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Abstract—With tremendous interests having been attracted,
public-key encryption with keyword search (PEKS) achieves the
searchability of encrypted keywords without sharing a secret
between senders and receivers. However, nearly all existing PEKS
schemes and the expansions obtain their provable security under
an implicit condition that the size of the targeted keyword
space is beyond the polynomial level, which shows inefficiency
in practice. Hence, these existing schemes are insecure under
keyword guessing attack in applications. As we observe, the key
to defend the attack is to avoid the availability of the exact
keyword trapdoor to adversaries. Accordingly, we compromise
the exactness of keyword trapdoor by mapping at least two
different keywords into a common fuzzy keyword trapdoor.

In this paper, we first propose a novel concept called public-
key encryption with fuzzy keyword search (PEFKS), in which
searchers only obtain the fuzzy keyword trapdoor instead of the
exact keyword trapdoor in PEKS. Subsequently, for the keyword
space with and without uniform entropy, we respectively present
two universal transformations from anonymous identity-based
encryption (IBE) to PEFKS as well as an instance in the uniform
case. Moreover, their provable security are presented respectively
under adaptive-ID and chosen plaintext attacks and keyword
guessing attack. As the best we know, PEFKS is the first and
promising scheme against keyword guessing attack under the
practical condition that the keyword space is not more than the
polynomial level.

Index Terms—Public-key encryption with keyword search, key-
word guessing attack, public-key encryption with fuzzy keyword
search, anonymous identity-based encryption

I. INTRODUCTION

PUBLIC-KEY encryption with keyword search (PEKS) [1]
is a novel cryptographic approach to keep the privacy of

keyword by public-key encryption, as well as to guarantee the
efficient keyword search in ciphertexts. Even before PEKS was
first proposed by Boneh et al. in 2004 [1], tremendous efforts
had been devoted to explore efficiently searching encrypted
datum already, since the significance is conspicuous to support
the privacy and searchability of datum in incredible databases.
Hence, several appreciable works were made in the recent
decade. In 2000, Song et al. proposed a practical and provably
secure techniques for searching encrypted data [2]. With regard
to the performance of search, Agrawal et al. proposed an
order preserving encryption [3]. Based on the work of Song
et al.’s, Curtmola et al. proposed an advanced scheme for an
enhanced performance [4]. Referring to these works, we found
that the encryption and searchability of datum should rely on
sharing secrets between sends and receivers. Consequently,
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these works, except PEKS, will be seriously doubted in
practice with difficulties on establishing and managing these
shared secrets. In contrast, PEKS is exceedingly convenient in
practice without sharing secrets.

As Boneh et al. first proposed PEKS, he also proposed
a universal transformation from anonymous identity-based
encryption (IBE) 1 [5, 6, 7, 8] to PEKS [1]. Hereafter, PEKS
has been given tremendous attention. Furthermore, Abdalla
et al., who completed the foundations of PEKS, presented
an improved universal transformation from anonymous IBE
to PEKS and a novel expansion of PEKS that public-key
encryption with temporary keyword search (PETKS) in 2005.
To achieve combinable multi-keyword search, two schemes
on public-key encryption with conjunctive keyword search
(PECKS) [9, 10] were respectively proposed in 2004 and 2007.
Conclusively, the aforementioned schemes have a common
character that they only succeeded on the equality search,
rather than achieved range search and so on. Hence, Bethen-
court et al. succeeded on public-key encryption with conjunc-
tive keyword range search [11] by anonymous hierarchical
IBE (HIBE) [6] in 2006, and further updated their work in
2007 [12]. In TCC’2007 , Boneh et al. proposed a novel
technique called hidden vector encryption (HVE) to achieve
conjunctive, range and subset searches [13]. In addition, an
improved trapdoor generation of keywords was proposed by
Camenisch et al. [14], who employed the committed two-part
computation protocol and achieved the invisibility of keyword
to generator. The corresponding scheme was called public-key
encryption with oblivious keyword search (PEOKS). Although
several efficiently conjunctive keyword search over encrypted
datum were proposed [15, 16], they need sharing a secret
between sends and receivers. Hence, they were troublesome in
application. Conclusively, all researches on PEKS focused on
the various searchability in recent years. However, its practical
security is almost out of consideration.

So far, all of proposed PEKS schemes and the expansions
proved their security in some sense. However, their provable
security were commonly based on an implicit condition that
the size of keyword space must be beyond the polynomial
level. Therefore any adversary bounded by the computational
ability can not efficiently and exhaustively search the keyword
space to successfully guess keywords in PEKS. Nevertheless,

1The first anonymous IBE scheme was proposed by Boneh et al. in 2001 and
proved the security in the random oracle (RO) model [5]. In 2006, Boyen et
al. proposed an anonymous IBE scheme [6], which first has provable security
in the standard model. In the same year, Gentry proposed the most efficient
anonymous IBE scheme so far [7]. Ducas proposed an anonymous IBE scheme
first based on the asymmetric bilinear map in 2010 [8].
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we confirm that the implicit condition is obviously unreason-
able in practice from two sides:

- In practice, keywords would be semantical and indexed
in a dictionary. Moreover, somebody would like to use
the common keywords, such as ’Urgency’. Hence, key-
words may be non-uniformly employed. In addition,
the keyword space should be carefully determined at
the initiation of cryptosystem [17]. Otherwise, for the
keywords having the same meaning, such as ’urgent’
and ’imperative’, different people may employed different
keywords. It induces that searchers need several search
trapdoors for the same meaning, and the time cost of
search will be multiplied. Hence, when we need to
initially determine the keyword space, the necessity is
that the size of it is not more than the polynomial level.

