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Abstract. Helios 2.0 is an open-source web-based end-to-end verifiable
electronic voting system, suitable for use in low-coercion environments.
In this paper, we analyse ballot secrecy and discover a vulnerability which
allows an adversary to compromise voters’ privacy. This vulnerability has
been successfully exploited to break privacy in a small election using the
current Helios implementation. Moreover, the feasibility of an attack is
considered in the context of French legislative elections and, based upon
our findings, we believe it constitutes a real threat to ballot secrecy in
such settings.

1 Introduction

Paper-based elections derive privacy properties from physical characteristics of
the real-world, for example, the indistinguishability of an individual’s ballot
from an arbitrary ballot, and the inability of a coercer to collaborate with a
voter inside a polling booth. By comparison, computer systems are auditable
by nature, and hence, the provision of electronic voting systems which ensure
voters’ privacy is an active research topic [1–3].

Informally, privacy for electronic voting systems is characterised by the fol-
lowing properties [4–6]:

– Ballot secrecy. A voter’s vote is not revealed to anyone.
– Receipt freeness. A voter cannot gain information which can be used to prove,

to a coercer, how she voted.
– Coercion resistance. A voter cannot collaborate, with a coercer, to gain in-

formation which can be used to prove how she voted.

Other desirable properties of electronic voting systems include:

– Fairness: All votes are independently cast.
– Individual verifiability: A voter can check that her own ballot is published

on the election’s bulletin board.
– Universal verifiability: Anyone can check that all the votes in the election

outcome correspond to ballots published on the election’s bulletin board.

The fairness property prohibits the voting system from influencing a voter’s
vote; more formally, this requires that observation of the voting system (that is,
observing interaction between participants) does not leak information that may
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affect a voter’s decision. One aspect of fairness is ballot independence, which,
based upon [7, §1.1], can be informally stated as follows: observing another
voter’s interaction with the election system does not allow a voter to cast a
related vote, and a voter cannot affect the election outcome by pulling out. (We
remark that the Fujioka, Okamoto & Ohta protocol [1] does not satisfy the latter
condition, this may explain why their definition of fairness was restated in a
variant [8] of their scheme.) The individual and universal verifiability properties
(also called end-to-end verifiability [3, 9–12]) allow voters and election observers
to verify – independently of the hardware and software running the election –
that votes have been recorded, tallied and declared correctly. In this paper, we
analyse ballot secrecy in Helios 2.0 [13].

Helios is an open-source web-based electronic voting system. The scheme is
claimed to satisfy ballot secrecy, but the nature of remote voting makes the
possibility of satisfying stronger privacy properties difficult, and Helios does not
satisfy receipt freeness nor coercion resistance. In addition to ballot secrecy, the
system attempts to deliver end-to-end verifiability (cf. [14, 15] and [16, Chap-
ter 3] for an analysis of end-to-end verifiability in Helios). Helios is particularly
significant due to its real-world deployment: the Catholic University of Louvain
adopted the system to elect the university president [13], and Princeton Univer-
sity used Helios to elect the student vice president [17]. In addition, the Interna-
tional Association of Cryptologic Research trialled the scheme in a non-binding
poll [18].

Contribution. Our analysis of Helios reveals an attack which violates ballot
secrecy. The attack exploits the system’s lack of ballot independence, and works
by replaying a voter’s ballot (without knowing the vote contained within that
ballot). This immediately violates ballot secrecy in an election with three voters.
For example, consider the electorate Alice, Bob, and Mallory; if Mallory replays
Alice’s ballot, then Mallory can reveal Alice’s vote by observing the election
outcome and checking which candidate obtained at least two votes. A variant of
this vulnerability abuses the malleability of ballots to ensure replayed ballots are
distinct, thereby ensuring a covert attack. Furthermore, the vulnerability can be
exploited in more realistic settings and, as an illustrative example, we discuss the
feasibility of the attack in French legislative elections. This case study suggests
there is a plausible threat to ballot secrecy. Finally, we discuss modifications
that should ensure ballot independence and prevent ballot replaying.

Related work. The concept of independence was introduced by Chor et al. [19]
and the possibility of compromising security properties due to lack of indepen-
dence has been considered, for example, by [20–23]. In the context of electronic
voting, Gennaro [7] demonstrates that the application of the Fiat-Shamir heuris-
tic in the Sako-Kilian electronic voting protocol [24] violates ballot independence,
and Wikström [25, 26] studies non-malleability for mixnets to achieve ballot in-
dependence. By comparison, we focus on the violation of ballot secrecy rather
than fairness, and exploit the absence of ballot independence to compromise
privacy.



