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Abstract. The design of rational cryptographic protocols is a recently
created research area at the intersection of cryptography and game the-
ory. In this paper, we propose a new m-out-of-n rational secret sharing
scheme requiring neither the involvement of the dealer (except during the
initial share distribution) nor a trusted mediator. Our protocol leads to
a Nash equilibrium surviving the iterated deletion of weakly dominated
strategies for m ≥ 4. Our construction is information theoretically secure
and it is immune against backward induction attacks. Contrary to Kol
and Naor who used a specific cryptographic primitive in their TCC’08 pa-
per (namely, meaningful/meaningless encryption), the immunity of our
scheme is based on the use of bivariate polynomials and one-time pads.
To the best of our knowledge, it is the first time that such polynomials
have been used for rational secret sharing. Our scheme is efficient and
does not require any physical assumptions such as envelopes or ballot
boxes. As most of existing rational protocols, our construction requires
simultaneous broadcast channels. However, our proposed scheme does
not require any computational assumption and it provides information
theoretical security.

Keywords: secret sharing scheme, rational cryptography, information
theoretical security, bivariate polynomial.

1 Introduction

1.1 Preliminary

In 1979, Shamir [23] and Blakley [4] independently introduced the con-
cept of secret sharing scheme (SSS) in order to facilitate the distributed



storage of private data in an unreliable environment. Since then, secret
sharing has become a major building block for cryptographic primitives
in particular in the area of multiparty computation (MPC) [5]. The goal
of a (perfect) SSS is to distribute a secret value s amongst a finite set of
participants P = {P1, . . . , Pn} in such a way that only specific subsets
of P can reconstruct s while the others have no information about this
secret element whatsoever.

Traditional cryptographic models assume that some parties are honest
(i.e. they faithfully follow a given protocol) while others are malicious par-
ticipants against whom the honest players must be protected. However,
in many real-world applications, a participant will choose to be dishon-
est if deviating from the protocol will provide him with some advantage.
Game theory can be used to model such a situation where players are
self-interested (i.e. rational). In this representation, each participant Pi

has a utility function Ui which will dictate his strategy during the execu-
tion of the protocol. Under this new model, the important question is to
design meaningful protocols. Indeed, using natural assumptions regard-
ing the utilities of the players, a classical threshold SSS completely fails:
each player is better off withholding his share no matter what the other
players do and, as a result, the secret s will never be reconstructed. For
similar reasons, generic MPC solutions [3, 8] are not applicable since par-
ticipants are sorted into ”good” and ”bad” members from the beginning
of the protocol.

Halpern and Teague introduced the first general approach for threshold
rational secret sharing in 2004 [11]. Their paper was followed by several
subsequent results [1, 2, 9]. The basic constructions presented in those
papers have the disadvantage of requiring the permanent involvement
of the dealer even after the initial share distribution. To overcome this
drawback, [1, 2, 9] replace the dealer by several iterations of MPC proto-
cols. Unfortunately, as pointed out by Fuchsbauer et al. [10], those MPC
functionalities are complex and it is unclear whether this approach is
computationally efficient.

Another noticeable point of the constructions mentioned above is the fact
that a digital signature is used at the beginning of these rational protocols
to ensure the correctness of the shares to be distributed by the dealer.
Since no rational protocols can have a commonly-known bound on its
running time (see [11] for details), Kol and Naor pointed out that the
signature scheme could be broken after an exponential number of rounds
[14]. Using a backward induction argument, they deduced that the partic-



ipants would better keep silent at every round and thus the secret would
never be reconstructed from the shares.

A different approach to tackle the problem of designing a rational SSS was
taken by Lepinski et al. [16], Izmalkov et al. [12] and Micali and abhi shelat
[19]. They obtained rational MPC protocols secure against coalitions of
adversaries. However, the hardware needed for these operations (secure
envelopes and ballot boxes) is very restrictive and implementing such
approaches is likely to be complicated.

1.2 Our results

As in the literature previously quoted, we design a protocol for rational
threshold secret sharing. Our construction removes all of the drawbacks
mentioned above. We neither assume an online dealer or any trusted par-
ties (the mediator for example), nor do we rely on secure MPC to redis-
tribute the shares of the secret. Instead, we borrow the idea from proactive
SSS [24] to renew the shares by the interaction between players. Unlike
constructions quoted above, the secret s is masked using a one-time pad.
This provides information theoretical security and makes our construc-
tion immune to backward induction mentioned previously. Our scheme is
based on symmetric polynomials. Even if this technique has already been
used before for MPC protocols [7], to the best of our knowledge, it is
the first time that they appear in rational cryptography. Our protocol is
efficient in terms of round complexity, share size and computation and it
guarantees that all players learn the secret at a Nash equilibrium whose
strategy survives the iterated elimination of weakly dominated strategies.
As in most of the prior work, we need a simultaneous broadcast channel
and secure privacy channels. The protocol presented in this paper requires
the threshold value m to be at least 4.

2 Game Theoretic Background

In this section, we present the game theoretic concepts our cryptographic
construction relies on. As said in Sect.1.2, we assume the existence of
simultaneous channels for each participant as well as the presence of pri-
vate channels between any pair of players. We are to design a rational SSS
with the expectation that, when rationally played, it opens the secret to
all the players.

Definition 1 ([21]). A n-player game Γ = ({A1, . . . , An}, {U1, . . . , Un}),
presented in normal/standard form, is determined by specifying, for each
player Pi, a set of possible actions Ai and a utility function Ui : A1 ×



· · · × An → R. Any tuple of actions a := (a1, . . . , an) ∈ A1 × . . . × An is
called an outcome.

The utility function of each player expresses his preferred choices over
outcomes.

Definition 2 ([21]). A player Pi prefers (resp. weakly prefers) outcome
a to a′ if and only if: Ui(a) > Ui(a

′) (resp. Ui(a) ≥ Ui(a
′)).

The game Γ is played by having each party Pi choose an action ai ∈ Ai

and having all parties play their actions simultaneously. The payoff to Pi

is the value given by his utility function: Ui(a1, . . . , an). The goal of each
participant to the game is to maximize his utility function.