- In theory, it is unreasonable to assume that the size of
keyword space is the exponential level. Giving a counter
example that assuming the size of keyword space is 2k,
and EKi bits is the entropy of keyword Ki, we trivially
have

2k∑
i=1

2−EKi = 1 (1)

Let Poly() denote any polynomial. If all keywords have
2−EKi ≥ Poly(k), it obviously has

∑2k

i=1 2−EKi � 1,
which is contrary with Equation 1. Hence, in the key-
word space, there exists keywords satisfying 2−EKi <
Poly(k). Moreover, the number of keywords satisfying
2−EKi > Poly(k) is not more than Poly(k). In other
words, the number of keywords having the practical
probability to be employed is not more than Poly(k),
even if the keyword space is the exponential level.

Under the practical condition that the size of keyword space
is not more than the polynomial level, Byun et al. first
proposed keyword guessing attack [11] and attacks a PEKS
scheme and a PECKS scheme [9] successfully in 2006.
Under the same condition Jeong et al. proved that any PEKS
scheme satisfying at least computationally indistinguishable
consistency implies successful keyword guessing attack [18]
necessarily. Moreover, since satisfying at least computationally
indistinguishable consistency is necessary for any efficient
PEKS, it seems impossible to defend keyword guessing attack
under the practical condition.

A. the Motivation

Referring to PEKS, we found that to complete a keyword
guessing attack, an adversary needs a trapdoor of the keyword
first, then successfully guess this keyword by a brute force
way. Hence, the key of defending keyword guessing attack
is to avoid that adversaries know the trapdoor of the exact
keyword.

We heuristically conceived a passive scheme that public-
key encryption without keyword search (called Passive-PEKS).
Obviously, no search trapdoor of keyword is needed in the
passive scheme. Moreover, keywords are encrypted by using
the existing cryptosystem to keep the privacy. Hence, no adver-
sary can successfully attack the scheme. However, assuming

we want to provide the keyword searchability in Passive-
PEKS, we need to provide the search trapdoor of keywords.
Moreover, when providing the trapdoor of the exact keyword,
Passive-PEKS appropriately functions as PEKS such that the
content of keywords is leaked under keyword guessing attack.
Conclusively, we either achieve the keyword searchability, or
maintain the security of keywords. Hence, we were motivated
to propose a method or scheme to tradeoff the searchability
and security, such that the searchability can be achieved as
well as possible without losing the security of keywords.

Consequently, we were motivated to propose a fuzzy key-
word search, which is the first solution to defend keyword
guessing attack in PEKS as the best we know. In the fuzzy
keyword search, adversaries only know the fuzzy trapdoor
of keywords. Hence, they can not deterministically guess
keywords. Moreover, taking advantage of the entropy of the
keyword space, we will further reduce the biased advantage
of successful guess in the best effort.

B. Our Contributions

According to the motivation, public-Key encryption with
fuzzy keyword search (PEFKS) will be novelly define in
our paper. Furthermore, we will make two universal transfor-
mations from anonymous IBE to PEFKS respectively under
different conditions and prove their security under adaptive-
ID and chosen plaintext attacks and keyword guessing attack.
Specifically, we will firstly present a universal and provably
secure transformation from anonymous IBE to PEFKS for
the keyword space of uniform entropy (called PEFKS-UE).
Moreover, based on the anonymous IBE scheme proposed
by Boneh in 2001 [5], we will propose a provably secure
instance of PEFKS-UE. Secondly, we will present a universal
and provably secure transformation from anonymous IBE to
PEFKS for the keyword space of non-uniform entropy (called
PEFKS-NE). In addition, we will illuminate that the biased
advantage in keyword guessing attack has been reduced as
much as possible in PEFKS-NE.

C. Organization

The organization of this paper is as follows. In Section II,
some preliminary definitions and our definition of PEFKS will
be given. In Section III, it presents the universal transformation
PEFKS-UK and an instance of it, then prove their security.
Section IV presents the universal transformation PEFKS-NE,
its provable security and an important analysis. Section V
presents conclusion.

II. PRELIMINARIES

In this section, several definitions will be presented for
simplifying descriptions of our contributions. Throughout this
paper we employ Poly() to denote any polynomial.(Note that
unless stated otherwise, all symbols have the same meaning
as when they first appear in this paper.)
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A. Anonymous IBE

We redefine the previous work on IBE [5] and anonymous
IBE [6] as follows.

Definition 1 (IBE). IBE consists of the following polynomial
time algorithms:

- Setup(k, r1): Take as input a security parameter k
and a random tape r1, then generate a pair of public-
and-private system parameters PubIBE and PriIBE .
Moreover, PubIBE includes the message space M, the
ciphertext space C and the identity space ID.

- Extract(PriIBE , r2, ID): Take as input a private sys-
tem parameter PriIBE , an identity ID ∈ ID and a
random tape r2, then generate the private key PriKID

of ID.
- Encrypt(PubIBE , r3, ID, M): Take as input a public

system parameters PubIBE , a receiver’s identity ID ∈
ID, a random tape r3 and a message M ∈ M, then
generate a ciphertext C ∈ C.

- Decrypt(PubIBE , P riKID, C): Take as input a public
system parameters PubIBE , the receiver’s private key
PriKID and a ciphertext C ∈ C, then return the
decryption result of C.

Moreover, it satisfies the consistency that for any ci-
phertext C = Encrypt(PubIBE , r3, ID′,M), M =
Decrypt(PubIBE , P riKID, C) holds if and only if ID =
ID′, where ID is randomly chosen in ID.

Definition 2 (Anonymous IBE). An anonymous IBE is a kind
of IBE that given any valid ciphertext, no probabilistically
polynomial time adversary has non-negligible advantage to
decide which identity was used to generate the ciphertext.