Estehghari & Desmedt [27] claim to present an attack which undermines
privacy and end-to-end verifiability in Helios. However, their attack is depen-
dent on compromising a voter’s computer, a vulnerability which is explicitly
acknowledged by the Helios specification [13]: “a specifically targeted virus could
surreptitiously change a user’s vote and mask all of the verifications performed
via the same computer to cover its tracks.” Accordingly, [27] represents an ex-
ploration of known vulnerabilities rather than an attack.

Structure of this paper. Section 2 recalls the cryptographic primitives used by
Helios, Section 3 presents the Helios electronic voting scheme, and Section 4
analyses ballot secrecy. Finally, Section 5 emphasises the significance of this
attack and presents a brief conclusion.

2 Background: Cryptography

Helios exploits the additive homomorphic [28–30] and distributed decryption [31,
32] properties of ElGamal [33]. This section summarises the necessary crypto-
graphic primitives.

2.1 Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number n ∈ N of trustees, where p
and q are large primes such that q | p−1 and g is a generator of the multiplicative
group Z∗p of order q, the following operations are defined by ElGamal.

Distributed key generation. Each trustee i ∈ n selects a private key share xi ∈R
Z∗q and computes a public key share hi = gxi mod p. The public key is h =
h1 · . . . · hn mod p.

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗q and derive the ciphertext (a, b) = (gr mod p, gm · hr mod p).

Re-encryption. Given a ciphertext (a, b) and public key h, select a random nonce
r′ ∈R Z∗q and derive the re-encrypted ciphertext (a′, b′) = (a · gr′ mod p, b ·
hr

′
mod p).

Homomorphic addition. Given two ciphertexts (a, b) and (a′, b′), the homomor-
phic addition is (a · a′ mod p, b · b′ mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n computes
their share of the decryption key ki = axi . The plaintext m = loggM is recov-
ered from M = b/(k1 · . . . · kn) mod p.

The computation of a discrete logarithm loggM is hard in general. However,
if M is chosen from a restricted domain, then the complexity is reduced; for



example, if M is an integer such that 0 ≤ M ≤ n, then the complexity is O(n)
by linear search or O(

√
n) using the baby-step giant-step algorithm [34].

For secrecy, each trustee i ∈ n must demonstrate knowledge of a discrete log-
arithm logg hi, that is, they proof that hi has been correctly constructed (this
prevents, for example, a trustee constructing their public key share hi = h)
and, for integrity of decryption, each trustee i ∈ n must demonstrate equal-
ity between discrete logarithms logg hi and loga ki. In addition, the voter must
demonstrate that a valid vote has been encrypted. These proofs can be achieved
using signatures of knowledge.

2.2 Signatures of knowledge

Let H denote a hash function. In Helios, H is defined to be SHA-256.

Knowledge of discrete logs. Given the aforementioned cryptographic param-
eters (p, q, g), a signature of knowledge demonstrating knowledge of a discrete
logarithm logg g

x can be derived, and verified, as defined by [35–37].

Sign. Given x, select a random nonce w ∈R Z∗q . Compute witness g′ = gw mod p,
challenge c = H(g′) mod q and response s = w + c · x mod q.

Verify. Given h and signature g′, s, check gs ≡ g′ · hc (mod p), where c =
H(g′) mod q.

A valid proof asserts knowledge of x such that x = logg h; that is, h ≡ gx mod p.

Equality between discrete logs. Given the aforementioned cryptographic
parameters (p, q, g), a signature of knowledge demonstrating equality between
discrete logarithms logf f

x and logg g
x can be derived, and verified, as defined

by [31, 32].

Sign. Given f, g, x, select a random nonce w ∈R Z∗q . Compute witnesses f ′ =
fw mod p, g′ = gw mod p, challenge c = H(f ′, g′) mod q and response s =
w + c · x mod q.

Verify. Given f, g, h, k and signature f ′, g′, s, check fs ≡ f ′ · hc (mod p) and
gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k; that is, there exists x, such that h ≡ fx mod
p and k ≡ gx mod p. This signature of knowledge scheme can be extended to a
disjunctive proof of equality between discrete logs (see below).

