
Efficient and provably-secure certificateless signature scheme 

without bilinear pairings 
He Debiao*, Chen Jianhua, Zhang Rui  

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China, 430072 
 

Abstract: Many certificateless signature schemes using bilinear pairings have been proposed. But 
the relative computation cost of the pairing is approximately twenty times higher than that of the 
scalar multiplication over elliptic curve group. In order to improve the performance we propose a 
certificateless signature scheme without bilinear pairings. With the running time being saved 
greatly, our scheme is more practical than the previous related schemes for practical application. 
Key words: Certificateless public key cryptography; Certificateless signature; Bilinear pairings; 
Elliptic curve 

1. Introduction 

Public-key cryptography(PKC) has become one of the essential techniques in providing 
security services in modern communications. In traditional public-key cryptosystems, a pair of 
public/private keys should be computed by each user. Since the public key is a string of random 
bits, a digital certificate of the public key is required to provide public-key authentication. Anyone 
who wants to send messages to others must obtain their authorized certificates that contain the 
public key. However, this requirement brings lots of certificate management problems in practice. 

In order to simplify the public-key authentication, Shamir [1] introduced the concept of 
identity-based (ID-based) cryptosystem problem. In this system, each user needs to register at a 
key generator centre (KGC) with identify of himself before joining the network. Once a user is 
accepted, the KGC will generate a private key for the user and the user’s identity (e.g. user’s name 
or email address) becomes the corresponding public key. In this way, in order to verify a digital 
signature or send an encrypted message, a user only needs to know the “identity” of his 
communication partner and the public key of the KGC. However, this cryptosystem involves a 
KGC, which is responsible for generating a user's private key based on his identity. As a result, 
the KGC can literally decrypt any ciphertext or forge any user's signature on any message. To 
avoid the inherent key escrow problem in ID-based public key cryptosystem, Al-Riyami and 
Paterson [2] introduced a new approach called certificateless public key cryptography (CLPKC). 
The CLPKC is intermediate between traditional PKC and ID-based cryptosystem. In a 
certificateless cryptosystem, a user's private key is not generated by the KGC alone. Instead, it 
consists of partial private key generated by the KGC and some secret value chosen by the user. So, 
the KGC is unable to obtain the user's private key. In such a way that the key escrow problem can 
be solved. Intuitionally, CLPKC has nice features borrowed from both ID-based cryptography and 
traditional PKC. It alleviates the key escrow problem in ID-based cryptography and at the same 
time reduces the cost and simplifies the use of the technology when compared with traditional 

*Corresponding author. 
E-mail: hedebiao@163.com, Tel:+0086015307184927



PKC. 
Following the pioneering work due to Al-Riyami and Paterson [2], several certificateless 

signature (CLS) schemes [3-10] have been proposed. All the above CLS schemes may be practical, 
but they are from bilinear pairings and the pairing is regarded as the most expensive cryptography 
primitive. The relative computation cost of a pairing is approximately twenty times higher than 
that of the scalar multiplication over elliptic curve group [11]. Therefore, CLS schemes without 
bilinear pairings would be more appealing in terms of efficiency. 

In this paper, we present a CLS scheme without pairings. The scheme rests on the elliptic 
curve discrete logarithm problem (ECDLP).With the pairing-free realization, the scheme’s 
overhead is lower than that of previous schemes [3-10] in computation. 

2. Preliminaries 

2.1.Background of elliptic curve group 

Let the symbol / pE F  denote an elliptic curve E  over a prime finite field pF , defined 

by an equation  

baxxy ++= 32
， pFba ∈,              (1) 

and with the discriminant  

3 24 27 0a bΔ = + ≠ .                      (2) 

The points on / pE F  together with an extra point O  called the point at infinity form a 

group  

{( , ) : , , ( , ) 0} { }pG x y x y F E x y O= ∈ = ∪ .  (3) 

Let the order of G  be n . G is a cyclic additive group under the point addition “+” 

defined as follows: Let ,P Q G∈ , l  be the line containing P  and Q  (tangent line to 

/ pE F  if P  = Q ), and R , the third point of intersection of l  with / pE F . Let l′  be the 

line connecting R  and O . Then P  “+” Q  is the point such that l′  intersects / pE F  at 

R  and O  and P “+” Q. Scalar multiplication over E/Fp can be computed as follows:  

(  )tP P P P t times= + + +…              (4). 