In order to obtain stable strategies (i.e. equilibria), some randomization
in the choice of strategies is needed.

– Each player Pi chooses his action ai ∈ Ai using a distribution σi.

– We are interested in expected utilities for each player.

Definition 3 ([21]). Let Γ = ({A1, . . . , An}, {U1, . . . , Un}) be a game
in normal form. Consider a tuple of strategy vectors σ = (σ1, . . . , σn).
σi is a best response of Pi to σ−i if it maximizes Ui(σi, σ−i) where σ−i

represents the (n− 1)-tuple of strategies played by the remaining players.

Definition 4 ([21]). Let Γ = ({A1, . . . , An}, {U1, . . . , Un}) be a game in
normal form and let σi be a distribution over Ai. A tuple σ = (σ1, . . . , σn)
is a mixed-strategy Nash equilibrium if for all i and every distribution
σ′
i over Ai, we have: Ui(σ

′
i, σ−i) ≤ Ui(σ).

Intuitively, Definition 4 means that Pi has no incentive to deviate from σi
as long as the remaining participants follow σ−i (for all i ∈ {1, . . . , n}).
A Nash equilibrium formalizes a notion of rationality which is strictly
internal: each player only cares about his own payoff.

Theorem 1 (Nash [20]). Any game with a finite set of players and a
finite set of strategies has a Nash equilibrium of mixed-strategies.

Definition 5 ([13]). Given Γ = ({A1, . . . , An}, {U1, . . . , Un}), we say
that action ai ∈ Ai is weakly dominated with respect to A−i(= ×

j 6=i
Aj) if

there exists a randomized strategy σi ∈ ∆(Ai) such that:

1. ∀a−i ∈ A−i ui(σi, a−i) ≥ ui(ai, a−i),

2. ∃a−i ∈ A−i : ui(σi, a−i) > ui(ai, a−i).



The notion of Nash equilibrium is fundamental in game theory. In any
Nash equilibrium, no player assigns positive probability to any strictly
dominated action. Thus, any Nash equilibrium involving such a strategy
will not occur in practice. As a consequence, for our cryptographic setting,
we can purge those strategies out.

Definition 6 ([13]). Given Γ = ({A1, . . . , An}, {U1, . . . , Un}) and Â ⊂
A, let DOMi(Â) denote the set of strategies in Âi that are weakly domi-
nated with respect to Â−i. Set:

A∞
i :=

⋂

k≥1

Ak
i where ∀k ≥ 1 Ak

i := Ak−1
i \DOMi(A

k−1)

A Nash equilibrium σ = (σ1, . . . , σn) of Γ survives iterated deletion of
weakly dominated strategies if σi ∈ ∆(A∞

i ) for all i ∈ {1, . . . , n}.

3 Our Protocol for m-out-of-n Rational Secret Sharing

Secure against a Single Deviation

In order for the reader to get an easier understanding of our protocol, we
first give a general view of our secret reconstruction phase in Sect. 3.1.
The full description of our scheme is in Sect. 3.2.

3.1 Overview of the Reconstruction Phase

Our scheme relies on the masking of the secret s. Such an approach al-
ready appeared in [10]. However, Fuchsbauer et al. used a verifiable ran-
dom function (VRF) which is a cryptographic primitive the existence of
which is based on some computational assumption.

In order to provide information theoretical security, the dealer will first
use a one-time pad r over the secret s. He will also mask r in a simi-
lar way with another random element r′ and he will publish r + r′ to a
register accessible to all players. In order to recover s, the players will
need to obtain both r and r′. That is why the second task of the dealer
is to distribute r and r′ amongst the n players using two independent
instances of Shamir’s scheme [23] with threshold m. Note that the public
value r + r′ will be used by the participants to check the consistency of
the two reconstructions. The third task of the dealer consists of sharing
s+ r using a bivariate polynomial having degree m− 2 in each of its two
unknowns.

Assume that m∗(≥ m) players want to participate in the secret recon-
struction process. We first consider the case where m is even. A similar



construction holds when m is odd (see Sect. 3.5). Note that this differen-
tiation ”m is even/odd” has no influence on the dealer’s job when initially
sharing s.

The reconstruction phase proceeds in three stages. During the first two
stages, the goal of the m∗ players is to recover the pad r (using r′ and
r + r′). The third stage is a sequence of ”invalid” and ”valid” iterations
which is a frequently used technique for rational SSS. During each of these
iterations, the broadcast shares correspond to s+r. Those iterations have
the following properties:

– ”invalid” iteration: no information about s is revealed since the num-
ber of shares related to s + r hold by each participant is less than
the threshold value m− 1. At the end of such an iteration, shares are
renewed.

– ”valid” iteration: every player recovers s on the assumption that every
participant follows the protocol (which will be demonstrated to be the
case since they are rational).

The key in this process is the fact that nobody knows in advance whether
the next iteration will be ”valid”.

During any iteration of the third stage, each of the m∗ participating play-
ers Pij chooses a bit bij such that bij = 1 with probability α depending on
the utilities of the n participants. Then, all m∗ players commonly run a
simple MPC protocol to compute the parity value p := bi1⊕bi2⊕· · ·⊕bim∗

.
Our MPC protocol is an extension of what was done in [11] in the case
of three players.

If p = 0 then the m∗ players are asked to repeat the previous iteration.
Otherwise, each Pij broadcasts his share to the m∗ − 1 other members if
bij = 1.

In the case the protocol did not abort before this point, we have two
possibilities:

1. Pij has at most m− 2 shares (for some j): the players run a check pha-

se to catch potential cheaters. If the shares are correct, then the m∗

players renew their shares of s using a technique from proactive SSS
[24] and they start over by choosing a new random bit.

2. All players have at least m− 1 shares: the set of m∗ players attempt
to reconstruct s+ r using polynomial interpolation or error correcting
techniques (see Sect. 3.2 for details). Once they obtain s+ r, they can
deduce s since they got r by the end of the second stage.