For our purposes, given a ciphertext (a, b), each trustee would derive a sig-
nature on g, a, xi, where xi is the trustee’s private key share. The ith trustee’s
signature g′i, a

′
i, ci, si would be verified with respect to g, a, hi, ki, where hi is

the trustee’s share of the public key and ki is the trustee’s share of the decryp-
tion key; that is, the proof asserts logg hi = loga ki, as required for integrity of
decryption.



Disjunctive proof of equality between discrete logs. Given the afore-
mentioned cryptographic parameters (p, q, g), a signature of knowledge demon-
strating that a ciphertext (a, b) contains either 0 or 1 (without revealing which),
can be constructed by proving that either logg a = logh b or logg a = logh b/g

m;
that is, a signature of knowledge demonstrating a disjunct proof of equality
between discrete logarithms [28, 30]. Observe for a valid ciphertext (a, b) that
a ≡ gr mod p and b ≡ hr · gm mod p for some nonce r ∈ Z∗q ; hence the for-
mer disjunct logg g

r = logh h
r · gm is satisfied when m = 0, and the latter

logg g
r = logh(hr · gm)/gm when m = 1.

This technique is generalised by [13] to allow a signature of knowledge demon-
strating that a ciphertext (a, b) contains m, where m ∈ {min, . . . ,max} for some
system parameters min,max ∈ N. Formally, a signature of knowledge demon-
strating a disjunct proof of equality between discrete logarithms can be derived,
and verified, as follows [13, 28, 30].

Sign. Given ciphertext (a, b) such that a ≡ gr mod p and b ≡ hr · gm mod p
for some nonce r ∈ Z∗q , where plaintext m ∈ {min, . . . ,max}. For all i ∈
{min, . . . ,m−1,m+1, . . . ,max}, compute challenge ci ∈R Z∗q , response si ∈R Z∗q
and witnesses ai = gsi/aci mod p, bi = hsi/(b/gi)ci mod p. Select a random
nonce w ∈R Z∗q . Compute witnesses am = gw mod p, bm = hw mod p, chal-
lenge cm = H(amin, bmin, . . . , amax, bmax) −

∑
i∈{min,...,m−1,m+1,...,max} ci (mod q)

and response sm = w + r · cm mod q.

Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each
min ≤ i ≤ max check gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p).
Finally, check H(amin, bmin, . . . , amax, bmax) ≡

∑
min≤i≤max ci (mod q).

A valid proof asserts that (a, b) is a ciphertext containing the message m such
that m ∈ {min, . . . ,max}.

Software implementation. At the time of writing, the Helios cryptographic
algorithms can be found in http://github.com/benadida/helios-server/

blob/master/helios/crypto/algs.py. In particular, the function to compute
signatures of knowledge demonstrating equality between discrete logs is defined
by EGZKProof.generate, and the function for deriving signatures of knowledge
demonstrating a disjunct proof of equality between discrete logarithms is defined
by EGCiphertext.generate disjunctive encryption proof.

3 Helios 2.0

An election is created by naming an election officer, selecting a set of trustees,
and generating a distributed public key pair. The election officer publishes, on
the bulletin board, the public part of the trustees’ key (and proof of correct
construction), the candidate list t̃ = (t1, . . . , tl), and the list of eligible voters

ĩd = (id1, . . . , idn); the officer also publishes the election fingerprint, that is, the



hash of these parameters. Informally, the steps that participants take during a
run of Helios are as follows.

1. The voter launches a browser script that downloads the election parameters
and recomputes the election fingerprint. The voter should verify that the
fingerprint corresponds to value published on the bulletin board. (This en-
sures that the script is using the trustees’ public key; in particular, it helps
prevent encrypting a vote with an adversary’s public key.)

2. The voter inputs her vote v ∈ t̃ to the browser script, which creates a ballot
consisting of her vote encrypted by the trustees’ public key, and a proof that
the ballot represents a permitted vote (this is needed because the ballots are
never decrypted individually, in particular, it prevents multiple votes being
encoded as a single ballot). The ballot is displayed to the voter.

3. The voter can audit the ballot to check if it really represents a vote for her
chosen candidate; if she decides to do this, the script provides her with the
random data used in the ballot creation. She can then independently recon-
struct her ballot and verify that it is indeed well-formed, but the ballot is
now invalid. (Invalidating audited ballots provides some practical resistance
against vote selling.) See [38] for further details on ballot auditing.

