
Breaking An Identity-Based Encryption Scheme
based on DHIES

Martin R. Albrecht1 and Kenneth G. Paterson2?

1 INRIA, Paris-Rocquencourt Center, SALSA Project UPMC Univ Paris 06, UMR
7606, LIP6, F-75005, Paris, France CNRS, UMR 7606, LIP6, F-75005, Paris, France

2 Information Security Group, Royal Holloway, University of London.

1 Introduction

The search for Identity-Based Encryption (IBE) schemes having efficient algo-
rithms and proven security has resulted in many proposals for schemes. A recent
proposal, due to Chen et al. [5], has very efficient encryption and decryption and
claims to have security based on the security of the DHIES public key encryp-
tion scheme. In this paper, we present collusion attacks against the scheme of
[5] which recover the Trusted Authority’s master secret key. These attacks apply
even in the weak IBE security model used in [5] and thus completely invalidate
the security claims made in [5, Theorem 3.1], the main security result in that
paper. We explain where the security analysis in [5] is deficient.

However, it seems that the authors of [5] were already aware of the possibility
of collusion attacks against their scheme and set the scheme parameters with
the intention of making such attacks inefficient (see Section 3.1 of [5]). We show
that their setting of parameters is also flawed by exhibiting a family of efficient
collusion attacks against the scheme which applies for their concrete choice of
parameters. In fact, our attacks allow the various attack parameters to be traded
off against one another – such as the number of private keys needed (the size of
the collusion), and the amount of computation needed. For example, we exhibit
a master key recovery attack against the concrete scheme of [5] that requires a
collusion of 213 parties, 243.3 evaluations of a hash function and 230 field opera-
tions.

In independent work, Susilo et al. [10] also present an attack against the scheme
of [5]. Their attack is an application of the observation in Section 3.1 of [5] using
more precise complexity results than the authors of the original scheme. As with
our attacks, this invalidates the security claims made in [5]. However our attacks
are more flexible and much faster than the attack in [10]. Moreover, we provide
concrete attack costs for the parameters proposed in [5], we highlight the flaw
in the security proof given in [5], and we show that there is a design flaw in
the construction of private keys in the scheme which enables attacks beyond
straight-forward system solving. Finally, we note that [10] repeats some of the
? This author supported by an EPSRC Leadership Fellowship, EP/H005455/1.



wrong claims made in [5] about the complexity of Gröbner basis algorithms and
the relation of XL to these algorithms (cf. Section 3).

In summary, our attacks and the attacks from [10] show that the scheme of [5]
cannot be rescued simply by increasing the parameter sizes, without having a
serious effect on the efficiency of the scheme.

The remainder of this paper is organised as follows. In Section 2, we present the
IBE scheme of [5]. In Section 3 we present some background on Gröbner bases
that we use in our attacks. Finally, Section 4 presents our attacks and discusses
their application to the concrete parameters selected in [5].

2 The IBE Scheme

Our description of the IBE scheme comes from [5, Section 3], with some minor
changes to notation. In fact, we do not need to describe the encryption and
decryption algorithms of the scheme, since our attacks do not rely on their
details. Moreover, we omit some steps that are not needed to understand our
attacks.

Setup: This algorithm has as input a security parameter k and a value n (called
` in [5]).

1. Run a pairing parameter generator G to generate a prime q, two groups G1,
G2 of order q and a pairing e : G1 ×G1 → G2. Let P generate G1.

2. Set msk = (u0, . . . , un−1) ∈ (Zq)n where ui ←R Zq for 0 ≤ i < n.
3. Set mpk = (u0P, . . . , un−1P ) ∈ (G1)n.
4. Let H0 be a hash function which takes as inputs elements of {0, 1}∗ and

outputs subsets of size t of {0, 1, . . . , n−1}. A specific method for defining H0

in terms of elementary hash functions is given in [5]. However, we note that
this method is flawed because it does not guarantee to produce an output set
of size exactly t. For the concrete parameters selected in [5] (n = 512, t = 8),
a reduced-size output set is quite likely. We ignore this flaw, assuming that
the output set is always of size t.

