we denote
by rA a value (the challenge) that is sent from A to B, and by sB = f(skB , rA)
the value (response) returned to A that allows A to check the authenticity of B.
The values rB and sA are defined analogously.

The main idea in the construction of a modified authentication protocol
Γ ′ is to transmit rA and rB according to the protocol specification of Γ , but
to compute the response based on both the received challenge, the transcript
transcriptΠ of the key agreement protocol Π, and secret value Kmac. This is
done using a random oracle H. Our compiler Comp, which takes as input a key
agreement protocol Π secure against passive adversaries, and a secure authenti-
cation protocol Γ , outputs an authenticated key agreement protocol Comp(Π,Γ )
which works as follows:

A&KE-2 Compiler: Let (πsA,B , γ
s
A,B) and (πtB,A, γ

t
B,A) be two pairs of ora-

cles for Π and Γ .

1. Π is executed by πsA,B and πtB,A without any change. The resulting secret

value is k = (K,Kmac) for πsA,B , and k′ = (K ′,K ′mac) for πtB,A . (Ideally
k = k′, but we have to take into account actions by the adversary.) The
session key K (K ′, resp.) is used for encryption and integrity protection,
and the secret value Kmac (K ′mac, resp.) is sent locally to the processes γsA,B
and γtB,A , together with the local transcript of the messages of Π. (The
values K and Kmac are computed as described in Section 3.)

2. Now Γ is executed by γsA,B and γtB,A with the following change: In
the computation of sA and sB , the values rA and rB are replaced with
r′A := H(Kmac, rB , transcriptΠ) and r′B := H(K ′mac, rA, transcript

′
Π), and

thus we get s′A = f(skA, r
′
A) and s′B = f(skB , r

′
B), where H(·, ·, ·) is a

random oracle. If γsA,B accepts, the local output is K, and K ′ for γtB,A .

Lemma 4. If Π is a key agreement protocol secure against passive adversaries,
then it is impossible that three different oracles accept with the same (secret)
state (k, transcriptΠ), where k = (K,Kmac) is the secret value computed by Π,
and transcriptΠ is the transcript of all protocol messages.

Proof. If this was the case, then A, B and the (active) adversary E all would
be able to compute k, but the adversary would not have modified any message
exchanged between A and B (since the transcripts are identical). Thus E, acting
as a passive adversary, would be able to compute k, a contradiction.

Lemma 5. In Comp(Π,Γ ), any two oracles γsA,B and γtB,A with match-
ing conversations have access to a unique random oracle that is defined as
HAtBs(·) := H(Kmac, ·, transcriptΠ). Neither E, nor any other oracle has access
to this random oracle.

Proof. Since the pair (Kmac, transcriptΠ) is unique for any pair of oracles,
HAtBs(·) is unique, too.



Theorem 2. If Γ is a secure authentication protocol, then Γ ′ as defined in Fig.
3 also is a secure authentication protocol.

Proof. Let γ′
s
A,B and γ′

t
B,A be two process (oracle) instances of A and B in

Γ ′. It should be clear that if γ′
s
A,B and γ′

t
B,A have matching conversations,

then both oracles will accept.
We have to show that the probability that γ′

s
A,B or γ′

t
B,A accepts without

a matching conversation is negligible. Now assume on the contrary that there
is an adversary E′ that is able to make γ′

s
A,B or γ′

t
B,A accept without a

matching conversation, with non-negligible probability ε. Then we can define an
adversary E that achieves the same goal with the protocol Γ : Since E′ has no
access to the random oracle HAB , she can only try to guess the challenge r′A (r′B ,
resp.). Now E is simply ignoring the challenge rX she sees, and simply guesses a
random challenge r′′X , and tries to compute s′Y from this challenge. This strategy
succeeds with non-negligible probability ε, and we have thus contradicted our
assumption that Γ is a secure authentication protocol.

Theorem 3. If Π is a key agreement protocol secure against passive adver-
saries, and if Γ is a secure authentication protocol, then Comp(Π,Γ ) is a secure
authenticated key agreement protocol.

Proof (Sketch). γsA,B and γtB,A will accept in Γ ′ if and only if they have access
to the same random oracleHAtBs(·). (Otherwise they have to guess the challenge
r′X , which succeeds only with negligible probability.) If they have access to the
same random oracle, then πsA,B and πtB,A completed Π with the same state

(k, transcriptΠ). If γsA,B and γtB,A accept, Π and Γ were both completed
by the same endpoints A and B. This excludes active attacks on Π (since the
transcript is unchanged), and UKS attacks on Γ . Thus E may only mount a
passive attack on Π, which succeeds only with negligible probability.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract). In
STOC, pages 419–428, 1998.

2. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO, pages 232–249. Springer, 1993.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In EUROCRYPT, pages 409–426.
Springer, 2006.

4. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In IEEE SYMPOSIUM ON
RESEARCH IN SECURITY AND PRIVACY, pages 72–84, 1992.

5. Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the
station-to-station (STS) protocol. In Public Key Cryptography, pages 154–170,
1999.

6. Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establish-
ment. Springer, 1 edition, September 2003.



7. J. Brandt, I. B. Damg̊ard, P. Landrock, and T. Pedersen. Zero-knowledge authen-
tication scheme with secret key exchange. In CRYPTO, pages 583–588. Springer,
1990.

8. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group
Diffie-Hellman key exchange under standard assumptions. In EUROCRYPT, pages
321–336. Springer, 2002.

9. Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. Provably authenticated group Diffie-Hellman key exchange. In ACM
Conference on Computer and Communications Security, pages 255–264, 2001.

10. Emmanuel Bresson and Mark Manulis. Securing group key exchange against strong
corruptions. In Masayuki Abe and Virgil D. Gligor, editors, ASIACCS, pages 249–
260. ACM, 2008.

11. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In EUROCRYPT, pages 453–474. Springer, 2001.

12. Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In CRYPTO, pages 143–161. Springer, 2002.

13. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Errors in compu-
tational complexity proofs for protocols. In ASIACRYPT, pages 624–643. Springer,
2005.

14. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
indistinguishability-based proof models for key establishment protocols. In ASI-
ACRYPT, pages 585–604. Springer, 2005.

15. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. On session key
construction in provably-secure key establishment protocols. In Mycrypt, pages
116–131. Springer, 2005.

16. Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal:
Attacking the NAXOS authenticated key exchange protocol. In ACNS, pages 20–
33, 2009.

17. Rachna Dhamija, J. D. Tygar, and Marti A. Hearst. Why phishing works. In
Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell, Robin Jeffries,
and Gary M. Olson, editors, CHI, pages 581–590. ACM, 2006.

18. Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

19. Sebastian Gajek, Tibor Jager, Mark Manulis, and Jörg Schwenk. A browser-based
kerberos authentication scheme. In ESORICS, pages 115–129. Springer, 2008.

20. Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg
Schwenk. Universally composable security analysis of TLS. In ProvSec, pages
313–327. Springer, 2008.

21. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic compilers
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