4. When the voter has decided to cast her ballot, she submits it to the election
officer. The election officer authenticates the voter and checks that she is
eligible to vote. The election officer also verifies the proof, and publishes
the ballot, appended with the voter’s identity id, on the bulletin board. (In
practice, the election officer also publishes the hash of the ballot, we omit
this detail for brevity.)

5. Individual voters can check that their ballots appear on the bulletin board
and, by verifying the proof, observers are assured that ballots represent per-
mitted votes.

6. After some predefined deadline, the election officer homomorphically com-
bines the ballots and publishes the encrypted tally on the bulletin board.
Anyone can check that tallying is performed correctly.

7. Each of the trustees publishes their share of the decryption key, for the
encrypted tally, together with a signature of knowledge proving that their
key share is well-formed. Anyone can verify these proofs.

8. The election officer decrypts the tally and publishes the result. Anyone can
check this decryption.

Formally, Step 1 is defined in Figure 1 (signatures of knowledge demonstrat-
ing a disjunct proof of equality between discrete logarithms implicitly assume
parameters min = 0 and max = 1). Checking voter eligibility (Step 4) is be-
yond the scope of Helios and [13] proposes the use of existing infrastructure.
The remaining steps follow immediately from the application of cryptographic
primitives (see Section 2 for details).

Generalisation to approval voting. For simplicity, the ballot construction algo-
rithm (Figure 1) considers a vote v ∈ t̃. This can be generalised to a vote ṽ ⊆ t̃,



Fig. 1 Ballot construction by the browser script

Input: Cryptographic parameters (p, q, g), public key h, candidate list t̃ = (t1, . . . , tl)
and vote v.

Output: Encrypted vote (a1, b1), . . . , (al, bl), signatures of knowledge (ā1, b̄1, c̄1, s̄1,
ā′1, b̄

′
1, c̄
′
1, s̄
′
1), . . . , (āl, b̄l, c̄l, s̄l, ā

′
l, b̄
′
l, c̄
′
l, s̄
′
l) and signature of knowledge (ā, b̄, c̄, s̄,

ā′, b̄′, c̄′, s̄′).

1. If v 6∈ t̃ then the script terminates.
2. The vote v is encoded as a bitstring. For all 1 ≤ i ≤ l, let

mi =

{
1 if v = ti
0 otherwise

3. The bitstring representing the vote is encrypted. For all 1 ≤ i ≤ l, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗q .
4. For all 1 ≤ i ≤ l, let (āi, b̄i, c̄i, s̄i, ā

′
i, b̄
′
i, c̄
′
i, s̄
′
i) be a signature of knowledge demon-

strating that the ciphertext (ai, bi) contains either 0 or 1.
5. Let (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) be a signature of knowledge demonstrating that the ci-

phertext (a1 · . . . · al, b1 · . . . · bl) contains either 0 or 1.

with minor modifications to the ballot construction algorithm; in particular,
Step 5 of the algorithm would use a signature of knowledge (ā1, b̄1, c̄1, s̄1, . . . ,
ācmax, b̄cmax, c̄cmax, s̄cmax), rather than (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′), where cmax is a sys-
tem parameter determining the maximum number of candidates a voter is al-
lowed to select.

4 Analysis: Ballot secrecy

Ballot secrecy means a voter’s vote is not revealed to anyone. We show that the
Helios protocol does not satisfy this definition of ballot secrecy, by presenting
an attack which allows an adversary to reveal a voter’s vote. Moreover, formal
definitions of ballot secrecy [4–6] are also violated.

Intuitively, an adversary may identify a voter’s ballot on the bulletin board
and recast this ballot by corrupting dishonest voters. The multiple occurrences
of the voter’s ballot will leak information in the tally and the adversary exploits
this knowledge to violate the voter’s privacy. A formal description of the attack
will now be presented in the case of three eligible voters and Section 4.2 considers
a more realistic setting.

4.1 Attacking ballot secrecy

Let us consider an election with three eligible voters: id1, id2 and id3, where id1,
id2 are honest voters and id3 is a dishonest voter controlled by the adversary.