3.2 Construction

Our computations will be done in the finite field IFq for which ω is a prim-
itive element. As mentioned earlier, we denote P := {P1, . . . , Pn} the set
of participants and the secret value to be distributed is s ∈ IFq. As said
in the previous section, we consider that the threshold value m is even.

During the secret reconstruction phase, we assume the existence of a si-
multaneous broadcast channel for all participating players and the pres-
ence of private channels between any pair of these players. All these chan-
nels are authenticated.

For each i ∈ {1, . . . , n}, denote ui (respectively, u
+
i ) the minimal (respec-

tively, maximal) payoff of Pi when he retrieves the secret and denote u−i
his maximal payoff when Pi does not recover s. As usually assumed in
the rational cryptographic context, we consider: u+i > ui > u−i for all
i ∈ {1, . . . , n}.

3.2.1 Initial Share Phase. This is the only phase where the dealer
is active. His goal is to distribute s over P.

1. The dealer chooses a two independent random values r and r′ uni-
formly distributed over IFq. The dealer publishes the value r+ r′ in a
public register.

2. The dealer shares r into (r1, . . . , rn) and r′ into (r′1, . . . , r
′
n) using

two independent instances of Shamir’s m-out-of-n SSS. He distributes
through a secure channel the pair (ri, r

′
i) to Pi for all i ∈ {1, . . . , n}.

3. Denote v := s+ r. The dealer constructs symmetric bivariate polyno-

mial f(x, y) =
m−2∑
i=0

m−2∑
j=0

aij x
i yj where a00 = v. For each i, the dealer

sends the univariate polynomial hi(x) := f(x, ωi) to Pi through a
secure channel.

Remark 1. Due to the symmetry of f , we have hj(ω
i) = hi(ω

j) for any
pair (i, j). This property is fundamental in our work.

Remark 2. During the initial share phase, the dealer uses a symmetric
polynomial f to distribute the shares of v. We would like to emphasize
why the degree of f in each of these two variable is m − 2. Since those
shares are not authenticated by any cryptographic primitive, in order
to verify the consistency of the data sent by a given Pi we require all
remaining m∗ − 1(≥ m− 1) participants to run the check phase.



3.2.2 Check Phase. The goal of this phase is to check the consis-
tency of the share λ broadcasted by Pi. This task is done by the players
participating in the secret reconstruction process – except Pi.

1. Each participating player Pj (j 6= i) broadcasts his check value hj(ω
i).

2. Each of these players checks, using polynomial interpolation, whether
the secret λ broadcast by Pi in Stage 3 of the secret reconstruction
phase is consistent with those hj(ω

i)’s (i.e. they check if λ = hi(0)).

3.2.3 Share Renewal Phase. As the check phase, share renewal is
done by the players participating in the secret reconstruction process.
We assume that there are m∗(≥ m) such players. For ease of descrip-
tion, we can assume without loss of generality that those players are
P1, P2, . . . , Pm∗ .

In this phase, each participating Pi plays a similar role to the dealer’s
(initial share phase) to renew his share for v.
1. Each Pi selects a random symmetric polynomial δi(x, y) of degree

m − 2 with δi(0, 0) = 0. He sends δi,j(x) := δi(x, ω
j) to Pj over

a private channel (for all j ∈ {1, . . . ,m∗} \ {i}) and Pi broadcasts
δi,0(x) = δi(x, 0) to all other m∗ − 1 participating players.

2. Using the data received from all Pi’s, every player Pj checks whether
both equalities (δi,j(0) = δi,0(ω

j)) and (δi,0(0) = 0) hold.
3. If one of these equalities is not satisfied for some player Pj , then Pj

aborts the whole protocol. Otherwise, every Pj computes and sends
to Pk the check values ci,j,k = δi,j(ω

k).
4. All the players perform the usual pair-wise checking protocol. If there

is any inconsistence, they stop the protocol. Otherwise, each Pj up-

dates his share as: hj(x)← hj(x) +
m∗∑
i=1

δi,j(x).

Remark 3. After the renewal phase, we have the following relation for the
new shares: hj(ω

k) = hk(ω
j) for any 1 ≤ j, k ≤ m∗.

3.2.4 Secret Reconstruction Phase. We assume that m∗(≥ m)
players participate in the secret reconstruction. As before, we can assume
that they are P1, P2, . . . , Pm∗ . Our reconstruction protocol contains three
stages for each of these m∗ players. The first stage is dedicated to the re-
covery of the random value r used by the dealer as a pad over the secret s.

Stage 1

1. Each Pi broadcasts his pair (ri, r
′
i). If some player Pj obtains less than

m∗ pairs (including his own), then Pj aborts the whole protocol.



2. Each Pi constructs two sets of shares. The first one Si,r consists of all
the first components of those m∗ pairs (i.e. the ri’s) and the second
set Si,r′ contains all the second components of the pairs (i.e. the r′i’s).
Player Pi checks if each of these sets can be interpolated by a polyno-
mial of degree at most m− 1. If this checking process is unsuccessful
for some Pj ’s, then Pj stops the protocol.

3. For each i ∈ {1, . . . , n}, we denote Ri (respectively R
′
i) the constant

term of the polynomial reconstructed by Pi corresponding to the set
Si,r (respectively Si,r′). Each Pi checks whether the sum Ri + R

′
i is

equal to the public value r + r′.
– If the verification is unsuccessful for some Pj , then he aborts the

protocol.
– Otherwise, all participants proceed to Stage 2.

The remaining two stages are used to recover v. Note that the threshold
now is m− 1 rather than m since the symmetric bivariate polynomial f
has degree m− 2 in each of its variables.

Stage 2
1. Each Pi chooses a bit bi with Pr(bi = 1) = α as well as a uniformly

distributed random bit b′i.
2. Denote di := bi ⊕ b′i. Let i+ denote i + 1 except that (m∗)+ is 1.

Similarly i− denotes i − 1 except that 1− is m∗. Each Pi sends b
′
i to

player Pi+ and di to player Pi− using private channels. If some Pj

does not send data to both neighbors Pj− and Pj+ , then the protocol
aborts.