5. Select a pseudo-random number generator (PRNG) F having elements of
{0, 1}∗ as seeds and outputs in Zq.

The master secret key of the scheme is msk. The master public key of the scheme
is mpk together with descriptions of G1, G2, e, q, P, H0 and F .

KeyGen: Given an identity id ∈ {0, 1}∗, this algorithm proceeds as follows:

1. Produce {s0, . . . , st−1} := H0(id).
2. Use F with seed id to produce vectors a = (a0, . . . , at−1) ∈ (Zq)t and b =

(b00, . . . , bt−1,t−1) ∈ (Zq)(
t+1
2 ).



3. Output as the private key for identity id the value:

xid =
∑

0≤i<t

aiusi
+

∑

0≤i≤j<t

bijusi
usj

∈ Zq.

Notice that the private key corresponding to the identity id is the evaluation of
a quadratic function fid over Zq in t on the values u0, . . . , un−1 from msk. The
specific quadratic function fid is determined by H0 and F and can be readily
calculated using only the string id and public information. This observation
forms the basis of all of our attacks, the first of which follows immediately.

2.1 A Trivial Collusion Attack

Consider an attacker who has access to private keys xid for strings id of his
choice. Such an attacker is standard in the usual security models for IBE, where
the attacker has access to a private key extraction oracle. The attacker makes
about n2 such queries for randomly chosen identities. Each query yields the value
xid of a new quadratic function fid in the n unknown values ui. We set up a
polynomial system in which variables xi take the place of the unkown values ui in
the quadratic polynomial

∑
0≤i<t aixsi +

∑
0≤i≤j<t bijxsixsj−xid corresponding

to fid and xid. After roughly n2 queries, the quadratic system so obtained can be
linearised – replacing each monomial xixj by a new variable yij yields a full-rank
linear system in

(
n+1

2

)
+ n variables. The resulting linear system can be solved

in time O(
n6

)
field operations using elementary linear algebra to recover the

master secret key (u0, . . . , un−1).

This yields a polynomial-time-and-space attack (in parameter n) for the scheme
presented in [5]. In particular, it shows that the security proof of [5, Theorem
3.1], which is the main security result in the paper, cannot be correct. This is
because our adversary can be converted into an IND-sID-CCA adversary that
breaks the scheme without breaking the underlying DHIES scheme. Technically,
since n as defined in [5] is a constant and not dependent on k, our attacker
runs with a constant number of extraction queries and in constant time. For the
specific parameters n = 512, t = 8 given in the paper, this attacker runs in time
O(

254
)
, where our basic operation is a field operation over Zq. We note that

this kind of attack is anticipated in [5, Section 3.1], which makes it all the more
surprising that Theorem 3.1 is included in that paper.

One way in which the main result of [5] could be rescued would be to make
n super-polynomial in the security paramter k. However, this would impact
adversely on the efficiency of the scheme. Another way would be to limit the
number of key extraction queries allowed by the adversary. This latter fix is
suggested in [5, Section 3.1], where it is claimed that the scheme will be secure
against collusion attacks so long as the adversary is limited to making 0.1n2

key extraction queries (whereas the basic attack above requires roughly n2 such
queries). As we shall see with our more sophisticated attacks below, limiting



the adversary to 0.1n2 key extraction queries is insufficient to make the scheme
secure. This point is also made in [10].

2.2 Where the Proof Fails

It is instructive to examine where the proof of [5, Theorem 3.1] fails. In essence,
a hash function H1 : {0, 1}∗ → G2 is treated as a random oracle in the proof,
whereas in fact this hash function must have an algebraic structure derived from
the private key equation defining xid. Thus it cannot be modelled as a random
oracle.

3 Gröbner Basics

Consider the polynomial ring P = Zq[x0, . . . , xn−1] over some prime finite field
Zq, some monomial ordering on elements of P and a set of polynomials f0, . . . , fm−1.
We denote by LM(f) the largest monomial in f and by LC(f) the coefficient
corresponding to LM(f). We consider the ideal I spanned by f0, . . . , fm−1.