The following problem defined over G  is assumed to be intractable within polynomial 
time. 

Eliptic curve discrete logarithm problem(ECDLP): For *
R nx Z∈ and P  the generator of 



G , given Q x P= ⋅  compute x . 

2.2.Certificateless signatures 

A CLS scheme consists of seven algorithms[2]: Setup, Partial-Private-Key-Extract, 
Set-Secret-Value, Set-Private-Key, Set-Public-Key, Sign and Verify. 

Setup: Taking security parameter k  as input and returns the system parameters 
params and master key. 

Partial-Private-Key-Extract: This algorithm takes params , master key and a user's 

identity ID  as inputs and returns a partial private key IDd . 

Set-Secret-Value: This algorithm params and a user's identity ID  as input and generates 

a secret value r . 

Set-Private-Key: This algorithm takes params , a user's partial private key IDd  and his 

secret value r  as inputs and outputs the full private key IDsk . 

Set-Public-Key: This algorithm takes params and a user's secret value r as inputs and 

generates a public key IDpk  for the user. 

Sign: This algorithm takes params , a message m, a user's identity ID , and the user's 

private key IDsk  as inputs and outputs a signature S . 

Verify: This algorithm takes  params , a public key IDpk , a message m , a user's identity 

ID , and a signature S  as inputs and returns 1 means that the signature is accepted. Otherwise, 0 
means rejected. 

2.3.Security model for certificateless signatures 

In CLS, as defined in [2], there are two types of adversaries with different capabilities, we 
assume Type 1 Adversary,  A 1 acts as a dishonest user while Type 2 Adversary, A 2 acts as a 
malicious KGC: 

Type 1 Adversary: Adversary A 1 does not have access to the master key, but A 1 can 
replace the public keys of any entity with a value of his choice, since there is no certificate 
involved in CLS. 

Type 2 Adversary: Adversary A 2 has access to the master key, but cannot replace any user's 
public key. 

Definition 1. Let A 1 and A 2 be a Type1Adversaryanda Type2Adversary, respectively. We 
consider two games Game 1 and Game 2 where A 1 and A 2 interact with its challenger in these 



two games, respectively. We say that a CLS scheme is existentially unforgeable against adaptive 
chosen message attacks, if the success probability of both A 1 and A 2 is negligible. 

Game 1: This is the game where A 1 interacts with its challenger C: 
Setup: The challenger C takes a security parameter k  and runs Setup to generate master 

key and params , then sends params to A 1. A 1 acts as the following oracle queries: 
Hash Queries: A 1 can request the hash values for any input. 

Extract Partial Private Key: A 1 is able to ask for the partial private key IDd  for any ID  

except the challenged identity ID . C computes the partial private key IDd  corresponding to the 

identity ID  and returns IDd  to A 1. 

Extract Private Key: For any ID except the challenged identity ID , C computes the 

private key IDsk  corresponding to the identity ID  and returns IDsk  to A 1. 

Request Public Key: Upon receiving a public key query for any identity ID , C computes 

the corresponding public key IDpk  and sends it to A 1. 

Replace Public Key: For any identity ID , A 1 can pick a new secret value r′  and 

compute the new public IDpk′  corresponding to the value r′ , and then replace IDpk with 

IDpk′ . 

Signing Queries: When a signing query for an identity ID on some message m  is coming, 

C uses the private key IDsk corresponding to the identity ID  to compute the signature S  and 

sends it to A 1. If the public key IDpk  has been replaced by A 1, then C cannot find IDsk  and 

thus the signing oracle's answer may be incorrect. In such case, we assume that A 1 additionally 

submits the secret value r′  corresponding to the replaced public key IDsk  to the signing oracle. 

Finally, A 1 outputs a signature *S  on a message *m  corresponding to a public key 

*ID
pk  for an identity *ID  which is the challenged identity ID . A 1 wins the game if 

*
* * *( , , , , ) 1

ID
Verify params ID m pk S =  and the following conditions hold: 

 Extract private key on identity *ID  has never been queried. 
 *ID  can not be an identity for which both the public key has been replaced and the 

partial private key has been extracted. 