3. Each Pi computes and broadcasts b′
i−
⊕di+ . If some Pj does not receive

the bits as prescribed, then the protocol aborts. Otherwise, denote
∆1,i, . . . ,∆m∗,i the m∗ elements collected by Pi during this broadcast

including his own. Each Pi computes pi =
m∗

⊕
j=1

∆j,i.

4. If pj = 0 for some Pj, then the whole protocol goes back to the first
step of Stage 2. Otherwise, all participants proceed to Stage 3.

Remark 4. When the m∗ players reach Stage 3, then we have: ∀i ∈
{1, . . . ,m∗} pi = 1. Requiring that all the pi’s be equal to 1 means that
each participant is holding an odd number of shares since m is even. This
is due to the fact that m − 1 (odd number) is the minimum number of
shares that a participant needs to uniquely determine a polynomial of
degree m− 2.

Stage 3
1. Each Pi broadcasts his share hi(0) if bi = 1. Denote ki the number of

shares that Pi received during the previous broadcast (including his
own if bi = 1).



2. If ki < m− 1 for at least m∗ − 1 players Pi, then:

(a) If ki is even for at least m∗−1 players Pi, then the protocol stops.

(b) Otherwise, all m∗ active players participate in the check phase. If
some Pj does not broadcast hj(ω

i) as required, then the protocol
aborts. Otherwise, all players go to the renewal phase and then
they proceed to the beginning of Stage 2.

3. If ki ∈ {m − 1,m} for at least m∗ − 1 players Pi, then each of these
players Pi interpolates the shares into a polynomial fi(0, y). If the
degree of fi(0, y) is m − 1 then Pi aborts the protocol. Otherwise,
he outputs fi(0, y) +Ri where Ri was computed at the third step of
Stage 1. After this computation, the protocol ends.

4. If ki ≥ m+1 for at least m∗− 1 players Pi, then each of these players
Pi chooses any (m+1)-subset hi,1, . . . , hi,m+1 of his ki values. Each Pi

forms a (m+1)-vector (hi,1 · · · hi,m+1) which is decoded using a [m+
1,m − 2, 3] generalized Reed-Solomon (GRS) decoder. Finally, each
Pi extracts the secret value s using the previous corrected codeword
and Ri and the protocol ends.

Remark 5. Our choice of ki at step 1 of Stage 3 is to insure that all
participants following the protocol’s instructions will obtain the same
value ki = k. This value k represents the number of elements which were
broadcast.

Remark 6. The goal of the check phase played at step 2 of Stage 3 is to
punish a single deviating player since, in such a case, the protocol would
abort and no one would learn s. Since we use a simultaneous broadcast
channel to send data (step 1 of Stage 3), no players know whether the
next iteration will correspond to step 2 or step 3/4 – called ”invalid-valid”
in Sect. 3.1 – before data transmission. Furthermore, step 2.b does not
reveal anything about v since the check phase run to check the consistency
of at most m− 2 values.

Remark 7. Since that m 6= q − 1 (in fact, we have q ≥ n), we cannot use
Reed-Solomon codes [22] but we have to work with their generalized form
[18].

Remark 8. The use of a GRS decoder at step 4 of Stage 3 is due to the
fact that (h1(0), . . . , hn(0)) can be interpreted as a sharing of s+ r using
Shamir’s technique with threshold parameter m− 1 and the well-known
relation between Shamir’s SSS and GRS codes [22]. Note that we cannot
use the Lagrange interpolation technique since we need to ensure correct
secret reconstruction in the presence of (at most) one deviating player
(see proof of Theorem 2 (Stage 3)).



Remark 9. Our protocol requires m ≥ 3. Indeed, consider m∗ = m = 2
and two participating players P1 and P2. If P1 always remains silent at
step 1 of Stage 3 (even if b1 = 1t) then P2 is forced to permanently run
step 2.b. Since P2 follows the protocol faithfully, at some iteration, his
share is to be broadcast to P1 (who will still be silent). Thus, P1 will
recover s and P2 will not. To prevent a player to choose such a strategy,
we need m− 1 > 1. That is m ≥ 3.

3.3 Security of our Rational SSS

We introduce the following notations:

– The secret reconstruction protocol is denoted Π(α).

– As said at the beginning of Sect. 3.2, for each i ∈ {1, . . . , n}, denote
ui (respectively, u

+
i ) the minimal (respectively, maximal) payoff of Pi

when he retrieves the secret and denote u−i his maximal payoff when
Pi does not recover s. As usually assumed in the rational context, we
consider: u+i > ui > u−i for all i ∈ {1, . . . , n}.

The following theorem shows the consistency of our scheme in a rational
environment. Its proof can be found in Appendix A.

Theorem 2. Assume m ≥ 4. There exists an α∗ such that for any α ≤
α∗, Π(α) induces a Nash equilibrium surviving iterated deletion of weakly
dominated strategies.

Remark 10. We do not say that our prescribed strategy does not lead to a
Nash equilibrium surviving iterated deletion of weakly dominated strate-
gies when m = 3 (see Remark 9 for the case m = 2). Our demonstration
simply does not handle this case for which our work is still open.

Explicitly computing the largest possible value for α∗ is not trivial. Fortu-
nately, we can obtain an explicit bound more easily. We define the values

β := max
i=1,...,n

u+i − ui

ui − u−i
and α̃ :=

[
( m∗

m−3 − 1)
√

β + 1
]−1

. The proof of the

following theorem appears in Appendix B.

Theorem 3. Assume m ≥ 4. For any α ≤ α̃, Π(α) induces a Nash
equilibrium surviving iterated deletion of weakly dominated strategies.

3.4 Round Complexity

We use the same notations as in the previous section.

Upper Bound. Appendix C contains the demonstration of the following
result.



Theorem 4. Assume m ≥ 4. Let α∗ be as in Theorem 2. For any α ≤ α∗,
the expected round complexity of Π(α) is:

1

⌈m∗

2
⌉∑

j=m
2

α2j−1(1− α)m
∗−(2j−1)

(
m∗

2j − 1

)

which is O(α
−m∗

m∗ ).