B. PEKS and its Keyword Guessing Attack

We also redefine PEKS [1] and its keyword guessing attack
[19] as follows.

Definition 3 (PEKS). PEKS consists of the following polyno-
mial time algorithms:

- SysG(k, r1): Take as input a security parameter k and
a random tape r1, then generate a pair of public-and-
private system parameters PubPEKS and PriPEKS .
Moreover, PubPEKS includes the keyword space K.

- Trapdoor(PriPEKS , r2,K): Take as input a private
system parameter PriPEKS , a random tape r2 and a
keyword K ∈ K, then generate a search trapdoor TK .

- CipherG(PubPEKS , r3,K): Take as input a public sys-
tem parameters PubPEKS , a random tape r3 and a
keyword K ∈ K, then generate a searchable ciphertext
of K.

- ExactTest(PubPEKS , TK , C): Take as input a public
system parameters PubPEKS , a search trapdoor TK and
a searchable ciphertext C = CipherG(PubPEKS ,K ′),
then return B, where

B =

{
1 if K ′ = K;
0 otherwise.

(2)

Moreover, it satisfies the consistency that for any key-
word searchable ciphertext C ′ = CipherG(PubPEKS ,K ′),
ExactTest(PubPEKS , TK , C ′) returns ’1’ if and only if
K = K ′, where K is randomly chosen in K.

Definition 4 (Keyword Guessing Attack on PEKS). Given a
public system parameters PubPEKS and a valid trapdoor TK ,
the adversary indexes all keywords in the keyword space K as
{K1,K2, . . . ,K |K|} and implements keyword guessing attack
as follows:

1) Let i = 1.
2) Generate a keyword searchable ciphertext C of Ki,

where C = CipherG(PubPEKS , r3,K
i).

3) If ExactTest(PubPEKS , TK , C) = 1, return Ki;
4) If i 6= |K|, compute i = i+1 and go to step 2; otherwise

it returns ’⊥’ (it means the abortion).

According to the consistency of PEKS 2, the adversary’s
output Ki equals to K with at most negligible error probabil-
ity. Specifically, once adversary had a valid trapdoor, according
to the consistency of PEKS, he can exhaustively search all
keywords and deterministically guess the keyword that is used
to generate the trapdoor. Moreover, this process is efficient
under the practical condition that |K| ≤ Ploy(k).

C. PEFKS and its Keyword Guessing Attack

Definition 5 (PEFKS). PEFKS consists of the following
polynomial time algorithms:

- SysG(k, r1): Take as input a security parameter k and
a random tape r1, then generate a pair of public-and-
private system parameters PubPEFKS and PriPEFKS .
Moreover, PubPEFKS includes the keyword space K
and a deterministic function Fuz(K,K), which takes
as input a keyword K and the keyword space K, then
deterministically returns a fuzzy value such that there are
at least two different keywords have the same fuzzy value.

- DTrapdoor(PriPEFKS , r2, r
′
2,K): Take as input a pri-

vate system parameter PriPEFKS , two random tapes r2

and r′2, and a keyword K ∈ K, then compute fuzzy value
FK = Fuz(K,K), finally return a fuzzy search trapdoor
FTK for FK and an exact search trapdoor ETK for
K. Note that, on one hand keywords with the same fuzzy
value necessarily have the same fuzzy search trapdoor; on
the other hand, all distinct keywords have the same exact
search trapdoor with at most the negligible probability.

- CipherG(PubPEFKS , r3,K): Take as input a public
system parameters PubPEFKS , a random tape r3 and
a keyword K ∈ K, then generate a fuzzy keyword
searchable ciphertext of K.

- FuzzTest(PubPEFKS , FTK , C): Take as input a pub-
lic system parameters PubPEFKS , a fuzzy search trap-
door FTK and a fuzzy keyword searchable ciphertext
C = CipherG(PubPEFKS , r3,K

′), then return B,
where

B =

{
1 if Fuz(K ′,K) = Fuz(K,K);
0 otherwise.

(3)

2The consistency is computationally indistinguishable at least[20].
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- ExactTest(PubPEFKS , ETK , C): Take as input a pub-
lic system parameters PubPEFKS , an exact search trap-
door ETK and a fuzzy keyword searchable ciphertext
C = CipherG(PubPEFKS , r3,K

′), then return B,
where

B =

{
1 if K ′ = K;
0 otherwise.

(4)

Moreover, it satisfies the consistency that for any fuzzy keyword
searchable ciphertext C ′ = CipherG(PubPEFKS , r3,K

′),
algorithm FuzzTest(PubPEFKS , FTK , C ′) returns ’1’ if
and only if Fuz(K ′,K) = Fuz(K,K); algorithm
ExactTest(PubPEFKS , ETK , C ′) returns ’1’ if and only if
K = K ′, where K and K ′ are randomly chosen in K.

Referring to the definition of PEFKS, the principal dif-
ference between PEFKS and PEKS is the fuzzy test/search
algorithm FuzzTest, which was not included in PEKS. In
practice, the server, who stores the encrypted datum, imple-
ments the exact test/search in PEKS. However, in PEFKS
the server only receives a fuzzy search trapdoor of the
keyword from a receiver at first; secondly, it implements
the fuzzy test/search; at last, it sends back all of satisfying
ciphertexts to the receiver. Specially, the exact test/search
algorithm ExactTest only be implemented by the receiver
to decide which ciphertext contains the exact keyword. Based
on the fact that nobody except the receiver knows the exact
search trapdoors in PEFKS, we adaptively define the keyword
guessing attack on PEFKS as follows.