Definition 1. Let f0, . . . , fm−1 be polynomials in P . Define the set

〈f0, . . . , fm−1〉 =

{
m−1∑

i=0

hifi : h0, . . . , hm−1 ∈ P

}
.

This set I is an ideal and is called the ideal generated by f0, . . . , fm−1.

A Gröbner basis G for some ideal I is a basis such that for any leading monomial
occuring in the ideal there is an element in the basis which has leading monomial
dividing it.

Definition 2 (Gröbner Basis). Let I be an ideal of Zq[x0, . . . , xn−1] and fix
a monomial ordering. A finite subset G = {g0, . . . , gm−1} ⊂ I is said to be a
Gröbner basis of I if for all f ∈ I there exists a gi ∈ G such that LM(gi) |
LM(f).

Definition 3 (Reduced Gröbner Basis [6]). Let I be an ideal of Zq[x0, . . . , xn−1]
and fix a monomial ordering. A finite subset G = {g0, . . . , gm−1} ⊂ I is said to
be a reduced Gröbner basis of I if

– G is a Gröbner basis,
– LC(gi) = 1 for all gi ∈ G, and
– for all gi ∈ G, no monomial of gi is divisible by some LM(gj) for gj ∈

G− {gi}.



The reduced Gröbner basis G of I is unique for a given I. From this, it is
easy to see that the reduced Gröbner basis of an ideal I = 〈f0, . . . , fm−1〉
with (u0, . . . , un−1) ∈ Zn

q the unique common root of all f0, . . . , fm−1 is (x0 −
u0, . . . , xn−1 − un−1). Consequently, if a system of equations has exactly one
solution, computing the Gröbner basis is equivalent to solving the system of
equations.

Lazard showed in [9] that computing a Gröbner basis for a homogeneous sys-
tem of polynomials spanning a zero-dimensional ideal can be reduced to linear
algebra.

Definition 4. For the set of m polynomials f0, . . . , fm−1 we can define and con-
struct the Macaulay matrix Macaulay

d,m of degree d as follows: list “horizontally” all
the degree d monomials from smallest to largest sorted by some fixed monomial
ordering. The smallest monomial comes last. Multiply each fi by all monomials
ti,j of degree d− di where di = deg(fi). Finally, construct the coefficient matrix
for the resulting system:

Macaulay
d,m =

monomials of degree d
(t0,0, f0)
(t0,1, f0)
(t0,2, f0)

...
(t1,0, f1)

...
(tm−1,0, fm−1)
(tm−1,1, fm−1)

...







Theorem 1 (Lazard’s Theorem [9]). Let F = {f0, . . . , fm−1} be set of ho-
mogeneous polynomials in P spanning a zero-dimensional ideal. There exists a
positive integer D for which Gaussian elimination on all Macaulay

d,m for 1 ≤ d ≤ D
computes a Gröbner basis for the ideal 〈F 〉.

The value D is called the degree of semi-regularity and defined as follows:

Definition 5 (D-regular Sequences [3]). Let f0, . . . , fm−1 ⊂ Zq[x0, . . . , xn−1]
be homogeneous polynomials of degrees d0, . . . , dm−1 respectively. This sequence
is regular of degree D if:

1. 〈f0, . . . , fm−1〉 6= Zq[x0, . . . , xn−1].
2. For all 0 ≤ i < m and g ∈ Zq[x0, . . . , xn−1]:

deg(g · fi) < D and g · fi ∈ 〈f0, . . . , fi−1〉 ⇒ g ∈ 〈f0, . . . , fi−1〉.



We call D the degree of semi-regularity of the system.

This notion can be extended to affine polynomials by considering their homoge-
neous components of highest degree. It is conjectured that random systems of
polynomials are semi-regular systems, i.e. that their degree of regularity is given
by:

Lemma 1 (Degree of Semi-Regularity [3]). The degree of regularity of a
semi-regular sequence f0, . . . , fm−1 of respective degree d0, . . . , dm−1 is given by
the index of the first non-positive coefficient of:

∑

k≥0

ckzk =
∏m−1

i=0 (1− zdi)
(1− z)n

.