Lower Bound. We now prove a lower bound on the round complexity
of our protocol. The demonstration of the following theorem, exposed in
Appendix D, enlightens a relation with Chernoff’s bound on the tail of
the binomial distribution [6].

Theorem 5. Assume m ≥ 4. For any α ≤ min(α∗, m−2
m∗−1), the expected

round complexity of Π(α) is:

Ω

((
m− 2

m∗ − 1
α−1

)m−2
eα(m

∗−1)−m+2

1− α

)

3.5 Remark on the Case m is Odd

Since the beginning of Sect. 3, we only considered the case when m was
even. When the threshold m is odd, we can essentially use the same
protocol with the exception of step 4 in Stage 2 and step 2.a in Stage 3
which become:

Stage 2 (update)
4. If pj = 1 for some Pj , then the whole protocol goes back to the first

step of Stage 2. Otherwise, all participants proceed to Stage 3.

Stage 3 (update)

2.a. If ki is odd for at least m∗ − 1 players Pi, then the protocol stops.

It holds similar security and efficiency theorems to those presented in the
past two sections. The only analytical difference lies in the fact that we
now have p = 0.

3.6 Discussion

Equilibrium. Our solution concept is based on equilibria surviving iter-
ated deletions of weakly dominated strategies. The study of this type of
equilibrium was introduced by Halpern and Teague [11] and has received



a lot of attention [1, 9, 17]. We are aware that the notion of iterated dele-
tion exhibits several problems [15] and that several new concepts have
been proposed (mainly using computational versions of Nash equilibria
[10, 14]). The purpose of this paper is not to advocate in favor of a spe-
cific type of equilibrium. Its primary goal is to present a new construction
combining the advantages of several schemes for a model widely studied
in the literature.

Communication Channels.Our rational protocol requires the presence
of simultaneous broadcast channels which is a commonly-used model for
rational SSS. In [14], Kol and Naor manage to remove the need of si-
multaneity for the broadcast channels. However, this is at the expense of
increasing the round complexity by a multiplicative m and the removal is
based on permutations to relocate the meaningful encryption key. Thus,
this process is related to use of their meaningful/meaningless encryp-
tion primitive. In [10], Fuchsbauer et al. only use point-to-point channels.
However, authentication needs to use the VRF.

Computation Efficiency. Several rational protocols (such as [11]) re-
quire the dealer to participate in every round of the secret reconstruction
phase. This is a bottleneck for the efficiency of those constructions. Like
[10, 14], our scheme does not require the presence of an online dealer.
Furthermore, our share renewal process does not rely on either complex
MPC protocols (contrary to [1, 2, 9]) or complicated hardware such as en-
velopes and ballot boxes (contrary to [12, 19]).

Backward Induction. In [14], Kol and Naor emphasized that techniques
from [11, 9, 1] were susceptible to backward induction attacks resulting in
all players remaining silent from the beginning of the secret reconstruc-
tion process. This attack requires an exponential number of rounds to
succeed. Such a large running time only occurs with negligible probabil-
ity. Nonetheless, our scheme is immune against this threat since we only
use information theoretical tools (one-time pads) to authenticate data. In
particular, our immunity does not require the existence of any additional
cryptographic primitive contrary to [14] where meaningful/meaningless
encryption schemes were used.

4 Conclusion

In this paper, we presented a new protocol for rational threshold secret
sharing based on symmetric polynomials. To the best of our knowledge,
it is the first time that such polynomials have been used for rational se-
cret sharing. Our protocol requires simultaneous broadcast channels and



m ≥ 4.This construction does not require the presence of the dealer dur-
ing the share reconstruction phase and it provides information theoretical
security. It is immune against the backward induction attack and it leads
to a Nash equilibrium surviving the iterated deletion of weakly dominated
strategies.

On the negative side, our scheme is only secure against single strat-
egy deviations. One line to follow for our future research is to extend this
scheme to handle the case of coalition of enemies (c-resilience for c ≥ 2).
Using bivariate polynomials of degree m − 2 c is a possible approach as
they would also the GRS code to correct up to c errors. It is no hard to see
that the information theoretical security provided by the one-time pads
still holds (for any coalition of size at most m−1

2 ). Furthermore, the check
phase would still be consistent as every player Pj (testing the validity of
λ sent by Pi) would get m∗−c ≥ m−2 c+1 correct broadcast elements at
the end of step 1. The tricky point with this approach is to perform the
probabilistic analysis of a group of c cheaters. Indeed, the probabilistic
formulas exposed in Appendix A cannot be simplified as easily since we
have to handle a set of c bits which may not have been chosen by the
cheaters as stated in the algorithm. In the case c = 1, we obtained simple
conditional probabilities since represented the bit of the players following
the protocol’s instructions. This is no longer the case for coalitions of size
c ≥ 2 as some cheaters may choose their bit as they feel best for them-
selves.

As said in Sect. 3.6, our solution concept is based on equilibria surviv-
ing iterated deletions of weakly dominated strategies and several others
approaches in designing rational protocols have recently been proposed.
Since the cryptographic community is still in search of a proper frame-
work for rational protocols, it would be interesting to study the benefits
of our approach in different equilibrium contexts.
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A Proof of Theorem 2

We first show that the recommended protocol is a Nash equilibrium for
Π(α).

Without loss of generality, we can assume that the active players are
P1, . . . , Pm∗ . If one of the m∗ players does not broadcast anything during
step 1 of Stage 1, then the protocol would terminate without nobody
recovering s. This would result in a lower payoff for everybody including
the deviating player. Thus, any rational player is to broadcast a value
during that step. Suppose that some Pi broadcasts a fake couple (r̂i, r̂

′
i)

while the others follow the prescribed strategy. In order for the protocol
not to abort, this forgery must lead to a couple of values (R̂, R̂′) such
that: R̂ + R̂′ = r + r′ (random element uniformly distributed over Fq).
In other words, the deviation of Pi is successful if (r̂i, r̂

′
i) corresponds to

one of the q − 1 couples (R̂, R̂′) consistent with r + r′ and with r̂i 6= ri.

Remark 11. We stress that the values R̂ and R̂′ are common to all m∗−1
honest players.