Definition 6 (Keyword Guessing Attack on PEFKS). Given
a public system parameters PubPEFKS and a fuzzy search
trapdoor FTK , the adversary indexes all keywords in the
keyword space K as {K1,K2, . . . ,K |K|} and implements
keyword guessing attack as follows:

1) Let i = 1.
2) Generate a keyword searchable ciphertext C of Ki,

where C = CipherG(PubPEKS , r3,K
i).

3) If FuzzTest(PubPEFKS , FTK , C) = 1, output Ki.
4) If i 6= |K|, compute i = i+1 and go to step 2; otherwise

it returns ’⊥’.

Referring to Definition 6, since at least two different key-
words have the same fuzzy value, to implement keyword
guessing attack on PEFKS, the adversary gets at least two
different keywords. Hence, he fails to deterministically decide
which keyword is the exact one that was used to generate the
fuzzy search trapdoor. Furthermore, since nobody except the
receiver knows the exact trapdoors of keywords, the adversary
also fails to implement the keyword guessing attack, which
is analogous with Definition 4. Conclusively, we intuitively
decide that PEFKS can defend keyword guessing attack.

III. PEFKS-UE

Let k be a security parameter. Let
∑

be an alphabet. Let the
keyword space K =

∑n, where |K| ≤ Ploy(k). Moreover, K
has the uniform entropy such that each symbol of

∑
has the

identical or computationally indistinguishable probability to be

used. In PEFKS-UE, the function Fuz(K,K) is redefined as
follows:

1) Take as input a keyword K ∈ K, then parse K as K =
K1|| . . . ||Kn where Ki ∈

∑
for i ∈ [1, n].

2) Finally return FK = K1|| . . . ||K(n−1).
The complete description of PEFKS-UE is as follows.

A. A Universal Transformation
Let UIBE = (Setup,Extract, Encrypt,Decrypt) be a

universal anonymous IBE defined in Definition 1. Let H1 :
FK

∧
K → ID be a collision resistant function. PEFKS-UE

consists of the following algorithms:
- SysG(k, r1): Take as input a security parameter k and

a random tape r1, then run algorithm Setup(k, r1) of
UIBE to generate a pair of public-and-private system
parameters that

PubPEFKS−UE = 〈PubUIBE , Fuz,H1,K〉
PriPEFKS−UE = PriUIBE

(5)

- DTrapdoor(PriPEFKS−UE , r2, r
′
2,K): Take as input a

private system parameter PriPEFKS−UE = PriUIBE ,
two random tapes r2 and r′2, and a keyword K ∈ K,
then generate a fuzzy search trapdoor FTK and an exact
search trapdoor ETK , where

FTK = Extract(PriUIBE , r′2,H1(Fuz(K,K)))
ETK = Extract(PriUIBE , r2,H1(K))

(6)

- CipherG(PubPEFKS−UE , r3, r
′
3,K): Take as input a

public system parameters PubPEFKS−UE , two random
tapes r3 and r′3, and a keyword K ∈ K, then randomly
choose a message M ∈ M, finally generate a fuzzy
keyword searchable ciphertext 〈M,CF , CE〉, where

CF = Encrypt(PubUIBE , r3,H1(Fuz(K,K)),M)
CE = Encrypt(PubUIBE , r′3,H1(K),M)

(7)

- FuzzTest(PubPEFKS−UE , FTK , 〈M,CF 〉): Take as
input a public system parameters PubPEFKS−UE , a
fuzzy search trapdoor FTK and a searchable ciphertext
〈M,CF 〉, then return B, where

B =

{
1 if M = Decrypt(PubUIBE , FTK , CF );
0 otherwise.

(8)

- ExactTest(PubPEFKS−UE , ETK , 〈M,CE〉): Take as
input a public system parameters PubPEFKS−UE , an
exact search trapdoor ETK and a searchable ciphertext
〈M,CE〉, then return B, where

B =

{
1 if M = Decrypt(PubUIBE , ETK , CE);
0 otherwise.

(9)

The consistency of PEFKS-UE. According to Theorem 4.2
in [20], we easily find that the aforementioned PEFKS-UE is
consistent, when the anonymous IBE scheme UIBE satisfies
the semantic security.
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B. An Instance of PEFKS-UE

Based on the anonymous IBE scheme proposed by Boneh
ea al. [5] (called BF01 scheme in this paper), we construct an
instance of PEFKS-UE according to the universal transforma-
tion PEFKS-UE as follows:

Let G and Gt denote two multiplicative groups of prime
order q. Let g be a generator of G. Let the bilinear map
e : G×G→ Gt [5, 21, 22] be an efficiently computable and
non-degenerate function with the bilinearity that e(ga, gb) =
e(g, g)ab, where a and b are randomly chosen in Z∗

q and
e(g, g) is the generator of Gt. Let the bilinear map generator
BGen(1k) be an efficient algorithm that given a security
parameter k, it returns 〈q, G, Gt, g, e〉. In addition, let the
symbol R← denote randomly choosing an element (or elements)
at the left side from the field at the right side.

- SysG(k, r1): Given a security parameter k and a random
tape r1, this algorithm works as follows:

1) Run BGen(1k) to generate 〈q, G, Gt, g, e〉.
2) Set gpub = gs, where s

R← Z∗
q .

3) Choose a collision resistance function H1 :∑n−1 ∨
K → G.

4) Choose a cryptographic hash function H2 : Gt →
M.