Further assume that the honest voters have cast their ballots and the bulletin
board entries are as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

where for i ∈ {1, 2} we have

ciphi = (ai,1, bi,1), . . . , (ai,l, bi,l)
spki = (āi,1, b̄i,1, c̄i,1, s̄i,1, ā

′
i,1, b̄

′
i,1, c̄

′
i,1, s̄

′
i,1),

. . . , (āi,l, b̄i,l, c̄i,l, s̄i,l, ā
′
i,l, b̄

′
i,l, c̄

′
i,l, s̄

′
i,l)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)

That is, ciphi is the ith voter’s encrypted vote, spki demonstrates that cipher-
texts (ai,1, bi,1), . . . , (ai,1, bi,1) contain either 0 or 1, and spk′i demonstrates that
(ai,1 · . . . · ai,1, bi,1 · . . . · bi,l) contains either 0 or 1.

Exploiting the absence of ballot independence. The adversary observes the bul-
letin board and selects ciphk, spkk, spk

′
k where k ∈ {1, 2} and idk is the voter

whose privacy will be compromised. The adversary submits the ballot ciphk,
spkk, spk

′
k and it immediately follows that the bulletin board is composed as

follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

id3, ciphk, spkk, spk
′
k

It is trivial to see that each bulletin board represents a permitted vote; that is,
spk1, spk

′
1, spk2, spk

′
2, spkk, spk

′
k are all valid signatures of knowledge. We have

shown that Helios does not satisfy ballot independence, and this will now be
exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the encrypted
tally (a1,1 ·a2,1 ·ak,1, b1,1 · b2,1 · bk,1), . . . , (a1,l ·a2,l ·ak,l, b1,l · b2,l · bk,l) and, given
the necessary decryption keys, these ciphertexts can be decrypted to reveal the
number of votes for each candidate. Since there will be at least two votes for the
candidate voter idk voted for, the voter’s vote can be revealed and hence privacy
is not preserved. Moreover, the vote of the remaining honest voter will also be
revealed.

Malleable ballots. In the attack description, the ballots cast by two voters are
identical. For a covert attack, the adversary may prefer to cast a distinct ballot.
This can be achieved by exploiting the malleability of signatures of knowledge; for
example, given a valid signature (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax),
the signature (amin, bmin, cmin, smin + q, . . . , amax, bmax, cmax, smax + q) is also valid,
where min, max are system parameters. This technique is particularly useful
when the bulletin board includes the hash of the ballot, rather than the complete
ballot, because the hashes will be distinct.



A practical attack against Helios 3.0. Helios 3.0 is an extension of Helios 2.0
which adds numerous practical features, including: integration of authentication
with various web-services (for example, Facebook, GMail and Twitter), bulk
voter registration using pre-existing electoral rolls, and simplification of admin-
istration with multiple trustees. Helios 3.0 has been implemented and is publicly
available for use. A video demonstrating the attack against this implementation
has been produced [39].

Malleable data formats. In practice, electronic voting protocols are reliant
on data structures, rather than bitstrings. For example, Helios 3.0 uses the
JavaScript Object Notation format. Malleability in data formats may be simi-
larly exploited to derive a distinct ballot when launching a covert attack. Indeed,
in Helios 3.0, it is possible to add whitespace to a ballot. Once again, this is par-
ticularly useful when the bulletin board displays hashes of ballots, rather than
the complete ballot, since the hashes are indistinguishable whereas the ballots
may be linked.

Generalised attack against ballot secrecy. Our attack demonstrates that
the ballot of an arbitrary voter can be replayed by any other voter. In general,
this does not reveal the voter’s vote. However, some information is leaked, and
colluding voters can replay sufficiently many ballots to leak the voter’s vote.
Intuitively, it should follow that Helios cannot satisfy ballot secrecy in formal
settings [4–6]. These privacy definitions consider two voters A, B and two can-
didates t, t′. Ballot secrecy is captured by the assertion that an adversary (con-
trolling arbitrary many dishonest voters) cannot distinguish between a situation
in which voter A votes for candidate t and voter B votes for candidate t′, from
another one in which A votes t′ and B votes t. This can be expressed by the
equivalence

A(t) | B(t′) ≈ A(t′) | B(t)

Moreover, these definitions can be extended to consider privacy with arbitrary
many voters. As conjectured, Helios can be shown not to satisfy these definitions.
We deduce either: these definitions are too strong, or there is indeed a weakness
in the Helios protocol. In the next section, we discuss the feasibility of this attack
in a real-world election.