The F4 [7] and F5 [8] algorithms can be seen as applications of Lazard’s theorem1.
They successively construct and reduce matrices until a Gröbner basis is found.
Consequently, their complexity can be estimated using the degree D.

Theorem 2 (F5 Complexity [3]). The complexity of computing a Gröbner
basis of a zero-dimensional system of m polynomials in n variables with the
algorithm F5 is

O
((

n + D − 1
D

)ω)

where D is the “degree of semi-regularity” of the system and 2 ≤ ω < 3 is the
linear algebra constant.

Using Theorem 2 and Lemma 1 we can estimate the complexity of solving a
random system of equations in n unknowns and m equations. Below, we give
concrete values for the log2 of the expected complexity of the F5 algorithm in
finite field operations for a variety of cases relevant to this work. The table below
assumes ω = 3. We note, that assuming ω = 3 is pessimistic, since if the system
is dense then there exist practical faster algorithms for Gaussian elimination
with ω = log2 7 and if the system is sparse, we expect ω = 2 + ε.

The systems considered in this work are not random since we have the guarantee
that only a small fraction of the possible variables appear in a polynomial, that
is the systems are sparse. However, we expect that the complexity bounds from
Table 1 still apply. In particular, we expect sparse systems to be easier to solve
than truly random (dense) systems. Moreover, we do not expect the systems
to be harder than random systems. Since the coefficients are chosen uniformly
at random each new polynomial does indeed add new useful information to the
system and is not a simple algebraic combination of other polynomials already
in the system.
1 We note that the XL algorithm has been shown to be a redundant variant of the F4

algorithm [2].



m =

n n + 1 bn log nc bn log n2c b0.05 · n2c b0.1 · n2c 0.5n2

1024 – 227 176 105 74 –
512 – 165 118 92 65 –
256 – 102 80 80 57 45
128 364 68 49 68 49 38
64 182 49 32 63 41 32
32 91 33 26 54 39 26
16 46 21 21 m < n 30 21
8 24 15 11 m < n m < n 15

Table 1. Complexity of solving a random system of m equations in n unknowns.

In order to verify this intuition, we give concrete running times in seconds on a
2.6 Ghz Opteron for small-scale random systems in n unknowns and m = b0.1n2c
equations and t unknowns per equation in Figure 1. The x-axis is n, the left-
hand side y-axis is the log2 of the running time and the right-hand side y-axis
is the log2 of the speed-up of t < n compared to t = n. We used Magma’s
[4] implementation of the F4 algorithm and implemented the experiment using
the Sage mathematics software [11]. We note that while the values for n are too
small to observe the asymptotic behaviour, they show that setting t = c for some
constant c < n does not impact the complexity negatively.

We note that in Table 1 for m = n log n the complexity appears to grow sub-
exponentially in n, which matches the behaviour over Z2 for which explicit for-
mulas exist in literature [3]. Thus, we conclude that the statement in [5] that
the scheme is secure against collusion attacks involving m ≈ 0.1n2 identities is
incorrect. In particular, we expect sub-exponential complexity for m ≈ n log n.
Furthermore, Figure 1 disproves the claim made in [10] that Gröbner basis tech-
niques cannot solve systems of equations in more than 15 variables.

4 Refining the Basic Attack

We now extend the basic collusion attack shown in Section 2, exploiting the
fact that the adversary can precompute the hash function H0 in an effort to
find identities leading to simpler sets of equations in the n unknowns xi. Our
main idea is to partition the set of unknowns into subsets of equal size, and then
search for identities yielding systems of equations with unknowns restricted to
these sets. Since the subsets are of smaller size than the whole, solving these
systems should be easier than solving a single large system.