The keyword space is K =
∑n. The message space is

M = {0, 1}k1 . The public system parameters and the
private system parameter are as follows:

PubPEFKS−UE =〈q, G, Gt, g, e, gpub, Fuz

H1,H2,K,M〉
PriPEFKS−UE =s

(10)

- DTrapdoor(PriPEFKS−UE ,K): Given a private sys-
tem parameter PriPEFKS−UE and a keyword K, this
algorithm works as follows:

1) Compute gFK = H1(Fuz(K,K)) ∈ G, then output
the fuzzy search trapdoor FTK = gs

FK .
2) Compute gEK = H1(K) ∈ G, then return the exact

search trapdoor ETK = gs
EK .

- CipherG(PubPEFKS−UE , r3, r
′
3,K): Given a public

system parameters PubPEFKS−UE , two random tapes
r3 and r′3 and a keyword K, this algorithm works as
follows:

1) Randomly choose a message M
R← M and two

numbers 〈t, t′〉 R← Z∗
q .

2) Compute gFK = H1(Fuz(K,K)) and gEK =
H1(K).

3) Return a fuzzy keyword searchable ciphertext
〈M,CF , CE〉, where

CF = 〈gt′ ,H2(e(gFK , gpub)t′)⊕M〉
CE = 〈gt,H2(e(gEK , gpub)t)⊕M〉

(11)

- FuzzTest(PubPEFKS−UE , FTK , 〈M,CF 〉): Given a
public system parameters PubPEFKS−UE , a fuzzy
search trapdoor FTK and a part of a fuzzy keyword
searchable ciphertext that 〈M,CF 〉, then parse CF as

〈CF1, CF2〉, finally return B, where

B =

{
1 if M = CF2 ⊕H2(e(FTK , CF1));
0 otherwise.

(12)

- ExactTest(PubPEFKS−UE , ETK , 〈M,CE〉): Given a
public system parameters PubPEFKS−UE , an exact
search trapdoor ETK and a part of the searchable cipher-
text that 〈M,CE〉, then parse CE as 〈CE1, CE2〉, finally
return B, where

B =

{
1 if M = CE2 ⊕H2(e(ETK , CE1));
0 otherwise.

(13)

On one hand, according to the IND-ID-CPA (indistinguisha-
bility of ciphertexts under adaptive-ID and chosen plaintext
attacks) security of the BF01 scheme, it is easily to implies
that the instance of PEFKS-UE has the computationally indis-
tinguishable consistency. On the other hand, in the instance we
avoided constructing it rigidly according to the universal trans-
formation PEFKS-UE, whereas some tricks were employed to
improve the performance. For example, the fuzzy keyword
searchable ciphertext has the shorter size.

C. Security proofs

Under the practical condition that |K| ≤ Poly(k), we
respectively prove the security of the instance of PEFKS-UE
and the universal transformation PEFKS-UE. Specially, their
security under keyword guessing attack is also considered. The
proofs are as follows:

- The security of the instance of PEFKS-UE. On one hand,
we proved that the instance of PEFKS-UE inherits the
Anon-ID-CPA [23, 6] (anonymity of ciphertext under
adaptive-ID and chosen plaintext attacks) security of the
BF01 scheme IBE by the reduction proof in Table I.
Hence, for any keyword K ∈ K, anybody without the
exact search trapdoor of K can not know its content from
the fuzzy keyword searchable ciphertext, which was gen-
erated by algorithm CipherG(PubPEFKS−UE , r3,K).
Specifically, the reduction proof in Table I proved that
for any keyword K ∈ K with the parse Fuz(K,K)||Kn,
the fuzzy keyword searchable ciphertext referring to K
never leaks Kn under adaptive-ID and chosen plain-
text attacks. On the other hand, to implement keyword
guessing attack, any adversary fails to successfully guess
Kn with the non-negligibly biased advantage, since the
keyword space K =

∑n has the uniform entropy such
that each symbol of

∑
has the same or indistinguishable

probability to be used. Conclusively, when the keyword
space K has the uniform entropy and |K| ≤ Poly(k),
any adversary, who implements adaptive-ID and chosen
plaintext attacks and keyword guessing attack, fails to
successfully guess the exact keyword K with the non-
negligibly biased advantage in the instance of PEFKS-
UE.

- The security of the universal transformation PEFKS-UE.
Without loss of generality, we assumed the universal
anonymous IBE UIBE has the Anon-ID-CPA security,
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Adversary A Simulator/Challenger S BF01 scheme IBE

Setup
Phase

3) Receive PubPEFKS−UE . 2) Send PubPEFKS−UE =
〈PubIBE , Fuz, H1,K〉 to A.

1) Generate PubIBE =
〈q, G, Gt, g, e, gpub, H1, H2,M〉
and PriIBE = s of BF01 scheme,
then send PubIBE to S except
H2, which will be taken as a
random oracle machine.

Query
Phase

1) Query S for 〈Or, X〉, where
Or ∈ {H2, DTrapdoor}.

2) If Or = DTrapdoor, query
IBE for 〈Extract, Fuz(X,K)〉
and 〈Extract, X〉, otherwise
query IBE for 〈Or, X〉.

3) Respond queries of oracles H2

and Extract.

6) Receive the responses and
execute the query many times.

5) Send the responses from IBE to
A.

4) Send the responses to S.

Challenge
Phase

1) Choose two different
challenge keywords
K0 and K1 under the
following constraints:
〈DTrapdoor, K0〉 and
〈DTrapdoor, K1〉 were not
queried; Fuz(K0,K) =
Fuz(K1,K). Finally send
〈K0, K1〉 to S.

2) Randomly choose a plaintext
M ∈ M, then send 〈M, K0, K1〉
to IBE.

3) Randomly choose
b

R← 0, 1 and set C∗
E =

Encrypt(PubIBE , r3, Kb, M).

6) Receive the challenge ci-
phertext 〈M, C∗

F , C∗
E〉.