4.2 Case study: French legislative election

We now examine the possibility of compromising ballot secrecy in real-world
elections. As an illustrative example, we will focus on the cost of an attack
in French legislative elections, where each district elects a representative for
the French National Assembly. Districts have several polling stations and each
polling station individually announces its tally [40]; these tallies are published
in local newspapers. The publication of tallies is typical of French elections at
all levels; for example, from the election of mayor, to the presidential election.



In this (standard) voting configuration, an adversary can violate the ballot
secrecy of a The motivation for restricting the selection of corrupted voters to
the same polling station is twofold. Firstly, fewer corrupt voters are required to
significantly influence the tally of an individual polling station (in comparison to
influencing the election outcome). Secondly, it is unlikely to change the district’s
elected representative, because a candidate will receive only a few additional
votes in the district; it follows that coercing voters to sacrifice their vote, for
the purposes of the attack, should be easier. In the remainder of this section, we
discuss how many corrupt voters are required to violate ballot secrecy by making
a significant change in the tally of a polling station. This case study considers
an arbitrary district in Aulnay-sous-Bois and more rural district in Toul.

Ballot secrecy in Aulnay-sous-Bois. Using historic data and/or polls, it is
possible to construct the expected distribution of votes. For simplicity, let us
assume the distribution of votes per polling station is the average of the 2010
tally (Table 1), and that if the adversary can increase the number of votes for
a particular candidate by more than σ (by replaying a voter’s ballot), then this
is sufficient to determine that the voter voted for that candidate. In addition,
suppose that the adversary corrupts abstaining voters and therefore we do not
consider the redistribution of votes. We remark that corrupting abstaining voters
may be a fruitful strategy, since abstaining voters do not sacrifice their vote by
participating in an attack.

Party Tally

PS 4120
UMP 3463
FN 1933
Europe Eco. 1921
Front de gauche 880
NPA 697
MODEM 456
Debout la République 431
Alliance école 193
LO 156

Émergence 113
Liste chrétienne 113

Table 1. Results of the 2010 legislative election in Aulnay-sous-Bois (Source [41])

Table 2 presents the expected distribution of votes, and includes the number
of voters that an adversary must corrupt to determine if a voter voted for a
particular candidate, for various values of σ. We shall further assume that par-
ticipation in the region is consistent with 2010; that is, 291 of the 832 eligible
voters are expected to participate. It follows that 50 voters corresponds to ap-



proximately 6% of the Aulnay-sous-Bois electorate, and 10 voters corresponds
to approximately 1%. Our results therefore demonstrate that the privacy of a
voter can be compromised by corrupting a small number of voters. For example,
for medium-size parties (in terms of votes received), including FN and Europe
Ecologie, it is sufficient to corrupt 19 voters to see the number of votes increase
by 50%. Furthermore, given the low turn-out (541 voters are expected to ab-
stain), it is feasible to corrupt abstaining voters, and therefore an attack can be
launched without any voter sacrificing their vote.

Party Expected tally σ = 200% σ = 150% σ = 50% σ = 20%

PS 81 162 122 41 17
UMP 68 136 102 34 14
FN 38 76 57 19 8
Europe Eco. 38 76 57 19 8
Front de gauche 17 34 26 9 4
NPA 14 28 21 7 3
MODEM 9 18 14 5 2
Debout la République 8 16 12 4 2
Alliance école 4 8 6 2 1
LO 3 6 5 2 1

Émergence 2 4 3 1 1
Liste chrétienne 2 4 3 1 1
Table 2. Number of duplicate ballots for a significant change in the tally

Limitations. For such an attack based on a statistical model, we acknowledge
that this model is rather näıve, but believe it is sufficiently indicative to illustrate
the real threat of an attack against privacy. A definitive mathematical analysis
should be considered in the future.

Cases of complete privacy breach. The probabilistic nature of these attacks may
introduce sufficient uncertainty to prevent privacy violations, and we will con-
sider voting configurations where an adversary can definitively learn a voter’s
vote. Observe that if an attacker can corrupt half of the voters at a polling sta-
tion, then the vote of an arbitrary voter can be revealed. Moreover, the cost of
this attack can be reduced. In particular, if n dishonest voter’s replay voter V’s
ballot, then it is possible to deduce that V did not vote for any candidate that
received strictly less than n + 1 votes. This leaks information about voter V ’s
chosen candidate and in cases where exactly one candidate received more than
n votes, the voter’s vote can be deduced. This is sufficient to violate privacy in
real world elections.