 Signing query on message *m  for identity *ID  with respect to *ID
pk  has never 

been queried. 
Game 2: This is a game in which A 2 interacts with its challenger C. 



Setup: C runs Setup to generate a master key and params . C gives both params and the 
master key to A 2. 

Extract Private Key: For any identity ID  except the challenged ID , C computes the 

private key IDsk  corresponding to the identity ID  and returns IDsk  to A 2. 

Request Public Key: Upon receiving a public key query for any ID , C computes the 

corresponding public key IDpk  and sends it to A 2. 

Signing Queries: On receiving such a query on a identity ID , C uses the private key IDsk  

corresponding to the identity ID  to compute the signature S  and sends it to A 2. 

Finally, A 2 outputs a signature *S  on a message *m  corresponding to a public key 

*ID
pk  for an identity *ID  which is the challenged identity ID . A 2 wins the game if the 

following conditions hold: 

 *
* * *( , , , , ) 1

ID
Verify params ID m pk S =  

 * *( , )Sign ID m  with respect to *ID
pk  has been never queried. 

 Extract Private Key on *ID  has never been queried. 

3. Our scheme 

3.1.Scheme Description 

In this section, we present an ID-based signature scheme without pairing. Our scheme 
consists of four algorithms: Setup, Extract, Sign, and Verify. 

Setup: This algorithm takes a security parameter k  as input, returns system parameters and 
a master key. Given k , KGC does as follows.  

1) Choose a k -bit prime p  and determine the tuple { , / , , }p pF E F G P  as defined in 

Secttion 2.1. 

2) Choose the master private key *
nx Z∈  and compute the master public key 

pubP x P= ⋅ . 

3) Choose two cryptographic secure hash functions * *
1 :{0,1} nH Z→  and 

* *
2 :{0,1} nH Z→ . 

4) Publish 1 2{ , / , , , , , }p p pubparams F E F G P P H H=  as system parameters and keep 



the master key x  secretly. 
Partial-Private-Key-Extract: This algorithm takes system parameters, master key and a user’s 

identifier as input, returns the user’s ID-based private key. With this algorithm, KGC works as 

follows for each user with identifier UID . 

1) Choose at random *
ID nr Z∈ , compute ID IDR r P= ⋅  and 1( , )ID IDh H ID R= . 

2) Compute modID ID Us r h x n= + . 

The user’s s partial private key is the tuple { , }ID ID IDd s R=  and he can validate her private 

key by checking whether the equation ID ID ID pubs P R h P⋅ = + ⋅  holds. The private key is valid if 

the equation holds and vice versa. 

Set-Secret-Value: The user with identity ID  picks randomly *
ID ns Z′ ∈  sets IDs′  as his 

secret value. 

Set-Private-Key: Given params , the user's partial private key IDd  and his secret value  

IDs′  and output a pair ( IDd , IDs′ ) as the user's private key. 

Set-Public-Key: This algorithm takes params , the user's secret value IDs′  as inputs, and 

generates the user's public key as ID IDpk s P′= ⋅ . 

Sign: This algorithm takes system parameters, user's partial private key IDd , user's secret 

value IDs′ , and a message m  as inputs, returns a signature of the message m . The user does as 

follows. 

1) Choose at random *
nl Z∈  to compute R l P= ⋅ . 

2) Compute 2 ( , , )IDh H m R pk= . 

3) Verify whether the equation gcd( , ) 1l h n+ =  holds. If the equation does not hold, 

return to step 1). 

4) Compute 1( ) ( ) modID IDs l h s s n− ′= + + . 

5) The resulting signature is ( , ,IDR R s ). 

Verify: To verify the signature ( , ,IDR R s ) for message m  and identity ID , the verifier 

first computes 1( , )ID IDh H ID R= , 2 ( , , )IDh H m R pk=  and then checks whether 



( ) ID ID ID pubs R h P pk R h P⋅ + ⋅ = + +                   (5) 

Accept if it is equal. Otherwise reject. 