5) Send the challenge ciphertext
〈M, C∗

F , C∗
E〉 to A, where C∗

F =
Encrypt(PubIBE , r′3, ID0

F , M)
and ID0

F = Fuz(K0,K).

4) Send C∗
E to S.

Query
Phase

(It is the same as the
aforementioned query
phase except querying S
for 〈Dtrapdoor, K0〉 and
〈Dtrapdoor, K1〉.)

(It is the same as the aforemen-
tioned query phase.)

(It is the same as the aforemen-
tioned query phase.)

Final
Phase

1) Send the guess b′ on b to S. 2) Send the received b′ to IBE. 3) Receive b′.

TABLE I
PROOF OF THE PREDICATION THAT THE INSTANCE OF PEFKS-UE TRANSFORMED FROM BF01 SCHEME INHERITS THE ANON-ID-CPA SECURITY.

Adversary A Simulator/Challenger S Universal Anonymous IBE UIBE

Setup
Phase

3) Receive PubPEFKS−UE . 2) Send PubPEFKS−UE =
〈PubUIBE , Fuz, H1,K〉 to A.

1) Generate PubUIBE and
PriUIBE of UIBE, then send
PubUIBE to S.

Query
Phase

1) Query S for 〈X〉, where
X ∈ K.

2) Query UIBE for
〈H1(Fuz(X,K))〉 and 〈H1(X)〉.

3) Respond queries of oracle
Extract.

6) Receive the responses and
execute the query many times.

5) Send the responses from UIBE
to A.

4) Send the responses to S.

Challenge
Phase

1) Choose two different
challenge keywords K0 and
K1 under the following
constraints: 〈K0〉 and
〈K1〉 were not queried
by A; Fuz(K0,K) =
Fuz(K1,K). Finally send the
〈K0, K1〉 to S.

2) Randomly choose a
plaintext M ∈ M, then send
〈M, H1(K0), H1(K1)〉 to
UIBE.

3) Randomly choose
b

R← 0, 1, then set C∗
E =

Encrypt(PubUIBE , r3, IDb, M),
where IDb = H1(Kb).

6) Receive the challenge ci-
phertext 〈M, C∗

F , C∗
E〉.

5) Send the challenge ciphertext
〈M, C∗

F , C∗
E〉 to A, where C∗

F =
Encrypt(PubUIBE , r′3, ID0

F , M)
and ID0

F = H1(Fuz(K0,K)).

4) Send C∗
F to S.

Query
Phase

(It is the same as the afore-
mentioned query phase except
querying S for 〈K0〉 and
〈K1〉.)

(It is the same as the aforemen-
tioned query phase.)

(It is the same as the aforemen-
tioned query phase.)

Final
Phase

1) Send the guess b′ on b to S. 2) Send the received b′ to UIBE. 3) Receive b′.

TABLE II
PROOF OF THE PREDICATION THAT THE UNIVERSAL TRANSFORMATION PEFKS-UE INHERITS THE ANONYMITY.
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since there is not any substantial difference among se-
curity proofs when the universal anonymous IBE UIBE
has the anonymity under the different attacks (e.g., chosen
plaintext attacks and chosen ciphertext attacks [24]) .
On one hand, we proved that the universal transfor-
mation PEFKS-UE inherits the anonymity of UIBE
by the reduction proof in Table II. Hence, the fuzzy
keyword searchable ciphertext, generated by algorithm
CipherG, keeps the privacy of Kn of any keyword
K = Fuz(K,K)||Kn under adaptive-ID and chosen
plaintext attacks. On the other hand, since the keyword
space K has the uniform entropy, any adversary, who
implements the keyword guessing attack without the
exact trapdoor of any keyword, fails to successfully guess
the exact keyword with non-negligibly biased advantage
even under the condition that |K| ≤ Poly(k). Conclu-
sively, when the keyword space has uniform entropy,
the universal transformation PEFKS-UE, based on the
universal anonymous IBE, keeps the privacy of Kn for
any keyword K = Fuz(K,K)||Kn under adaptive-ID
and chosen plaintext attacks and keyword guessing attack,
even with the condition that |K| ≤ Poly(k).

In this section, under the conditions that the keyword space
K has uniform entropy and |K| ≤ Poly(k), we constructed
a universal transformation from anonymous IBE to PEFKS-
UE, then proposed an instance of PEFKS-UE based on the
anonymous IBE scheme proposed by Boneh et al. [5], finally
proved their security under adaptive-ID and chosen plaintext
attacks and keyword guessing attack. In next section, we
further weaken the condition such that the keyword space has
non-uniform entropy and construct PEFKS-NE.

IV. PEFKS-NE
Let k be a security parameter. Let EK bits denote the entropy

of the keyword K ∈ K, where |K| ≤ Ploy(k). We partition
all keywords into several subsets as follows:

1) Sort all keywords in ascending order of their entropy
and index all keywords as {K1,K2, . . . ,K |K|}.

2) Partition {K1,K2, . . . ,K |K|} as P , where P =
{{K1,K2}, {K3,K4}, . . . , {K |K|−1,K |K|}}

if |K| is even;
{{K1,K2}, . . . , {K |K|−4,K |K|−3}, {K |K|−2,K |K|−1,K |K|}}

if |K| is odd.

(14)

Let H1 : {0, 1}∗ → {0, 1}k2 be a collision resistance func-
tion. In PEFKS-NE, the function Fuz(Ki,K) is adaptively
redefined as follows:

1) If |K| is even, then return{
H1(Ki−1||Ki) if i is even;
H1(Ki||Ki+1) if i is odd.