Small polling stations. The difficulties of large scale corruption may prohibit
our attack in the majority of polling stations; however, our attack is feasible



in small polling stations found in rural districts. For example, let us consider
the 2007 legislative elections in the district of Toul [42]. This district has 75350
eligible voters registered at 193 polling stations. Accordingly, the average polling
station has 390 registered voters, but the variance is large. Indeed, 33 polling
stations have between 50 and 99 voters, 9 polling stations have less then 50
voters, and the smallest two polling stations have 8, respectively 16, voters.
Moreover, the attack is simplified by non-participating voters. In these small
polling stations it is thus sufficient to corrupt a very small number of voters to
reveal a voter’s vote while the final outcome of the election would not change as
it is based on 75350 eligible voters.

4.3 Towards ballot independence

The attack exploits the possibility of replaying a voter’s ballot without detection,
and can be attributed to the lack of ballot independence in Helios. This section
sketches some possible research directions to ensure ballot independence, and
future work should formally consider the suitability of these approaches.

Weeding replayed ballots. The ballots replayed in this attack can be identi-
fied by checking for duplicates, and these ballots can be rejected. Formally, this
can be achieved by invalidating ballots where: 1) there already exists an identical
ballot on the bulletin board; or 2) a ballot contains values outside the expected
range (for example, the response component of signatures of knowledge should
be in the interval [0, q − 1]).

While such mechanisms indeed prevent our attack, it might still possible to
modify the ballot in a different way that would not be captured by this counter-
measure. Indeed, it is important to notice that the scheme used for signatures
of knowledge is not provably non-malleable.

Binding ballots to voters. The previous approach requires a special mecha-
nism to handle duplicate ballots. We now introduce a technique that makes such
actions futile; in essence, we ensure that proofs associated with replayed ballots
are considered invalid.

Based upon inspiration from [7, §4.2], we bind the link between a voter and
her ballot. This is achieved by refining the construction of commitments used
by signatures of knowledge. More precisely, for voter id, the sign algorithm is
modified as follows: on input (a, b), such that a ≡ gr mod p and b ≡ hr·gm mod p,
let cm = H(amin, bmin, . . . , amax, bmax, id)−

∑
i∈{min,...,m−1,m+1,...,max} ci (mod q),

where values amin, bmin, . . . , amax, bmax and c1, . . . , cm−1, cm+1, . . . , cm are defined
as before. For correctness, the verification algorithm must also be modified. In
particular, for candidate signatures constructed by voter id, the verifier should
check H(amin, bmin, . . . , amax, bmax, id) ≡

∑
min≤i≤max ci (mod q).

Alternative non-interactive proofs. Helios uses a variant of the Fiat-Shamir
heuristic [43] which allows malleability of the response component of signatures of



knowledge. By comparison, constructing a non-interactive proof without using
the Fiat-Shamir heuristic may be suitable to provide signatures of knowledge
that ensure ballot independence [7, §4.2].

5 Conclusion and further discussion

This paper identifies a vulnerability in Helios 2.0 which can be used to violate
ballot secrecy. Critics may argue that this attack is not realistic due its high
cost; indeed, in some cases, the attack may change the outcome of an election
(that is, the votes introduced for the purposes of violating privacy may swing the
result to the voter’s candidate). Moreover, large scale privacy invasions would
be expensive in terms of the required number of dishonest voters. If the views of
these critics are to be entertained, then we must revise our definition of ballot
secrecy; in particular, the definitions of [4–6]. However, our study of the French
legislative elections shows that a coalition of voters can gain some information
about a voter’s vote in an arbitrary polling station. In addition, if the number
of voters registered at a particular polling station is small (for example, in a
rural setting), then a voter’s privacy can be violated by a few dishonest voters.
Furthermore, we consider all voters to be equal and therefore believe that the
preservation of voter privacy should be universal; that is, all voters have the
right to ballot secrecy. Since our case study demonstrates the contrary – namely,
privacy of individual voters can be compromised by a few dishonest voters – we
believe our attack is significant. We also believe the vulnerability highlights a
new class of attacks against electronic voting protocols (indeed, our preliminary
results support this hypothesis) and our future work will examine ballot secrecy
in other schemes.
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