Since R l P= ⋅ , modID ID Us r h x n= +  and 1( ) ( ) modID IDs l h s s n− ′= + + , we have  

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
ID ID

ID ID ID ID

ID ID ID ID U pub

s R h P l h s s l P h P

l h s s l h P s s P
s P s P pk R h P

−

−

′⋅ + ⋅ = + + ⋅ ⋅ + ⋅

′ ′= + + ⋅ + ⋅ = + ⋅
′= ⋅ + ⋅ = + + ⋅

        (6) 

Then the correctness of our scheme is proved. 

3.2.Security Analysis 

We prove the security of our schemeΣin the random oracle model which treats 1H  and 

2H as two random oracles [9] using the signature security model defined in [2]. As for the security 

of Σ, the following theorem is provided. 
Theorem 1. Our scheme is secure against existential forgery under adaptively chosen 

message attacks in the random oracle model with the ECDLP is intractable. 
This theorem follows from the following Lemmas 1 and 2. 

Lemma 1. Let A 1 be a type 1 Adversary in game 1. Assume  A 1 makes 
iHq queries to 

random oracles iH (i=1, 2) and Eq  queries to the partial private-key extraction oracle and Eq′  

queries to the private-key extraction oracle, and pkq  queries to the public-key request oracle, and 

Sq  queries to signing oracle. If A 1 can break Σwith probability 

2 2
10( 1)( ) / 2k

H H Sq q qε ≥ + + , then the ECDLP can be solved within running time 

t ≤
2

23 /Hq t ε  and with probability 1/ 9ε ′ ≥ . 

Proof: Suppose that there is a type 1 Adversar A 1 for an adaptively chosen message attack 
against Σ. Then, we show how to use the ability of A 1 to construct an algorithm F solving the 
ECDLP. 

Suppose F is challenged with a ECDLP instance ( ,P Q ) and is tasked to compute *
nx Z∈  

satisfying Q x P= ⋅ . To do so, F picks an identity IID  at random as the challenged ID  in 

this game, and gives 1 2{ , / , , , , , }p p pubF E F G P P Q H H=  to A 1 as the public parameters. 

Then  F answers A 1’s queries as follows. 



H1-Queries: F maintains a hash list 
1HL of tuple ( , , ,

i i ii ID ID IDID R s h ) as explained below. 

The list is initially empty. When A 1 makes a hash oracle query on iID , if the query iID  has 

already appeared on 
1HL , then the previously defined value is returned. Otherwise, F acts as 

described in the partial private key extraction queries. 
Partial Private Key Extraction Queries: A 1 is allowed to query the extraction oracle for 

an identity iID . F query 1H  oracle, iID  is on 
1HL , then F  response with 

( , , ,
i i ii ID ID IDID R s h ). Otherwise, if simulates the oracle as follows. It chooses *,i i na b Z∈  at 

random, sets 
iID i pub iR a P b P= ⋅ + ⋅ , 

iID is b= , 1( , ) mod
i iID i ID ih H ID R a n= ← − , response 

with ( , , ,
i i ii ID ID IDID R s h ), and inserts ( , , ,

i i ii ID ID IDID R s h ) into 
1HL . Note that ( , ,

i i iID ID IDR s h ) 

generated in this way satisfies the equation ID ID ID pubs P R h P⋅ = + ⋅  in the partial private key 

extraction algorithm. It is a valid secret key.  

Public Key Extraction Queries: F maintains a list pkL  of tuple ( , ,
i ii ID IDID s pk′ ) which is 

initially empty. When A 1 queries on input iID , F checks whether pkL  contains a tuple for this 

input. If it does, the previously defined value is returned. Otherwise, F picks a random value 

*
ID ns Z′ ∈ , computes 

i iID IDpk s P′= ⋅  and returns 
iIDpk . Then, adds ( , ,

i ii ID IDID s pk′ ) to the 

pkL . 

Private Key Extraction Queries: For query on input iID , If i IID ID= , F stops and 

outputs “failure”. Otherwise, F performs as follows: 

If the 
1HL and the pkL contain the corresponding tuple ( , , ,

i i ii ID ID IDID R s h ) and the tuple 

( , ,
i ii ID IDID s pk′ ) respectively, F sets { , }

i i iID ID IDsk d s′=  and sends it to A 1, where 

{ , }ID ID IDd s R= . Otherwise, F makes a partial private key extraction query and a public key 

extraction query on iID , then simulates as the above process and sends { , }
i i iID ID IDsk d s′=  to 

A 1. 