(15)

2) Otherwise, return
H1(K |K|−2||K |K|−1||K |K|) if i ≥ |K| − 2;
H1(Ki−1||Ki) if i is even;
H1(Ki||Ki+1) if i is odd.

(16)

Referring to the function Fuz, we can easily verify following
properties:

- For any subset in P , the keywords belonging to the same
subset have the same output of Fuz. (Formally Speak-
ing, for any subset {Ki,Ki+1} ∈ P , Fuz(Ki,K) =
Fuz(Ki+1,K) holds.)

- Furthermore, for any two different subsets in P , they
have different outputs of Fuz. (Formally speaking, for
any two subsets {Ki,Ki+1} and {Kj ,Kj+1}P , where
i 6= j, Fuz(Ki,K) 6= Fuz(Kj ,K) holds as the collision
resistance of H1.)

We construct a universal transformation from anonymous IBE
to PEFKS-NE in next subsection.

A. A Universal Transformation

Let UIBE = (Setup,Extract, Encrypt,Decrypt) be a
universal anonymous IBE defined in Definition 1. Let H2 :
{0, 1}k2

∨
K → ID be a collision resistant function. PEFKS-

NE consists of the following algorithms:
- SysG(k, r1): Take as input a security parameter k and

a random tape r1, then run algorithm Setup(k, r1) of
UIBE to generate a pair of public-and-private system
parameters that

PubPEFKS−NE = 〈PubUIBE , Fuz,H1,H2,K〉
PriPEFKS−NE = PriUIBE

(17)

- DTrapdoor(PriPEFKS−NE , r2, r
′
2,K

i): Take as input
a private system parameter PriPEFKS−NE , two random
tapes r2 and r′2, and a keyword Ki ∈ K, then generate a
fuzzy search trapdoor FTKi and an exact search trapdoor
ETKi , where

FTKi = Extract(PriUIBE , r′2,H2(Fuz(Ki,K))

ETKi = Extract(PriUIBE , r2,H2(Ki))
(18)

- CipherG(PubPEFKS−NE , r3, r
′
3,K

i): Take as input a
public system parameters PubPEFKS−NE , two random
tapes r3 and r′3 and a keyword Ki ∈ K, then randomly
choose a message M ∈ M, finally generate a fuzzy
keyword searchable ciphertext 〈M,CF , CE〉, where

CF = Encrypt(PubUIBE , r3,H2(Fuz(Ki,K)),M)

CE = Encrypt(PubUIBE , r′3,H2(Ki),M)
(19)

- FuzzTest(PubPEFKS−NE , FTKi , 〈M,CF 〉): Take as
input a public system parameters PubPEFKS−NE , a
fuzzy search trapdoor FTKi and a searchable ciphertext
〈M,CF 〉, then return B, where

B =

{
1 if M = Decrypt(PubUIBE , FTKi , CF );
0 otherwise.

(20)

- ExactTest(PubPEFKS−NE , ETKi , 〈M,CE〉): Take as
input a public system parameters PubPEFKS−NE , an
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exact search trapdoor ETKi and a searchable ciphertext
〈M,CE〉, then return B, where

B =

{
1 if M = Decrypt(PubUIBE , ETKi , CE);
0 otherwise.

(21)

The consistency of PEFKS-NE. According to Theorem 4.2
in [20], we easily find that PEFKS-NE has the consistence,
when the anonymous IBE scheme UIBE satisfies the seman-
tic security.

B. Security Proofs

Without loss of generality, we also assume the universal
anonymous IBE UIBE satisfied the Anon-ID-CPA security.
On one hand, the reduction proof in Table III proved that
PEFKS-NE inherits the Anon-ID-CPA security of UIBE.
Hence, for any keyword Ki ∈ K used to generate a fuzzy
keyword searchable ciphertext 〈M,CE , CF 〉 by algorithm
CipherG, no adversary knows Ki from CF under adaptive-ID
and chosen plaintext attacks.

On the other hand, no adversary knows the exact trapdoor
of any keyword in PEFKS-NE. Hence, they fail to determin-
istically guess the exact keyword by implementing keyword
guessing attack even under the condition that |K ≤ Poly(k)|.
However, in PEFKS-NE, an adversary may have the non-
negligibly biased advantage to successfully guess the exact
keyword. Moreover, we believe that the non-negligibly biased
advantage can not be absolutely avoided.

Specifically, without loss of generality we assume an ad-
versary known the fuzzy search trapdoor FTKi/Ki+1 of the
subset {Ki,Ki+1} ∈ P . To implement keyword guessing
attack on PEFKS-NE, the adversary can efficiently find out the
subset {Ki,Ki+1}. Furthermore, according to the partition of
K at the beginning of this section, he has a biased advantage
|2−EKi−2−EKi+1 | to decide which one between Ki and Ki+1

has the higher probability to be used to generate FTKi/Ki+1 .
The further analysis should be divided into the following two
cases:

- Case 1: |2−EKi − 2−EKi+1 | < 1
Poly(k) . In this case, the

adversary has the negligibly biased advantage. Hence, he
fails to efficiently decide which one has the higher prob-
ability to be used. Formally speaking, let Pr(Ki|FTKi)
denote the posterior probability of the event that Ki is
employed under the condition that FTKi is given. We
have Pr(Ki|FTKi) ≈ Pr(Ki+1|FTKi). It means that
the keywords Ki and Ki+1 almost have the maximum
”posterior entropy”.

- Case 2: |2−EKi − 2−EKi+1 | ≥ 1
Poly(k) . In this case, the

adversary has the non-negligibly biased advantage. How-
ever, we have reduced the advantage as much as possible.
Moreover, we justify that the biased advantage can not be
avoid. Giving an extreme example, K = {K1,K2} and
EK1 � EK2 . It induces that the adversary has enough
confidence to decide that K1 was used to generate the
searchable ciphertext, even without considering the cryp-
tosystem you employed. Consequently, since the biased

advantage is a natural character of keywords, nobody
can absolutely avoid it. Fortunately we have reduced the
biased advantage as much as possible.