Since we use simultaneous broadcast channels, deviating Pi must input
(r̂i, r̂

′
i) (with r̂i 6= ri) before receiving any information about the shares

of the honest players. As a consequence, the result of the polynomial
reconstructions appears uniformly distributed to Pi. Thus, the value R̂+
R̂′ appears uniformly distributed over Fq. Therefore, the expected payoff
of Pi by performing this deviation is:

1

q
u+i +

(
1−

1

q

)
u−i

Thus, Pi does not deviate if:

1

q
u+i +

(
1−

1

q

)
u−i < ui (1)

Now, we have to discuss an important fact. Inequality (1) is not proper
to our scheme. Indeed, this relation corresponds to the fact that it is more
valuable for Pi to participate in the secret reconstruction process than
aborting the protocol and tossing a coin to decide the value of the secret
s since this selfish strategy is successful with probability 1

q
. As said in [10]

about Fuchsbauer et al.’s value Urandom, if Inequality (1) does not hold,
then Pi has no incentive in cooperating at all and this player is better out
of the group of participants. Thus, it can be assumed without loss of gen-
erality that Inequality (1) does hold for all n players. As a consequence,
any rational player is to follow all instructions in Stage 1.

Assume that player Pi wants to cheat during Stage 2. In order for the
protocol not to be terminated abruptly, Pi is to send data to Pi+ and Pi−

at step 1 and to all other (m∗−1) players at step 3. A necessary condition
for a successful cheating is to have:

p1 = p2 = · · · = pi− = pi+ = · · · = pm∗ = 1

Denote d̃i, b̃
′
i and ˜di+ ⊕ b′

i−
the values sent by the deviating Pi during

Stage 2.



Let j be any value in {1, . . . ,m∗} \ {i}. We first study pj. Following the
protocol’s instructions, Pj computes the bit pj as:

pj = (b′i−− ⊕ d̃i)︸ ︷︷ ︸
from P

i−

⊕ ( ˜di+ ⊕ b′
i−
)

︸ ︷︷ ︸
from Pi

⊕ (b̃′i ⊕ di++)︸ ︷︷ ︸
from P

i+

⊕ [
m∗

⊕
k = 1

k 6= i−, i, i+

(b′k− ⊕ dk+)]

︸ ︷︷ ︸
from remaining players including Pj

= (b′i+ ⊕ di−)⊕ (d̃i ⊕ b̃′i)⊕ ( ˜di+ ⊕ b′
i−
)⊕ [

m∗

⊕
k = 1

k 6= i−, i, i+

(b′k ⊕ dk)]

= (b′i+ ⊕ di−)⊕ (d̃i ⊕ b̃′i)⊕ ( ˜di+ ⊕ b′
i−
)⊕ [

m∗

⊕
k = 1

k 6= i−, i, i+

bk]

We notice that the value of pj does not depend on the index j. Therefore,
we rename this common value as p. It can be simplified as follows:

p = (di+ ⊕ b′i−)︸ ︷︷ ︸
known to Pi

⊕ (d̃i ⊕ b̃′i)⊕ ( ˜di+ ⊕ b′
i−
)

︸ ︷︷ ︸
chosen by Pi

⊕[
m∗

⊕
k = 1
k 6= i

bk] (2)

Denote wi the Hamming weight of the vector (b1, . . . , bi− , bi+ , . . . , bm∗).
We have two cases to consider:

1. d̃i, b̃
′
i and

˜di+ ⊕ b′
i−

are such that: p = 1⊕ [
m∗

⊕
k = 1
k 6= i

bk].

2. d̃i, b̃
′
i and

˜di+ ⊕ b′
i−

are such that: p =
m∗

⊕
k = 1
k 6= i

bk.

Case 1. Since p = 1, wi is even. If the number of honest participating
players to send their shares at step 1 of Stage 3 is either at most m − 4
or at least m, then Pi does not gain anything by deviating. Pi only bene-
fits from not following the protocol’s instructions when there are exactly
m− 2 honest participating players. Then, Pi’s expected payoff is u+i .

Case 2. Since p = 1, wi is odd. If the number of honest participating
players to send their shares at step 1 of Stage 3 is either at most m − 3
or at least m + 1, then Pi does not gain anything by deviating. Pi only
benefits from not following the protocol’s instructions when there are ex-
actly m−1 honest participating players. Then, Pi’s expected payoff is u+i .

Reaching this point in our reasoning, we need to reflect upon Pi’s strategy.
We showed that he only has incentive to deviate in two specific subcases



of Case 2 (assuming that p = 1): wi = m− 2 and wi = m− 1. However, if
Pi follows the instructions at Stage 2, then each of the remaining (m∗−1)
players would get:

p =
m∗

⊕
k=1

bk (3)

So, Pi would obtain the same benefit in cheating at step 1 of Stage 3 as

in the subcases above where the role of (di+⊕b′
i−
)⊕ (d̃i⊕ b̃′i)⊕ ( ˜di+ ⊕ b′

i−
)

from Equation(2) would be played by bi in Equation(3). Therefore, Pi

has no incentive in sending different values than those prescribed by the
protocol during Stage 2.

We now focus on potential deviations of Pi during Stage 3. There are
three possibilities for Pi to cheat at step 1 of Stage 3 (where p = 1):
1. Pi broadcasts some value despite bi = 0.
2. Pi does not broadcast anything despite bi = 1.
3. Pi broadcasts a fake share when bi = 1.

Case 1. The protocol will terminate during this iteration of Stage 3 since
the value kj will be even for j 6= i (step 2.b cannot be accessed). In this
situation, Pi is better sending a fake share value. Since p = 1, wi is odd.
We are in the same situation as in Case 2 of Stage 2 where Pi sends a
fake share.

As said above, if wi ≤ m − 3 then no players learn s and Pi’s expected
payoff is u−i .

If wi ≥ m+ 1 then everybody recovers s:
– Pi interpolates m − 2 of the wi shares he got from the other players

(he runs step 3).
– Each Pj (j 6= i) is to execute step 4. Since there is at most one incorrect

value amongst the (m+1) elements he chooses, this potential error is
to be corrected by the GRS decoder and Pj recovers s.