Public Key Replacement:When A 1 queries on input ( ,
ii IDID pk ),F checks whether the 

tuple ( , ,
i ii ID IDID s pk′ ) is contained in the pkL . If it does, F sets 

i iID IDpk pk=  and adds the 



tuple ( , ,
i ii ID IDID s pk′ ) to the pkL . Here we assume that F can obtain a replacing secret value 

iIDs′  corresponding to the replacing public key 
iIDpk  from A 1. Otherwise, F executes public 

key extraction to generate ( , ,
i ii ID IDID s pk′ ), then sets 

i iID IDpk pk=  and adds ( , ,
i ii ID IDID s pk′ ) 

to the pkL . 

H2-Queries: F maintains a hash list 
2HL  of tuple ( , , , ,

ij j i ID jm R ID pk h ). When A 1 

makes H2 queries for identity iID  on the message jm , F chooses a random value *
j nh Z∈ , 

sets 2 ( , , )
ij j j IDh H m R pk=  and adds ( , , , ,

ij j i ID jm R ID pk h ) to 
2HL , and sends jh  to A 1. 

Signing Queries: When a signing query on ( ,i jID m ) is coming, F acts as follows: 

If i IID ID= , F outputs “failure”. Otherwise, F recovers ( , , ,
i i ii ID ID IDID R s h ) from 

1HL  

and ( , ,
i ii ID IDID s pk′ ) from pkL . Then F gets the secret key { , }

i i iID ID IDsk d s′= , he can execute 

the sign algorithm as described in section 3.1. At last, F response with ( , ,
iID j jR R s ). 

Finally, A 1 stops and outputs a signature *
* { , , }j jID

S R R s=  on the message *m  with 

respect to the public key *ID
pk  for the identity *ID , which satisfies the following equation 

*
* * *( , , , , ) 1

ID
Verify params ID m pk S = . 

If i IID ID≠ , F outputs “failure” and aborts. Otherwise, F recovers the tuple 

( , , ,
i i ii ID ID IDID R s h ) from 

1HL , the tuple ( , ,
i ii ID IDID s pk′ ) from pkL  and the tuple 

( , , , ,
ij j i ID jm R ID pk h ) from 

2HL . 

Then, we have 

( )
i i ij j j ID ID ID pubs R h P pk R h P⋅ + ⋅ = + +                  (7) 

From the forgery lemma[12], if we have a replay of F with the same random tape but 

different choice of 2H  will output another valid signatures { , , }
iID j jR R s′ . Then we have  

( )
i i ij j j ID ID ID pubs R h P pk R h P′ ′⋅ + ⋅ = + + ,                  (8) 

When eliminating jR  in the above two equation, we could have 



( ) ( ) ( )( )
i i iID j j pub j j j j j j ID IDh s s P s s h h P s s pk R′ ′ ′ ′− = − − − +   (9) 

Let 
i iID IDpk s P′= ⋅ , 

iID i pub iR a P b P= ⋅ + ⋅ , pubP Q x P= = ⋅ , then we have 

( ) ( ) ( )( )
i iID j j j j j j j j ID i ih s s x s s h h s s s a x b′ ′ ′ ′ ′− = − − − + ⋅ + .      (10) 

Hence, we have 

( )( ) ( ) ( )( )
i iID i j j j j j j j j ID ih a s s x s s h h s s s b′ ′ ′ ′ ′− − = − − − + .        (11) 

Let 1(( )( )) mod
iID i j ju h a s s n−′= − −  and ( ) ( )( )

ij j j j j j ID iv s s h h s s s b′ ′ ′ ′= − − − + ,  

then, we get modx uv n= . According to [12, Lemma 4], the ECDLP can be solved with 

probability 1/ 9ε ′ ≥  and time 
2

23 /Ht q t ε′ ≤ . 