To this end, we write n = 2d, assuming this parameter is an integer power of 2
(as it is for the concrete parameters in [5]). For some value s ≥ 0 with 2d−s ≥ t,
we partition the set {0, . . . , n− 1} into 2s sets Si each containing 2d−s integers



Fig. 1. Experimental verification for t ∈ {4, 8, n} with m = b0.1n2c.

by setting Si = {i2d−s, . . . , (i + 1)2d−s − 1}. Next we present pseudo-code for
our attack.

Set IDi := ∅, ci := 0 for 0 ≤ i < 2s

Set c := 0 and c2s := 0.
repeat

c := c + 1
id ←R {0, 1}∗
if H0(id) ⊂ Si for some i then

IDi = IDi ∪ id
ci := ci + 1

else
c2s := c2s + 1

end if
until ci ≥ m for 0 ≤ i < 2s

Obtain xid for the first m elements in each set IDi using key extraction queries.
for 0 ≤ i < 2s do

Using the m values xid for id ∈ IDi, generate and solve a system of m
equations in the set of unknowns {xj : j ∈ Si}.

end for



The attack involves three main stages: a pre-computation to generate sets of
identities IDi suitable for building systems of equations; making key extraction
queries to obtain the required private keys; generating and solving 2s systems
of equations, each containing m equations in 2d−s unknowns. Here s and m
are parameters of our attack. It is evident that our attack requires m2s key
extraction queries, and that Table 1 can be used to estimate the running time
of the equation solving stage for parameters of interest. We focus next on the
running time of the first stage.

The first stage involves making sufficiently many queries to H0 so as to obtain
at least m identities id in each of the 2s sets IDi. In practice, the identities id
will be drawn from the set of strings of some maximum length. This makes no
difference to the attack provided that H0 acts as a random function from {0, 1}∗
to t-subsets of {0, 1, . . . , n − 1}. We make this assumption henceforth. Under
this assumption, for a uniformly selected id, the probability that H0(id) ⊂ Si is
equal to p :=

(
2d−s

t

)
/
(
n
t

)
.

After c iterations of main loop in the algorithm, the vector (c0, . . . , c2s−1, c2s)
follows a multinomial distribution with parameters c and (p, . . . , p, 1 − 2sp). It
then follows from standard results on the multinomial distribution that, for each
0 ≤ i < 2s, the random variable ci follows a binomial distribution with mean
cp and variance cp(1 − p). Moreover, the covariance between ci and cj is equal
to −cp2. Since p is generally small for the parameters of interest, the covariance
is very small and to a first approximation we may treat the first 2s values ci as
independent identically distributed random variables. We require each of these
variables to be greater than m for the algorithm to terminate, and we estimate
the probability that it does so after no more than c iterations as follows.

Using known estimates for the tail of the binomial distribution (see for example
[1, Theorem A.13]), we have, for any real number a:

Pr[ci ≥ cp− a] > 1− e−a2/2pc

Under our assumption that the ci may be treated as independent random vari-
ables, we then have:

Pr[
∧

0≤i<2s

ci ≥ cp− a] > (1− e−a2/2pc)2
s

.

Setting a = m and c = 2m/p, we then obtain:

Pr[
∧

0≤i<2s

ci ≥ m] > (1− e−m/4p)2
s ≥ 1− 2se−m/4p ≥ 1− n

t
e−m/4p.

It is then easy to see that with p =
(
2d−s

t

)
/
(
n
t

)
, the algorithm terminates with

high probability provided the main loop is executed c = 2m/p times.

A concrete example: We take n = 512 (so d = 9) and t = 8, as in the concrete
parameters suggested in [5]. We then select s = 4 and m = 0.5(2d−s)2 = 29



(corresponding to the last column in Table 1). For these parameters, we have
p = 2−33.3. Then our attack requires 2m/p = 243.3 evaluations of H0 and m2s =
213 key extraction queries to build 2s = 16 sets of 29 equations in 32 variables.
From Table 1, the complexity of solving the 16 systems of equations is 16 ×
226 = 230 field operations. To summarise, we can break the scheme of [5] for the
concrete parameters n = 512 and t = 8 using 243.3 evaluations of H0, 213 key
extraction queries and 230 field operations. We remind the reader that our attack
recovers the master secret key of the scheme, so our break is a complete one. We
also remind the reader that the authors of [5] suggest that their scheme should
be secure provided the attacker is limited to making no more than 0.1n2 key
extraction queries. Here, this equates to 214.68 queries, while our attack needs
only 213 queries.