In this situation, the expected payoff of the cheating Pi is ui.

If wi = m − 1 then only Pi will recover s as the remaining players will
reconstruct an incorrect polynomial at step 3. With large probability, its
constant term will be different from s+ r. In such a situation, Pi gets at
most u+i . We need to compute the following three probabilities:

Pr(wi ≥ m+ 1|{p = 1} ∩ {bi = 0})

Pr(wi = m− 1|{p = 1} ∩ {bi = 0})

Pr(wi ≤ m− 3|{p = 1} ∩ {bi = 0})



Let λ be any element of {0, . . . ,m∗ − 1}.

Pr(wi = λ|{p = 1} ∩ {bi = 0}) =

Pr({wi = λ} ∩ {
m∗

⊕
k=1

bk = 1} ∩ {bi = 0})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 0})

=

Pr({wi = λ} ∩ {
m∗

⊕
k = 1
k 6= i

bk = 1} ∩ {bi = 0})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 0})

=
Pr({wi = λ} ∩ {wi is odd})

Pr(wi is odd)

=

{
0 if λ is even

Pr(wi=λ)
Pr(wi is odd) if λ is odd

We can now compute the probabilistic values we need using the fact that
m is even.

Pr(wi ≥ m− 1|{p = 1} ∩ {bi = 0}) =

m∗−1∑

λ = m+ 1
λ odd

Pr(wi = λ)

Pr(wi is odd)

Pr(wi ≤ m− 3|{p = 1} ∩ {bi = 0}) =

m−3∑

λ = 0
λ odd

Pr(wi = λ)

Pr(wi is odd)

Based on this analysis, Pi is not to cheat if:

u+i Pr(wi = m− 1) + ui

m∗−1∑

λ = m+ 1
λ odd

Pr(wi = λ) + u−i

m−3∑

λ = 0
λ odd

Pr(wi = λ)

≤

ui Pr(wi is odd)



The previous inequality is equivalent to:

u+i αm−1 (1− α)m
∗−m

(
m∗ − 1

m− 1

)
+ u−i

m−3∑

λ = 0
λ odd

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

≤

ui

m−1∑

λ = 0
λ odd

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

Since m is even, the sum on the right hand side ends when λ = m − 3.
We get:

(u+i − ui)α
m−1 (1− α)m

∗−m

(
m∗ − 1

m− 1

)

≤

(ui − u−i )

m−3∑

λ = 0
λ odd

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

We divide both sides of the previous inequality by αm−1 (1− α)m
∗−m

(ui − u−i ) . Defining A := 1−α
α

, we obtain:

u+i − ui

ui − u−i

(
m∗ − 1

m− 1

)
≤

m−3∑

λ = 0
λ odd

(
m∗ − 1

λ

)
Am−(λ+1) (4)

The right hand side of Inequality(4) is a polynomial of degree m − 2 in
A with a positive leading coefficient as soon as m − 3 ≥ 1 (i.e. m ≥ 4).
Since A −−−−→

α→0+
+∞, we deduce that there exists a value αi,1 such that

for all α ≤ αi,1, Inequality(4) does hold. In such a situation, Pi does not
cheat as indicated in Case 1.

Case 2. As in Case 1, the protocol will terminate during this iteration
of Stage 3. In this case, both m and wi are even. We are in the same
situation as in Case 1 of Stage 2 where Pi remains silent.

If wi ≤ m − 4 then no players learn s and Pi’s expected payoff is u−i . If
wi ≥ m then everybody runs step 3 and recovers s since all the shares are
genuine. The expected payoff of the cheating Pi is ui. When wi ≤ m− 2,
Pi will be the only player to recover s since all other participants will run



step 2.a. In this situation, Pi gets at most u+i . We are interested in the
following three probabilities:

Pr(wi ≥ m|{p = 1} ∩ {bi = 1})

Pr(wi = m− 2|{p = 1} ∩ {bi = 1})

Pr(wi ≤ m− 4|{p = 1} ∩ {bi = 1})

Let λ be any element of {0, . . . ,m∗}.

Pr(wi = λ|{p = 1} ∩ {bi = 1}) =
Pr({wi = λ} ∩ {

m∗

⊕
k=1

bk = 1} ∩ {bi = 1})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 1})

=

Pr({wi = λ} ∩ {
m∗

⊕
k = 1
k 6= i

bk = 0} ∩ {bi = 1})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 1})

=
Pr({wi = λ} ∩ {wi is even})

Pr(wi is even)

=

{
0 if λ is odd
Pr({wi=λ})
Pr(wi is even) if λ is even

We can now compute the probabilistic values we need.

Pr(wi ≥ m|{p = 1} ∩ {bi = 1}) =

m∗−1∑

λ = m
λ even

Pr(wi = λ)

Pr(wi is even)

Pr(wi ≤ m− 4|{p = 1} ∩ {bi = 1}) =

m−4∑

λ = 0
λ even

Pr(wi = λ)

Pr(wi is even)

Based on this analysis, Pi is not to cheat if:

u+i Pr(wi = m− 2) + ui

m∗−1∑

λ = m
λ even

Pr(wi = λ) + u−i

m−4∑

λ = 0
λ even

Pr(wi = λ)

≤

ui Pr(wi is even)



The previous inequality is equivalent to:

u+i αm−2 (1− α)m
∗−(m−1)

(
m∗ − 1

m− 2

)
+ u−i

m−4∑

λ = 0
λ even

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

≤

ui

m−1∑

λ = 0
λ even

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

Since m is even, the sum on the right hand side ends when λ = m − 2.
We get:

(u+i − ui)α
m−2 (1− α)m

∗−(m−1)

(
m∗ − 1

m− 2

)

≤

(ui − u−i )

m−4∑

λ = 0
λ even

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

We divide both sides of the previous inequality by αm−2 (1− α)m
∗−(m−1)

(ui − u−i ) . Defining A := 1−α
α

, we obtain:

u+i − ui

ui − u−i

(
m∗ − 1

m− 2

)
≤

m−4∑

λ = 0
λ even

(
m∗ − 1

λ

)
Am−(λ+2) (5)

The right hand side of Inequality (5) is a polynomial of degree m− 2 in
A with a positive leading coefficient. Since A −−−−→

α→0+
+∞, we deduce that

there exists a value αi,2 such that for all α ≤ αi,2, Inequality (5) does not
hold. In such a situation, Pi does not cheat as indicated in Case 2.