Lemma 2. Let A 2 be a type 2 Adversary in game 2. Assume that, A 2 makes 
iHq queries to 

random oracles iH (i=1, 2) and Eq  queries to the partial private-key extraction oracle and Eq′  

queries to the private-key extraction oracle, and pkq  queries to the public-key request oracle, and 

Sq  queries to signing oracle. If A 2 can break Σwith probability 

2 2
10( 1)( ) / 2k

H H Sq q qε ≥ + + , then the ECDLP can be solved within running time 

t ≤
2

23 /Hq t ε  and with probability 1/ 9ε ′ ≥ . 

Proof: Suppose that there is a type 2 Adversar A 2 for an adaptively chosen message attack 
against Σ. Then, we show how to use the ability of A 2 to construct an algorithm F solving the 
ECDLP. 

Suppose F is challenged with a ECDLP instance ( ,P Q ) and is tasked to compute *
ny Z∈  

satisfying Q y P= ⋅ . To do so, F randomly picks a value *
nx Z∈  as the system master key, 

sets pubP x P= ⋅ , picks an an identity IID  at random as the challenged ID  in this game, and 

gives the public parameters 1 2{ , / , , , , , }p p pubF E F G P P H H  and the system master key x  to  

A 2. Then  F answers A 1’s queries as follows. 

H1-Queries: F maintains a hash list 
1HL of tuple ( , ,

i ii ID IDID R h ). The list is initially empty. 

When A 2 makes a hash oracle query on iID , if the query iID  has already appeared on 
1HL , 

then the previously defined value is returned. Otherwise, F  chooses a random value *
iID nh Z∈ , 



sets 1( , )
i iID i IDh H ID R=  and adds ( , ,

i ii ID IDID R h ) to 
1HL , and sends 

iIDh  to A 1. 

Public Key Extraction Queries: F maintains a list pkL  of tuple ( , ,
i ii ID IDID s pk′ ) which is 

initially empty. When A 2 queries on input iID , F checks whether pkL  contains a tuple for this 

input. If it does, the previously defined value is returned. Otherwise, if i IID ID= , F  sets 

iIDs′ =⊥ ,  
iIDpk Q= , adds ( , ,

i ii ID IDID s pk′ ) to the pkL . If i IID ID≠ , F picks a random 

value *
ID ns Z′ ∈ , computes 

i iID IDpk s P′= ⋅  and returns 
iIDpk . Then, adds ( , ,

i ii ID IDID s pk′ ) to 

the pkL . 

Private Key Extraction Queries: F maintains a list skL  of tuple ( , , ,
i i ii ID ID IDID R s h ) 

which is initially empty. For query on input iID , F performs as follows: 

If the query iID  has already appeared on skL , then the previously defined value is returned. 

Otherwise,  F generates a random number  *
iID nr Z∈ , compute 

i iID IDR r P= ⋅ , queries 1H  

oracle to get the value 1( , )
i iID i IDh H ID R=  and adds the tuple ( , , ,

i i ii ID ID IDID R s h ) to skL . 

Then F makes the public key extraction queries and gets the tuple ( , ,
i ii ID IDID s pk′ ). If 

i IID ID= , F outputs “failure”. Otherwise,  F sets { , }
i i iID ID IDsk d s′=  and sends it to A 2, 

where { , }ID ID IDd s R= . Otherwise, F makes a partial private key extraction query and a public 

key extraction query on iID , then simulates as the above process and sends { , }
i i iID ID IDsk d s′=  

to A 2.and adds ( , , , ,
i i i ii ID ID ID IDID r R s h ) to 

1HL , and sends 
iIDh  to A 2. 

H2-Queries: F maintains a hash list 
2HL  of tuple ( , , , ,

ij j i ID jm R ID pk h ). When A 2 

makes H2 queries for identity iID  on the message jm , F chooses a random value *
j nh Z∈ , 

sets 2 ( , , )
ij j j IDh H m R pk=  and adds ( , , , ,

ij j i ID jm R ID pk h ) to 
2HL , and sends jh  to A 2. 

Signing Queries: When a signing query on ( ,i jID m ) is coming, F acts as follows: 

If i IID ID= , F outputs “failure”. Otherwise, F recovers ( , , ,
i i ii ID ID IDID R s h ) from 

1HL  



and ( , ,
i ii ID IDID s pk′ ) from pkL . Then F gets the secret key { , }

i i iID ID IDsk d s′= , he can execute 

the sign algorithm as described in section 3.1. At last, F response with ( , ,
iID j jR R s ). 