C. Insecurity of the Further Reduction

At the end of Subsection IV-B, we stated that we have re-
duced the biased advantage as much as possible. For justifying
it, we will propose a method, which is the only one method
that can further reduce the biased advantage, then illuminate
the insecurity of the method.

Referring to the partition of K at the beginning of this
section, we sorted K in ascending order of keyword entropy
and sequentially partition keywords. Hence, in the partition
phase, we did not consider the difference between the en-
tropy of neighboring keywords. However, when consider-
ing it, this method is provably insecure. For example, let
K = {K1,K2,K3,K4} be an sorted keywords in ascend-
ing order of their entropy. We combine a chosen keyword
with one of its neighboring keywords, according to which
neighboring keywords has the minimum entropy difference
between the chosen keyword and the neighboring keyword.
Hence, assuming |EK2 − EK3 | < |EK1 − EK2 |, we result the
partition {{K1,K2}, {K2,K3}, {K3,K4}}. Consequently, if
an adversary has the fuzzy search trapdoor FTK1/K2 , he can
easily find out {K1,K2} by implementing keyword guessing
attack on PEFKS. In addition, he can deterministically guess
K1 rather than with any biased advantage. Since assuming the
fuzzy search trapdoor FTk1/K2 was generated from K2, the
adversary should find out {K2,K3} rather than {K1,K2}
according to |EK2 − EK3 | < |EK1 − EK2 |. Hence, if the
adversary find out {K1,K2}, he can deterministically decide
that the fuzzy search trapdoor was generated from K1 rather
then K2.

V. CONCLUSION AND FUTURE WORK

In PEKS, the sever, which received search trapdoors from
the receiver to search the public-key encrypted keywords, can
deterministically know the content of keywords by implement-
ing keyword guessing attack. Moreover, this attack is efficient
under the practical condition that the size of the keyword
space is not more than the polynomial level. In order to
withstand keyword guessing attack, we first proposed a novel
concept that public-key encryption with fuzzy keyword search.
Furthermore, under two different conditions that keyword
space have uniform and non-uniform entropy, we presented
two universal transformations from anonymous IBE to PEFKS,
which were respectively called PEFKS-UE and PEFKS-NE.
Their provable securities are also given under adaptiv-ID
and chosen plaintext attacks and keyword guessing attack.
Although, in PEFKS-NE we failed to absolutely avoid the
biased advantage in keyword guessing attack, we have reduced
the advantage as much as possible. Moreover, we proved that
the biased advantage is caused by the natural character of
keywords and no cryptosystem can absolutely avoid it. Frankly
speaking, merely considering the security, our solution is not
perfect. However, it is presented as the state of the art and
absolutely securer than PEKS in practice.
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Adversary A Simulator/Challenger S Universal Anonymous IBE UIBE

Setup
Phase

3) Receive PubPEFKS−NE . 2) Send PubPEFKS−NE =
〈PubUIBE , Fuz, H1, H2,K〉 to
A.

1) Generate PubUIBE and
PriUIBE of UIBE, then send
PubUIBE to S.

Query
Phase

1) Query S for 〈Ki〉, where
Ki ∈ K.

2) Query UIBE for
〈Extract, H2(Fuz(Ki,K))〉
and 〈Extract, H2(Ki)〉.

3) Respond queries of oracle
Extract.

6) Receive the responses and
execute the query many times.

5) Send the responses from UIBE
to A.

4) Send the responses to S.

Challenge
Phase

1) Choose two different
challenge keywords Ki and
Kj (assuming i < j without
loss of generality) under
the following constraints:
〈Ki〉 and 〈Kj〉 were not
queried by A; Fuz(Ki,K) =
Fuz(Kj ,K). Finally send
〈Ki, Kj〉 to S.

2) Choose a plaintext M ∈ M and
send 〈M, ID0, ID1〉 to UIBE,
where ID0 = H2(Ki) and
ID1 = H2(Kj).

3) Randomly choose
b

R← 0, 1 and set C∗
E =

Encrypt(PubUIBE , r3, IDb, M).

6) Receive the challenge ci-
phertext 〈M, C∗

F , C∗
E〉.

5) Send the challenge ciphertext
〈M, C∗

F , C∗
E〉 to A, where C∗

F =
Encrypt(PubUIBE , r′3, ID0

F , M),
where ID0

F = H2(Fuz(Ki,K)).

4) Send C∗
E to S.

Query
Phase

(It is the same as the afore-
mentioned query phase ex-
cept querying S for 〈Ki〉 and
〈Kj〉.)

(It is the same as the aforemen-
tioned query phase.)

(It is the same as the aforemen-
tioned query phase.)

Final
Phase

1) Send the guess i′ on {i, j}
to S.

2) Send b′ = 0 to UIBE if i′ = i,
otherwise send b′ = 1 to UIBE.

3) Receive the guess b′.

TABLE III
PROOF OF THE PREDICATION THAT THE UNIVERSAL TRANSFORMATION PEFKS-NE INHERITS THE ANONYMITY.

Both in PEKS and PEFKS, the encrypted keywords are
searched one by one. Hence it is a crucial performance
problem that how to build the index for these ciphertexts
having the same keyword without leaking the content. In this
way, the ciphertexts generated from the same keyword can be
searched only one step. Although this problem is easy to be
solved in the RO model, our future challenge is to solve it in
the standard model.
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