Case 3. The current case corresponds to Case 1 of Stage 2 where Pi sends
a fake share. We are essentially in the same situation as in Case 2. Given
m is even, we have: wi ≥ m (everybody recovers s) or wi ≤ m−4 (nobody
recovers s) or wi = m−2. In the latter subcase, Pi will recover s while the
other players will get a wrong value with large probability. The expected
payoff of Pi is at most u+i in that specific subcase. As a consequence, if
Inequality (5) holds (i.e. we set αi,3 := αi,2) then Pi does not cheat as
indicated in Case 3.



At this point of our proof, we showed that for any α ≤ α∗
i := min(αi,1, αi,2),

player Pi will follow the protocol’s instructions until step 1 of Stage 3 in-
cluded. Since steps 2.a, 3 and 4 of Stage 3 are run independently by each
player, the only remaining way for Pi to deviate would occur when step
2.b is executed. In the check phase, each single deviation will cause the
protocol to stop without anybody learning the secret while, in the renewal
phase, a single deviation either may cause every player to recover a wrong
secret or may cause the protocol to stop with nobody learning s. Hence,
in both cases, no single rational player Pi has any incentive to deviate
during step 2.b.

As a consequence, for any α ≤ α∗ := min(α∗
1, . . . , α

∗
n), the mechanism

Π(α) is a Nash equilibrium. Using the same argument as the proof in
Theorem 3.2 from [11], we could demonstrate that Π(α) survives iterated
deletion of weakly-dominated strategies.

B Proof of Theorem 3

Assume that m ≥ 4. Consider α ≤ α̃. This inequality implies:

β

(
m∗ −m+ 3

m− 3

)2

≤ A2 (6)

This inequality leads to:

β
(m∗ −m+ 2) (m∗ −m+ 1)

(m− 1) (m− 2)
≤ A2

Therefore, we get: β
(
m∗−1
m−1

)
≤
(
m∗−1
m−3

)
A2 and we deduce:

u+i − ui

ui − u−i

(
m∗ − 1

m− 1

)
≤

m−3∑

λ = 0
λ odd

(
m∗ − 1

λ

)
Am−(λ+1)

which means that Inequality (4) is verified.

Let’s start from Inequality (6) again. It also implies:

β
(m∗ −m+ 3) (m∗ −m+ 2)

(m− 2) (m− 3)
≤ A2

Therefore, we get: β
(
m∗−1
m−2

)
≤
(
m∗−1
m−4

)
A2 and we deduce:

u+i − ui

ui − u−i

(
m∗ − 1

m− 2

)
≤

m−4∑

λ = 0
λ even

(
m∗ − 1

λ

)
Am−(λ+2)



which means that Inequality (5) is verified which ends our demonstration
since this result is valid for every player Pi (i ∈ {1, . . . , n}).

C Proof of Theorem 4

Since α ≤ α∗, allm∗ active players follow the protocol’s instructions. As in
the proof of Theorem 2, we assume that the active players are P1, . . . , Pm∗ .

Based on Equation (3), the secret s is to be recovered when p = 1 and
at least m − 1 of the bi’s are equal to 1. Denote w the Hamming weight
of (b1, . . . , bm∗). Since the bi’s are chosen uniformly at random and inde-
pendently, we have:

Pr(s is recovered) =
m∗∑

λ=m−1

Pr({p = 1} ∩ {w = λ})

=

m∗∑

λ = m− 1
λ odd

Pr(w = λ)

=

m∗∑

λ = m− 1
λ odd

αλ (1− α)m
∗−λ

(
m∗

λ

)

Thus, the expected number of round is as claimed.

Since Π(α) is a Nash equilibrium for small values of α, we can assume:
α ≤ 1

2 . Thus, 1− α ≥ α and we get the lower bound:

Pr(s is recovered) ≥

m∗∑

λ = m− 1
λ odd

αm∗

(
m∗

λ

)
≥ m∗ αm∗

In other words, the expected round complexity is O(α
−m∗

m∗ ).

D Proof of Theorem 5

In order to bound the value Pr(s is recovered), we expand this expression
as follows.



Pr(s is recovered) =

m∗∑

λ = m− 1
λ odd

αλ (1− α)m
∗−λ

[(
m∗ − 1

λ

)
+

(
m∗ − 1

λ− 1

)]

= (1− α)

m∗−1∑

λ = m− 1
λ odd

αλ (1− α)m
∗−1−λ

(
m∗ − 1

λ

)

+

α

m∗−1∑

λ = m− 2
λ even

αλ (1− α)m
∗−1−λ

(
m∗ − 1

λ

)

Since m is even, the indices for both sums can start from m− 2.

Pr(s is recovered) = (1− α)

m∗−1∑

λ = m− 2
λ odd

αλ (1− α)m
∗−1−λ

(
m∗ − 1

λ

)

+

α

m∗−1∑

λ = m− 2
λ even

αλ (1− α)m
∗−1−λ

(
m∗ − 1

λ

)

Consider the following values:

∀ℓ ∈ N ∀k{0, . . . , ℓ} ∀p ∈ [0, 1] B(k, ℓ, p) :=
ℓ∑

λ=k

p (1− p)ℓ−λ

(
ℓ

λ

)

As said before, we can always assume that α ≤ 1
2 . We get the following

bounds:

α B(m− 2,m∗ − 1, α) ≤ Pr(s is recovered) ≤ (1−α)B(m− 2,m∗− 1, α)

As recalled in [25], since α ≤ m−2
m∗−1 , we have the Chernoff bound:

B(m− 2,m∗ − 1, α) ≤

(
α (m∗ − 1)

m− 2

)m−2

em−2−α(m∗−1)

which leads to the claimed lower bound on the expected round complexity.