Finally, A 2 stops and outputs a signature *
* { , , }j jID

S R R s=  on the message *m  with 

respect to the public key *ID
pk  for the identity *ID , which satisfies the following equation 

*
* * *( , , , , ) 1

ID
Verify params ID m pk S = . 

If i IID ID≠ , F outputs “failure” and aborts. Otherwise, F recovers the tuple 

( , , ,
i i ii ID ID IDID R s h ) from 

1HL , the tuple ( , ,
i ii ID IDID s pk′ ) from pkL  and the tuple 

( , , , ,
ij j i ID jm R ID pk h ) from 

2HL . 

Then, we have 

( )
i i ij j j ID ID ID pubs R h P pk R h P⋅ + ⋅ = + +                  (7) 

From the forgery lemma[12], if we have a replay of F with the same random tape but 

different choice of 2H  will output another valid signatures { , , }
iID j jR R s′ . Then we have  

( )
i i ij j j ID ID ID pubs R h P pk R h P′ ′⋅ + ⋅ = + + ,                  (8) 

When eliminating jR  in the above two equation, we could have 

( ) ( ) ( ) ( )
i i ij j ID j j j j j j ID ID j j pubs s pk s s h h P s s R h s s P′ ′ ′ ′ ′− = − − − − −   (9) 

Let 
iIDpk Q y P= = ⋅ , 

i iID IDR r P= ⋅ , pubP x P= ⋅ , then we have 

( ) ( ) ( ) ( )
i ij j j j j j j j ID ID j js s y s s h h s s r h s s x′ ′ ′ ′ ′− = − − − − − .      (10) 

Let 1( ) modj ju s s n−′= −  and ( ) ( ) ( )
i ij j j j j j ID ID j jv s s h h s s r h s s x′ ′ ′ ′= − − − − − ,  

then, we get modx uv n= . According to [12, Lemma 4], the ECDLP can be solved with 

probability 1/ 9ε ′ ≥  and time 
2

23 /Ht q t ε′ ≤ . 

4. Comparison with previous scheme 

In this section, we will compare the efficiency of our new scheme with three latest CLS 
schemes, i.e. Huang et al.’s scheme [8], Tso et al.’s scheme [9] and Du et al.’s scheme [10]. In the 
computation efficiency comparison, we obtain the running time for cryptographic operations using 
MIRACAL [13], a standard cryptographic library.  



The hardware platform is a PIV 3-GHZ processor with 512-MB memory and a Windows XP 
operation system. For the pairing-based scheme, to achieve the 1024-bit RSA level security, we 

use the Tate pairing defined over the supersingular elliptic curve 2 3/ :pE F y x x= +  with 

embedding degree 2 q⋅  is a 160-bit Solinas prime 159 172 2 1q = + +  and p  a 512-bit prime 

satisfying 1 12p qr+ = . For the ECC-based schemes, to achieve the same security level, we 

employed the parameter secp160r1[14], recommended by the Certicom Corporation, where 

160 312 2 1p = − − . The running times are listed in Table 1 where sca.mul. stands for scalar 

multiplication. 
Table 1. Cryptographic Operation Time(in milliseconds) 

Modular 
exponentiation 

Pairing Pairing-based 
sca.mul 

ECC-based 
sca.mul. 

Map-to-point 
hash 

5.31 20.04 6.38 2.21 3.04 
To evaluate the computation efficiency of different schemes, we use the simple method from 

[15]. For example, the sign algorithm of our scheme requires one ECC-based scale multiplication; 
thus, the computation time of the sign algorithm is 2.21 × 1 = 2.21 ms; the verify algorithm has to 
carry out three ECC-based scalar multiplications, and the resulting running time is 2.21 × 3 = 6.63 
ms. As another example, in Huang et al.’s scheme[8], the sign algorithm should carry out a 
pairing-based scalar multiplications and a map-to-point hash computation; thus, the computation 
time for a client is 6.38  +3.04= 9.42 ms; the verify algorithm has to carry out three pairing, a 
map-to-point hash computation , then the resulting running time is 20.04 × 3 + 3.04 = 63.16 ms. 
Table 2 shows the results of the performance comparison. 