A second example (minimising key extractions): We take n = 512 (so d = 9)
and t = 8, again as in the concrete parameters suggested in [5]. We then select
s = 6 and m = 9. Then our attack requires 260.8 evaluations of H0, just 29.2 key
extraction queries and 227.2 field operations to recover the master secret key of
the scheme.

A third example (doubling the parameters): Suppose the scheme parameters are
doubled in an attempt to avoid our attack. So we take n = 1024 (so d = 10)
and t = 16. We then select s = 3 and m = 213. Our attack then requires 264.1

evaluations of H0, 216 key extraction queries and 241 field operations.

4.1 Refining the Attacks

We have taken a simple approach to generating sets of equations that are easier
to solve than sets involving all n variables. The reader can easily see that more
sophisticated ways of generating and solving sets of equations can be developed.
For example, once the values of some variables are known, we can be less re-
strictive about how further sets of equations are generated. However, this seems
unnecessary in order to conclude that the scheme of [5] is flawed in an essential
way.

5 Conclusions

We have presented an analysis of a recently proposed IBE scheme of Chen et
al. [5]. We have shown that the main security result in [5] does not hold, and
that the authors’ assessment of their scheme’s resistance to collusion attacks is
over-optimistic. We have shown how standard Gröbner basis techniques can be
used to efficiently break the scheme for the parameters proposed in [5], using
a collusion attack with a small number of key extraction queries. Our attack is
still practical if all the scheme’s parameters are doubled.



We note that in order to achieve 80-bit security against the naive attack from
Section 2 one needs at least n = 214. In that case, solving the system of equations
would cost n6 = 214·6 = 284 finite field operations. With such parameters the
master public key mpk would have a size of 160 · 214/8 = 320kb. Note that this
variant would still be vulnerable to the attacks in Section 4.

We conclude that the scheme of [5] does not offer an attractive trade-off between
security and efficiency.

References

1. N. Alon and J.H. Spencer. The probabilistic method. John Wiley & Sons, 1992.
2. G. Ars and J.-C. Faugère and H. Imai and M. Kawazoe and M. Sugita. Com-

parison between XL and Gröbner basis algorithms. In Advances in Cryptology -
ASIACRYPT 2004, Volume 3329 of LNCS, pp. 338-353, Springer Verlag, 2004.

3. M. Bardet, J. Faugère and B. Salvy. On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In Proceedings of the
International Conference on Polynomial System Solving, pp. 71-74, 2004.

4. W. Bosma, J. Cannon and C. Playoust, The MAGMA Algebra System I: The User
Language. In Journal of Symbolic Computation, Vol. 24, pp. 235-265. Academic
Press, 1997.

5. Y. Chen, M. Charlemagne, Z. Guan, J. Hu and Z. Chen. Identity-based encryption
from DHIES. In D. Feng, D.A. Basin and P. Liu Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2010, pp. 82-88, ACM, 2010.

6. D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algorithms. 3rd Ed. Springer
Verlag. Berlin, Heidelberg, New York, 2007.

7. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4). In
Journal of Pure and Applied Algebra, Vol. 139 (1-3), pp. 61-88, 1999.

8. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5). In Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, pp.75-83, ACM, 2002.

9. D. Lazard. Gröbner-Bases, Gaussian elimination and resolution of systems of alge-
braic equations. In Proceedings of the European Computer Algebra Conference on
Computer Algebra, Vol. 162 of LNCS, pp. 146-156, Springer Verlag, Berlin, 1983.

10. W. Susilo and J. Baek. On the Security of the Identity-based Encryption based
on DHIES from ASIACCS 2010 (short paper). In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2011, ACM, 2011, to appear.

11. W. Stein et al. Sage Mathematics Software. Version 4.6.0. 2010