Table 2. Performance comparison of different schemes 
Running time  

Sign Verify 
Huang et al.’s 

scheme [8] 
9.42 ms 63.16 ms 

Tso et al.’s 
scheme [9] 

5.31 ms 48.39 ms 

Du et al.’s 
scheme [10] 

6.38 ms 26.40 ms 

Our scheme 2.21 ms 6.63 ms 
According to Table 2, the running time of the sign algorithm of our scheme is 23.46% of 

Huang et al.’s schemes, 41.62% of Tso et al.’s scheme and 34.64% of Du et al.’s scheme, the 
running time of the verify algorithm of our scheme is 10.50% of Huang et al.’s schemes, 13.70% 
of Tso et al.’s scheme and 25.12% of Du et al.’s scheme. Thus our scheme is more useful and 
efficient than the previous schemes[3-10]. 



5. Conclusion 

In this paper, we have proposed an efficient certificateless signature scheme without bilinear 
pairings. We also prove the security of the scheme under random oracle. Compared with previous 
scheme, the new scheme reduces both the running time. Therefore, our scheme is more practical 
than the previous related schemes for practical application. 

6. References 

[1]. A. Shamir, Identity-based cryptosystems and signature schemes, Proc. CRYPTO1984, LNCS, 
vol.196, pp.47–53, 1984. 

[2]. S. Al-Riyami, K.G. Paterson, Certificateless public key cryptography, Proceedings of 
ASIACRYPT 2003, LNCS 2894, Springer-Verlag, 2003, pp. 452–473. 

[3]. D.H. Yum, P.J. Lee, Generic construction of certificateless signature, ACISP'04, LNCS 3108, 
Springer, 2004, pp. 200–211. 

[4]. X. Li, K. Chen, L. Sun, Certificateless Signature and Proxy Signature Schemes from Bilinear 
Pairings, Lithuanian Mathematical Journal, vol. 45, Springer-Verlag, 2005, pp. 76–83. 

[5]. Z.F. Zhang, D.S. Wong, J. Xu, et al., Certificateless public-key signature: security model and 
efficient construction, in: J. Zhou, M. Yung, F. Bao (Eds.), ACNS 2006, LNCS 3989, 
Springer-Verlag, Berlin, 2006, pp. 293–308. 

[6]. M.C. Gorantla, A. Saxena, Anefficient certificateless signature scheme, in: Y.Hao, et al., 
(Eds.), CIS 2005, Part II, LNAI 3802, Springer-Verlag, Berlin, 2005, pp. 110–116. 

[7]. W.-S. Yap, S.-H. Heng, B.-M. Goi, An efficient certificateless signature scheme, Proc. Of 
EUC Workshops 2006, LNCS, vol. 4097, 2006, pp. 322–331. 

[8]. X. Huang, Yi Mu, W. Susilo, D.S. Wong, Certificateless signature revisited, ACISP 2007, 
LNCS, vol. 4586, Springer-Verlag, 2007, pp. 308–322. 

[9]. R. Tso, X. Yi, and X. Huang, Efficient and Short Certificateless Signature, CANS 2008, 
LNCS 5339, pp. 64–79, 2008. 

[10]. H. Du, Q. Wen, Efficient and provably-secure certificateless short signature scheme from 
bilinear pairings, Computer Standards & Interfaces 31 (2009) 390–394. 

[11]. L. Chen, Z. Cheng, and N.P. Smart, Identity-based key agreement protocols from pairings, Int. 
J. Inf. Secur, no.6, pp.213–241, 2007. 

[12]. P. David, S. Jacque，Security Arguments for Digital Signatures and Blind Signatures, Journal 
of Cryptology, Vol. 13, No. 3. p. 361-396, 2000. 

[13]. Shamus Software Ltd., Miracl library, http://www.shamus. ie/index.php?page=home. 
[14]. The Certicom Corporation, SEC 2: Recommended Elliptic Curve Domain Parameters, 

www.secg.org/collateral/sec2_final.pdf.  
[15]. X. Cao, X. Zeng, W. Kou, and L. Hu, Identity-based anonymous remote authentication for 

value-added services in mobile networks, IEEE Transactions on Vehicular Technology, vol.58, 
no.7, pp.3508 - 3517, 2009. 


